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ABSTRACT 

Jets scour is a major topic in hydraulic engineering. It has to be carefully analyzed in order to 

understand the mechanism and predict its geometry. The jets configuration has a deep 

influence on the scour features. In the present paper the analysis was conducted in presence of 

two symmetric crossing jets, varying the discharge, the air content, the tailwater level in the 

downstream stilling basin, the angle between the jets and the vertical distance of the jets 

crossing point from the water surface, for different vertical jets angle. It was proven that the 

presence of the air in the jets deeply affects the scour morphology. The scour geometry was 

analyzed and compared with the respective obtained in black water conditions. Useful 

practical relationships are proposed to estimate the main scour hole dimensions. The analysis 

was also extended to non dimensional profiles and it was proved that the effect of air content 

on them is negligible. 
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1. INTRODUCTION 

The presence of air in the plunging jets is an occurrence that happens in real structures and 

has to be taken seriously in consideration in order to understand the scour mechanism and 

avoid structural risks. The scour hole dimensions are influenced by the quantity of air which 

is entrained by plunging jets downstream of dams. In particular, the effect of air entrainment 

on scour features becomes much more prominent in presence of crossing jets, such as in the 

case of arch dams. Generally, the outlets of arch dams are located symmetrically and the jets 

cross before entering in the downstream water body (see for example the Hoover Dam, USA). 

Thus, a huge quantity of air entrainment occurs, due to both jet enlargement during the free 

fall and the jets spread beyond the crossing point. The air quantity in the resulting jet beyond 

the crossing point is very difficult to quantify, but the effect of air presence in the plunging 



 

jets, before they cross each other, can be experimentally evaluated in terms of scour hole 

morphology variations. This type of configuration can be of interest for practical applications, 

as generally it can lead to a reduction of the erosive capacity of the resulting jet beyond the 

crossing point, due to the huge energy dissipation and a relevant splash occurring. 

In the technical literature many studies are present dealing with scour phenomenon due to 

plunging jets, in the absence of air entrainment (i.e., black water conditions). Mostly, the 

previous studies are relative to single plunging jets and countermeasures that can be adopted 

in order to reduce scour lengths or prevent structural collapse. In particular, the effect of bed 

material on scour morphology due to plunging jets was taken into consideration by 

Rajaratnam and Berry (1977) who investigated the scour phenomenon in the presence of both 

sand and polystyrene beds. Several authors conducted experiments in black water conditions 

in order to understand the most important variables on which the erosive process depends, 

both in presence and in absence of protection structures (among these, Rajaratnam and 

Macdougall (1983), Mih (1982), Mih and Kabir (1983), Pagliara et al. (2008), Pagliara and 

Palermo (2008) and Pagliara et al. (2010)). In particular, it was experimentally proven that, in 

the case of a single plunging jet and in the absence of any protection structure, the scour hole 

dimensions mainly depend on the jet discharge, water level in the downstream water body 

(tailwater), jet inclination and the submergence condition of the jet (i.e. if the jet outlet is 

submerged or not). Generally, all the previous studies furnish experimental relationships to 

evaluate the scour features. Based on application of Newton’s second law, an attempt to 

furnish a more theoretical approach to foresee the scour depth was developed by Hoffmans 

(1998). However, relatively few studies take into consideration the air presence in plunging 

jets and its effect on scour hole morphology (among these, Pagliara et al. (2006), and Pagliara 

et al. (2009)). Ervine and Falvey (1997) studied the behavior of water jets plunging through 

the atmosphere, analyzing the physical properties of the jets and their spreading. Furthermore, 

Manso et al. (2007) conducted a comprehensive analysis on the dynamic pressures at the 

issuance and at the bottom of the pool investigating velocities and aeration conditions similar 

to those occurring in prototypes. 

Even less studies analyze the scour process due to crossing jets. In addition, they are relative 

to peculiar cases such as in Li et al.(2006). Recently, a study on crossing jets in the absence of 

air was proposed by Pagliara et al. (2011a) for black water conditions. They analyzed the 

influence of several parameters (i.e. angle between crossing jets, tailwater level, distance 

between the crossing point and the downstream water level varying the vertical angle). 



 

According to authors’ knowledge, no studies were conducted till date which investigate the 

effect of air on scour features in presence of crossing jets. Thus, the aim of the present paper 

is to analyze the scour morphology in presence of two symmetric crossing jets, varying the 

discharge, the air content, the tailwater level in the downstream stilling basin, the crossing 

angle between the jets and the vertical distance of the jets crossing point from the water 

surface, for different vertical jets angles. It was proven that the presence of the air in the jets 

affects the scour morphology. The scour depths were analyzed and some useful empirical 

relationships were derived to predict the scour hole geometry. In addition, the analysis was 

extended to non dimensional profiles and it was proved that the air presence does not modify 

them significantly. 

2. EXPERIMENTAL SETUP 

Experiments were conducted in a channel 6 m long, 0.8 m wide and 0.7 m high. One material 

was used whose granulometric characteristics are d10=7.17 mm, d16=7.49 mm, d84=10.02 mm, 

d90=10.26 mm, the non-uniformity parameter σ =(d84/d16)1/2=1.16 and the density ρs=2453 

kg/m3. The crossing jets were simulated using two pipes of internal diameter D=0.022 m. The 

air was supplied in the pipes using an air compressor. Air discharge was regulated using two 

valves (valve A and B) and measured by an air flowmeter installed in the air circuit. Figure 1c 

show a picture of the experimental apparatus. The experiments were conducted varying both 

air discharge QA and water discharge QW, namely 0 l/s<QA<1.25 l/s and 1.25 l/s<QW<4.2 l/s. It 

is worth noting that the total water discharge and air discharge were subdivided equally in 

both the symmetric crossing pipes, meaning that in each pipe the water discharge is QW/2 and 

the air discharge is QA/2. In particular, reference tests were conducted in the same hydraulic 

and geometric configuration but in absence of air (QA=0). The total discharge QAW is equal to 

QA+QW. It has to be noted that varying both QA and QW causes a variation of air-water mixture 

densimetric Froude number FAW. This non dimensional parameter was introduced by Canepa 

and Hager (2003). It is defined as FAW=VAW/(g’d90)1/2 with VAW =(QW+QA)/(πDeq2/4), g’=[(ρs-

ρ)/ρ]g as the reduced gravitational acceleration with the densities ρs and ρ of sediment and 

water, respectively. Note that in the case of one single pipe (as in the experiments conducted 

by Canepa and Hager, 2003) Deq is the internal diameter of the pipe. Whereas, in the case of 

two crossing pipes Deq is the equivalent diameter, i.e. the diameter of the single pipe having 

the same total area of the two crossing pipes. It implies that Deq=(2D2)0.5=0.0311 m for the 

present experiments. It can be easily noted that VAW =(QW+QA)/(πDeq2/4)=VW(1+β), where VW 

=(QW)/(πDeq2/4) and β=QA/QW as the dimensionless flow rate. It implies that FAW = FW(1+β), 



 

where FW=VW/(g’d90)1/2, which is the densimetric Froude number of the black water jet. It has 

to be noted that in the case in which no air is supplied in the pipe, β=0, thus FAW= FW. In the 

present tests 8.61<FAW<14.47 and 0<β<1. The experiments were carried out for different 

downstream water levels h0 and the non dimensional tailwater level Tw=h0/Deq ranged 

between 0.7 and 7.1. Moreover, different crossing jets angles αc (i.e. the crossing angle 

between the jets) were tested, i.e., αc=30°, 75° and 120°, respectively. The vertical angle of 

the crossing pipes plane respect to the horizontal plane v was also varied. In particular, three 

v were tested: 60°, 75° and 85°. Another important tested parameter was the vertical distance 

between the crossing point of the jets and the original bed level S, and in non dimensional 

form it can be written as δ=S/Deq. Experiments were conducted for 0<δ<6.5. Figure 1a-b 

shows a sketch of the experimental apparatus in which all the main geometric parameters 

cited above are illustrated. Moreover, in the same Fig. 1a-b, also the characteristic dimensions 

of the scour hole are reported. In particular, zmcA is the maximum scour hole depth, lcA is the 

scour hole length, zMcA is the dune height, bcA is the maximum scour width (section E-E), lMcA 

is the dune length (in the axial section A-A), bMcA is the maximum dune width (in the section 

C-C where z=zMcA) and B is the channel width. x, y, and z are the longitudinal transversal and 

vertical coordinates of the reference system, respectively, and 0 is the origin of the reference 

system. The subscript A used in the symbols is referred to the case in which air is present in 

the jets, whereas when =0 (i.e. reference tests) the symbols indicating the lengths are the 

same without the subscript A (for example zmc is the maximum scour depth in the absence of 

air in the jets). About 200 tests were conducted. The characteristic dimensions of the scour 

hole were measured in dynamic conditions (i.e. when the jets are on and the scour geometry 

reached its dynamic equilibrium configuration). Generally the dynamic equilibrium 

configuration was reached after 40 minutes. Measurements of both water levels and scour 

morphology were taken with a special point gauge fitted with a circular plate at the bottom as 

in Canepa and Hager (2003). 



 

 

 

Figure 1 Diagram sketch and picture of the experimental apparatus with the indication of the 

geometric and hydraulic parameters 

3. RESULTS AND DISCUSSION 

3.1. Scour morphology classification 

The scour process depends on several parameters which can strongly modify the scour hole 

geometry. The combination of all the geometric and hydraulic variables caused different scour 

hole and dune morphologies. Namely, according to Pagliara et al (2011b), three different 

scour hole types take place in the tested range of parameters.  

The Type 1 is characterized by an approximately circular shape of the scour hole and a dune 



 

which is not extended in length but it can either partially or totally surround the scour hole. 

Type 2 presents a quasi-elliptical shape of the scour hole and a dune which is located 

completely in the downstream side of the scour hole and it is characterized by a milder 

surface slope than that of Type 1. Type 3 is characterized by a longitudinally extended 

downstream dune, whose length is much larger than the scour hole longitudinal extension and 

presents a very mild slope. Finally, Type 4 represents the configuration in which no scour 

takes place, i.e. when the erosive capacity of the jet is not enough to move the bed material. In 

Figure 2 a-c pictures relative to the first three types are reported (see Pagliara et al. 2011b). 

 

 

Figure 2 Pictures of the three different scour types: (a) Type 1, (b) Type 2 and (c) Type 3 (flow from 

the left) 

The four scour types occur for different hydraulic and geometric conditions. For >0.25 

(minimum tested case in the presence of air), Figure 3a-c (Pagliara et al. 2011b) illustrates the 

existence fields of the distinguished scour types. A morphological analysis allowed to assess 

that the different scour types existence fields mainly depend on crossing angles between the 

jets c, tailwater level Tw and the non dimensional vertical distance  between the jets crossing 

point and the water surface. Thus, three graphs Tw(), valid for different crossing angles c, 

were plotted. The existence fields were delimitated and both the effect of v and  (bold 

arrows) on the boundary regions (hatched lines) are reported. 



 

 

Figure 3 Scour Types existence fields for >0.25 and all tested vertical angles: (a) c=30°, (b) c=75°, 

and (c) c=120° 

Figure 3a shows that only three scour types (i.e., Type 1, 2 and 4) take place for c=30°. The 

transition between Type 1 and 2 occur for >4, but higher values of  are required when both 

v and  increases. This behavior is not confirmed for the transition between Type 2 and 4, as 



 

shown in Figure 3a. A similar morphological analysis was conducted also for c=75° and 

c=120°. In the first case (c=75°, see Figure 3b), Type 1 mainly occurs for Tw>3 and <2, 

Type 2 for Tw<6 and 2<<6, Type 3 for Tw<3 and >5, and Type 4 generally for Tw>4 and 

>2. Similar existence fields for various scour types can be observed for c=120° (see Figure 

3c). Also for c=75° and 120°, the effect of both the parameters  and v on the transition 

region was pointed out and reported in Figure 3b-c, respectively. 

3.2. Effect of air presence on scour hole depth 

The presence of air in the jets affects the scour dimensions. In particular, the scour hole depth 

is the most relevant parameter which has to be analyzed. A comparison of the maximum non 

dimensional scour depth both in presence and absence of air was conducted for all the tests, in 

the same geometric and hydraulic conditions (i.e., same , Tw, c, and v), and for the same 

FAW. Thus, the scour depth occurring in black water conditions for a defined FAW=FW were 

compared with those occurring for the same FAW, but varying the dimensionless flow rate . 

The results were plotted in graphs ZmcA/Zmc versus , in which ZmcA=zmcA/Deq and Zmc=zmc/Deq 

are the non dimensional scour hole depths in the presence and absence of air in the jets, 

respectively. A preliminary analysis allowed to establish that increasing , and keeping FAW 

constant, the scour depth always reduces. The reduction is also dependent on Tw and , for 

each c, and v configurations tested. But a clear and unique trend cannot be deducted 

varying both Tw and . In fact, the combination of these two last parameters has a different 

effect on scour reduction for various angle configurations tested. However, it was 

experimentally proved that the average reduction is almost the same for both c=30° and 

c=75° and all v tested, whereas for c=120° it results to be more prominent. In Figure 4a-b 

two graphs are reported by which it is possible to understand the average reduction effect of  

on scour hole depths. 

 



 

Figure 4 ZmcA/Zmc versus , for various , Tw and QAW tested and for (a) v=60° and c=120° and (b) 

v=75° and c=30° 

In Figure 4a, a graph ZmcA/Zmc versus  is reported and it is valid for v=60° and c=120°. The 

bold line represents the average reduction that occurs for c=120°. It can be observed that 

increasing  the average reduction is very prominent. Similarly, in Figure 4b a graph ZmcA/Zmc 

versus  is reported and it is valid for v=75° and c=30°. As specified above, a similar 

average behaviour is also valid for c=75°. In these last two cases, the reduction due to 

increasing  is less prominent than for c=120°. 

3.3. Evaluation of scour hole dimensions 

For design purposes, it is very important to predict the geometric dimensions of the scour 

hole. Pagliara et al. (2011a) proved that, for black water conditions, the non dimensional 

scour hole lengths depend on the combined effects of five independent parameters: FW (which 

is equal to FAW in black water conditions), Tw, , v and c. Due to the complexity of the 

phenomenon, it is not possible to point out individual effects of each governing parameters on 

the scour hole features. Thus, Pagliara et al. (2011a) conducted a separate analysis for each c 

tested, as the crossing angle between the pipes was identified as the most significant design-

independent parameter. This is mainly due to the fact that varying c the scour process 

significantly changes. In fact, the transversal velocity components of the jets increases with 

c, resulting in an increased jet splash. Consequently, the scour hole morphology is extremely 

influenced by this last parameter, as shown in Figure 3. Based on these considerations, 

Pagliara et al. (2011a) proposed the following empirical relationship to predict various scour 

length parameters  

φ=a1+a2Tw+a3FW+a4δ+a5αv+a6TwFW+a7Twδ+a8FWδ+a9Twαv+a10FWαv+a11δαv (1) 

where, φ is the non dimensional dependent variable, i.e., φ=Zmc=zmc/Deq, φ=Lc=lc/Deq or 

φ=Bc=bc/Deq, according to which non dimensional scour hole length is taken into 

consideration. zmc is the dimensional scour hole depth, lc is the dimensional scour hole length, 

and bc is the dimensional scour hole width in black water conditions. ai are the coefficients of 

Eq. (1), in which the subscript i varies between 1 and 11 and they are reported in Table 1. In 

addition, Eq. (1) is valid for φ0. If the calculated value of φ is negative, it implies that no 

scour process takes place, for the selected combinations of the independent parameters. Thus, 

in this case, φ has to be assumed equal to 0 and scour Type 4 occurs (see Fig. 3). For 



 

intermediate c values (i.e., 30°<c<75° and 75°<c<120°), Pagliara et al. (2011a) proposed 

that the desired dependent variable φ can be estimated by linear interpolation of the values 

given by Eq. (1) in the extreme limits of the c intervals. 

Table 1 Coefficients ai of Eq. (1) for c=30°, 75°, and 120° and for non dimensional scour hole 

lengths in black water conditions. 

30° 75° 120° 30° 75° 120° 30° 75° 120°
a 1 4.938721 5.223549 1.717833 11.10140 -0.756665 11.51507 7.049030 14.47283 12.25137
a 2 -0.336533 -0.945931 -0.661428 -0.47634 -0.973429 -2.13863 -0.550723 -1.82278 -1.69188
a 3 0.157614 0.382553 0.486517 1.06130 2.434837 1.22969 1.172421 0.97831 1.56659
a 4 0.245859 -0.506431 -0.180330 0.93142 0.041244 -0.38370 0.544552 -1.17873 -0.95224
a 5 -0.093217 -0.071007 -0.017984 -0.18468 0.034934 -0.11042 -0.115642 -0.17800 -0.21059
a 6 -0.002492 -0.012897 -0.006818 0.01044 -0.085776 -0.00112 -0.000236 -0.05127 -0.11303
a 7 -0.099869 -0.086593 -0.074767 -0.27832 -0.455667 -0.47252 -0.244566 -0.20367 -0.42152
a 8 0.002565 -0.009843 -0.006365 0.05855 -0.020578 0.00926 0.039614 0.03242 -0.04766
a 9 0.008269 0.010977 0.005013 0.01918 0.019608 0.01710 0.020547 0.02493 0.03060
a 10 0.003650 0.000086 -0.002834 -0.00412 -0.019714 -0.00445 -0.006422 0.00258 -0.00213
a 11 0.001518 0.006988 0.001927 -0.00331 0.020090 0.02071 0.006407 0.01016 0.03497
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For the current experiments, the effect of  was taken into account. The experimental data 

were carefully analysed and Eq. (1) was modified introducing a multiplicative function f(). 

The following relationship was found: 

φA=φf(β)=φ(βm+1)          (2) 

where, φ is calculated using Eq. (1), in which FW is replaced by FAW. φA is the dependent 

scour hole parameter in the presence of air in the jets, i.e., φA=ZmcA, φA=LcA=lcA/Deq and 

φA=BcA=bca/Deq. m is a coefficient depending on αc, whose values are reported in Table 2. 

Analyzing the values of the coefficient m in Table 2, several considerations can be deduced. 

ZmcA decreases with  and αc, as also proved by Figure 4. This is mainly due to the fact that 

the resulting air-water mixture jet has less erosive capacity than a black water jet. The same 

effect can be pointed out for LcA. Whereas, the scour hole width BcA behaves differently. In 

fact, tends to slightly increase with  as well as with αc. Higher crossing angles cause radial 

splash and higher air content in the jet amplifies the mentioned radial splashing action, 

resulting in a shallower and shorter but wider scour hole. 

Note that for β=0, the multiplicative function f(β)=(βm+1)=1 and FW=FAW, resulting in φA=φ. 

It means that Eq. (2) coincides with Eq. (1) for black water conditions. Equation (2) can be 

applied to the generality of cases in the tested range of parameters and it has the advantage to 



 

take into account the jet air content. Figure 5a-c shows the comparison between measured and 

calculated values of ZmcA, LcA and BcA, using Eq. (2). It can be easily observed that the 

proposed general equation well predicts the totality of data, within a range of 30% deviation. 

The same considerations for β=0 are still valid for Eq. (2). In particular, if φA<0 it means that 

no scour process takes place, thus φA has to be assumed equal to 0. In addition, for 

intermediate c values (i.e., 30°<c<75° and 75°<c<120°), φA can be estimated by linear 

interpolation of the values given by Eq. (2) in the extreme limits of the c intervals. 

Table 2 Values of m in Eq. 2. 

 

 

 



 

 
Fig. 5. Comparison between calculated (using Eq. 2) and measured values of (a) ZmcA, (b) LcA and (c) 

BcA. 

 
3.4. Scour hole and dune profiles similitude analysis 

A further analysis was conducted in order to check the effect of air presence on non 

dimensional profiles and to find out if any similitude among them can be established. 

According to the reference system adopted in Figure 1a-b, X=x/lcA is the non dimensional 

longitudinal coordinate (in the section A-A, see Figure 1b), Z=z/zmcA is the non dimensional 

vertical coordinate and Y=(y+bcA/2)/bcA (in the section E-E) is the non dimensional transversal 

coordinate. Both the longitudinal and transversal non dimensional profiles were plotted in 

graphs Z(X) and Z(Y), respectively, for all the tested conditions. For black water conditions 

(=0), Pagliara et al (2011a) proposed the following Eqs. (3)-(5) for the longitudinal scour 

hole profiles and Eq. (6) for the transversal scour hole profile. 

Z =-1.30X4+7.09X3-4.66X2-1.13X  (3) 

Valid for αc=30° 

Z =-3.51X5+5.46X4+0.25X3+0.59X2-2.79X (4) 

Valid for αc=75° 

Z =5.82X5-21.40X4+25.89X3-8.33X2-1.98X (5) 

Valid for αc=120° 

Z =-12.72Y4+25.44Y3-11.9Y2-0.82Y  (6) 

Valid for the averaged non-dimensional transversal profile. 

In the present study, the analysis was conducted in two steps. In the first step the effect of  

was analysed, fixing both the vertical angle and the crossing angle. It was proved that a non 



 

dimensional profile similitude can be pointed out, meaning that no significant effect on non 

dimensional scour hole profiles is due to .  

Figure 6a-b illustrates the non dimensional longitudinal Z(X) and transversal Z(Y) scour hole 

profile similitude occurring for v=60° and c=30°(along with Eq. 3) and for v=60° and 

c=75° (along with Eq. 6), respectively. In the second step, the effect of v on non 

dimensional scour hole profiles was taken into consideration and analysed. In this case, a 

profile similitude still occurs, even if a certain effect of vertical angle can be detected, as 

shown in Figure 7a-b, in which two examples of non dimensional longitudinal profile (for all 

tested v and c=30°) and transversal profile (for all tested v and c=75°) are reported, 

respectively. It can be observed that, for practical purposes, Eqs. (3)-(6) proposed by Pagliara 

et al. (2011a) can be reasonably generalized also for the case in which >0. In addition, 

Pagliara et al. (2011a) observed that the maximum scour hole depth occurs for non 

dimensional longitudinal abscissa X varying approximately between 0.5 and 0.65. As the 

maximum scour hole generally takes place downstream of the jet crossing point, it implies 

that for scour design purposes, one can consider that the maximum backward extension (from 

the initial impact) should be surely less than 0.65 LcA from the crossing point and for all the 

tested conditions. 

 
Figure 6(a) Z(X) for v=60°, c=30° and all the tested  values along with Eq. (3); (b) Z(Y) for v=60°, 

c=75 and all the tested  values along with Eq. (6) 

 



 

Figure 7 (a) Z(X) for c=30° and all the tested  and v values along with Eq. (3); (b) Z(Y) for c=75 

and all the tested  and v values along with Eq. (6) 

The analysis of non dimensional profiles was also conducted for the dune. In particular, both 

the longitudinal section of the dune A-A (see Figure 1a-b) and the transversal section C-C (i.e. 

the transversal section in which maximum dune height occurs) were analysed. According to 

the reference system adopted in the Figure 1, the following non dimensional coordinates can 

be defined: X1=(x‒lcA)/lMcA and Y1=(y+bMcA/2)/bMcA, which are the non dimensional 

longitudinal and transversal coordinates of the dune in the mentioned sections, respectively. 

For all the tested conditions both the non dimensional longitudinal and transversal profiles 

were plotted as Z(X1) and Z(Y1), respectively. Also in this case, the effect of  on Z(X1) was 

found negligible for all the hydraulic and geometric tested conditions. Moreover, the Z(X1) 

non dimensional profiles have a similar shape for each tested vertical angle v. This 

occurrence allowed to find three different equations by which it is possible to predict the non 

dimensional longitudinal dune profiles depending only on c in the tested range of 

parameters. Equation (7) reports the analytical expression of the non dimensional longitudinal 

dune profiles. The coefficients A, B, C and D are listed in Table 3.  

Figure 8a shows the average non dimensional longitudinal dune profiles for each c tested. It 

can be easily observed that increasing c, the non dimensional profiles shift towards higher X1 

values. It means that increasing c, the longitudinal shape of the dune becomes more 

symmetric. Namely, the non dimensional longitudinal coordinate in which the maximum dune 

height takes place approaches to 0.5.  

 

Figure 8(a) Average non dimensional longitudinal dune profiles Z(X1): Eq. (7) for c=30°, c=75°, 

c=120°. (b) Average non dimensional transversal dune profiles Z(Y1): Eq. (8) for all the tested 

conditions 

The same analysis was conducted also for non dimensional transversal dune profiles (section 



 

C-C in Figure 1b). In this case, it was experimentally proven that the non dimensional profiles 

Z(Y1) does not depend on both dimensionless flow rate  and on the crossing angle c. Thus a 

unique average transversal profile can be used to fit all the experimental data (Eq. 8), as 

shown in Figure 8b. 

Z=AX14+BX13+CX12+DX1         (7) 

valid for non dimensional longitudinal profiles 

Z=AY14+BY13+CY12+DY1         (8) 

valid for non dimensional transverse profiles 

Table 3 Coefficients of Eqs (7) and (8) 

 

3.5. Scale effects 

In the present paper a detailed scale effects analysis was not conducted, also because of the 

complexity of the geometric configuration of the experimental apparatus. However, few 

observations can be done. In the presence of two jets crossing each other, it is not at all 

obvious and not even easily possible to detect which is the eventual influence on the scour 

hole mechanism of the scale effects characterizing the single jets. This is also due to the fact 

that the physical modeling of the scour phenomenon, based on Froude similitude, implies that 

the Weber number differs between experiments and that surface tension-dominated processes 

might not be properly scaled. However, the experiments performed in the present study are in 

a range of investigation which is close to that investigated by Chanson et al (2004) in Model 

1. They analyzed the scale effects affecting air entrainment and bubble dispersion putting in 

evidence significant scale effects in terms of void fraction and bubble count rate when 

We<1000, where We is the inflow weber number. Nevertheless, they observed a faster 

detrainment rate for We>1000. This implies that a more specific analysis of the scale effects 

has to be conducted testing different models.  Specific measurements are required to deep 

these aspects and they can be further developed in future investigations. 



 

4. CONCLUSIONS 

The analysis of scour features due to crossing jets was conducted. This type of configuration 

can be of interest for practical applications as, especially in arch dams, it can occur and 

generally it can lead to a reduction of the erosive capacity of the resulting jet beyond the 

crossing point. Both the geometric configurations of the jets and hydraulic conditions were 

varied. Namely, three different crossing and vertical angles were tested; the discharge and the 

tailwater level were varied too. The analysis aimed to understand the effect of air content in 

the jets, thus experiments were carried out varying the ratio between air and water discharge. 

Moreover, reference tests (in absence of air) were also conducted in order to compare the 

scour morphology in the same hydraulic conditions and configuration, but with different 

dimensionless flow rates. It was experimentally proven that increasing dimensionless flow 

rate, the scour depth substantially reduces. An empirical relationship was proposed in order to 

determine the scour length parameters when effect of air plays a considerable role in scour 

process. The proposed relationship is a generalization of the equation proposed by the same 

authors for black water conditions. Finally, both the scour hole and dune morphologies were 

analysed. Similitudes between non dimensional profiles were pointed out and it was proved 

that, for practical purposes, the equations proposed for black water conditions can 

satisfactorily predict the analysed non dimensional profiles also in the case of aerated jets. 
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