
A Quantitative Study of Two Attacks 1

Chiara Bodei, Michele Curti, Pierpaolo Degano2

Dipartimento di Informatica, Università di Pisa
Viale F. Buonarroti, 2, I-56127 Pisa, Italy

Corrado Priami3

Dipartimento di Informatica e Telecomunicazioni, Università di Trento
Via Sommarive, 14 – 38050 Povo (TN), Italy

Abstract

We use a special operational semantics which helps us in predicting quantitative measures on
systems describing cryptographic protocols: We also consider a possible attacker. The transitions
of the system carry enhanced labels. We assign rates to transitions by only looking at these labels.
We then map transition systems to Markov chains and evaluate performance of systems, using
standard tools.

Keywords: Formal methods, performance evaluation, process algebras, security protocols.

1 Introduction

Cryptographic protocols, used in distributed systems for authentication and
key exchange, are designed to guarantee security. The mechanisms used are
always the result of a judicious balance between their cost and benefits. Perfor-
mance and implementation costs must be carefully evaluated: the greater the

1 Supported in part by the Information Society Technologies programme of the European
Commission, Future and Emerging Technologies, under the IST-2001-32072 project DE-
GAS; the Danish SNF-project LoST.
2 Email: {chiara,curtim,degano}@di.unipi.it
3 Email: priami@science.unitn.it

Electronic Notes in Theoretical Computer Science 121 (2005) 65–85

1571-0661 © 2005 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.10.008
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/54895301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:priami@science.unitn.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

threat of attacks, the greater the investment in security. In the end, security
is not a state of perfection, but a process of risk management.

In [4], we proposed a first step towards the development of a single, formal
design methodology that supports designers in analysing the performance of
protocols, in terms of time overhead and resource consumption.

We would like to extend [4], in order to include attackers into the picture
so to evaluate the costs of particular sequences of successful attacks. As a
matter of fact, estimating the attacker efforts can provide useful information
for establishing the acceptability of a particular protocol and of its security
in terms of its resilience. The idea is providing users with a formal way to
evaluate the trade-off between the need to manage the risk of attacks and the
need to keep costs low.

Actually, the attacker is a principal that does not play fair. According to
the traditional Dolev-Yao [12] model, the attacker is supposed to have control
over the communication network. It is therefore able to monitor the traffic
and intercept a message, to create a new message, using parts of old ones, to
inject new messages and to substitute its messages for legitimate ones. These
actions can be easily modeled in a process algebraic framework.

The starting point of our approach is the narration of a specific protocol
and of a documented attack to it. We detail the narration in the process
algebra LySa [3], that makes it possible to specify the behaviour of both the
legitimate participants and of the attacker in terms of processes running in
parallel. The quantitative analysis applied on this specification gives us an
estimate of the effort made by the attacker in this particular case.

The Dolev-Yao model leaves out those operations, classified as compu-
tationally hard, that an attacker can try to exploit, such as guessing keys
and breaking cryptography systems. The attacker can indeed exploit the
weaknesses of the encryption algorithm to obtain the plaintext, by suitably
manipulating the ciphertext bit by bit. To take into account also this kind
of actions, we need to extend our standard semantics (see Cervasato [7] and
Meadows [17]): messages are not atomic objects, rather they are sequences of
packets in turn made of bits. Communication and encryption/decryption are
not atomic operations, as well.

Following [4], we describe protocols and their attacks using the process
algebra LySa [3] with an enhanced semantics (along the lines of [11]) and we
associate a cost with each transition, as proposed in [19].

More precisely, the enhanced operational semantics provides transitions
with enhanced labels, from which it is possible to mechanically derive rates.
Once rates have been assigned, it is easy to derive the Continuous Time
Markov Chain associated with the transition system. From its stationary

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8566

distribution, if any, we evaluate the performance of the process in hand.

2 Case Study

A balance between security and cost is particularly crucial for wireless LAN
(WLAN), where the risks due to portability of wireless devices increase w.r.t. the
risks of usual wired networks. A common way of protecting communications
in a WLAN is by encrypting and decrypting messages with Wired Equivalent
Privacy (WEP), the cryptographic algorithm for the IEEE 802.11 standard.
WEP should offer some security guarantees in terms of confidentiality, data
integrity and access to the wireless network.

The algorithm relies on a secret key K shared between a mobile station
(MS), e.g. a laptop with a wireless card, and an Access Point (AP), i.e. a base
station. This key, exchanged apart, is used to protect the body of a transmit-
ted message M . On the net it will pass the corresponding ciphertext {M}K ,
together with the Initialization Vector v, as described below. To encrypt the
message M , the sender proceeds as follows:

• M is checksummed (using the CRC-32 algorithm) to obtain c(M); M and
c(M) are concatenated to obtain the plaintext P = 〈M, c(M)〉;

• an Initialization Vector (24-bit field) v is picked; the RC4 algorithm (a
stream cipher) generates a keystream RC4(v, K); the ciphertext C results
from applying the exclusive-or (XOR, denoted by ⊕) to the plaintext and
the keystream, i.e. C = P ⊕ RC4(v, K).

The whole frame of data, transmitted on the net, is therefore 〈v, C〉. To
decrypt C the receiver reverses the encryption process:

• given v, he computes RC4(v, K) and XORs the received message C against
RC4(v, K) to recover P , i.e. C⊕RC4(v, K) = (P⊕RC4(v, K))⊕RC4(v, K) =
P = 〈M, c(M)〉;

• then, the receiver checks whether the checksums are equal. If so, the message
is accepted.

Unfortunately, the WEP algorithm has a lot of flaws, due to its inappro-
priate implementation and combination of RC4 and CRC-32 (see e.g. [5,2]).
Consequently, it is vulnerable to several attacks, heavily based on the crypto-
analysis. The main reasons for this include:

keystream reuse: given two ciphertexts, it is easy to obtain the XOR of the
two corresponding plaintexts, due to algebraic properties of ⊕. In addition,
traffic analysis can lead to discover plaintexts. Using an Initialization Vector
seems to help, since it produces a different RC4 for each packet. Instead,

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 67

the small space of initialization vectors claims for a highly probable reuse.

key reuse and management: usually, a unique key is shared between all
mobile stations and access points.

poor packet integrity: the integrity checksum field used by WEP is imple-
mented as a CRC-32 checksum. CRC is designed to detect random errors
in a message, but it cannot prevent attacks. Therefore message integrity
cannot be completely guaranteed: an encrypted message can be modified,
without disrupting its checksum.

A couple of attacks follow that exploit the above vulnerabilities. It happens
that neither involves disclosing the key. The first is an attack to the WLAN
authentication protocol, a challenge-response protocol used by a mobile station
to associate with an access point to authenticate itself.

(Prot1)

1. MS → AP : req, MS

2. AP → MS : N

3. MS → AP : v, {N}K

4. AP → MS : Ack

When the MS requests access (through the message req, MS) to the wireless
network, the AP sends a challenge N ; MS receives and encrypts it and then
sends it back. AP decrypts the received packet and checks the payload against
the challenge: if the two match, the authentication ends up successfully.

The observation of a legitimate authentication sequence it is sufficient to
mount an authentication spoofing attack, because it directly provides the Ini-
tialization Vector and implicitly reveals the corresponding keystream. In fact
{N}K is actually in the form C = P ⊕ RC4(v, K), with P = 〈N, C(N)〉.
The attacker that knows both C and P , exploits the fact that P ⊕ C =
P ⊕P ⊕RC4(v, K) = RC4(v, K), thus acquiring the knowledge of RC4(v, K)
besides the one of v. This is enough for the attacker to produce {N ′}′K as
〈N ′, C(N ′)〉 ⊕ RC4(v, K), without knowing K, and therefore to be authenti-
cated. The attack sequence is

(Att1)

2. AP → E(MS) : N

3. MS → E(AP) : v, {N}K

2′. AP → E : N ′

3′. E → AP : v, {N ′}′K

The second attack, called IP redirection attack, is used when the access

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8568

point acts as an IP router for mobile stations. AP decrypts all the packets
sent by a mobile station and sends them (in clear) on Internet. The attacker
tricks the access point, i.e. the legitimate decryptor: the access point will
kindly decrypt for the attacker. In detail, MS sends AP a message in the
form {H, M}K , where the header of the ciphertext represents the intended
destination IP address H . AP decrypts the packet and sends M to H . The
attacker first intercepts the packet encrypted for H and then modifies it so
that it is sent to EH , i.e. an IP address controlled by the attacker. The access
point decrypts the forged packet and sends its content to the new destination
in clear. Again it is not necessary to break the key. Modifying the address
part of the packet is quite easy. The attacker has only to guess the header
H , whose position is at a fixed length from the start of the packet. Figuring
out H is not difficult. Just knowing H , it is sufficient to perform a selective
modification on the ciphertext. The attack sequence is

(Att2)

1. MS → E(AP) : {H, M}K

1′. E(MS) → AP : {EH, M}K

2′. AP → EH : M

Below we introduce our technique, and then we proceed with the applica-
tion of our framework to the couple of attacks above.

3 LySa and its Enhanced Semantics

We briefly survey the process calculus LySa and give an intuitive introduction
to its semantics.

3.1 The calculus

The LySa calculus [3] is based on the π- [18] and Spi-calculus [1], but differs
from these essentially in two aspects: (i) the absence of channels: there is
only one global communication medium to which all processes have access;
(ii) the tests associated with input and decryption are naturally expressed
using pattern matching. Below, we assume the reader familiar with the basics
of process calculi.

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 69

Syntax.

The syntax consists of terms E ∈ E and processes P ∈ P, where N and
X denote sets of names and variables, respectively.

E ::= terms

a name (a ∈ N)

x variable (x ∈ X)

{E1, · · · , Ek}E0 symmetric encryption (k ≥ 0)

P ::= processes

0 nil

out.P output

in.P input (with matching)

P1 | P2 parallel composition

(ν a)P restriction

dec in P symmetric decryption (with matching)

A(y1, . . . , yn) constant definition

where the we used the following abbreviations, that we will use hereafter:

out
�
= 〈E1, · · · , Ek〉

in
�
= (E ′

1, · · · , E′
j ; xj+1, · · · , xk),

dec
�
= decrypt E as {E1, · · · , Ej; xj+1, · · · , xk}E0.

Intuitively, 0 represents the null inactive process. The operator | describes
parallel composition of processes. The operator (νa) acts as a static declara-
tion (i.e. a binder) for the name a in the process P the restriction prefixes.
Restriction is therefore used to create new names such as nonces or keys.
The process 〈E1, · · · , Ek〉. P sends E1, · · · , Ek on the net and then contin-
ues like P . The process (E1, · · · , Ej; xj+1, · · · , xk). P attempts to receive the
tuple E ′

1, · · · , E′
k and to continue as P [Ej+1/xj+1, . . . , Ek/xk], provided that

Ei = E ′
i for all i ∈ [1, j]. The intuition is that the matching succeeds when

the first j values E ′
i pairwise correspond to the values Ei, and the effect is

to bind the remaining k − j values to the variables xj+1, · · · , xk. Note that,
syntactically, a semi-colon separates the components where matching is per-
formed from those where only binding takes place. The same simple form of

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8570

patterns is also used for decryption (see [6] for a more flexible choice). In
fact, the process decrypt E as {E1, · · · , Ej; xj+1, · · · , xk}E0

in P attempts to
decrypt E = {E ′

1, · · · , E′
k}E′

0
with the key E0. Whenever Ei = E ′

i for all
i ∈ [0, j], the process behaves as P [Ej+1/xj+1, . . . , Ek/xk]. Finally, an agent
is a static definition of a parameterised process. Each agent identifier A has
a unique defining equation of the form A(ỹ) = P , where ỹ denotes a tuple
y1, . . . , yn of distinct names (the only ones) occurring free in P .

1 Sys1 = (νK)(νv)(AP |MS) K shared key and v initialization vector

2 AP = (AP, req; zMS). AP ′ AP receives and checks msg (1)

3 AP ′ = (νN)(〈AP, zMS , N〉. AP ′′) AP sends msg (2)

4 AP ′′ = (zMS , AP, v; zenc). AP ′′′ AP receives and checks msg (3)

5 AP ′′′ = decrypt zenc as {N ; }K in AP ′′′′ AP decrypts the enc in msg (3)

6 AP ′′′′ = 〈AP, zMS , ack〉. AP AP sends msg (4)

7 MS = 〈AP, req, MS〉. MS ′ MS sends msg (1)

8 MS′ = (AP, MS; xN). MS′′ MS receives and checks msg (2)

9 MS′′ = 〈MS, AP, v, {xN}K〉. MS′′′ MS sends msg (3)

10 MS′′′ = (AP, MS, ack;). MS MS receives and checks msg (4)

Table 1
WEP Authentication Protocol

Example

The LySa specification of the WEP authentication protocol is in Table 1,
where each message appears endowed with the name of the sender and the
receiver, for the sake of clarity. The right part has a concise explanation of the
action on the left, in terms of the number of the message (called msg, while
enc stands for an encrypted term) in the protocol narration Prot1, presented
in Section 2.

The whole system is given by the parallel composition (|) of the two processes
AP and MS. Each of them performs a certain number of actions and then
re-starts again. They share the key K and the initialization vector v.

We describe a part of a computation that arises from Sys1 to show the
basic forms of LySa dynamics, i.e. communication and decryption.

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 71

1 (νK)(νv)(AP, req; zMS). AP ′|〈AP, req, MS〉. MS′ −→ (νK)(νv)(AP ′[MS/zMS]|MS′)

2 (νK)(νv)((νN)(〈AP, MS, N〉. AP ′′)[MS/zMS]|MS′)

−→ (νK)(νv)(νN)(AP ′′ [MS/zMS]|MS′′[N/xN])

3 (νK)(νv)(νN)((zMS , AP, v; zenc). AP ′′′[MS/zMS]|〈MS, AP, v, {N}K〉. MS′′′)

−→ (νK)(νv)(νN)(AP ′′′ [MS/zMS, {N}K/zenc]|MS′′′)

3′ (νK)(νv)(νN)(decrypt {N}K as {N ; }K in AP ′′′′[MS/zMS]|MS′′′)

−→ (νK)(νv)(νN)(AP ′′′′ [MS/zMS]|MS′′′)

4 (νK)(νv)(νN)(〈AP, MS, ack〉. AP |(AP, MS, ack;). MS −→ Sys1

In the first transition (1), the principal AP receives (see line 2 in Tab. 1)
the message 〈AP, req, MS〉 sent by MS. The first two terms are AP, req as
required by the input prefix in the form (AP, req; MS). . Consequently, the
variable zMS is bound to MS, within the continuation AP ′, i.e. to the last
term of the received message MS. Similarly for the second, third and fifth
transitions (2, 3, 4). In the fourth transition (3′), the process AP ′′′ that after
the substitution is decrypt {N}K as {N ; }K in AP ′′′′ attempts to decrypt {N}K

with the key K (line 5 in Tab. 1) and checks whether the decrypted term is
the nonce N .

3.2 Enhanced Semantics

Once the protocol has been specified in LySa, our semantics associates a label
with each transition, in particular to each communication and to each decryp-
tion. To this aim, we use a very concrete version of semantics, called enhanced,
in the style of [10,11]. Our enhanced semantics for LySa is a reduction seman-
tics, built on top of the standard reduction semantics [3], where both processes
and transitions are annotated with labels. Labels encode information about
the actions and about the syntactic context in which actions take place. The
encoding of the context for each prefix of a given process, is obtained by an-
notating each of them with a string of tags ϑ, called context label. This string
essentially records which is the syntactic position of the prefix with respect
to the parallel composition nesting: a tag ‖0 (‖1, respectively) is used for the
left (for the right, respectively) branch of a parallel composition. In order
to do this, we exploit the abstract syntax tree of processes, built using the
binary parallel composition as operator. The labels θ that enrich transitions
are called enhanced labels. The enhanced label for a communication is in the
form θ = 〈ϑOout, ϑIin〉 and records the input and output perfixes that lead to
the transition. Similarly, a transition for a decryption has a label in the form
〈ϑdec〉.

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8572

Example (cont’d)

Back to our example, consider the label of the first transition of Sys1:
θ0 = 〈‖0(AP, req; zMS), ‖1〈AP, req, MS〉〉. The context label of the prefixes of
AP is simply ‖0, while the one of the prefixes of MS is ‖1. This corresponds
to the fact that AP and MS occur in the left (right, respectively) branch of
the parallel composition (AP |MS). For lack of space, we omit drawing the
corresponding transition system.

The enhanced labels of all the transitions of Sys1 are below. While, in
general, the same label can annotate different transitions, in our example,
there is only one label for each transition. Therefore, we feel free to use
hereafter the label θi for the i-th transition.
• θ0 = 〈‖0(AP, req; zMS), ‖1〈AP, req, MS〉〉;
• θ1 = 〈‖0(AP, MS; xN), ‖1〈AP, MS, N 〉〉;
• θ2 = 〈‖0(MS, AP, v; zenc), ‖1〈MS, AP, v, {N}K〉〉;
• θ3 = 〈‖0 decrypt {N}K as {N ; }K〉
• θ4 = 〈‖0(AP, MS, ack;), ‖1〈AP, MS, ack〉〉

4 Stochastic Analysis

We are now ready to give the intuition on how to derive the costs of transitions
by inspecting enhanced labels, following [19]. This information is sufficient
to extract the necessary quantitative information to obtain the Continuous
Time Markov Chains (CTMC). In general, by “cost” we mean any measure
that affects quantitative properties of transitions: here, we intend the time the
system is likely to remain within a given transition. Therefore, we specify the
cost of a protocol in terms of the time overhead due to its primitives (along
the same lines as [20]). The cost of (the component of) the transition depends
on both the current action and on its context. This is vindicated in [19] as
follows. Since the semantics of a language specifies its abstract machine, the
context in which an action occurs represents the run-time support routines
that the target machine performs in order to fire that action.

First, we intuitively present the main factors that influence the costs of
actions and those due to their context.

• The cost of a communication depends on the costs of the input and output
components. In particular, the cost of an
· output depends on the size of the message and on the cost of each term of

the message sent, in particular on its encryptions.
· input depends on the size of the message and on the cost of checks needed

to accept the message.
Actually, the two partners independently perform some low-level operations

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 73

locally to their environment, each of which leads to a delay. Since commu-
nication is synchronous and handshaking, the overall cost corresponds to
the cost paid by the slower partner.

• The cost of both encryption and decryption depends on the sizes of the
cleartext and ciphertext, respectively; the complexity of the algorithm that
implements it; the cipher mode adopted; the kind of the key (short/long,
short-term/long-term). The length of the key is important: usually, the
longer the key, the greater the computing time. In addition , the cost for
decryption depends on the cost of the checks needed to accept the decryp-
tion.

• The cost of parallel composition is evaluated according to the number of
available processors and to the speed of system clock.

For simplicity, here we simply ignore the costs for other primitives, e.g. re-
striction or constant invocation; see [19] for a complete treament.

available processors. To define a cost function, we start by considering the
execution of each action on a dedicated architecture that only has to perform
that action, and we estimate the corresponding duration with a fixed rate r.
Then we model the performance degradation due to the run-time support. In
order to do that, we introduce a scaling factor for r in correspondence with
each routine called by the implementation of the transition θ under considera-
tion. Actually, we just propose a format for these functions, with parameters
to be instantiated on need. Note that these parameters depend on the target
machine. For instance, in a system where the cryptographic operations are
performed at very high speed (e.g. on a cryptographic accelerator), but with
a slow link (low bandwidth), the time will be low for encryptions and high for
communication; vice versa, in a system offering a high bandwidth, but poor
cryptography resources.

Technically, we interpret costs as parameters of exponential distributions
(general distributions are also possible (see [21]), as they depend on enhanced
labels, only). The rate associated with the transition is the parameter which
identifies the exponential distribution of the duration times of the transition,
as usual in in stochastic process algebras (e.g. [14,13]). An exponential distri-
bution with rate r is a function F (t) = 1−e−rt, where t is the time parameter.
The shape of F (t) is a curve which grows from 0 asymptotically approaching
1 for positive values of its argument t. The parameter r determines the slope
of the curve. The greater r, the faster F (t) approaches its asymptotic value.
The probability of performing an action with parameter r within time x is
F (x) = 1 − e−rx, so r determines the time, ∆t, needed to have a probability
near to 1.

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8574

4.1 Cost Functions

We define in a few steps the function that associates rates with communication
and decryption transitions, or, more precisely, with their enhanced labels. We
first give the auxiliary function fE : E → IR+ that estimates the effort needed
to manipulate terms E ∈ E .

fE(a) = size(a)

fE({E1, . . . , Ek}E0) = fenc(fE(E1), ..., fE(E1), kind(E0))

The size of a name a (size(a)) matters. For an encrypted term, we use the
function fenc, which in turn depends on the estimate of the terms to encrypt
and on the kind of the key (represented by kind(E0)), i.e. on its length and
on the corresponding cryptosystem.

Then we assign costs to actions in {in, out, dec}. corresponding actions,
the cost of prefixes. Formally, the function $α : {in, out, dec} → IR+ is defined
as

$α(〈E1, . . . , Ek〉) = fout(fE(E1), ..., fE(E1), bw)

$α((E1, . . . , Ej ; xj+1, . . . , xk)) = fin(fE(E1), ..., fE(Ej), match(j), bw)

$α(decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0) =

fdec(fE(E), kind(E0), match(j))

The functions fout and fin define the costs of the routines which implement
the send and receive primitives. Besides the implementation cost due to their
own algorithms, the functions above depend on the bandwidth of the com-
munication channel (represented by bw) and the cost of the exchanged terms,
in turn computed by the auxiliary function fE . Furthermore, the cost of an
input depends on the number of tests or matchings required (represented by
match(j)). Finally, the function fdec represents the cost of a decryption. It
depends on the manipulated terms (fE(E)), on the kind of key (kind(E0))
and on the number of matchings (match(j)).

We now consider the context in which the actions occur. To determine
the slowing factor due to parallel composition, we associate a cost to each
context label ϑ, as expressed by the function $l : {‖0, ‖1}∗ → (0, 1]. Parallel
composition is evaluated according to the number np of processors available,
and on the number of processes that run on them, represented by the number
of tags (| · |) in the context label. Another factor is given by the speed of clock,
the system clock.

$l(ϑ) = f||(np, |ϑ|, clock), i = 0, 1

Finally, we give the function $: Θ → IR+ that associates rates with en-

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 75

hanced labels.

$(〈ϑOout, ϑIin〉) = min{$l(ϑO) · $α(out), $l(ϑI) · $α(in)}
$〈ϑdec〉 = $l(ϑ) · $α(dec)

As mentioned above, the two partners independently perform some low-
level operations locally to their environment, represented by the two context
labels ϑO and ϑI . Each of these labels leads to a delay ($l(ϑO) and $l(ϑI),
respectively) in the rate of the corresponding action ($α(out) and $α(in), re-
spectively). Therefore, the cost paid by the slower partner corresponds to
minimum of those of the operations independently performed by the partici-
pants, in isolation. Indeed the lower the cost, i.e. the rate, the greater the time
needed to complete an action and hence the slower the speed of the transition
occurring 4 .

Note that we do not fix the actual cost function: we only propose for it
a possible set of parameters that reflect some features of a somewhat ideal-
ized architecture and of a particular cryptosystem. Although very abstract,
this suffices to make our point. A precise instantiation comes with the refine-
ment steps from specification to implementations as soon as actual parameters
become available.

Example (cont’d)

We now associate a rate to each transition in the transition system Sys1.
For the sake of simplicity, we assume that each principal has enough processing
power and then we can map each ϑ to 1. We could vary this value considering
e.g. differences in the speed of clock for the two processes. The instantiation
of the cost functions given make use of the following parameters to represent
the time spent while performing the corresponding action on a single term.

• e and d for encrypting and for decrypting,

• s and r for sending and for receiving,

• m for pattern matching.

The functions are:

fE(a) = 1

fE({E1, . . . , Ek}E0) =
e

s
·

k∑
i=1

fE(Ei) +
k∑

i=1

fE(Ei)

$α(〈E1, . . . , Ek〉) =
1

s · ∑i
i=1 fE(Ei)

4 The smaller r, the slower F (t) = 1 − e−rt approaches its asymptotic value.

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8576

$α((E1, . . . , Ej ; xj+1, . . . , xk)) =
1

r · k + m · j
$α(decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0) =

1
d · k + m · j

Since transmission is usually more time-consuming than the corresponding
reception, the rate of a communication, will always be that of output. The
rate of the first transition in Sys1 is c0 = $(θ0) = 1

3s
and corresponds to

min{($l(‖0) · $α(〈(AP, req; zMS)〉), $l(‖1) · $α(〈AP, req,MS〉)} = min{ 1
3s

, 1
3r+m

}.
The other rates are ci = $(θi), of the transitions with labels θi in Sys1 are:

c0 = c1 = c4 =
1

3s
, c2 =

1

4s + e
, c3 =

1

d + m

4.2 Markov Chains and Performance Measures

Our first step is obtaining a Continuous Time Markov Chain (CTMC) from a
transition system. Then, we shall calculate the actual performance measure,
e.g. the throughput or utilization of a certain resource.

We use the rates of transitions computed Subsection 4.1, to transform a
transition system T into its corresponding CTMC(T): a state is associated
with each node of the transition system, while the transitions between states
are defined by the arcs.

transition is independent of

Actually, the rate q(Ti, Tj) at which a system changes from behaving like
process Ti to behaving like Tj is the sum of the single rates of all the possible
transitions from Ti to Tj. Note that q(Ti, Tj) coincides with the off-diagonal
element qij of the generator matrix of the CTMC, namely Q. Recall that a
CTMC can be seen as a directed graph and that its matrix Q (apart from
its diagonal) represents its adjacency matrix. Hence, hereafter we will use
indistinguishably CTMC and its corresponding Q to denote a Markov chain.
More formally, the entries of the generator matrix Q are defined as

qij =

q(Ti, Tj) =
∑

Ti
θk−→Tj

$(θk) if i �= j

−
n∑

j=0
j �=i

qij if i = j
(1)

Example (cont’d)

Consider again the transition system Sys1 which is finite and has a cyclic
initial state. These features ensure the existence of its stationary distribution.
The stationary probability distribution of a CTMC is Π = (X0, . . . , Xn−1) such

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 77

that Π solves the matrix equation ΠTQ = 0 and
∑n

i=0 Xi = 1. We derive the
following generator matrix Q of CTMC(Sys1).

Q =

−c0 c0 0 0 0
0 −c1 c1 0 0
0 0 −c2 c2 0
0 0 0 −c3 c3

c4 0 0 0 −c4

The stationary distribution of the Markov chain Π for Sys1 is

Π =
[3s

A
,

3s
A

,
4s+ e

A
,
d + 3m

A
,

3s
A

]
where A = 13s+ e + d + 3m

Evaluating the Performance

In order to define performance measures for a process T , we define a reward
structure associated with T , following [15,14,8]. Usually, a reward structure
is simply a function that associates a reward with any state passed through
in a computation of T . For instance, when calculating the utilisation of a
resource, we assign value 1 to any state in which the use of the resource is
enabled (typically the source of a transition that uses the resource). All the
other states earn the value 0. Instead we use a slightly different notion, where
rewards are computed from rates of transitions [19]. To measure instead the
throughput of a system, i.e. the amount of useful work accomplished per unit
time, a reasonable choice is to use as nonzero reward a value equal to the rate
of the corresponding transition.

Example (cont’d)

The throughput for a given activity is found by first associating a tran-
sition reward equal to the activity rate with each transition. In our systems
each transition is fired only once. Also, the graph of the corresponding CTMC
is cyclic and all the labels represent different activities. This amounts to say-
ing that the throughput of all the activities is the same, and we can freely
choose one of them to compute the throughput of Sys1. Thus we associate
a transition reward equal to its rate with the last communication and a null
transition reward with all the others communications. From them, we com-
pute the reward structures as ρ = (0, 0, 0, 0, c4) for Sys1. The total reward R
of the system amounts then to 3s

13s+e+d+3m
. 1
3s

= 1
13s+e+d+3m

. To use this per-
formance measure, it is necessary to instantiate our parameters under various
hypotheses, depending on several factors, such as the network load, the packet
size, the number of mobile stations and so on. What it is known is that the the
cost for encryption and decryption could be considered equivalent (i.e. e = d)
and that it is much bigger than the one for matching m and the one for sending
s. Roughly, this means that the total reward can be approximated by 1

2d
, thus

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8578

confirming the idea that cryptographic mechanisms could weak the network
performance.

5 Costs of Attacks

We are interested here in modelling the costs of both the attacks introduced
in Section 2 and therefore we need to consider in our syntax also the extra-
actions, in which an attacker can exploit its computational power and in its
capability of guessing. (man-in-the-middle attack).

The First Attack

To model the attack to the WEP authentication protocol, we use a special
construct called here emulated encryption. As explained in Section 2, if the
attacker knows a nonce and its encryption, even though it ignores the key, it
can obtain the encryption of any other nonce it knows. More precisely it is
able to produce the same bit string that can be obtained by encrypting with
the proper key, just by XOR-ing the collected information. Actually, we treat
an abstraction of this action, i.e. we neither introduce an explicit construct
for the XOR operation and nor we explicitly handle RC4(v, K). To illustrate
this level of abstraction, we mimick the usual induction rules used to show the
capabilities of the Dolev-Yao attacker, in terms of its knowledge K.

K |= N, {N}K , N ′

K |= {{N ′}}K

So terms become:

Ẽ ::= extended terms

E standard term

{{E}}K emulated encryption

specification of the

In Tab. 2, we present the specification Sys′1 of the attack to the WEP
authentication protocol Att1, where the specification of AP and MS are as
in Tab. 1, and the sequence of attack is represented by the process E. As
described in Section 2, the attack consists in two phases: (i) the attacker E
observes a whole authentication session; (ii) the attacker exploits the informa-
tion acquired in (i) to authenticate itself, as the continuation E. For simplicity,
we chose to represent the observation made by E of each exchange of mes-
sages between the legitimate participants AS and MS in (i) as composed of
two actions: (a) first E reads the message, by intercepting it from the net,

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 79

1 Sys′1 = (νK)(νv)(AP |MS)|E
a E = (AP, req, MS;). E′ E intercepts msg (1)

a′ EI = 〈AP, req, MS〉. EII E injects msg (1)

b EII = (AP, MS; yN). EIII E intercepts msg (2)

b′ EIII = 〈AP, MS, yN 〉. EIV E injects msg (2)

c EIV = (MS, AP ; yv, yenc). EV E intercepts msg (3)

c′ EV = 〈MS, AP, yv, yenc〉. EV I E injects msg (3)

d EV I = (AP, MS, ack;). EV II E intercepts msg (4)

d′ EV II = 〈AP, MS, ack〉. E E injects msg (4)

a′′ E
I

= 〈AP, req, E〉. EII
E sends msg (1)

b′′ E
II

= (AP, E; yN ′). E
III

E receives and checks msg (2)

c′′ E
III

= 〈E, AP, yv, {{yN ′}}K〉. EIV
E sends msg (3)

d′′ E
IV

= (AP, E, ack;). E E receives and checks msg (4)

Table 2
Attack to the WEP Authentication Protocol

and then (a′) E sends it to the receiver, by injecting the message unaltered
on the net. Note in the second phase the use of emulated encryption in the
third message (line c′′ in Tab. 2).

Because of space limitation, we do not show the 22-states transition system
corresponding to Sys′1. The context labels of processes are different, because
the structure of processes now includes also E: ‖0‖0 for AP , ‖0‖1 for MS and
‖1 for E. The enhanced labels are similar to the ones seen for Sys1, and the
only interesting one is θ2 = 〈‖0‖0(E, AP, v; zenc), ‖1〈E, AP, v, {{N ′}}K〉〉.
It corresponds to the action specified in line c′′ in Tab. 2, where E uses the
emulated encryption to obtain the message 〈E, AP, v, {{N ′}}K〉. Its cost is
c2 = $(θ2) = 1

4s+x
, where the parameter x corresponds to the time spent

in producing the emulated encryption. Again, for the sake of simplicity, we
assume that each principal has enough processing power and then we can map
each ϑ to 1.

We dispense with the details on the computation of the CTMC correspond-
ing to the transition system, the technique is the same presented in Section 3.
The generator matrix is Q1 =

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8580

2
66666666666666666666666666666666666664

−2c0 c0 0 0 0 c0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −c1 c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −c2 c2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −c3 c3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c4 0 0 0 −c4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −c0 c0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −c1 c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −c1 c1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −c2 c2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −c2 c2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −c3 c3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −c4 c4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −c4 c4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2c0 c0 0 0 0 c0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −c1 c1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −c2p c2p 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −c3 c3 0 0 0 0
c4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −c4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −c1 c1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −c2 c2 0
0 −c3 c3
0 0 0 0 0 0 0 0 0 0 0 0 0 c4 0 0 0 0 0 0 0 −c4

3
77777777777777777777777777777777777775

where c0 = c1 = c4 =
1

3s
, c2 =

1

4s + e
, c3 =

1

d + m
, c2p =

1

4s + x

The corresponding stationary distribution is

Π1 =
[3s

B
,

3s
B

,
4s + e

B
,
d + m

B
,

3s
B

,
3s
B

,
3s
B

,
3s
B

,
4s + e

B
,

4s + e

B
,
d + m

B
,

3s
B

,
3s
B

,
3s
B

,
3s
B

,
4s + x

B
,
d + m

B
,

3s
B

,
3s
B

,
4s + e

B
,
d + m

B
,

3s
B

]

where B = 59s+ 4e + x + 4d+ 4m

Actually, our transition system presents two cyclic paths, where only one
corresponds to the attack sequence. Thus we associate a transition reward
equal to its rate with the last communication of this path and a null transition
reward with all the others communications. The total reward R1 of the system
amounts then to 3s

B
. 1
3s

= 1
59s+4e+x+4d+4m

.

Once instantiated the parameters, we can make more accurate performance
considerations. Nevertheless, we can immediately observe that the throughput
R of Sys1 (the protocol specification, without the attacker) is approximatively
four times greater than the throughput R1 of Sys′1 (the protocol specification
in the presence of the attack). Consequently, the attack and the authentication
obtained by fraud does not appear so expensive. This result agrees with the
ones achieved in literature [5,2] and quantitatively confirms that this form
of authentication is completely unsatisfactory. As a matter of fact, the new

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 81

versions of the WLAN offer more sophisticated (and more expensive too) forms
of authentication.

The Second Attack

Similarly, we can evaluate the performance of the IP redirection attack.
Also here, terms are extended with a new construct, called partially emulated
encryption:

Ê ::= extended terms

E standard term

{[E, E ′]}K partially emulated encryption

Again, we abstractly treat this encryption, as witnessed by the new induc-
tion rule for the attacker knowledge K:

K |= {E, E ′}K , E, E ′′

K |= {[E ′′, E]}K

The attacker is able to obtain the encryption {EH, M}K from {H, M}K , with-
out knowing the key K, but only knowing H and replacing it with EH .

Processes are instead extended with a new construct for guessing of a
selected part of an encryption, assumed to lay always at the same position.

P̂ ::= extended processes

P standard process

guess E as {; x, ?}K in P selective guessing

In Tab. 3, we present the specification of the IP Redirection Protocol
and of the attack Att2, presented in Section 2, where the processes H and
EH represent the processes that manage the corresponding IP addresses. To
perform the attack, first E intercepts the encrypted packet sent by MS (line
a in Tab. 3), then tries to figure out which is the original destination address
H (line a′). Finally (line a′′) E injects the modified encrypted packet, where
the new destination address EH is one the attacker controls.

Also here we omit the transition system corresponding to Sys2. The con-
text labels of the main processes are: ‖0‖0‖0 for AP , ‖0‖0‖1 for MS, ‖0‖1 for
H , ‖1‖0 for E, ‖1‖1 for EH . The only interesting cases for enhanced labels
correspond to

• the action specified in line a′ in Tab. 3, where E tries to guess, whose cost
is given by

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8582

1 Sys3 = ((νK)(AP |MS)|H)|(E|EH)

1 MS = 〈MS, AP, {H, M}K〉. MS MS sends msg (1)

2 H = (AP, H ; zM). H H receives and checks msg (2)

3 AP = (MS, AP ; xenc). AP ′ AP receives and checks msg(1)

4 AP ′ = decrypt xenc as {; xd, xM}K in AP ′′ AP decrypts its the enc in msg (1)

5 AP ′′ = 〈AP, xd, xM 〉. AP AP sends (2)

a E = ((MS, AP ; yenc)). E′ E intercepts msg (1)

a′ EI = guess yenc as{H ; , ?}K in EII E guesses on msg (1)

a′′ EII = 〈MS, AP, {[EH, M]}K〉. E E injects msg (1’)

b′ EH = (AP, EH ; zM). EH EH receives and checks msg (2’)

Table 3
Attack to the IP Redirection Protocol

c3 = $(〈‖1‖0 guess {H, M}K as{; H, ?}K〉 =
1
g
,

where the parameter g corresponds to the time spent in this try.

• the action specified in line a′′, where E uses the partially emulated encryp-
tion to obtain the message 〈MS, AP, {[EH, M]}K〉, whose corresponding
cost is given by

c4 = $(〈‖0‖0‖0(MS, AP ; {[EH, M]}K), ‖1‖0〈MS, AP, {[EH, M]}K〉〉) =
1

3s + 2p
,

where the parameter p corresponds to the time spent in producing the
partially emulated encryption.

The following generator matrix Q2, has dij as generic element and is such that

its diagonal elements dii are in the form
n∑

j=0
j �=i

dij and where

c0 =
1

3s+ 2e
, c1 =

1
2d

, c2 =
1
3s

, c3 =
1
g
, c4 =

1
3s + 2p

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 83

2
666666666666666666666664

−d0 c0 0 c0 0 0 0 0 0 0 0 0 0 0 0
0 −d1 c1 0 0 0 0 c0 0 0 0 0 0 0 0
c2 0−d2 0 0 0 0 0 c0 0 0 0 0 0 0
0 0 0−d3 c3 0 0 c0 0 0 0 0 0 0 0
0 0 0 0−d4 c4 0 0 0 0 0 c0 0 0 0
0 0 0 0 0−d5 c1 0 0 c0 0 0 0 0 0
c2 0 0 0 0 0−d6 0 0 0 c0 0 0 0 0
0 0 0 0 0 0 0−d7 c1 0 0 c3 0 0 0
0 0 0 c2 0 0 0 0−d8 0 0 0 c3 0 0
0 0 0 0 0 0 0 0 0−d9 c1 0 0 c3 0
0 0 0 c2 0 0 0 0 0 0−d10 0 0 0 c3
0 0 0 0 0 0 0 0 0 0 0−d11 c1 0 0
0 0 0 0 c2 0 0 0 0 0 0 0−d12 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0−d13 c1
0 0 0 0 c2 0 0 0 0 0 0 0 0 0−d14

3
777777777777777777777775

Also in this case, it is possible to compute the corresponding stationary
distribution Π2 and the throughput R2. Unfortunately, here the structure of
the transition system (and therefore of the generator matrix) is much more
complex: it presents several paths with non-empty intersection. As a con-
sequence, without a suitable instantiation of parameters, Π2 is unpractical
to represent. Even with a very rough instantiation of these parameters, the
quantitative results show that the effort made by the attacker to break the
WEP algorithm is quite limited. [17]: Again, to implement cryptography in
wireless networks, designers should adopt algorithms that offer more secu-
rity guarantees, e.g. AES [9], even though this choice has a strong impact on
performance.

Acknowledgement

We are deeply indebted with Francesco Romani for his patient guide in the
matrix world.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols - The Spi calculus.
Information and Computation 148, 1:1–70, January 1999.

[2] W.A. Arbaugh and N. Shankar and Y.C.J. Wan Your 802.11 Wireless Network has No Clothes.
To appear in IEEE Wireless Communication Magazine, 2002.

[3] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic validation of
protocol narration. In Proc. of CSFW’03, pages 126–140. IEEE, 2003.

[4] C. Bodei, M. Buchholtz, M. Curti, P. Degano, F. Nielson, and H. Riis Nielson, C. Priami.
Performance Evaluation of Security Protocols specified in LySa. Proc of 2nd Workshop on
Quantitative Aspects of Programming Languages, ENTCS, 2004.

Distributions in Process

[5] N. Borisov, I. Goldberg and D. Wagner. Communications: The insecurity of 802.11. Proc. of
Conference on Mobile Computing and Networking, 2001.

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–8584

[6] M. Buchholtz, F. Nielson, and H. Riis Nielson. A calculus for control flow analysis of security
protocols. International Journal of Information Security, To appear.

[7] I. Cervesato Fine-Grained MSR Specifications for Quantitative Security Analysis, WITS’04,
pp. 111-127, 2004.

[8] G. Clark. Formalising the specifications of rewards with PEPA. In Proc. of PAPM’96, pp.
136-160. CLUT, Torino, 1996.

[9] J. Daemen and V. Rijndael. The design of Rijndael. Springer-Verlag, 2002.

[10] P. Degano and C. Priami. Non Interleaving Semantics for Mobile Processes. Theoretical
Computer Science, 216:237–270, 1999.

[11] P. Degano and C. Priami. Enhanced Operational Semantics. ACM Computing Surveys, 33, 2
(June 2001), 135-176.

[12] D. Dolev and A. Yao. On the security of public key protocols. IEEE T.I.T., IT-29(12):198–208,
1983.

[13] H. Hermanns and U. Herzog and V. Mertsiotakis. Stochastic process algebras – between
LOTOS and Markov Chains. Computer Networks and ISDN systems 30(9-10):901-924, 1998.

[14] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press,
1996.

[15] R, Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Systems, Volume II,
Wiley, 1971.

[16] J.T. Kohl and B.C. Clifford. The Kerberos network authentication service (V5) The Internet
Society, Sept. 1993.RCF 1510.

[17] C. Meadows. A cost-based framework for analysis of denial of service in networks Journal of
Computer Security, 9(1/2), pp.143 - 164, 2001.

[18] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (I and II). Info. & Co.,
100(1):1–77, 1992.

[19] C. Nottegar, C. Priami and P. Degano. Performance Evaluation of Mobile Processes via
Abstract Machines. IEEE Transactions on Software Engineering, 27(10), 2001.

[20] A. Perrig and D.Song. A First Step towards the Automatic Generation of Security Protocols.
Proc. of Network and Distributed System Security Symposium, 2000.

[21] C. Priami. Language-based Performance Prediction of Distributed and Mobile Systems
Information and Computation 175: 119-145, 2002.

C. Bodei et al. / Electronic Notes in Theoretical Computer Science 121 (2005) 65–85 85

	Introduction
	Case Study
	LySa and its Enhanced Semantics
	The calculus
	Enhanced Semantics

	Stochastic Analysis
	Cost Functions
	Markov Chains and Performance Measures

	Costs of Attacks
	Acknowledgement
	References

