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Monte Carlo numerical simulations are used to study in detail how the characteristics of the isotropic–
nematic phase transition change as infinitely thin hard platelets are bent into shallow lens-like par-
ticles. First, this phase transition in the former reference model system is re-examined and more
accurately located. Then, it is shown quantitatively that this already quite weak but distinctly first-
order phase transition weakens further upon curving the platelets to such an extent that, thanks to the
thinness of these particles that does not favor its pre-emptying by a transition to a (partially) position-
ally ordered phase, an isotropic-nematic tricritical point limit can be arbitrarily closely approached.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897565]

I. INTRODUCTION

The isotropic (I) – nematic (N) liquid-crystal1 phase tran-
sition has been much studied1–3 and a consensus exists on
its character: it is a weakly first-order phase transition, in
that there is a discontinuity in at least one of the free en-
ergy first derivatives and that discontinuity is quite small. The
value of the nematic order parameter1 (S2) at the phase tran-
sition is not that small though, being found typically in the
range 0.3–0.4.1 The weakness of the phase transition mani-
fests itself in the presence, within the I phase, of significant
pre-transitional effects.1 The latter are reminiscent of the ap-
proaching to a second-order phase transition and are gener-
ally interpreted in terms of the phenomenological Landau-de
Gennes theory.1, 4, 5 Consensus on the critical character of this
phase transition6 is not as firm. Most experimental data point
to it being mean-field tricritical (e.g., Refs. 7 and 8) but not
definitively: the main difficulty being that the innermost criti-
cal region is made unaccessible by the intervening two-phase
coexistence.

To approach, ideally as closely as wished, this critical re-
gion would be interesting but does not appear to be an easy
task. One would require a physical system in which the IN
phase transition shares two, not necessarily synergic, features.
On tuning certain relevant thermodynamic and/or structural
parameters, the already weakly first-order IN phase transition
must progressively weaken further and not be pre-emptied by
a transition of the I phase to a (partially) positionally ordered
phase.

In terms of the elementary models put forward over the
years to study liquid-crystalline phase behavior and properties
(e.g., Ref. 9), the simplest, yet realistic, models one’s attention
is turned to are freely translating and rotating non-spherical
particles of the hard-body type. They possess the essential
pre-requisite of the anisotropic shape, being short-range re-
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pulsive interactions known to be responsible for the structure
of a fluid.10 That they also provide a good representation of
real colloidal particles, whose synthesis has much progressed
in these years,11 adds to the interest in them.

For a hard-body particle system, temperature plays no
role in shaping its phase behavior, so one is left with modi-
fying the geometry of the model in order to find one in which
the IN phase transition weakens, ideally at will, without be-
ing overcome by the intervention of a partially positionally
ordered phase.

In order not to favor such an ordered phase, a model par-
ticle with an extreme value of the aspect ratio is to be sought.
Out of the two general classes in which mesogenic particles
have been sub-divided,1 calamitic, or rod-like, and discotic,
or disc-like, the latter seems more suitable. In fact, Onsager
(second-virial) theory,12 exact for long and thin hard rods,
shows that the IN phase transition is actually strongly first-
order in that case. The discoid analogue of a long and thin
hard rod is the infinitely thin hard platelet.

This basic statistical-mechanical model was introduced
and studied, by Monte Carlo (MC) numerical simulation,13–15

in Ref. 16. Focus of that study was indeed the IN phase tran-
sition that occurs in a system of these particles. This phase
transition was found to be weakly first-order and, expectedly,
unsatisfactorily described by a second-virial theory. The IN
phase transition in hard platelets was re-examined in Ref. 17.
More recent studies include the formulation of a density func-
tional theory (DFT) that improves upon Onsager theory re-
sults for coexistence densities;18 usage of this DFT along with
MC simulations to study properties of inhomogeneous hard
platelet fluids;19 a very detailed examination of the I phase
equation of state and structure,20 where a range of integral
equation theories along with the above-mentioned DFT were
thoroughly tested; the calculation of elastic constants21 in the
N phase.

Two recent studies22, 23 showed that, on curving hard
platelets into hard partial spherical surfaces or spherical cap
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particles (having a shape reminding that of a contact lens, if
little or moderately curved, or that of a bowl or vase, other-
wise), the IN phase transition competes with a tendency of
these particles to aggregate. This tendency, an example of ge-
ometric frustration,24 leads to a weakening of the IN phase
transition until the N phase becomes unstable and is super-
seded by a cluster I phase; from this a cluster columnar phase
develops at higher densities. While these two previous works
focused on such cluster phases, in this work a closer atten-
tion is paid to the first process. More MC numerical simu-
lations are carried out to study how the IN phase transition
features change upon curving platelets slightly into lens-like
particles.

II. MODELS AND COMPUTATIONAL DETAILS

Particles belonging to the hard spherical cap class can be
identified by a single parameter R∗ = R/σ , R being the radius
of the sphere from which the cap has been excised and σ is
the unit of length, defined in such a way that σ 2 is the area of
the cap’s two-dimensional surface (Fig. 1).

Being a reference system, extensive new MC calcula-
tions were carried out for hard platelets, corresponding to R∗

→ ∞, along with MC calculations for hard spherical caps
with R∗= 2 and 8/5. It was decided to carry out the MC calcu-
lations in the canonical (NV T )13, 15 and isobaric(-isothermal)
(NPT)14, 15 ensembles, as done in Ref. 16, rather than in the
Gibbs or grand-canonical (μV T )15 ensembles, as done in
Ref. 17. Usually standard cuboidal (but occasionally also
truncated octahedral) periodic boundary conditions15 were
implemented. Previous calculations22, 23 found that for
R∗ = 3/2 the N phase was stable only for systems with a num-
ber of particles N � 500, while for R∗=1 not even a system
with N � 100 was able to stabilize a N phase. Thus, several
system sizes were investigated, with N ranging from �500 to
�11000, with a few calculations for hard platelets performed
with N = 64000. Most of the MC-NPT runs were carried
out with 4000 or 5000 particles, while N in the MC-NV T

runs was 8000. In the calculations on hard platelet systems,
the specific overlap criterion for these particles16 was used,
while the more general overlap criterion for hard spherical
caps22, 23, 26 was employed in the other two cases. That the lat-
ter recovers the former overlap criterion in the limit R∗ → ∞
was checked previously.22

Every MC calculation was organized in cycles, each one,
on average, consisting of: (a) N attempted translational moves

θ

R

FIG. 1. Illustration of a spherical cap (red or darker gray) together with its
parent sphere (green or lighter gray) of radius R; the area of the spherical
cap surface is equal to σ 2; once set R∗ = R/σ , the angle θ is such that cos θ

2

= 1 − 1/(2πR∗2). This image was created with the program QMGA.25

to change the position ri of the pole of a particle i; (b) N at-
tempted rotational moves to change the orientation of a par-
ticle i, its orientation being described by the unit vector ûi

lying along the joint of the center of the parent sphere, whose
position is Xi , with the pole; these rotational moves were per-
formed either with the method described in Ref. 16 or the
usual Barker-Watts method;15 (c) an attempt to flip a parti-
cle while keeping the position of its pole; (d) in the MC-NPT
calculations, an attempt to change shape and volume of the
computational box. (For hard platelets, vector r ends up to de-
scribe the position of a platelet center and û is aligned along
a platelet normal passing through its center, while a flip is
non-influential). For each type of move, its maximum size
was adjusted so that the corresponding move had an accep-
tance rate of ∼30%. If needed, maximum sizes were suitably
modified to approach the above percentage before starting a
calculation but never during it not to violate the detailed bal-
ance condition. The choice of which move to attempt as well
as, in the cases (a), (b), and (c), that of which particle to move
were made randomly. In nearly all the calculations, the ran-
dom number generator used was mt19937.27

Equilibration runs were started either from a low den-
sity lattice configuration having all particles perfectly aligned
or an equilibrated configuration obtained at a nearby state
point or by replicating twice along each direction a previously
equilibrated configuration at the same state point. Equilibra-
tion runs lasted 106 MC cycles at least and were followed
by production runs of as many MC cycles. During these pro-
duction runs, a number of quantities were calculated: den-
sity, ρ, measured in units of σ−3, in the isobaric MC runs;
pressure, P, measured in units of kBTσ−3, with kB the Boltz-
mann constant and T the temperature, and evaluated follow-
ing the method described in Ref. 16, in the canonical MC
runs; the nematic order parameter, S2, calculated according to
the standard procedure28 in any MC run, this calculation pro-
viding also the instantaneous nematic director n̂, from which
the polar order parameter S1=〈̂u · n̂〉, with 〈〉 meaning an
average over particles and configurations, can in turn be eval-
uated; several positional and orientational correlation func-
tions. Uncertainties were estimated either using the block-
average method29 or running a few independent runs and
evaluating the respective mean and standard deviation.

For the three model particles investigated, the series of
MC calculations were organized in the following way. The
MC-NPT method was first used to trace the equation of state,
checking the stability of the N phase on going to larger sys-
tems and bracketing accurately the value of thermodynamic
quantities at the IN phase transition. Then, the MC-NV T

method was used especially in the close neighborhood of and
within the IN coexistence region to improve the accuracy of
the phase transition location. In determining approximate val-
ues for the thermodynamic quantities at coexistence, effort
was spent to observe a Mayer-Wood loop30, 31 within the co-
existence region; pressure, PIN, and densities, ρI and ρN, at
coexistence were estimated by applying an equal area con-
struction. This also led to an estimate of the interfacial free
energy per particle,31 �f. Statistical errors on these quantities
were in turn estimated from the errors bars on the raw equa-
tion of state data.
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III. RESULTS AND DISCUSSION

A. Thermodynamics

Fig. 2 shows the equation of state for the three models
investigated. The respective insets zoom in on the IN coex-
istence region. For the case with R∗=8/5, error bars on the
values of P calculated in the MC-NV T simulations are also
drawn; in the other two cases, they are of a similar size. In
all the three cases, a Mayer-Wood loop can be discerned.
Table I provides, for the three models, the estimated value of
pressure and the densities at coexistence as well as that of the
interfacial free energy.

Focusing on the equation of state and IN coexistence data
for hard platelets, a good agreement is noted32 with the past
results of Ref. 16; significant differences are seen only in
the neighborhood of the phase transition. In that work, using
mostly systems with N = 100 and Widom particle insertion
method and thermodynamic integration15 calculations, pres-
sure and densities at coexistence were estimated to be, respec-
tively, 10.30 and 2.81 and 2.87. While these numbers compare
favorably with those of Table I, one observes that in the latter
case pressure and N phase density at coexistence have shifted
to a larger value, owing to the larger size of the systems in-
vestigated here. Present data agree well also with the recent
MC results reported for the IN phase transition for thin hard
cut-spheres using systems with N =288 and 2048.33 Data of
Ref. 33 and present data are instead not consistent with the IN
coexistence data of Ref. 17. Those works report that systems
with N in the range 400–2200 were used and, by employing
MC methods that rely on particle insertions, they found ρIσ

3

= 2.56±0.01 and ρNσ 3 = 2.77±0.03. Here, systems at ρσ 3

= 2.77±0.03 are invariably found to be in the I phase.
On decreasing R∗, the IN shifts to higher densi-

ties and pressure and the width of the coexisting region,
�ρIN = 2(ρN − ρI )/(ρN + ρI ), shrinks from �6.77% for
hard platelets, to �3.15% for hard spherical caps with
R∗ = 2, to �1.80% for hard spherical caps with R∗ = 8/5.

Concomitantly, the interfacial free energy per particle di-
minishes while reducing R∗. The value of �f for hard platelets
is consistent with the trend that the IN free energy barrier in
thin hard cut-spheres exhibits with the aspect ratio as deter-
mined in Ref. 33(a) using an umbrella sampling MC tech-
nique. From the value of �f one can arrive at a gross estimate
of the interfacial tension, γ ∼ �fρ̄L, with ρ̄ = (ρI + ρN)/2
and L3 the system volume. In this way a value of γ σ 2/kBT
∼ 7.3 × 10−3 is obtained for hard platelets. This number com-
pares fairly well with previous estimates for γ obtained from
DFT and dedicated numerical simulations19(a) as well as with
experiments on colloidal disc suspensions.34 On going to hard
spherical caps with R∗ = 2, the estimate for γ σ 2/kBT turns
out to be 5.8× 10−3, while for the hard spherical caps with
R∗ = 8/5 it drops to 3.3× 10−3.

B. Structure factor

One complementary indication of the phase transition
weakening on going to smaller values of R∗ is provided by
the value that the structure factor S takes on at the minimum
value kmin of the modulus of the wave-vectors k compatible

FIG. 2. (a) Equation of state for hard platelets, R∗ → ∞, obtained using
the MC-NPT method with N = 541 (green full circles), N = 1373 (blue full
squares), N = 2137 (orange full diamonds), N = 4000 (either left-magenta
or right-violet full triangles), N = 10 984 (black asterisks) or the MC-NV T

method with N = 8000 (black crosses). Empty black or red little circles are
data taken from Ref. 16. (b) Equation of state for hard spherical caps with R∗
= 2 obtained using the MC-NPT method with N = 1013 (gray full circles), N
= 2000 (red full squares), N = 4096 (green full diamonds), N = 8101 (blue
empty triangles) or the MC-NV T method with N = 8000 (black crosses).
(c) Equation of state for hard spherical caps with R∗ = 8/5 obtained using
the MC-NPT method with N = 5000 (green full diamonds) or the MC-NV T

method with N = 8000 (black crosses).
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TABLE I. Pressure and densities at the IN coexistence and interfacial free
energy for the three models investigated.

R∗ PINσ 3/k
B
T ρIσ

3 ρNσ 3 104�f/k
B
T

∞ 10.600 ± 0.005 2.813 ± 0.004 3.010 ± 0.004 1.8 ± 0.2
2 13.03 ± 0.03 3.125 ± 0.002 3.225 ± 0.01 1.35 ± 0.15
8/5 15.06 ± 0.03 3.468 ± 0.002 3.531 ± 0.007 0.725 ± 0.15

with the length L of the computational box edges in the MC-
NV T simulations. The structure factor was calculated as

S(k) = 1

N

〈
N∑

l=1

e−ik·r
l

N∑
m=1

eik·r
m

〉
, (1)

with 〈〉 indicating an average over configurations and the ele-
ments of that set of wave-vectors k of modulus k = |k| com-
patible with the computational box. Thus, it is the isotropic
structure factor that was calculated, both in the I and N
phase, linked to the pair correlation function, g(r), via the
relationship10

S(k) = 1 + 4πρ

∫ ∞

0
drr2[g(r) − 1]

sin kr

kr
, (2)

r being the distance separating the poles of two particles. The
value of S(kmin) has a bearing on the (isothermal) compress-
ibility κT in that limk→0S(k) = S(0) = kBTρκT. On approach-
ing the phase transition from the I side, S(kmin) first increases,
then reaches a maximum within the coexistence region and fi-
nally decreases. This behavior, shown in Fig. 3, is expected in
a finite system that, in the thermodynamic limit, will exhibit
a first-order phase transition: in that limit, κT increases on ap-
proaching the phase transition from either side, its further rise
being then interrupted by the setting in of the two-phase coex-
istence. Rather than the precise shape of the curve and value
of the numbers, what is more noteworthy in this figure is the

2.5 3 3.5
ρσ

0

0.2

0.4

0.6

0.8

1

S(k   )min

3

FIG. 3. Value of the structure factor at the smallest possible value of the
wave-vector modulus, S(kmin), as a function of density, ρ, calculated in the
MC-NV T simulations. Results shown are for hard platelets, R∗ → ∞ (white
circles), hard spherical caps with R∗ = 2 (gray circles) and hard spherical
caps with R∗ = 8/5 (black circles). Error bars on S(kmin) are shown for the
hard platelet case at certain values of ρ; these bars are representative of the
error size that affects these data for all the systems investigated.

damping that the upswing of S(kmin) experiences on increas-
ing the particle curvature. This indicates that, as particles are
bent, the IN phase transition occurs with progressively smaller
long-range density fluctuations.

C. Orientational properties

While both equation of state and structure factor data are
consistent with a weakening of the first-order character of the
phase transition, the nematic order parameter S2 shows the
same trend with density for the three systems investigated.
S2 keeps being characterized by the usual abrupt rise at the
phase transition, just shifted to larger values of density as R∗

decreases [Fig. 4(a)]. The similarity in the density dependence
of S2 in the vicinity of the phase transition for the three models
prompts an attempt to make these data coalesce on a single
curve.

Once density is replaced by temperature as independent
variable, this attempt complies with the many evidences that
the thermal behavior of experimental S2 data in thermotropic
nematic liquid crystals shows corresponding-state-like fea-
tures (e.g., Ref. 35). Usually, experimental S2 data are sup-
posed to vary with T according to the following function

S2(T ) = S∗
2 + c

(
1 − T

T ∗

)β

, T < T ∗, (3)

with β a pseudo-critical exponent, T∗ a temperature slightly
higher than the IN phase transition temperature, c a constant,
and S∗

2 the value of S2 at T∗. If the latter is set equal to 0,
Haller expression36 is recovered; a non-zero value of S∗

2 was
introduced37 to improve the fit of certain experimental data.
If Haller expression36 is used, β turns out to be 0.2 or less
for a number of compounds.38 If the constraint of S∗

2 = 0 is
released, fit over S2 data for alkyl-cyano-biphenyl nematogens
produced S∗

2 = 0.14 ± 0.05 and β = 0.24 ± 0.01.37 Results
such as this are taken as the most convincing indication for a
mean-field tricritical nature of the IN phase transition, being
1/4 the value predicted by a mean-field theory for exponent
β at a tricritical point.1 The fact that allowing for a value of
S∗

2 > 0 leads to an increase of β may just be resulting from
the attempt, by the fitting function, to capture the abrupt rise
of S2 in the vicinity of the phase transition: if a fraction of this
rise is already accounted for by a finite value of S∗

2 , clearly a
smaller value of β is demanded for achieving the goal.

For an athermal system like those considered here,
Eq. (3) translates into

S2(ρ) = S∗
2 + c

(
ρ

ρ∗ − 1

)β

, ρ > ρ∗, (4)

with ρ∗ a density slightly smaller than ρN. The three param-
eters, β, ρ∗, and S∗

2 appear to be highly correlated to one
another. In order to partly alleviate this problem it was de-
cided to scale the value of the density by that value of den-
sity, among those investigated, at which S2 first took a value
larger than 0.3. In this way, the data for the three models were
all described in terms of the scaled density ε = ( ρ

ρ∗ − 1) and
appear, within statistical errors, to lie on a common curve,
at least in the vicinity of ε = 0 [Fig. 4(b)]. If a fit with
Eq. (4) is limited to the steeply ascending portion of the curve
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FIG. 4. (a) Nematic order parameter, S2, as a function of density, ρ, for R∗ → ∞ (black leftward empty circles), R∗ = 2 (red central empty circles) and
R∗ = 8/5 (green rightward empty circles). (b) The same data (empty circles) plotted in terms of ε + 1, together with the curves obtained via fitting to
Eq. (4) with β = 1/2 (blue dotted curve), 1/3 (green dashed curve), and 1/4 (red dashed curve), all having a value for S∗ > 0, and the curve obtained via fitting
to Eq. (4) and taking S∗ = 0 and resulting to have β = 0.197 (black solid curve). (c) The same data as in (b) (black crosses) on a logarithmic scale together with
the curve obtained via fitting to Eq. (4) and taking S∗ = 0 and resulting to have β = 0.197 (red solid curve).

in the vicinity of ε = 0, specifically to those values of S2
in the range (0.3;0.65) [enclosed in the rectangle shown in
Fig. 4(b)], good and, within statistical errors, essentially
equivalent reproductions of the data can be obtained by ad-
justing S∗

2 and β. Fig. 4(b) shows the analytic curves obtained
by setting β= 1/2, 1/3, and 1/4. The corresponding optimized
values of S∗

2 obtained were, respectively, 0.28, 0.22, and 0.18:
clearly, the larger is the value of S2 at which one is starting
from, the larger is the value of β required to track closely the
nematic order parameter data. The performance of the vari-
ous analytic curves starts differentiating from one another if
one requires that the analytic fitting function reproduces the
trend of the S2 also for larger values of ε. Under this “pol-
icy,” a value of β = 1/2 turns out unsatisfactory, while a value
of β = 1/4 corresponds to a fit of a quality that outperforms
only slightly that of a fit with β = 1/3. The best fit is nonethe-
less achieved by a Haller function with β = 0.197 ± 0.006.
This fit, again limited to values of S2 within the rectangle of
Fig. 4(b), is able to satisfactorily reproduce the joint values
of S2 for the three models up to ε = 0.5, as also Fig. 4(c)
shows. This optimized value of β is in agreement with those
from similar analyses of a number of experimental data38 and
of past and more recent numerical simulations carried out
with either idealized or atomistic thermotropic liquid crystal
models.39 While certainly not far away from the mean-field
prediction for β at a tricritical point, this value, taken in isola-
tion, cannot objectively be used in full support of a mean-field
tricritical character of the IN phase transition.

Information on the value of S2 is also contained in the
tail of the second-rank pair orientational correlation function,
g2(r). Functions of this type are defined as

gn(r) =
〈∑N

i=1

∑N
j 	=i δ(r − rij )Pn(ûi · ûj )∑N

i=1

∑N
j 	=i δ(r − rij )

〉
, (5)

with δ() the usual δ-function, rij the distance separating the
poles of two particles i and j, Pn() the nth-rank Legendre
polynomial, and 〈〉 meaning a statistical average over con-
figurations. The functions gn(r) are such that: limr→∞gn(r)
= S2

n , with Sn the mean nth-rank Legendre polynomial. In
particular limr→∞g2(r) = S2

2 . This relationship is accurately
obeyed in the N phase, where it offers another way of deter-
mining the value of S2. It is also obeyed in the I phase but
here the finiteness of the system size prevents S2 going to 0.
This is a well-known finite size effect,16(b) here appreciable in
Fig. 4(a). While it does not prejudice the identification of the
phase as I or N sufficiently far away from the phase transi-
tion, on approaching the latter from the I phase side, it af-
fects negatively the analysis of the long-range limit of g2(r).
In the I phase, the tail of g2(r) contains information on the
orientational correlation length, ξ , as one has: limr→∞ g2(r)
∼r−1exp (− r/ξ ). In order to extract a value for ξ as unam-
biguous as possible, the system should be of so large a size to
allow for sampling large enough r’s at which the above limit-
ing relationship holds yet not so large that the value of g2(r)
becomes comparable to S2

2 . Strict adhering to both of these
conditions has the inevitable consequence that the interval of
analyzable r’s shrinks considerably. One way to partly allevi-
ate this problem is to fit the whole tail of g2(r) to the following
function:

g
f it

2 (r) = S2
2 + c

e−r/ξ

r
, (6)

with S2 treated as a fitting parameter and c an additional fitting
parameter. By proceeding in this way, the values of ξ reported
in Fig. 5 as a function of density were obtained for the three
models. It would be of importance to arrive at a knowledge
on how quantitatively ξ increases with density as this would
inform on the critical nature of the IN phase transition. The ξ
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FIG. 5. Value of the orientational correlation length, ξ , obtained by fitting
the tail of g2(r) to Eq. (6), as a function of density, ρ, for hard platelets, R∗
→ ∞ (black leftward empty circles), hard spherical caps with R∗ = 2 (red
central empty circles) and hard spherical caps with R∗ = 8/5 (green rightward
empty circles). Curves are fits of the respective data with the function of
Eq. (7).

data could be fitted to a function of the form

ξ (ρ) = ξ0

(
ρ∗

ρ∗ − ρ

)ν

, (7)

with ξ 0 a length, ρ∗ the special value at which ξ would di-
verge, and ν an exponent. The optimized values of the pair
(ρ∗, ν) were: (2.91;0.77) for R∗ → ∞; (3.19;0.58) for R∗

= 2; (3.49;0.57) for R∗ = 8/5. These data would indicate that,
on increasing particle curvature, the exponent tends toward
0.5, the value predicted by mean-field theory. The numbers in
Fig. (7) as well as, a fortiori, their successive elaboration are
to be taken with care though. One should take these numbers,
especially those in the close neighborhood of the IN phase
transition, as a lower bound for ξ . One attempt to simulate a
system with N = 64 000 hard platelets at ρσ 3 = 2.84 and the
successive fitting of the g2(r) tail via Eq. (6) led to a value of
ξ = (5.6 ± 2)σ . More simulations with this and larger num-
ber of particles are needed to assess the density dependence of
ξ more reliably.

D. Short-range structure

What a numerical simulation can probe to a high accu-
racy is the shape of the positional and orientational correlation
functions at short distances. The short-range behavior of these
functions provide a very detailed account on the changes that
local structure undergoes with density, within a single system
and across the various systems, on approaching the IN phase
transition. It is useful to start and analyze the behavior of these
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FIG. 6. (a) Orientational correlation functions, gn(r), for a hard platelet sys-
tem at ρσ 3 =1: n = 2 (black line), n = 4 (red line), n = 6 (green line), and
n = 8 (blue line). The inset zooms in on the short-range features of gn(r). (b)
Orientational correlation functions, gn(r), for a hard platelet system at ρσ 3

=2.8: n = 2 (black line), n = 4 (red line), n = 6 (green line), and n = 8 (blue
line). The inset zooms in on the short-range features of the derivatives, ġ

n
(r).

(c) The Fourier transform of g2(r), ĝ2(k), at ρσ 3 = 1 (dashed line), and ρσ 3

= 2.8 (solid line).

functions for hard platelets so to have a set of reference results
to compare to corresponding results for hard spherical caps.
This inter-system comparison informs on the local structural
changes that occur in the vicinity of the IN phase transition as
hard platelets are progressively curved into lens-like particles.

Fig. 6 shows the functions gn(r) of even rank up to n = 8,
as calculated for a hard platelet system at two densities. One is
very low, ρσ 3 = 1.0 [Fig. 6(a)]; the other, ρσ 3 = 2.8, is very
close to the density at which the I phase coexists with a N
phase [Fig. 6(b)]. It is interesting to note that, even at the low
density, the gn(r)’s are not featureless [Fig. 6(a)]. Those with
n = 2, 4 show a retardation in their decay at distances a bit
larger and a bit smaller, respectively, than a platelet diameter,
(2/

√
π )σ � 1.13σ . The former feature reflects the propensity

that two platelets have in arranging edge-to-edge with paral-
lel orientations, while the latter feature is an indication that
a pair of platelets can be found in a T–shaped configuration.
This fact can also be evinced by the oscillatory behavior that
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g6(r) and g8(r) show at distances comparable to a platelet ra-
dius, r � 0.56σ . This mild yet non-negligible tendency that
two platelets have to arrange perpendicularly is retained at the
high density [Fig. 6(b)]. There, it is best appreciated by look-
ing at the derivative of the orientational correlation functions,
that, at r � 0.56 σ , either show a downward cusp, for n = 2,
4, or an oscillation, for n = 6, 8. One complementary way
to detect this feature is to evaluate the Fourier transform of
g2(r), ĝ2(k). This function is given in Fig. 6(c) and exhibits
a damped oscillation with a period approximately equal to
(2π /0.56)σ−1. It proved important to jointly consider higher-
order rank orientational correlation functions, their deriva-
tives and Fourier transforms. Had the analysis been limited
to the orientational correlation functions of low rank, the fine
traits in their graph traceable back to a propensity to arrange
in a T–shaped configuration even at low density would have
remained concealed within the overall decay with distance of
these functions.

Their geometry, together with the fact that two of them
show a tendency to arrange perpendicularly, make it plausible
the presence, within the I phase, of stacks of hard platelets,
one stack in turn arranged perpendicularly with respect to an-
other. This feature (that develops further with particle thick-
ness and promotes the formation of a meta-stable cubatic
phase in thick hard discs40, 41) leaves its mark also on the
shape of pair positional correlation functions.

Fig. 7 shows the layered, gl(r⊥), and columnar, gc(r‖),
positional correlation functions for hard platelets as a function
of density. These functions are defined as follows:

gl(r⊥)= 1

2πr⊥�N

×
〈

1

ρ

N∑
i=1

N∑
j 	=i

δ(r⊥−|rij ×ûi |)�
(

|rij · ûi |−
�

2

)〉
;

(8)

gc(r‖)= 1

π�2N

〈
1

ρ

N∑
i=1

N∑
j 	=i

δ(r‖−rij · n̂)�
(|rij ×ûi |−�

)〉
,

(9)

with � taken equal to a hard platelet diameter and �() the
usual step-function. The first of these functions gives the con-
ditional probability density to find a particle j at a distance
from another particle i equal to r⊥, the latter being their dis-
tance resolved along a direction perpendicular to ûi , provided
that particle j is constrained within a layer of thickness �

around particle i. The second of these functions gives the con-
ditional probability density to find a particle j at a distance
from another particle i equal to r‖, the latter being their dis-
tance resolved along a direction parallel to ûi , provided that
particle j is constrained within a column of radius � around
particle i. These two functions give complementary pieces of
information. Both rapidly reach the limiting value of unity:
already at distances slightly larger than a hard platelet diam-
eter particles are positionally uncorrelated. Relevant changes
with increasing density occur only in the close neighborhood
of a particle. Three are the short-range features exhibited by
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FIG. 7. (a) Layered positional correlation function, gl(r⊥), for hard platelets
at various densities: Looking at the value of gl(r⊥) at r � 0.56 σ , from the
lowest to the highest: ρσ 3 = 1 (black); 2 (red); 2.8 (green); 2.84 (blue); 2.92
(orange); 3 (indigo). (b) Columnar positional correlation function, gc(r‖),
for hard platelets at various densities: looking at the value of gc(r‖) at
r � 0.56 σ , from the lowest to the highest: ρσ 3 = 1 (black); 2 (red); 2.8
(green); 2.84 (blue); 2.92 (orange); 3 (indigo).

the gl(r⊥)’s. Besides the cusp at a distance equal to a platelet
diameter, essentially unchanging with density, there is a hump
at very short distances and a well at a distance � 0.56σ .
The cusp at r � 1.13σ reflects the propensity of a pair of
hard platelets to arrange parallel edge-to-edge. The increase
of density and the approaching to and taking place of the IN
phase transition have the effect of making the hump and the
well first grow and then level off. Once the N phase is entered,
a rather flat curve has replaced the hump and the well that
were present in the graph of these functions at densities within
the I phase. The hump at the shortest distances is determined
by hard platelets that, as discoid objects, stack on top of one
another. Certain of these stacks are in turn arranged perpen-
dicularly. Density exerts its action in promoting the formation
of stacks while the tendency of these to arrange perpendicu-
larly is not too much disfavored. It is the occurrence of the
N phase that “cures” their mutual misalignment, that in turn
leads to the flattening out of gl(r⊥) in the N phase. This is also
revealed by the density dependence of the shape of the func-
tions gc(r‖). On increasing density, one can see that the value
that this function takes on at the origin is growing while the
cusp-like peak that this function has at r � 0.56 σ is decreas-
ing only at the onset of the IN phase transition.

How curving platelets affect these positional and orienta-
tional correlation functions is illustrated in Figs. 8 and 9. The
first main effect of bending platelets is to promote the decay
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FIG. 8. (a) Orientational correlation functions, gn(r), at ρσ 3 = 1 for a hard platelet system (solid curves) and a system of hard spherical caps with R∗ = 2
(dashed curves): n = 2 (black line), n = 4 (red line), n = 6 (green line), and n = 8 (blue line). (b) Derivatives of the orientational correlation functions, ġn(r), at
ρσ 3 =2.8 for a hard platelet system (solid curves) and a system of hard spherical caps with R∗ = 2 (dashed curves): n = 2 (black line), n = 4 (red line), n = 6
(green line), and n = 8 (blue line).

of the orientational correlation functions in the I phase while
smoothening out particle propensity to arrange perpendicu-
larly. The oscillation that the higher rank gn(r) exhibited for
hard platelets have been damped for hard spherical caps with
R∗ = 2 [Fig. 8]. Equally smoothen out is the cusp-like peak
that the gc(r‖) show at r‖ � 0.56 σ . The second main effect of
curvature is to favor stacking of particles on top of one another
as the IN phase transition is approached. This is shown by the

0 1 2

0.6

0.8

1

0 1 2

0.6

0.8

1

g 
(r

)
c

g 
(r

)
l

r / σ

r / σ

(a)

(b)

FIG. 9. Layered positional correlation function, gl(r⊥), in (a), and colum-
nar positional correlation function, gc(r‖), in (b), for hard spherical caps in

the I phase close to the transition to the N phase: R∗ → ∞ at ρσ 3 = 2.8 (black
curve); R∗ = 2 at ρσ 3 = 3.1 (red curve); R∗ = 8/5 at ρσ 3 = 3.4 (green curve).

increase of the peak of gl(r⊥) at small values of r⊥ and the
larger value that gc(r‖) has at the origin. These increases are
primarily due to the progressively larger tendency that caps
with a larger curvature have to heap up with their unit vec-
tors parallel, in a sterically polar configuration. This is illus-
trated in Fig. 10 where the first-rank orientational correlation
function, g1(r), is shown for systems of hard spherical caps
with R∗ = 2 and 8/5 at both sides of the IN phase transition.
The curves shown corresponding to the N phase also decay,
rather rapidly, to zero, thus indicating that S1 = 0 in this phase
too, i.e., the N phase is apolar. On going from R∗=2 to 8/5,
the value of g1(0) keeps being negative in sign but decreases
in modulus, while the successive peak at r � 0.15 σ keeps
positive and increases. This means that for R∗ = 8/5 a local
parallel arrangement is more favored. Contrary to the antipar-
allel, sterically antipolar, arrangement, the parallel, sterically
polar, arrangement, with caps that tend to slide on the same

0 0.5 1 1.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

g 
(r

)
1

 σr/

FIG. 10. First-rank orientational correlation function, g1(r), for hard spheri-
cal caps with R∗ = 2 (red curves) and R∗ = 8/5 (green curves) in the I (dashed)
and N (solid) phases, at the two sides of the IN phase transition, specifically:
for R∗ = 2, at ρσ 3 = 3.10 and 3.24; for R∗ = 8/5, at ρσ 3 = 3.44 and 3.56.
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spherical surface, is however not compatible with nematic or-
dering. In fact, the decay of g1(r) is faster in the N than in
I phase.

Thus, hard spherical caps provide an example of geomet-
ric frustration as polar ordering, locally favored, cannot prop-
agate globally. This frustration is ultimately responsible for
the further weakening of the IN phase transition until the N
is no longer stable: as R∗ decreases, a system of hard spher-
ical caps find increasingly hard to release the frustration by
forming a N phase, giving up the locally most favorable po-
lar packing for an apolar ordering that can propagate at long
range. One in fact knows23 that for R∗ = 3/2 there is no N
phase stable for N≥2000 but at those densities at which a N
phase would be expected the system is in an overall I clus-
ter phase, that allows for an efficient local polar packing at
the expense of global nematic ordering. (Such a clustering be-
havior in lens-like particles, of which the tendency to a mutual
perpendicular stacking in hard platelets may be thought of as
a forerunner, echos the stacking and clustering behavior ob-
served in smectic42 and nematic43 phases of bent-core molec-
ular liquid crystals, the molecular “calamitic” analogues of a
curved disc.)

IV. CONCLUSIONS

The overall trend of all the data presented and discussed
above is not inconsistent with the existence of a special value
of the radius R∗, R∗

c , comprised between 8/5 and 3/2, for
which �ρIN and �f both vanish; that is, for R∗

c , there is a
special value of ρ, ρc, characterized by a diverging orien-
tational correlation length ξ . However, nematic order would
not develop for ρ > ρc as it would be superseded by clus-
tering. This is schematized in the upper panels (a) and (b)
of Fig. 11. For R∗ > R∗

c , the situation depicted in Fig. 11(a)
takes place. There is a first-order IN phase transition; on in-
creasing density, the N phase transforms to a cluster I phase,
whose equation of state is the high-density continuation of the
I phase equation of state at low density. On decreasing R∗ to-
ward R∗

c , the N branch moves toward the I–cluster-I branch.
For R∗ = R∗

c , the N branch meets tangentially the I–cluster-
I branch at ρc but for ρ > ρc it has a larger value of pres-
sure [Fig. 11(b)]. The lower panel (c) of Fig. 11 sketches the
phase diagram in the plane (1/R∗, ρ) and (θ ,ρ): at the spe-
cial tricritical point the IN phase transition would be second-
order. (One might draw a parallelism between this phase dia-
gram and those predicted long ago for nearest-neighbor lattice
P1 − P2 models in two44 and three45 dimensions if one iden-
tifies the polar phase predicted there with the I cluster phase
here.)

To fully characterize this special tricritical point requires
a dedicated study with much larger systems. While waiting
for an increase in the computational resources at disposal and
an algorithmic improvement to use them most effectively, it
would be of interest to carry out numerical simulations on the
hard spherical cap’s two-dimensional analogues, i.e., hard cir-
cular arcs on a plane. Equally of interest would be to conduct
experiments on suspensions of colloidal lens-like particles.46

It is hoped that this and previous studies22, 23 will stimulate
them.
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