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Hydraulic jumps on rough and smooth beds: aggregate approach for 

horizontal and adverse-sloped beds  

ABSTRACT 

Hydraulic jumps, which frequently occur in hydraulic structures, have been extensively studied over 

the last century. However, only few studies have evaluated hydraulic jumps in flows over rough beds 

and there are no studies that considered air entrainment effect on conjugate depths. The present paper 

reports the results of an experimental investigation of hydraulic jump properties in flows over adverse-

sloped rough beds, including the effect of air entrainment. Furthermore, a semi-theoretical predictive 

relationship is proposed to estimate jump characteristics for a wide range of hydraulic and geometric 

conditions covering both rough and smooth beds. 

Keywords: aerated flows; bubble dynamics; bed roughness; drag coefficient; friction factor; 

hydraulic jumps; hydraulic models; hydraulic resistance;  

1. Introduction 

A hydraulic jump is a standing wave phenomenon that occurs when supercritical flow 

changes to subcritical. Hydraulic jumps can often be observed in nature as well as in man-

made flow structures and therefore they have been extensively studied and analysed over the 

last century. There are many contributions in the literature regarding the estimation of the 

main jump parameters (e.g., sequent depths ratio, roller length, jump length, etc.) and their 

energy dissipative properties for a wide range of hydraulic and geometric configurations (e.g., 

Paterka, 1983).  

Early studies conducted in rectangular horizontal smooth-walled channels 

(Bakmeteff, 1932) and application of the momentum principles led to the well-known 

Bélanger’s equation, assuming uniform velocity and hydrostatic pressure distributions 

upstream and downstream of the hydraulic jump and negligible boundary flow resistance. 

Harleman (1959) showed that the sequent depths ratio values are lower for high upstream 

Froude numbers than predicted by Bélanger’s equation. Gill (1980) also found that the 

sequent depth ratio is over-estimated if the channel boundary flow resistance is neglected. 

Therefore, alternative methods for determining sequent depth values in horizontal, smooth-

walled channels have been proposed that account for additional parameters (e.g., Carollo, 

Ferro, & Pampalone, 2009; Leuthesser & Kartha, 1972; McCorquodale & Khalifa, 1983; 

Rajaratnam, 1965; Wu & Rajaratnam 1995).  

The influence of bed flow resistance on hydraulic jump characteristics in horizontal 

channels has been evaluated using either semi-theoretical or empirical approaches. 

Leutheusser & Schiller (1975) analysed the characteristic lengths of hydraulic jumps 



occurring on roughened horizontal beds using both spheres and strips. Hughes & Flack (1984) 

tested different rough-bed configurations featuring strip roughness materials and gravels of 

various sizes. Ead & Rajaratnam (2002) analyzed hydraulic jumps on a corrugated bed and 

identified substantial axial velocity profile similitude at different cross sections of the 

hydraulic jump. Carollo, Ferro, & Pampalone (2007) analysed the hydraulic jump properties 

on several horizontal rough-bed configurations; they proposed a new solution of the 

momentum equation for the sequent depth ratio and empirical relationships for the roller 

length. Namely, they showed that sequent depth ratio is dependent on both approaching flow 

Froude number and relative roughness. Pagliara, Lotti, & Palermo (2008) conducted a similar 

investigation analyzing the effect of channel bed material non-uniformity, proposing 

empirical relationships to predict the main hydraulic jump characteristics.  

More recently, Bhuiyan, Habibzadeh, Rajaratnam, & Zhu (2011) and Afzal, Bushra, 

& Seena, (2011) conducted a series of experiments on turbulent submerged offset jets and 

turbulent rough-bed hydraulic jumps. They concluded that the characteristic lengths of a 

rough-bed hydraulic jump can be derived adopting a modified upstream Froude number. 

Nevertheless, none of the mentioned studies conducted in the presence of rough beds took 

into consideration the air concentration effect on the conjugate depths, even if, especially for 

high relative roughness, it can affect effective water depths.  

Other aspects that have been extensively studied include the effect of channel 

geometry (channel shape and slope) and the presence of a downstream sill on hydraulic jump 

properties. In particular, hydraulic jump characteristics in a flow on a smooth adverse-sloped 

bed were analysed by Stevens (1942), Okada & Aki (1955), Rajaratnam (1966), Rajaratnam 

(1967) and McCorquodale & Mohamed (1994). McCorquodale & Mohamed (1994) proposed 

a theoretical approach based on conservation of momentum principles to estimate hydraulic 

jump characteristics and found that the stability of a hydraulic jump on an adverse slope is 

also depending on the upstream Froude number. The presence of a sill increases hydraulic 

jump stability for both horizontal (Hager & Bretz, 1988; Othsu, 1981; Ohtsu, Yasuda, & 

Yamanaka, 1991) and adverse-sloped beds (Pagliara & Peruginelli, 2000). In particular, 

Pagliara & Peruginelli (2000) conducted a series of experimental tests with and without a sill, 

varying the bed slope from 0 to -20% (adverse slope). They concluded that the presence of the 

sill stabilizes the hydraulic jump location and presented a general equation for predicting the 

characteristic hydraulic jump lengths.  

More recently, Jan & Chang (2009) conducted a comprehensive analysis of the 

hydraulic jump properties in an inclined rectangular chute contraction, proposing a theoretical 

equation to predict the sequent depth ratio in which a modified approach flow Froude number 

was adopted.  



The present study aims to furnish general predicting relationships for hydraulic jump 

characteristics, valid for a wide range of channel geometric and bed roughness conditions. 

Experimental tests on adverse-sloped rough beds were conducted taking into consideration air 

concentrations both upstream and downstream of the hydraulic jump in order to estimate the 

effective conjugate water depths.  

No studies were found in the literature evaluating the effective flow depths in relation 

to hydraulic jumps occurring on adverse-sloped rough beds and accounting for air 

concentration influences. A semi-theoretical approach is used to develop a novel general 

relationship for the conjugate depth ratio. The proposed equation is validated using additional 

data derived from previous studies, featuring both smooth adverse-sloped beds and rough 

horizontal beds. 

2. Experimental setup and methodology 

The experiments were conducted at the Hydraulic Laboratory of the University of Pisa, Pisa, 

Italy. Tests were carried out in two rectangular channels. Namely, Channel 1 has the 

following geometric characteristics: 0.345 m wide, 6.0 m long and 0.5 m high. It was used for 

experimental tests with bed slope i= -0.05. Additional validation tests were conducted in 

Channel 2 (0.35 m wide, 6.0 m long and 0.7 m high, bed slope i=-0.1).  

For Channel 1, the base materials tested were E2, E3 and E4 (Pagliara et al., 2008), 

with granulometric characteristics as: d50=6.26 mm, d90=7.48 mm and non-uniformity 

coefficient =(d84/d16)
0.5=1.18 for material E2; d50=19.93 mm, d90=23.7 mm and =1.14 for 

material E3; d50=30.62 mm, d90=33.30 mm and =1.08 for material E4. For Channel 2, 

experiments were conducted using bed material E3, glued on steel sheets.  

Tests were conducted by varying the downstream water depth and the inflow 

conditions. In the tested range of parameters (upstream Froude numbers varying between 2 

and 9.5), the hydraulic jump was quite stable, especially for high relative roughness 

conditions, in contrast to the smooth-bed case. In addition, for adverse-sloped beds, the 

presence of the rough bed caused appreciable air entrainment in the flow, as also observed by 

Pagliara, Carnacina, & Roshni (2010). Thus, the effective flow depths and the subsequent 

sequent depth ratio is depending both on the air concentration upstream and downstream of 

the hydraulic jump and on the bed characteristics.  

For bed materials E3 and E4, a rooster tail formation was observed when the 

upstream relative roughness ks/y1<1, where y1 is the effective upstream hydraulic jump depth 

and ks=d65 (Fig. 1), i.e., the base material diameter for which 65% is finer (Hughes & Flack, 



1984; Pagliara et al., 2008). In the presence of rough adverse-sloped beds, the effect of air 

entrainment on hydraulic jump flow depths has not previously been investigated.  

Air water flow properties were measured using a USBR single-tip conductivity probe 

(Fig. 2), which was aligned against the flow direction (Pagliara et al., 2010). Consistent with 

the definition used by Hughes & Flack (1984), Pagliara et al. (2008), Pagliara et al. (2010), 

the effective top ET of the channel bed is set at 0.2ks below an average level of bed material 

tops (i.e., the physical top PT). The rough bed height values were measured both transversally 

and longitudinally, in a mesh 1 cm  1 cm, using a point gauge with 0.1 mm precision and 

then the obtained data were used to determine ET and PT. Figure 1 shows a sketch of a 

hydraulic jump occurring on an adverse-sloped rough bed, and illustrates key geometric 

parameters, i.e., the effective upstream and downstream depths y1 and y2, the roller length of 

the jump Lr (McCorquodale & Mohamed, 1994; Pagliara & Peruginelli, 2000), and the bed 

slope (negative) i.  

 

Figure 1 Sketch of a hydraulic jump on adverse-sloped rough bed  

Figure 2 is a schematic sketch of the flume illustrating PT and ET elevations as well as the 

longitudinal and vertical coordinate system (x and y, respectively). In two-phase flow (water 

and entrained air), locating the “water surface” is problematic and an equivalent flow depth 

(de) is commonly used. The depth de represents the normal distance from the channel invert 

reference (ET in this case) to an elevation where the air concentration reaches 90%. Figure 2 

illustrates the air concentration C and y90, i.e., the distance normal to the bed from PT to 

where the air concentration C=90%. According to Pagliara et al. (2010), the upstream and 

downstream de values corresponding to C=90% can be evaluated as follows: 
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For both upstream and downstream cross-sections, three different air concentration profiles 

were measured at different positions (axially and at two symmetric lateral positions) and the 

corresponding evaluated depths were averaged in order to obtain the sequent depths y1 and y2, 

respectively.  The water surface was also measured using a point gauge 0.1 mm precise and 

the probe was connected to a graduate scale allowing to measure the vertical distance of the 

tip from the reference levels.  

 

Figure 2 Location of the ET and PT levels, along with the sketch of the probe used for air 

concentration measurements 

3. Semi-theoretical approach for sequent depth ratio estimation 

3.1. Literature review 

Application of the momentum equation to a unit width in a rectangular channel with an 

adverse-sloped rough bed can be written as follows: 

 FMPWMP  2211 sin    (2a) 

where  is the angle of the bed slope (negative for adverse-sloped bed);  cos5.0 2
jj yP   is 

the hydrostatic force at the beginning (j=1) and end (j=2) of the hydraulic jump,  is the 

specific weight; 2
jjj UyM   is the momentum flux in which Uj is the average velocity 

upstream (j=1) and downstream (j=2) of the hydraulic jump,  is water density; 

 2150 yyLK.W    is the weight of the water in the control volume, L is the hydraulic jump 

length and K is a coefficient for the determination of the weight depending on the 

schematization of the adopted control volume. In the following, the coefficient K is assumed 

to be equal to 1 (McCorquodale & Mohamed, 1994; Pagliara & Peruginelli, 2000). 

Carollo et al. (2007) stated that F (integrated shear stress per unit width) can be 

expressed as follows: 

 21 MMF       (2b) 

where  is a parameter related to the momentum deficit (0<1). 



Assuming Y=y2/y1 (sequent depth ratio) and considering Eq. (2a-b), the following 

general expression can be easily derived (McCorquodale & Mohamed, 1994; Pagliara & 

Peruginelli, 2000): 

   181150 2
1G.Y     (3) 
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in which =L/y1 and F1=U1/(gy1)
0.5 is the approach Froude number. Note that in the case of a 

hydraulic jump occurring in a flow over an adverse-sloped bed, without a sill, the length of 

the hydraulic jump can be assumed to be equal to the length of the roller (McCorquodale & 

Mohamed, 1994; Pagliara & Peruginelli, 2000). The parameter G1 is termed the “adverse 

jump parameter” and G1=F1 for =0 (i.e., i=0). Pagliara & Peruginelli (2000) proposed the 

following equation for smooth adverse-sloped beds: 

1
521

1 323 Fi..G      (5) 

which is valid for -0.25<i<0. 

3.2. Proposed methodology 

In the present study, a procedure to estimate the momentum deficit parameter  was 

developed. Preliminary, it was proven that Eq. (5) is still valid for rough beds, as shown in 

Fig. 3, in which experimental values of G1 and F1 are reported along with Eq. (5) for i=-0.05. 

According to Eq. (2b), the momentum deficit parameter  is the ratio between integrated 

shear stress F and M1-M2. For a smooth channel, Leuthesser & Kartha (1972) stated that the 

mean value of the boundary shear stress 0mean can be estimated from the two end points of the 

shear stress distribution, i.e., at the upstream and downstream ends of the jump (01 and 02, 

respectively). Namely, they stated that 0mean=(0102)
0.5, i.e., the geometric mean of the shear 

distribution end points. Hughes & Flack (1984) further extended the validity of this 

hypothesis to horizontal rough channels. In the present paper, 0mean was calculated assuming 

the Darcy friction factors f1 and f2 (for the estimation of 01 and 02, respectively) derived from 

the equation proposed by Habibzadeh & Omid (2009) and valid for clear water conditions and 

large relative submergence ranges, including that tested in the present paper. Therefore,  

values were computed using Eq. (2b). According to Hughes & Flack (1984), Ead & 



Rajaratnam (2002) and Carollo et al. (2007),  is depending on the relative roughness.  

The analysis of the experimental results shows that  values can be satisfactorily 

approximated by the following best-fit equation (R2=0.8): 
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where k is the critical depth and d50 is the mean diameter of the channel bed material. Note 

that for smooth bed =0.  

Combining Eq. (3), Eq. (5) and Eq. (6), the general expression of the sequent depth 

ratio can be obtained as:  
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and it is valid for both smooth and rough beds. Note that for i=0 and d50=0 m (horizontal 

smooth bed), Eq. (7) coincides with Bélanger’s equation. In addition, for d50=0 m and 

0.25i0, Eq. (7) coincides with the relationship proposed by Pagliara & Peruginelli (2000), 

thus it well predicts all the data for hydraulic jumps occurring on adverse-sloped smooth beds.  

For rough bed conditions, Eq. (7) was validated using experimental data derived from 

the literature (for horizontal rough beds) and conducting selected experimental tests for i=-

0.1. Thus, Eq. (7) is valid in the following ranges of parameters: -0.1i0 and 0d50/k0.5. 

Finally, it can be noted that both the integrated shear stress and  increase with the relative 

roughness.  

 

Figure 3 G1(F1) for rough beds and i=-0.05 

4. Results 

4.1. Sequent depth ratio 



Experimental data were analysed and the proposed Eq. (7) was tested for different relative 

roughness and bed slope values. In addition, a comparison between smooth and rough 

configurations was conducted to highlight the effect of roughness on the main hydraulic jump 

characteristics. Experimental data were plotted along with Eq. (7) and they were grouped 

according to channel bed slope i and relative roughness d50/k. Five relative roughness ranges 

were distinguished: 0<d50/k<0.1, 0.1<d50/k<0.2, 0.2<d50/k<0.3, 0.3<d50/k<0.4 and 

0.4<d50/k<0.5. Note that for smooth bed d50/k=0.  

Present study data were compared with those derived from both Pagliara & 

Peruginelli (2000) (for the same channel slopes, i.e., i=-0.05 and -0.1) and Pagliara et al. 

(2008) (for the same bed materials, relative roughness ranges and channel slope i=0). In Eq. 

(7), d50/k was assumed as the mean value of the considered range (e.g., d50/k=0.25 for 

0.2<d50/k<0.3).  

Figure 4a reports experimental data relative to both rough beds (with 0<d50/k<0.1, i=0 

and i=-0.05) and smooth adverse-sloped beds (i=-0.05), along with the corresponding plots of 

Eq. (7). For the same approaching F1, the sequent depth ratio Y decreases with relative 

roughness, confirming the findings of all previous cited studies. In addition, it can be noted 

that for both slope values, the corresponding plots of Eq. (7) for rough beds are very close to 

those for smooth beds. This is due to the fact that the mean relative roughness (d50/k=0.05) is 

close to 0, therefore the phenomenon is very similar to that occurring on smooth beds.  

Furthermore, Y values are slightly over-estimated by Eq. (7) for high Froude 

numbers, as also observed by Harleman (1959) for smooth beds, and by Pagliara et al. (2008) 

and Carollo et al. (2007) for horizontal rough beds and small relative roughness (closest 

condition to that relative to smooth beds). This occurrence does not happen for higher relative 

roughness and for both horizontal and adverse-sloped beds. Figure 4b-c shows experimental 

data for 0.2<d50/k<0.3 and 0.4<d50/k<0.5, and i=0 and -0.05, along with the corresponding 

plots of Eq. (7). Y decreases with relative roughness, for both horizontal and adverse-sloped 

beds. In addition, for higher relative roughness, Eq. (7) well predicts data trend also for higher 

F1.  

Figure 4d shows the comparison of the experimental data for rough beds and i=-0.05, 

grouped for different relative roughness ranges, along with the respective plots of Eq. (7). 

Except for higher F1, Y decreases with relative roughness, with all other parameters being 

constant.  

Selected experiments were also conducted to validate Eq. (7) for i= -0.1 and rough 

beds. Figure 4e shows the comparison of data relative to experimental tests with smooth beds 

for i= -0.05 and i= -0.1 with those relative to rough bed for i=-0.1. Equation (7) satisfactorily 



predicts all experimental data. In addition, 0.1<d50/k<0.2 and i=-0.1, thus for d50/k>0.1, the 

peculiar trend of Y observed for higher F1 and for both smooth and low relative roughness 

beds (see Fig. 4a) is no more evident. Figure 4f shows the comparison between measured and 

calculated (with Eq. 7) Y values for rough beds and -0.1i0, including data derived from 

Pagliara et al. (2008). It can be easily noted that Eq. (7) furnishes a reasonably good 

estimation of the sequent depth ratios. Finally, the data derived from other authors’ studies 

were taken into consideration to test the predictive capability of the proposed Eq. (7). The 

comparison between measured and calculated values of the variable Y is shown in Fig. 5a-b 

for both rough and smooth beds, respectively.  

Figure 5a shows the comparison between measured Y values from Hughes & Flack 

(1984) and Carollo et al. (2007) for rough horizontal beds with the corresponding values 

computed using Eq. (7). Figure 5b shows the same for the data from Okada & Aki (1955), 

Hughes & Flack (1984), McCorquodale & Mohamed (1994), Pagliara & Peruginelli (2000) 

and Carollo et al. (2007) for smooth beds (horizontal and adverse-sloped). For rough beds Eq. 

(7) is slightly overestimating sequent depth ratios (mostly for higher F1 values). This can be 

due to the fact that experimental data derived by other authors were obtained without taking 

into consideration the air concentration. In other words, the systematic deviation between the 

data from previous studies and those predicted by Eq. (7) is due to the fact that air 

concentration increases with F1, as also observed by Pagliara, Roshni, & Carnacina (2009). 

Nevertheless, considering the complexity of the phenomenon, the predictive performance of 

Eq. (7) appears reasonably accurate. 

 



 

Figure 4 Experimental data and Eq. (7) for Y(F1): (a) -0.05i0 and 0<d50/k<0.1 including 

data for smooth adverse-sloped beds; (b) -0.05i0 and 0.2<d50/k<0.3; (c) -0.05i0 and 

0.4<d50/k<0.5; (d) -0.05i0 and 0<d50/k<0.5; (e) -0.1i-0.05 and 0.1<d50/k<0.2 including 

data for smooth beds; (f) comparison between measured and calculated (with Eq. 7) values of 

Y for rough beds and -0.1i0   



 

Figure 5 The ratio Ymeas/Ycalc(Eq.7) as a function of F1 for (a) rough beds and (b) smooth beds  

 

4.2. Roller length 

Another important parameter is the roller length. In the case of adverse-sloped beds (both 

smooth and rough), the roller length is assumed to be the hydraulic jump length 

(McCorquodale & Mohamed, 1994; Okada & Aki, 1955; Pagliara & Peruginelli, 2000). 

According to Carollo et al. (2007) and Pagliara et al. (2008), the roller length Lr is depending 

on the relative roughness.  

Carollo et al. (2007) proposed a relationship by which the non-dimensional roller 

length Lr/y1 can be satisfactorily estimated using Eq. (8), which was also validated using 

experimental data derived from other authors (Hughes & Flack, 1984; Hager, Bremen, & 

Kawagowshi, 1990): 
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Equation (8) was also adopted in the present study and it was validated in the tested range of 

parameters. Note that both the roughness and bed slope are indirectly included in Eq. (8), as 

the sequent depth ratio was estimated by using Eq. (7). In addition, data derived from other 



studies (including smooth adverse-sloped bed) were also taken into consideration, as shown in 

Fig. 6.  

Considering the complexity of the phenomenon, Eq. (8) furnishes a good estimation 

of the non-dimensional roller length. Therefore, its validity can be extended to the following 

ranges of parameters: -0.2i0, 0d50/k<0.5.  

 

Figure 6 The ratio Lr/y1 as a function of (y2/y1-1) for smooth and rough beds for -0.2i0  

 

4.3. Observations on air concentration profiles 

In this study, air concentration profiles were measured both in section 1 (upstream) and 

section 2 (downstream) of the hydraulic jump. Air concentration measurements were used to 

estimate the effective (equivalent) water depths. In the following, a qualitative analysis of the 

air concentration profiles is proposed for all of the tested materials and for bed slope i=-0.05.  

A similar analysis was also conducted by Pagliara et al. (2009) in the case of a block 

ramp, whose slope was i=0.275 (positive). The authors observed that the air concentration 

profiles are significantly influenced by the relative equivalent depth de/d84 (the ratio between 

effective depth and a characteristic diameter of base material). They showed that air 

concentration increases when de/d84 decreases. This is mainly due to both the presence of drag 

and shear vortices between the stones and an increasing interaction between the free surface 

and the stones. Furthermore, streamwise oriented vortexes were also visible and were more 

stable for low relative flow depth. This effect was also observed in the case of adverse-sloped 



beds, in particular close to section 1, where macro-roughness flow conditions take place. The 

described behaviour is also highlighted in Fig. 7a, in which air concentration profiles, relative 

to sections 1 and 2 and base material E2, are shown. In addition, the effect of the base 

material on air concentration profiles at section 2 is shown in Fig. 7b where the comparison 

between profiles for E2, E3 and E4 is reported. Even if a certain increasing trend in air 

concentration is visible due to the material size variation, the difference between the average 

non-dimensional profiles is slight.  

Based on these observations, it can be concluded that the material size affects the 

estimation of flow depths mainly in macro-roughness conditions. In other words, water depths 

at section 1 are more influenced by air entrainment than the corresponding depths at section 2. 

 

Figure 7 Air concentration profiles for (a) sections 1 and 2 and material E2 and (b) section 2 

and materials E2, E3, E4 

 

5. Discussion 

The present study confirmed that the hydraulic jump sequent depth decreases with increasing 

boundary roughness. It is worth noting that the methodology proposed by Hughes & Flack 

(1984) to locate the effective top does not affect the results. In fact, Hughes & Flack (1984) 

analyzed the potential error introduced in the results due to the estimation of the ET and 

concluded that “the error is not as large as might be expected because of the manner in which 

it affects y2/y1 versus F1 diagram”. For example, they proved that a change in the virtual 

bottom level of 20% results in a 5% change in the relationship y2/y1(F1).  

A clear explanation of the hydraulic jump sequent depth reduction was furnished by 

Ead & Rajaratnam (2002). The authors analyzed the velocity field in correspondence with 

hydraulic jumps showing that the intense mixing induced by the bed roughness results in 

significant Reynolds shear stresses and in prominent reduction of the velocity field above the 



rough bed. In other words, the reduction of the sequent depth on rough bed is essentially due 

to the increase of bed shear stresses. 

Air entrainment is a delicate topic in physical scale model testing due to scale effects 

and it requires a more detailed discussion. In the studies of hydraulic jumps, generally, the 

Froude similitude is adopted, resulting in smaller model Reynolds numbers than in 

prototypes. Therefore, scale effects may affect the two-phase flow properties. In particular, 

the scale effects on the air entrainment process in hydraulic jumps remains poorly understood 

(Chanson, 2008; Chanson, 2009). Chanson (2009) conducted a detailed experimental 

investigation on the topic analyzing both the dynamic similarities and scale effects for 

turbulent air-water flows in hydraulic structures. His analysis mainly focused on hydraulic 

jumps occurring in horizontal smooth channels, therefore the model configuration was quite 

different from that tested in the present study. Nevertheless, some significant insights can be 

found both in Chanson (2009) and Heller (2011) that may be beneficial in understanding how 

scale effects may affect the proposed results. Namely, both Chanson (2009) and Heller (2011) 

showed that the relative channel width has no significant effect on air-water flow properties 

for B/y110, where B is the channel width. For the present study, this limitation is valid for 

most of the experimental tests. In fact, just a few tests are characterized by 8<B/y1<10, 

whereas most of the experiments were conducted for B/y1>10. In addition, Chanson & 

Murzyn (2008) showed that Reynolds number effects on the two-phase flow properties are 

more prominent in the developed shear layer (especially in terms of bubble count rate 

distribution). They noted a more rapid de-aeration of the jump roller with decreasing 

Reynolds number and an absence of self-similarity of the void fraction profiles in the 

developing shear layer for Re<40000. In the present study, Reynolds numbers were much 

larger than 40000 and it was experimentally observed that the differences between the non-

dimensional air concentration profiles were relatively slight for all of the tested hydraulic 

conditions and channel bed configurations. Therefore, although the model configurations 

tested are different from those analyzed by Chanson & Murzyn (2008) and Chanson (2009), 

based on the previous observations it can be concluded that for the present study scale effects 

are not significantly affecting the characteristic lengths of the hydraulic jumps (sequent depth 

ratios and roller length). 

6. Conclusions 

A new approach was developed to analyse the main features of a hydraulic jump under both 

rough and negative bottom slope conditions including the effect of air concentration. A semi-

theoretical model was proposed to estimate both the sequent depth and the roller length in a 

wide range of geometric and boundary configurations. The increase of Reynolds shear 



stresses induced by the bed roughness causes a reduction of the sequent depth ratio. The 

reduction is more prominent when increasing relative roughness and bed slope. The 

predicting capability of the proposed relationships was validated by conducting ad hoc 

experimental tests and by testing them with data obtained in the previous studies. The 

obtained results may be valuable for future theoretical work and practical applications as they 

relate to the hydraulic jump features under a wide range of hydraulic and boundary 

conditions. 

 

Notation 

B = channel width (m) 

C = air concentration (-) 

Cm = depth-average void fraction (-) 

de = equivalent/effective flow depth (m) 

dxx = size of the base material for which xx% is finer (m) 

f1 = friction factor (section 1) (-) 

f2 = friction factor (section 2) (-) 

F1 = U1/(gy1)
0.5 approach Froude number (-) 

F = integrated shear stress per unit width (N m-1) 

g = gravity acceleration (m s-²) 

G1 = adverse jump parameter (-) 

i = channel bed slope (-) 

k = critical depth (m) 

ks = d65 grain roughness height (m) 

K = coefficient for the determination of the weight (-) 

L = hydraulic jump length (m) 

Lr = length of roller (m) 

M1 = y1U1
2 momentum flux per unit width at section 1 (N m-1) 

M2 = y2U2
2 momentum flux per unit width at section 2 (N m-1) 

P1 = 0.5y1
2cos  hydrostatic force per unit width at section 1 (N m-1) 

P2 = 0.5y2
2cos  hydrostatic force per unit width at section 2 (N m-1) 

U1 = average velocity at section 1 (m s-1) 

U2 = average velocity at section 2 (m s-1) 

x = longitudinal coordinate (m) 



y = vertical coordinate (m) 

Y = y2/y1 sequent depth ratio (-) 

y1 = effective upstream depth of the hydraulic jump (m) 

y2 = effective downstream depth of the hydraulic jump (m) 

y90 = distance normal to the bed where the air concentration C=90% (m) 

W = 0.5LK(y1+y2) weight of the water in the control volume per unit width (N m-1) 

 = angle of the bed slope respect to horizontal (rad) 

 = parameter related to momentum deficit (-) 

 = specific weight (N m-3) 

 = water density (kg m-3) 

 = Lr/y1 non-dimensional length of roller (-) 

 = (d84/d16)
0.5 material non-uniformity coefficient  (-) 

01 = shear stress at the upstream section of the hydraulic jump (N m-2) 

02 = shear stress at the downstream section of the hydraulic jump (N m-2) 

0mean = mean value of the boundary shear stress (N m-2) 
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