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Figure 3-9: A sample used to demonstrate the strain markers and method of 
attaching hooks. This is a typical size for a sample, at around 15mm on a side. 

To attach the tissue to the linear positioners, four hooks are attached to each side, giving 

16 hooks total (Figure 3-9). Two hooks are tied together on a single line, which is looped around 

a pulley (Figure 3-6). The two pulleys on each side have low friction and pivot around a central 

axis (Figure 3-8), in order to balance the forces carried by each line. In this way, the specimen 

has equal tensile force from each hook. The force balancing mechanism pivots on an axis located 

directly above the pulleys in order to transmit the force experienced by the tissue to the load cell. 

This is pictured in Figure 3-5. For digested elastin tissue testing, the hooks were found to tear 

through the sample easily, only allowing a few grams of force per side. In order to allow biaxial 

testing with elastin tissues, miniature tissue clamps were made of stainless steel wire. These 

clamps provide sufficient force to hold the tissue, while remain small enough in order not to 

interfere with the homogeneous stress state.  
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In order to track the deformation of the specimen, small dots are placed on the intimal 

surface of the artery wall. Using either four or nine markers, the motion of the markers are 

tracked using a camera and optical tracking routines in the LabView software. This method 

allows a direct measurement of deformation from the material rather than assuming the 

deformation from carriage motions.  

Future testing methods may be implemented in LabView in order to perform 

displacement control and viscoelastic testing. As of now, these testing methods have not been 

developed.  

The battery of tests for the biaxial tester includes seven different loading cases. A 

maximum stress is found which shows sufficient strain stiffening effects, then the tissue is 

stressed to different ratios of this maximum stress. Figure 3-10 shows the loading paths of the 

seven tests. The tests are performed with a loading-unloading time of 20s, which is 

approximately half the strain rate of the uniaxial tests.  
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Figure 3-10: The loading paths of the seven biaxial tests. The circumferential-
axial first Piola-Kircchof stress plane is shown, and the loading paths are shown 
in dotted red lines. The bounds of the stress are shown in shaded blue. 

Ten loading cycles are performed for each loading ratio. In order to test to the correct 

stresses simultaneously, the software first guesses the motor speeds for each direction from 

stretch guess inputs in order to reach the maximum stress. When the maximum stretch is reached 

in either of the two directions, the carriages stop and return the sample to zero stress. The motor 

speeds are then modified by decreasing the motor speed of the axis that reached the maximum 

stress relative to the speed of the axis that did not reach the maximum stress. The motor speeds 

are also changed progressively in order to reach the maximum stress precisely at the 10s mark. 

The In this way, the material reaches its maximum stress simultaneously, and is also 

preconditioned in the process.  

Pa 
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Pg 
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3.2.2 Interpretation of Biaxial Data 

When presented with biaxial data, it is often confusing as to how to interpret the many 

loading paths. To understand what each loading curve adds to the understanding of the material, 

it helps to know exactly why the biaxial test is needed. For an isotropic material, the uniaxial test 

can reveal almost everything about its passive mechanical properties. The stress-stretch test does 

not change depending on the direction of the deformation. Anisotropic materials, however, do 

not have this property. In addition to possessing different behaviors in different directions, the 

stress coupling between directions is unknown. Therefore, it is important to determine both the 

behavior in both directions, but also the degree to which stress in one direction affects the 

behavior in another direction.  

One should first look at the uniaxial stress-stretch behaviors of the artery wall. The 

uniaxial data taken with the biaxial machine is shown in Figure 3-11. Here, it is seen, that the 

low stretch portions of the curves are of different stiffnesses. It is also seen that the engagement 

of the circumferential data is earlier than the longitudinal data. These observations are also able 

to be seen from data taken from a uniaxial tensile tester. In Figure 3-12, the whole set of data is 

shown from one biaxial specimen. Here, we can see the change in stiffness or engagement with 

additional transverse loading. If one looks only at the longitudinal data on the right side of the 

graph, going from highest engagement stretch to the lowest, there are the 0:100, 25:100, 50:100 

and 100:100 loading ratios. These loading ratios demonstrate the change in behavior with 

additional transverse load. The biaxial tensile tester shows the behavior of the stress coupling 

between the two directions. 
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Figure 3-11: A set of uniaxial test data taken on the biaxial tensile tester. Note that 
the opposing stretches are recorded, but not plotted here for clarity. The data is 
from calf lot number 184, left pulmonary artery. 
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Figure 3-12: The full set of biaxial data from one tissue. Data from the same tests 
are in the same color, with dotted lines representing the circumferential behavior, 
while the solid lines represent the longitudinal behavior. The data is from calf lot 
number 184, left pulmonary artery. 

3.3 Uniaxial Data Fitting 

So far, there have been 20 calves tested in uniaxial tension. Out of those, 11 were 

hypoxic hypertensive, and 9 were normoxic. The crimped fiber model was fit to this data using a 

least-squares approach. Briefly, the trust-region-reflective algorithm is used to minimize the sum 

of squared error to both the longitudinal and circumferential data simultaneously by changing the 

eight model parameters. The initial guess was tuned by hand for each set of circumferential and 

longitudinal data. The quality of fit was very high for all the fits, with a mean R2 of 0.998. The fit 
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parameters are shown in Figure 3-13 through Figure 3-19. The mean of all the values in the 

group is represented by the bar, with the standard deviation shown as error bars. The markers 

represent a single data fits, with the circular, triangular and square markers representing the 

main, right and left pulmonary artery samples respectively. A student’s t-test was performed 

assuming equal variances and unequal sample sizes for the hypertensive group to the 

normotensive group. Student’s t-tests were also performed from the normotensive to 

hypertensive RPA tissues, LPA tissues and MPA tissues.  

In Figure 3-13, the isotropic shear modulus, µ, in kPa is plotted. This parameter shows no 

statistical significance, with p values much greater than 0.05. 

Figure 3-14 shows the circumferential shear modulus, µa , in kPa. There is an increase in 

this parameter, but the LPA group exhibits the change best. For the whole group it showed 

significance at the 10% level with, p=0.073, but only the LPA group showed significance, with 

p=0.004. This agrees with the findings of Lammers et al.[4] in that hypertension increases the 

low stress stiffness. 

Figure 3-15 shows the anisotropy ratio, rNH= µa / µg . An increase here would indicate a 

larger anisotropy bias in the low stress regions toward the circumferential direction. Only the 

LPA group shows significance, with p=0.003. 

Figure 3-16 shows the fiber density, KA, for the crimped fiber. The increase is bordering 

on significant, with p=0.14. The RPA shows the greatest statistical significance at p=0.12. It is 

seen here that the crimped fiber portion of the model is increasing in area fraction.  

Figure 3-17 shows the change in the anisotropy of the crimped fiber ellipsoid. This shows 

a decrease in anisotropy, albeit slight. The p-value for the aggregate is p=0.12. 
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Figure 3-18 shows the normalized radius of gyration, 0R l , for the crimped fiber model. 

This parameter does not change. This indicates that the breadth of the transition does not 

increase. 

Figure 3-19 shows the shape parameter of the crimped fiber, 0θ . The increase here is 

significant at p=0.015. The left and right pulmonary artery groups showed significance at the 

15% level, with p=0.088 and p=0.13. This indicates that the engagement of collagen was pushed 

further out under hypertension.  
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Figure 3-13: The isotropic shear modulus of the uniaxial data fits. 
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Figure 3-14: The circumferential shear modulus of the uniaxial data fits. 
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Figure 3-15: The anisotropic shear modulus ratio of the uniaxial data fits. 



 

 60 

Normoxic Hypoxic
-0.05

0

0.05

0.1

0.15

F
ib

er
 A

re
a 

D
en

si
ty

 (m
m

/m
m

)

 

Figure 3-16: The fiber density, KA, of the uniaxial data fits. 

Normoxic Hypoxic
0.5

1

1.5

2

E
lli

ps
oi

d 
A

ni
so

tro
py

 R
at

io

 

Figure 3-17: The anisotropy of the ellipsoid for the uniaxial data fits. 
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Figure 3-18: The normalized radius of gyration for the crimped fibers of the uniaxial data 

fits. 
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Figure 3-19: The crimped fiber shape parameter, 0θ , of the uniaxial data fits. 

3.4 Conclusions 

As this was the first work performed in this lab in the area of mechanical testing of artery 

tissues, significant progress was made from the first uniaxial test to the biaxial tester. The 

uniaxial test data was fit with the model, which gave some insight to the behavior of the material 

with hypertension. The statistical significance here is low, owing to the large distribution of 
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behavior in the data. The biaxial data is promising in its assessment of stress coupling between 

the axial and circumferential directions. The model should now be fit to the biaxial data to assess 

the model validity under biaxial loading. 
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Chapter 4. The Anisotropy of Arterial Elastin 

4.1 Introduction 

The mechanical behavior of the proximal artery wall plays an important role in regulating 

hemodynamic efficiency and cardiac health. Elastin and collagen are the two main extracellular 

matrix proteins in the artery wall that provide the wall stiffness and define its mechanical 

behaviors. Elastin forms a cross-linked network and presents mainly in the medial layer in the 

form of fenestrated lamellae [51] which are arranged in the circumferential-longitudinal plane 

surrounding the smooth muscle cells to form musculo-elastic fascicles. Collagen fibers in the 

form of undulated bundles present mainly in the adventitial layer and are arranged in a loosely 

cross-linked mat. Previous study showed that the musculo-elastic fascicle structure of elastin is 

the primary load-bearing component at small to intermediate range of deformation, which is 

close to the physiological deformation [7, 52-54]. Collagen fibers do not carry load until they are 

straightened, which is usually called collagen engagement. For example, in the recent study on 

the elastin mechanics in pulmonary hypertension [4], it was found that for control group of calf 

pulmonary artery (PA) the average systolic/diastolic strains were 59%/34%, and the collagen 

engagement strain was ~69%. For the hypoxic group, the average strain range was between 72% 

and 53%, and the collagen engagement was at ~ 74%  of strain. On the one hand, it was clear in 

the hypoxic group that the increase in systolic strains, growing closer to the collagen engagement 

point, had a strong correlation to the increase of blood pressure and heart load. On the other 

hand, this study also showed the importance of elastin mechanics in regulating hemodynamics, 

as the majority of the deformation during a systolic-diastolic cycle is dominated by the 

contributions from elastin network.  
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Another important arterial property is their anisotropic mechanical behavior [21, 24, 55, 

56]. Conventionally, it is believed that this was due to preferential collagen fiber orientations 

[57, 58]. This can be reflected from the observation that many structure-based constitutive 

models assume the anisotropic behavior to be due to collagen fibers. However, as the needs for 

developing more accurate structure-based strain energy functions (SEF) and constitutive models 

for artery tissue increase, this assumption should be more carefully investigated. For example, 

there are several studies on elastin showing elastin to be anisotropic. For elastin purified from 

canine thoracic aorta, Sherebrin et al [11] found the anistropic ratio (AR) (defined as the ratio of 

modulus between the circumferential and longitudinal directions) to be ~1.65 at the strain of 0.4 

and to be ~1.42 at the strain of 0.7. Lillie et al, from inflation testing of digested pig aorta artery 

sections, found that the circumferential direction was 40% stiffer than the longitudinal direction 

[59]. Zuo and Zhang [60] studied elastin from bovine thoracic aorta and demonstrated 

anisoptropic elastin behavior. Although they did not calculate the AR, their experiments showed 

the AR to be ~3 under equibaxial testing conditions. When studying venous tissue, Rezakhaniha 

and Stergiopulos [40] found that an anisotropic elastin model with a stiffer longitudinal direction 

could provide better fit to the inflation-extension experiments. This observation contradicts with 

the observations by Sherebrin et al [11] and Zuo and Zhang [60] on thoracic aorta, which showed 

circumferential direction was stiffer, indicating that the anisotropy of elastin may be species, 

artery, and location dependent [40]. Indeed, earlier studied also reported isotropic behaviors of 

elastin [61], which was confirmed by a recent study on porcine thoracic aorta-derived elastin 

[12] using planar biaxial tests.    

Pulmonary arterial hypertension (PAH) is defined as a chronic, resting mean pulmonary 

artery pressure (mPAP) greater than 25mmHg. This increased pressure leads to an increase in 



 

 65 

right ventricular (RV) afterload. PAH is an important cause of morbidity and mortality in 

children and adults. The proximal pulmonary arteries (PAs) in patients with PAH display 

significant vascular remodeling [3, 62, 63] and their mechanical behavior strongly influences the 

pulmonary arterial input impedance, RV afterload, and pulmonary vascular function (Milnor et 

al, 1969; Milnor 1975; Grant and Lieber, 1996; Weinberg et al., 2004). Therefore, it is important 

to study the mechanical behavior of the proximal PAs (Weinberg et al., 2004; Gan et al., 2007; 

Hunter et al., 2008). Recently, the study by the authors found that PH decreases the efficiency of 

elastin, through degradation and production [64]. Specifically, in hypertensive calves, the elastin 

modulus has been shown to increase [4]. However, the influence of PH on anisotropy of PA was 

not studied.  

The purpose of this paper is to investigate if mechanical behaviors of purified elastin 

from PA are anisotropic and if the anisotropy will be affected by the PH conditions. Since 

proximal PA has the strongest influence on heart load, this paper focuses on elastin obtained 

from proximal tissue. Stress-strain behaviors of purified elastin of proximal PAs from controlled 

and hypertensive Holstein calves were tested using a planar biaxial tester. The moduli in 

circumferential and longitudinal directions were measured from stress-strain curves then were 

used to calculate the anisotropic ratios (AR). The ARs were then used to investigate the presence 

of anisotropy in the PAs and study if there was a dependence of AR on location and PH 

conditions.  
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4.2 Materials and Methods 

4.2.1 Animal model and tissue harvesting 

Institutional Animal Care and Use Committee approval was obtained for all animal 

studies. Tissues from fourteen male Holstein calves were harvested for study. All the calves were 

sacrificed at 14 days of age. The PH group consisted of seven calves and PH was induced by 

following a well established high altitude calf model [65, 66] where the calf between 1 and 3 

days of the age was subjected to a 4,600-m equivalent air pressure till sacrificing. Planar biaxial 

tension specimens were excised from large pulmonary artery tissues. Tissues were cut from 

right, left, and main PAs (RPA, LPA, and MPA, respectively) using surgical preparation razor 

blades which allowed straight sides to be made. The tissues thickness ranged from 1-2mm for 

branch tissues (RPA and LPA), and 3-5mm for main trunk sections (MPA). Test specimens were 

cut from areas of the artery devoid of branch points, holes, or localized thickening. The overall 

dimensions were around 15-20mm on a side for RPA and LPA specimens, 25-30mm on a side 

for MPA specimens. 

4.2.2 Tissue digestion protocol 

Prior to be purified for elastin only tissue, the fresh tissue specimens were tested in the 

biaxial tester. Tissue dimensions were measured using digital calipers. After testing, the fresh 

specimens were digested using a cyanogen bromide (CNBr)-formic acid process to remove all 

components of the artery wall other than the elastin matrix first employed by [67], as detailed in 

Lammers et al. [4]. Briefly, fresh arteries were submerged in a 70% formic acid, 50 mg/ml CNBr 

solution, followed by a boiling treatment to remove CNBr. After digestion, tissues were 

measured with digital calipers and tested in PBS at room temperature.  
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4.2.3 Mechanical tissue testing 

The mechanical tester used was built in house following Sacks’ design [68]. The force 

was measured with 50g load cells (Honeywell Model 34). To track the deformation of the 

sample, a toughened black cyanoacrylate adhesive (Loctite Black Max 380) was used to create 

tracking points on the face of the tissue. Four small circular dots, 0.5mm to 1mm in diameter, 

formed the reference points for the optical deformation measurement. During testing, the applied 

stress usually reached a maximum of about 15 kPa to avoid tearing. Preconditioning to the 

maximum stress was performed by ten cycles of loading and unloading. The total deformation 

cycle occurred in a 20 second period. Because there could be some permanent deformation from 

preconditioning, the stretch data were normalized separately by taking the lowest stretch in each 

direction to be unity. The stress-stretch curves presented some hysteresis in each loading-

unloading cycle but the amount of hysteresis is small and constant from cycle-to-cycle. Only the 

loading curve of the last cycle was used for data analysis.  

4.2.4 Anisotropy ratio (AR) calculation 

The moduli of both the circumferential and longitudinal directions were calculated using 

the tangent and secant method. Here, the initial modulus was not used for two reasons. First, the 

initial portion of the stress-stretch curve typically shows a toe region which would lower the 

modulus and would then not reflect the real initial modulus. Second, the elastin tissues were 

tested to an intermediate stretch ratio, and as will be shown later, the stress-stretch behaviors 

were not linear. The tangential modulus was obtained by measuring the slope of the portion of 

the stress-stretch curve between 75% and 100% of the total stretch through the least square linear 

fit. The tangent AR r tan was then calculated as 
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where tan
circE  and tan

longE  are the circumferential and longitudinal tangent moduli respectively. The 

tangent AR reflects the modulus of the elastin close to in vivo, as it is experienced from diastole 

to systole and does not reflect the toe region of the stress-stretch curve. 

The secant method was chosen as an auxiliary method of presenting the modulus, as it 

incorporates the toe region of the data that is seen in all the tests. This method takes the first and 

last points of the data, and finds the slope of the line connecting them. The secant AR ratio rsec is 

calculated from the circumferential and longitudinal moduli, sec
circE  and sec

longE  as  
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Using the secant method to characterize the anisotropy allows a path-independent 

measure of the elastin anisotropy at a given equibiaxial stress.    

4.2.5 Statistical analysis 

The two-tailed t-test was used in order to determine if the data was significantly different 

from the null hypothesis at a 95% confidence interval, a mean of 1 and with unknown variance. 

Significance here would indicate that the population has a mean different from 1, and can be 

thought of as anisotropic. Another method of quantifying the data is the skewness parameter. 

Skewness indicates a deviation from the normal distribution, either a right-tailed or left-tailed 

distribution. Positive values of skewness indicate a right-tailed distribution, meaning there is a 

higher chance of a value lower than the mean, whilst negative skewness indicates a left-tailed 

distribution and there is a high chance for a value to be larger than the mean. Bartlett’s test for 
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equal variances was used to determine the significance of differing variances due to location. 

Two-sample t-tests were used to compare control groups to PH groups, and location groups. 

ANOVA was also performed, grouping the data by both hypertension and location. 

4.3 Results 

 

Figure 4-1: Fresh and digested test data from one sample is shown. Tension is 
shown rather than stress in order to ignore the thickness change due to digestion. 
The elastin data is very close to the fresh data, showing minimal change in low 
stretch behavior due to the digestion method. 

Figure 4-1 shows the tension-stretch curves from one fresh sample and one elastin 

sample. The latter was obtained from the digestion of the first. Because the digestion method 

changes the overall thickness of the sample, a direct comparison in stress provides little insight. 

However, the use of tension (force per side length) does not include the thickness and compares 

the two tests directly. The tension-stretch behaviors of the fresh and digested tissues are very 

similar in the low to moderate stretch region as seen in Figure 4-1, indicating that the mechanical 

loads are carried predominately by elastin in the low to moderate stretch regions. Further 
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deformation of the elastin is not possible due to the low tear resistance. However, from literature, 

it is known that elastin does not stiffen appreciably with further stretch [7]. Figure 4-2(A) shows 

digested elastin tissue stress-stretch data from one equibiaxial stress test. It is apparent that the 

response is anisotropic, with the stiffer response in the circumferential direction. A small amount 

of hysteresis is seen in both directions for all samples, and additional preconditioning does not 

change the response appreciably. There is a small toe region in all the samples tested which 

could be due to the initial curved shape of the digested elastin sheets. Figure 4-2(B) illustrates 

the two methods for calculating modulus showing for clarity the circumferential direction only. It 

is seen that the tangent method captures the nearly-linear behavior of the elastin beyond the toe 

region, while the secant method includes the toe region, and therefore has a lower modulus. The 

longitudinal data is processed in the same way. The secant and tangent methods show overall 

consistency in elastin anisotropy but also present some differences. Pairwise, the secant ratio is, 

on average, 0.97 times the tangent ratio, due to the inclusion of the toe region in the secant ratio 

calculation. The pooled secant method shows slightly smaller standard deviation, with a smaller 

range. The skewness of the secant method data is smaller, which indicates it is closer to a normal 

distribution than the tangent method, due to the smaller range of the values. Though the secant 

method may be less prone to scatter, it might be more sensitive to error in the data due to its 

inclusion of the toe region. The tangent method shows the right-tailed nature of the data more 

prominently; in addition, the tangent method better represents the wall behavior under 

physiological conditions because it calculates the wall modulus close to the physiologic stretch 

range. The similarities in the data show that the toe region does not have significantly different 

anisotropy than that of the higher-stretch regions. 
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Figure 4-2: A representative plot of one set of equibiaxial test data. A) Equibiaxial 
stress test data from one digested elastin tissue shows large anisotropy. B) 
Circumferential data from the same tissue is shown with the tangent and secant 
methods to emphasize the difference between them. 

There were 43 sets of equibiaxial data from 14 calves. The ratios of anisotropy for all 

samples are plotted in a histogram in Figure 4-3. The mean was 1.50, and the t-test showed 

significance from the null hypothesis at the 99% confidence interval, indicating that elastin is not 

isotropic. The skewness of the tangent data was 0.80, which shows that the AR from a sample is 

more probable to have a value smaller than 1.5 than a larger value. 

Table 4-1: Relevant statistics for pooled and grouped data. The groups that show 
statistical significance from a mean of 1 are the pooled, both MPA groups and the 
RPA PH group. 

 N Min Median Mean Max Skewness Standard 
Deviation 

p-value 
(kPa/kPa) 

All  43 0.583 1.400 1.456 3.022 0.801 0.460 <0.001 
All Control 22 0.712 1.483 1.536 3.022 0.818 0.523 <0.001 
All PH 21 0.583 1.352 1.373 2.266 0.180 0.379 <0.001 
MPA Control 8 1.380 1.872 1.834 2.202 -0.483 0.243 <0.001 
MPA PH 6 0.966 1.426 1.464 1.844 -0.199 0.327 0.018 
RPA Control 7 0.828 1.128 1.205 1.700 0.423 0.317 0.138 
RPA PH 8 0.938 1.236 1.313 1.702 0.253 0.279 0.016 
LPA Control 7 0.712 1.329 1.526 3.022 1.235 0.736 0.108 
LPA PH 7 0.583 1.352 1.364 2.266 0.217 0.534 0.122 
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The groups for location and hypertension were broken out, with the statistics presented in 

Table 4-1. At a 95% confidence interval, the pooled groups were shown to be significantly 

different from the null hypothesis. The control RPA group did not show significance at the 95% 

confidence interval, but can be attributed to the mean being closer to unity; more data here would 

likely show significance. The LPA groups did not show significance at the 95% confidence 

interval due to the large standard deviation.  
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Figure 4-3: Histograms showing the distribution of the anisotropy ratios as 
calculated by A) the tangent method and B) the secant method. The data show a 
clear right-tailed distribution with a mode greater than unity. B) Compared with 
the tangent method, the data is concentrated more toward unity due to the 
inclusion of the toe region. 

Comparing the control section groups, the RPA is significantly different from the MPA. 

Results of the section group two-sample t-tests, assuming unequal variances, are presented in 

Table 4-2. In Figure 4-4, histograms for the MPA, LPA and RPA groups are shown. The MPA 

group has a high mean AR, while the RPA is seen to have lower AR. The variance of the LPA 

group is large, and does not show significance as the RPA and MPA groups do. However, 

because there were only 7-8 samples for each pooled group, trends might arise with more 

samples. 
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Comparing PH to control groups using a two-sample t-test assuming equal variances, the 

PH MPA is significantly different from the control MPA group. Of all the PH-control section 

comparisons, this was the only significant t-test at the 95% confidence interval, as shown in 

Table 4-2. The mean AR for the MPA went from 1.89 for controls to 1.51 for PH, p=0.016.  

 

Figure 4-4: Histograms of the pooled (PH and Control) data are shown. The MPA 
group (A) has a high anisotropy ratio, while the RPA group (B) has a low 
anisotropy ratio. The LPA group (C) has a large range. 

A two-way ANOVA performed on the data showed that the location contributed to the 

variance more than PH. It was seen that the MPA and RPA groups were significant from one 

another, p=0.029. Although t-test showed for MPA PH did change the AR, it was not apparent 

from ANOVA that PH had a significant impact for all the locations groups combined. Bartlett’s 

test against the three section groups showed a low probability that the groups have equal 

variance, with p=0.01. Using this test on the MPA-LPA comparison showed that the groups had 

differing variance, p=0.02. The MPA-RPA Bartlett’s test revealed there was no difference in the 
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variance, p=0.65. The RPA-LPA showed that the variance of the LPA is greater than that of the 

RPA, p=0.01. 

Table 4-2: Two-sample t-test results comparing the branches and trunk and PH 
and control groups. Using a 95% confidence interval, for location, only the means 
of the RPA and MPA groups are significantly different from one another and for 
PH-control comparisons, only the MPA showed significance. 

Two-sample t-test groups p-value 
RPA-MPA 0.001 
RPA-LPA 0.330 
LPA-MPA 0.235 
MPA PH-Control 0.016 
RPA PH-Control 0.496 
LPA PH-Control 0.645 

 

4.4 Discussion 

Elastin provides the elasticity of the artery at low and moderate stretches and the structure 

in which the smooth muscle cells reside. Understanding the behavior of elastin is important to 

the understanding of the artery behavior under normal and diseased physiological conditions. It 

will also help to the development of structure based constitutive models that be used to provide 

structure function relationship of artery and cell-ECM interactions.  

The results of this study demonstrate that elastin in calf proximal PAs is anisotropic with 

the mean AR of 1.50. The evolutionary advantage of the anisotropy is evident by the 

deformation of the artery wall. The deformation state of the artery under systole is primarily 

circumferential stress [34], and as such, it would be expected that the body would “optimize” the 

stiffness of the constituent components to reflect this deformation state. The primarily 

circumferential stretch of systole is resisted by the stiffer direction, while the smaller longitudinal 

stretch is met with the softer direction. It is then unsurprising that the MPA has a greater 

anisotropy than the RPA, since the deformation is greatest in the MPA. The large variance in the 
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LPA AR is unexpected; however, because LPA is a smaller artery, this variance may be due to 

subtle differences in the location of the tissue sample, such as closer or further from the branch 

point, or from the distal or proximal wall of the artery. In addition, changes in anatomy could 

further introduce variance.  

Previous studies to investigate elastin tissue showed conflicting results on elastin 

anisotropy. Gundiah et al. [12] performed equibiaxial stress tests on elastin from porcine thoracic 

aorta and reported equal stiffness in circumferential and longitudinal dictions, whilst Sherebrin et 

al [11],  Lillie et al [59] and Zou and Zhang [60] reported anisoptropic behaviors elastin purified 

from canine, porcine, and bovine thoracic aortas, respectively, showing the tissue is stiffer in the 

circumferential direction. Rezakhaniha and Stergiopulos [40], however, found that a stiffer 

longitudinal direction can provide better fit to the inflation-extension experiments. The work 

presented in this paper is the first study on PA. Based on the 43 sets of equibaixial tests, the 

average AR is ~1.5, which is close to the AR reported by Sherebrin et al, (AR was ~1.65 at the 

strain of 0.4  and ~1.42 at the strain of 0.7) and Lillie et al. (AR was ~1.4).  

The test results in this paper also showed the AR dependence on the tissue location: 

MPA, which is closest to heart, showed a larger AR then RPA and LPA. This is the first report 

on the location dependence of AR for pulmonary arteries and immediately downstream vessels. 

In addition, the tests reported the effects of PH on AR depend on the tissue location. Specifically, 

PH decreased the AR in the MPA, from 1.89 to 1.51, but did not change AR for PA from branch 

arteries. It is known that elastogenesis and degradation during PH [64] causes a rearrangement of 

the elastic fibers. The change in anisotropy implies that elastin fibers produced under PH are 

distributed more randomly and are not as preferentially aligned as the prenatally-deposited 

elastin. Thus, in addition to the material inefficiency with PH elastin [64], the geometric 
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efficiency of the elastin scaffold is also decreased with hypertension. This result shows that PH 

causes a marked decrease in the ability of elastin to bear the applied pressure. 

Understanding structural components’ contribution to the complex nonlinear elastic 

behaviors of artery is a key to identify appropriate strain energy function (SEF) for constitutive 

models arterial tissues. Most of previous constitutive models attribute the tissue anisotropic 

behaviors to collagen fibers. Although there are still some contradictions, evidence that supports 

elastin anisotropy is increasing. Since elastin is the main load carrier under physiological 

conditions, it is important to develop or revise SEFs to consider anisotropic elastin behaviors. 

Recent efforts on incorporating elastin anisotropy into constitutive models have shown very good 

agreements with experimental results [40, 69]. Apparently, more work is necessary in this 

direction. 

This paper has shown through equibiaxial stress testing that pulmonary arterial elastin is 

anisotropic. This finding has not been shown previously for pulmonary artery tissues. From the 

43 sets of equibaixial tests, PA tissues were generally stiffer in the circumferential direction with 

a mean AR of 1.5, but some samples were nearly isotropic, and even possess slight anisotropy 

opposite to the majority. It was found that the anisotropy was strongly influenced by the location 

of the tissue. The anisotropy of the main trunk was significantly greater than that of the right 

branch. PH significantly decreased the anisotropic ratio of the MPA, which implies that PH-

deposited elastin is randomly distributed. This decrease in anisotropy can be related to a further 

decrease in the efficiency of the elastic fibers to bear the load of systole.  
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Chapter 5. Nonlinear Anisotropic Passive Stress-Strain Behaviors 

of Artery Tissues: Experiments and a Structure Based 

Constitutive Model 

The mechanical behavior of proximal artery tissue plays an important role in the cardio-

vasculature. In a cardiac cycle, the pressure within the artery varies from diastole to systole, 

accompanied by a change in the vessel diameter by ~20%-30%[4]. Therefore, artery stiffness 

within the operating range from diastole to systole determines the load to the heart, contributing 

to hemodynamics and heart health. The stiffness of arteries is strongly influenced by the 

underlying structure and composition. For example, in pulmonary arterial hypertension (PAH) in 

neonates, infants and children, substantial vascular remodeling of the pulmonary vasculature 

results in arterial stiffening, which in turn leads to increased pulmonary vascular resistance, 

which leads to increased pulmonary arterial pressure. Studies have shown that increased 

pulmonary vascular stiffness (PVS) can account for as much as 30% to 40% of the increased 

load on the heart and affect patient outcome. 

The stress-stretch behavior of artery tissue demonstrates two salient features. First, the 

stress-strain behavior demonstrates a characteristic J-shape behavior, so called because of a small 

deformation resistance at low stretch followed by an increase in stiffness after some stretch. 

Depending on the location and disease state of the tissue, the transition from low- to high-

stiffness, termed engagement, can be relatively gradual or sudden. Second, the stress-stretch 

behavior is orthotropic. This is typically seen when the tissue is stretched in the longitudinal (or 

axial) and circumferential directions, respectively. Although the stress-stretch behavior in both 

directions can demonstrate similar J-shape behaviors, the initial stiffness, engagement point and 
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high-stretch stiffness can be substantially different. These two features of the stress-stretch 

behavior of artery tissue are due to the underlying structure. 

Arterial tissue is comprised of four main components, including smooth muscle cell, 

elastin, collagen, non-proteinous solutions. The compositional fractions and structure of these 

constituents depend on the species of animal, location in the vasculature and disease state. 

Smooth muscle cells are an active component in the medial layer, constricting the lumen in 

reaction to external stimuli. In distal arteries, smooth muscle cells regulate blood flow through 

the capillary beds by changing the flow resistance. Although smooth muscle cells are present in 

large, elastic arteries, it is generally believed that they do not contribute significantly to the 

mechanical behavior as the smaller distal arteries do. The active component can be neglected if 

there is no smooth muscle cell activation, and its passive behavior can be lumped in with the 

matrix. Surrounding the smooth muscle cells is the extracellular matrix protein elastin. Elastin 

forms a cross-linked network and presents mainly in the medial layer in the form of fenestrated 

lamellae. These are arranged in the circumferential-longitudinal plane surrounding the smooth 

muscle cells to form musculo-elastic fascicles. It is accepted that in the normal operating range 

of the artery that arterial elastin has almost linear stress-stretch behavior[5, 10, 70]. Although 

conventionally it is assumed that the elastin network has isotropic stress-stretch behavior, recent 

studies on elastin network from digested tissue indicates that the mechanical behavior of the 

elastin network is also orthotropic [11, 40, 59, 60, 71]. Collagen fibers in the form of undulated 

bundles present mainly in the adventitial layer and are arranged in a loosely cross-linked mat. 

Because of wavy shape, collage fibers do not carry load until they are straightened. It is generally 

believed that straightening collagen fiber at moderate to high stretch causes the dramatic increase 

in tissue stiffness. Therefore, straightening collagen fiber is often called collagen engagement. In 



 

 79 

addition to the compositional differences in arteries, there are also differences in the fiber 

arrangements which depend on a variety of factors. Specifically, the fiber orientations of both 

collagen and elastin can determine the degree of anisotropy of the artery wall. Therefore, in 

developing a model that is suitable for tracking mechanical property changes due to disease, it is 

important that there be model parameters which correspond to aspects of the microstructure and 

cause observable changes in behavior.  

A number of constitutive models were developed to capture the mechanical behaviors of 

artery tissues. A widely used model was developed by Fung et al [24] who used a exponential 

type of strain energy function, with parameters characterizing the different directions and the 

coupling between them. This model has good versatility, however the material parameters do not 

have physical meaning. Bischoff and Arruda [25] developed an orthotropic model based on the 

Arruda-Boyce eight-chain representation of the fiber network, but used a rectangular prism with 

variable side lengths for orthotropy. While this gives good flexibility for modeling the 

orthotropy, extensions along the chain directions give artificially high stiffness due to the affine 

deformation of the chains. In addition, many biological materials, though it may appear as such, 

may not behave according to entropic elasticity. Holzapfel et al [26] presented a model with two 

families of fibers representing the collagen fiber bundles. These fibers were modeled with two 

families of fibers in the circumferential-longitudinal plane at an angle to the circumferential 

direction and symmetric about that direction. Later, Gasser et al [28] presented an improved 

model using a distributed fiber orientation for each family of fibers, but this model does not 

reflect the microstructural arrangement of collagen. Only a few constitutive models have 

endeavored to model the stress coupling seen in planar biaxial testing. The model presented by 

Sacks [29] for valvular tissues accounts for stress coupling by accounting for each fiber’s 
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contribution. With this approach, the fiber distribution was analyzed by small angle light 

scattering, and the deformation and force in each fiber was integrated to obtain the overall 

behavior. The phenomenological constitutive models [24, 52, 72-74] include stress coupling 

parameters in the terms such as ERREθθ. However, these phenomenological constitutive models 

do not draw upon the underlying microstructure. In order to model the J-shape stress-strain 

behavior of the artery, collagen engagement must be considered, which is important to the 

hemodynamics and right-heart afterload. Previous works by Holzapfel et al [26] and 

Stergiopulous et al [27] to capture this behavior used a piecewise function with a predefined 

critical stretch ratio. By using a statistical distribution in the critical stretch ratio, a smooth 

collagen engagement in the stress-strain curve was achieved. However, using a piecewise 

function, although convenient, does not consider the energy due to bending of the collagen 

fibers. 

Among the constitutive models for arterial tissues, those motivated by the material 

structures are particularly attractive as they provide a possibility to infer structure change from 

variations in mechanical behavior, which can potentially benefit tremendously diagnostic 

techniques. Zulliger et al [27] presented a model which accounted for the percentage of elastin 

and collagen from histology. They, however, did not consider the morphology of the 

constituents. The model presented by Sacks [29] and Caner and Carol [75] use the collagen fiber 

orientation distribution measured from experiments. This allows an accurate model of the 

anisotropic behavior under multiaxial loading. Modeling of elastin anisotropy has been explored  

by Rezakhaniha and Stergiopulos [40] who found that a transversely-isotropic elastin model 

produced a better fit for tube inflation-extension tests than models with isotropic elastin 

behavior.  
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Recently, a microstructure driven constitutive model was developed by the authors to 

capture the anisotropic stress-strain behaviors for arterial tissue[76, 77]. The tissue is assumed to 

be composed by elastin matrix reinforced by collagen fiber bundles. The latter were modeled as a 

wavy elastic beam which naturally captures the engagement effect at intermediate to high stretch 

and offers a potential to incorporate histology into constitutive model directly. Anisotropic 

behaviors of the tissue were attributed to the anisotropic behaviors of elastin matrix as well as the 

uneven distribution of collagen fiber bundles. Although the model matches the stress-strain 

behaviors of arterial tissues very well within the physiological range of stress anisotropic ratios, 

the model behaves stiffer when a wide range of stress anisotropic ratio is considered. For 

example, if the uniaxial tests were used to fit material parameters, the equibiaxial stress would be 

over-predicted[76] at intermediate stretch level. It is therefore important to more carefully 

investigate the stress anisotropic coupling at intermediate stretch level.  

The purposes of this paper are two folds: First, the influence of stress coupling to stress-

strain behaviors at different stress biaxial ratios was explored to improve the model’s ability to 

fully capture anisotropic behaviors of artery tissue. Second, a combined approach of determining 

model parameters, where part of model parameters were obtained from histology was developed. 

In particular, model parameters describing uneven distribution of collagen bundles and waviness 

(called tortuosity) were measured from histology. To the authors’ best knowledge, this is the first 

effort to incorporate histology measurement of tortuosity into a constitutive model for artery 

tissue. The paper is organized as follows. In section 5.1, the planar biaxial mechanical testing, 

histology and constitutive model are presented. In section 5.2, the constitutive model is 

developed. In section 5.3, the results of the histological analysis are presented, which are then 

incorporated into the constitutive model parameters. Section 5.4 includes a discussion of the 
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constitutive model and implications of the histology. Finally, the conclusions are presented in 

section 5.5. 

5.1 Materials and Experiments 

5.1.1 Materials 

All animal testing was approved by institutional animal care and use committees. Main 

pulmonary artery tissue was taken from a 2-week old calf and was dissected to obtain samples 

for histology and mechanical testing. The tissue was placed in nutrient-balanced medium (4° C) 

for transport and short-term storage. Mechanical tests were performed within 24 hours of 

sacrifice.  

5.1.1.1 Biaxial tensile Tests 

The tissue was cut into a square, roughly 25mm on a side, with a thickness of roughly 

4mm. A small notch was made in one corner to determine the circumferential and axial 

directions. A planar biaxial tester, similar to Sacks’ (2001) design, was used to characterize the 

material. The circumferential and axial directions of the artery of the biaxial testing samples 

were aligned to the two stretching direction of the planar biaxial tester. The tracking dots for 

optical deformation measurement were made with Loctite 380, a black rubber-toughened 

cyanoacrylate adhesive. The dimensions were measured with digital calipers. The sample was 

attached to the tester with four stainless steel wire hooks and nylon thread. The tissue was 

immersed in a calcium-free phosphate-buffered saline solution (0.01 m/L, ionic strength 0.15, pH 

7.4). A maximum stress of 50kPa was applied in both directions for preconditioning. Ten cycles 
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of loading to the maximum stress in both directions and unloading were used to serve as 

preconditioning.  

In order to assess the behavior of the material in the biaxial setting, the stress space with 

different anisotropic ratios was explored. The testing method consisted of tensile tests with 

uniaxial loading and combined loading conditions. In all cases, the maximum tensile stress 

applied was 50kPa, which was found to be the maximum tensile without breaking the tissue 

sample. The combined loading cases are expressed as biaxial loading ratios, longitudinal stress to 

circumferential stress. Ratios of 25:100, 50:100, 100:100, 100:50, and 100:25 were performed in 

this order, with the uniaxial cases of 100:0 and 0:100 immediately followed. Using these tests, 

the tensile stress space was explored, and the data could be used for modeling under multiaxial 

loading conditions. A typical set of data from the biaxial tests are presented in Figure 5-1. The 

circumferential and longitudinal data are shown by dotted and solid lines respectively. Each 

loading ratio is denoted by different symbols. One can determine how stress applied in one 

direction affects the behavior in the transverse direction through studying adjacent loading ratios. 

For example, the 100:25 test is slightly stiffer than the 100:0 uniaxial experiment, and the 100:50 

experiment is even stiffer still. By capturing the coupling behavior in the stress, the overall 

behavior of the material at all feasible loading scenarios can be captured.  
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Figure 5-1: A set of biaxial experiments on the artery tissue specimen. The dotted 
lines are circumferential data and the solid lines are the longitudinal data. The 
loading ratios are denoted by symbols. Here, it is seen that the material shows 
pronounced anisotropy. From this plot, it can be seen that the addition of 
transverse stretch affects the behavior of the material. From the 100:0 to the 
100:25 loading ratios, it is seen that adding longitudinal stress will cause a small, 
but noticeable change in the high-stretch behavior. 

5.1.2 Histology and Image Analysis 

Histological samples were taken from the tissue close to the biaxial test specimen. The 

sample was fixed in 10% formaldehyde. The tissue was sectioned into 1-mm thick histology 

specimens using 1mm thick gage blocks and cut along the circumferential-longitudinal plane 

using a scalpel. These thin sections were mounted in a custom holder suspended in glycerine, 

and sealed with cover slips on both sides. This allowed the 1mm thick specimens to be imaged 

from both sides. The orientation of the sample was aligned so that the circumferential direction is 

aligned with the x-direction in the microscope. 
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Images were taken with a Zeiss Laser Scanning Microscope utilizing Second Harmonic 

Generation (two-photon) imaging. The excitation wavelength was 800nm, and a bandpass filter 

centered at 400nm with 50nm pass band width was used for the second harmonic. A 40x high 

numerical aperture objective was used. The images were square and approximately 200µm on a 

side. A z-series image stack was taken for each side of each specimen. Slices were spaced at 

approximately 5µm, to a depth at which the second harmonic generation was not observed, 

usually around 30-40µm. A typical sample image is shown in Figure 5-2A. The collagen 

emission spectrum is shown in red, with elastin fluorescence in green. It is seen that the collagen 

fiber bundles have a wavy morphology with an uneven orientation distribution in the x-y plane.  

 
Figure 5-2: A) A histological image for tracing. The red channel is the two-photon 
emission of collagen, while the green channel is the autofluorescence of elastin. 
The collagen is seen as wavy fiber bundles which have distributed orientation. B) 
The traced lines for collagen fibers.  

To obtain collagen orientation distribution and tortuosity, the red channel of each image 

slice was extracted as a grayscale image. Contrast was enhanced through a tile-based adaptive 

histogram equalization scheme. In order to facilitate computer processing, the images were first 
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traced by hand to in order to enhance the lines representing collagen bundles and to remove some 

non-essential features, such as small branching points, which typically impose significant 

challenge for computer program to determine if these features are important or not. In order to 

remove variability from personal bias, each image was separately traced by three people. Very 

thick fiber bundles were not treated as single fibers, but were traced multiple times, as they 

eventually branched. It was emphasized that the whole image be traced. Figure 5-2B shows a 

typical images with tracing lines.  

Traced lines were analyzed for orientation and tortuosity by using an in-house MATLAB 

program. Orientation was analyzed by end-to-end orientation as it is consistent with the 

constitutive model which uses fiber attachment points to define fiber mechanical behaviors. It is 

known that the fibers also travel in the radial direction, so the ends of the fibers cannot be found 

from planar images. It should be noted that the length of the fiber does not affect the anisotropy. 

Fig. 5-3 shows a length-normalized fiber, with projections in the circumferential and longitudinal 

directions. The integral of the projection of the probability density function can be approximated 

through a discrete sum of each fiber angle. 

   

 (a) (b) 

Figure 5-3: (a) A single representative fiber tracing showing the orientation angle, 
θ, with respect to the circumferential direction. The projections of the unit length 
in the circumferential and longitudinal directions are shown as cos θ and sin θ 
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respectively. (b) An idealized fiber with sinusoidal shape. The arc length and end-
to-end lengths are both shown. The included angle of the sinusoid determines the 
tortuosity. 

From orientation data, fiber distribution was integrated in a discrete manner to find the 

projection of the fibers in the circumferential and longitudinal directions. The aggregate lengths 

of the resultant projections along the circumferential and longitudinal directions, lA and lG, 

respectively, are 
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The ratio of these two lengths characterizes the anisotropy of the material in the plane of the 

images.  

Collagen fiber tortuosity was quantified by taking the ratio of the arc length of the traced 

line by its end-to-end distance: 

 arc

end to end

l

l − −

Γ = . (5.2) 

In the constitutive model, a fiber with tortuous morphology is idealized as a sinusoidal curve. 

Fig. 5-3b shows an idealized fiber in the shape of a sinusoid with respective end-to-end and arc 

lengths, and the included angle of the sinusoid, 0θ , which can be used to represent the amplitude 

of the sinusoidal curve. The tortuosity can be related to 0θ  by  
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where E  is the complete elliptic integral of the second kind.  

5.2 Constitutive Model 

5.2.1 Preliminary 

This paper considers the equilibrium responses of the arterial tissue. In addition, we 

consider the tissue mechanical response as a mixture of the elastin matrix and collagen bundle 

network.  Therefore, we assume that there exists a strain energy density function (SEF) which 

can be divided into two contributions, i.e., 

 
El Colψ ψ ψ= + , (5.4) 

where ψ  , 
Elψ , and 

Colψ  are the total SEDF, SEDF for elastin matrix and collagen 

network, respectively. A more sophisticate approach, such as including volume fraction of 

collagen fibers and elastins network, could be taken. But as discussed later, in this paper, we 

lump these volume fractions into the respective material moduli of these two components. For an 

arbitrary deformation, the right Cauchy-Green deformation tensor, C, and the finger tensor b are 

defined as  

 
T=C F F , 

T=b FF , (5.5) 

where F is the deformation gradient. The second Piola-Kirchhoff stress tensor for 

incompressible material is defined as  

 

12 p
ψ −∂= −

∂
S C

C , (5.6) 
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where p is the hydrostatic pressure. The first PK stress, P, and the Cauchy stress is 

denoted as σ , are calculated as 

 =P FS , 
1 TJ −=σ FSF , (5.7) 

where J is the determinant of the deformation gradient. For this model, we will refer to 

the vectors which define the circumferential and longitudinal direction as a0 and g0 respectively. 

The first and second invariants of C, I1 and I2, are defined as 

 ( )1 trI = C
  (5.8a) 

 
( ) ( )2 2

2

1
tr tr

2
I  = −

 
C C

 (5.8b) 

Two additional invariants, typically used in anisotropic hyperelasticity, I4 and I6, are 

defined as: 

 

4 :I = ⊗0 0C a a  (5.8c) 

 6 :I = ⊗0 0C g g  (5.8d) 

5.2.2 Elastin matrix 

In order to model the orthotropic nature of the artery wall, the orthotropy of the elastin 

network is separated from that of the collagen network. This allows the model to represent the 

two networks independently. As was observed previously elastin network is orthotropic in 

nature, and thus should be represented by an orthotropic model[11, 40, 59, 60, 71]. In this paper, 

the elastin is modeled as an isotropic neo-Hookean material reinforced by two orthogonal neo-

Hookean fiber families. These fiber reinforcements represent the structural preference of the 

elastin network in the circumferential and longitudinal directions. Using neo-Hookean fiber 
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reinforcements together with a neo-Hookean matrix [43], the elastin constitutive model is 

characterized by the SEF, 

 ( ) ( ) ( )1 1
2 2

1 4 4 6 63 2 3 2 3
2 2 2

El I I I I I
µ µµ µµψ − −−−= − + + − + + −ga , (5.9) 

This SEDF has three material parameters, µ, µa and µg, which pertain to the isotropic shear 

modulus, the circumferential shear modulus and the longitudinal shear modulus, respectively. 

5.2.3 Collagen Fiber Model 

In the following, we consider a scenario where undulated collagen fibers are distributed 

in the matrix in a manner close to random but with some preferred directions. Under this 

scenario, there are three types of stretches, defined at different scales. The first is the tissue 

stretch ( iλ , i=1,2,3), which can be measured from experiments. The second is fiber apparent 

stretch ( Fλ ), which is defined as the ratio between the current end-to-end distance and the 

original end-to-end distance ( 0/F L Lλ = ). Note that due to the wavy shape of the collagen fiber, 

the end-to-end distance can be significantly smaller than the contour length of the fiber. The third 

is the fiber material stretch (cλ ), which is defined by measuring the change in contour length 

( 0/c c
c L Lλ = ). The relationship between fiber apparent stretch and fiber material stretch is given 

by Kao et al (2010), who derived from Comninou and Yannas [36], as 

 

( )( )

2

2
0

2

2 2
08

12
2 2 16

08

1 tan

1 tan 1 1
F c

l
c c R

π

π
π

θλ λ
θ λ λ

−

+
=

 + − +
  

. (5.10) 

Here, 0θ  is the included angle of the sinusoid which relates to the tortuosity, and R/l0 is the 

nondimensionalized radius of gyration of the beam’s cross section. For details about how to 
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obtain Eq. 5.11, one is directed to Kao et al, (2010). The fiber material stretch is then related to 

the force in the fiber through 

  ( )1F c cF E A λ= − . (5.11a) 

where Ec and A are the modulus and the cross-section area of collage fibers, respectively. The 

stored elastic energy can be calculated as 

 
( )

1

F

F F F FL F d
λ

ψ λ λ= ∫ . (5.11b) 

In Eq. 5.11a, the small-deformation strain definition is used because the collagen fibers 

undergo very little material stretch. Macroscopically, the material can be deformed to a large 

amount, however, microscopically, the collagen fiber bundles undergo rigid body rotation and 

bending, which causes very little deformation of fiber material.  

Since the total strain energy from collagen fiber bundles is dependent on the strain energy 

of individual fibers and the fiber bundle concentration, therefore 

  ( )CF
F FKψ ψ λ= , (5.12) 

where K is the concentration of the fibers.  

In Eq. 5.12, fiber apparent stretch is at the microstructure level. To connect with 

macroscopic deformation, the fiber apparent stretch is projected from microscopic deformation 

through an anisotropic structure tensor and specific projection and stretch coupling rules. A 

simple projection and stretch coupling rule was used in our previous work and will be presented 

below.  A more detailed discussion on how the project and stretch coupling rule can affect the 

general anisotropic behavior of artery tissue will be presented in the next session.  

Following Holzapfel et al, [28], we used an ellipsoidal structure tensor with two tunable 

axes to represent the angular distribution of the collagen fibers:  
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( ) ( )0
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κ γ κ γ+ −= + − ⊗ + − ⊗0 0 0 0H I a a g g
, (5.13) 

where the parameters κ and γ are the tuning parameters for the shape. Here, vectors a0 and g0 are 

aligned with the circumferential and longitudinal directions respectively. This tensor can be 

imagined as an ellipsoid in stretch space [28] and changes in the ellipsoid shape reflects the 

degree of anisotropy in the material. The angular distribution of the collagen fibers can be 

transformed into the appropriate ellipsoid dimensions. The ellipsoid must have non-negative 

dimensions, so κ and γ are restricted by the following requirements, 
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+ >

. (5.14) 

By definition, H0 satisfies the requirement that 0tr 1=H  which allows for the fiber stretch 

calculation introduced later in section 5.3. 

As deformation is applied to the material, the three-dimensional deformation state must 

be related to the one-dimensional fiber stretch. Since the coupling of stresses in two orthogonal 

directions can be due to a variety of reasons, in order to accurately model the combined loading 

cases, it is necessary that the fiber stretch coupling be tunable. In Kao et al 2010, the fiber stretch 

is,  

 
( ) ( )0 1 4 6

1
: 1 1

3F I I I
κ γλ κ γ+ −= = + − + −H C

. (5.15) 

Fig. 5-4 shows a contour plot of the fiber stretch as a function of the applied stretches with 

κ=γ=0.8. The circumferential and longitudinal stretches applied are along x- and y-axes 

respectively. In presenting Fig. 5-4, we assume the tissue is incompressible, i.e., 1 2 3 1λ λ λ = . The 
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fiber stretch contours are circular in shape, which indicates a relatively strong coupling in the 

two directions. For example, when the stretch in the longitudinal direction is fixed (1λ  is 

constant), applying a stretch in the circumferential direction will cross several fiber stretch 

contours quickly. This is due to the use of only the first-order invariants, namely I1, I4 and I6. 

Using the first-order invariants is akin to a fiber distribution where the fibers align along two 

directions, symmetric about the circumferential direction, similar to the model of Gasser et al. 

2003. Applied deformations along the directions of material symmetry will cause a rotation of 

the fibers toward the deformation axis, while biaxial stretching causes the fibers to elongate 

directly. Therefore, there is a later fiber engagement under uniaxial deformations than under 

biaxial deformations, without the ability to tune this difference. 
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Figure 5-4: The fiber stretch as a function of the applied stretches. The shape of 
the contours is circular, and the coupling of the stretch cannot be tuned. 

Eq. 5.15 does not accurately capture the relatively low degree of stress coupling seen in 

vascular tissues. Therefore, a new formulation for the fiber stretch is proposed in this paper. In 

this new formulation, the structure tensor still represents the fiber distribution, and should thus 
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not be changed. For the calculation of fiber stretch, we define a new tunable fiber stretch 

calculation. A symmetric 3-dimensional tensor can be represented by its three principle 

invariants, I1 I2 and J. The first invariant, 1 trI = C , scales quadratically with the stretch. Its iso-

lines in the stretch space are circular. This invariant assumes the deformation of all fibers 

equally, as in the Arruda-Boyce 8-chain model. An analog to the first invariant of a tensor, 

incorporating the structure tensor, can be thought of as 

 1 0 :HI = H C , (5.16) 

which will be termed the first structural invariant. This calculation is an invariant of two tensors, 

as in [44]. As discussed above, this invariant does not adequately describe the projection of fiber 

stress and allow for tuning of the stretch coupling. The second invariant, 

( ) ( )2 2 2 2 2 2 2 21
2 1 2 2 3 1 32 tr trI λ λ λ λ λ λ = − = + +

 
C C , relates to the stretch coupling in the principle 

directions. The use of this invariant will allow a tuning of the stretch coupling. An analog of the 

second invariant using the structure tensor can be then written as 

 ( )2 21
2 0 02 : :HI  = −

 
H C H C . (5.17a) 

This new invariant then details the coupling of the stretches in the frame of structure tensor. If 

the structure tensor and the applied deformation are co-axial, then the second structural invariant, 

IH2, can be written in the principle frame of H0 as 

 

4 4 4
2 1 1 1 2 2 2 3 3 3

2 2 2 2 2 2
1 2 1 2 1 3 1 3 2 3 2 3

1
( 1) ( 1) ( 1)

2HI H H H H H H

H H H H H H

λ λ λ

λ λ λ λ λ λ

 = − + − + − 

+ + +
, (5.17b) 

where Hn and λn are the principle values of the structure tensor and right stretch tensor 

respectively. 
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For a suitable fiber stretch formulation, the scaling between the applied deformation and 

the observed fiber stretch should be linear. The first structural invariant scales with the square of 

the stretch, and the second structural invariant scales quadratically. In order to relate them, the 

first structural invariant must be squared. The fiber stretch is now written as, 

 24
1 1 2F H HI c Iλ = +

,
. (5.18) 

The parameter c1 allows the tuning of the stretch coupling. If the value of c1 is zero, then the 

fiber stretch in Eq. 5.15 is recovered. With c1<0, the stretch coupling is decreased as compared to 

equation 3, and with c1>0, the stretch coupling is increased.  

 

5.2.4 Complete strain energy function  

Summing the strain energy functions for the elastin and collagen models, the total strain 

energy function is  

 ( ) ( ) ( ) ( )1 1
2 2

1 4 4 6 63 2 3 2 3
2 2 2 F FI I I I I K

µ µµ µ µψ ψ λ− −−−
 = − + + − + + − +  

ga C . (5.19) 

The stress can now be calculated from this strain energy function as, 

 

( )( ) ( )( )
( ) ( )

3 3
2 2

4 0 0 6 0 0

0 0 1
1 0 1 03

1 1

,
2

4
F F

F

I I

F R l
K c c p

µ µ µ µ µ

θ λ
λ

− −

−

 = + − − ⊗ + − − ⊗ +
 

 + − − 

a gS I a a g g

H : C C H C
 (5.20) 

5.3 Results 

5.3.1 Material Parameter Identification 

There are nine independent material parameters in the model: Three (isotropic neo-

Hookean shear modulus µ, circumferential and longitudinal neo-Hookean shear moduli µa and 
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µg) for the elastin, and six (fiber shape parameter 0θ , fiber bending stiffness R/l0, fiber density 

KA, anisotropy parameters κ and γ, and coupling parameter c1) for the collagen fiber bundles. 

Note that since as both K and A affect the model in the same way, they were lumped into one 

parameter KA. Because the modulus of the collagen fiber bundle Ec is not easily measured, it is 

assumed to be in the range of literature, at 10 GPa [37, 39, 48, 49, 78]. In addition, Ec might be 

further lumped with KA. Among the six parameters pertaining to collagen bundles, two 

parameters were taken from histological measurements. Specifically, the tortuosity measurement 

is related to the parameter 0θ  which defines the included angle of the sinusoid. The orientation of 

the collagen fibers analyzed from histology can be used to establish a relationship between 

anisotropy parameters κ and γ. The rest of three parameters are fit parameters, but can be fit to a 

small subset of the data. Note that although both collage radius R and collagen fiber bundle 

periodicity l0 are geometrical parameters, R cannot be identified readily. As shown in Fig 5-1A, 

it appears collagen fibers form loosely connected bundles which makes it difficult to identify 

individual fibers.  

5.3.1.1 Tortuosity 

A histogram of the tortuosity of all the fibers is shown in Figure 5-5. The tortuosity is 

always larger than unity, as the arc length can never be less than the end-to-end length. The 

distribution of the fibers shows a high proportion close to unity. However, the tail is very long. 

The mean of tortuosity was calculated to be 1.29. Through Eq. 5.3, the associated included angle 

is calculated to be approximately 36.9°.  
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Figure 5-5: A histogram of the tortuosity from histological images. The x-axis is 
logarithmically scaled for clarity. The distribution shows most fibers having a 
tortuosity close to 1, however the distribution is very long-tailed. 

5.3.1.2 Fiber angle distribution 

The fiber angles for the traced fibers are presented in a rose histogram in Figure 5-6. In 

this figure, 0° corresponds to the circumferential direction and 90° corresponds to the 

longitudinal direction. The distribution shows a preference for the circumferential direction. 

There is a slight dip in the orientation at around 75°, but the distribution rises again nearing the 

longitudinal direction. Using Eq. 5.1, the effective ratio of anisotropy is calculated to be 1.82. As 

discussed in section 5.3.3, the effective ratio of anisotropy is different from that of the structure 

tensor and the two should not be confused. 
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Figure 5-6: A rose histogram of the orientation data from histology. The 
distribution shows a strong preference for the circumferential direction, with a 
slight dip near the longitudinal direction. 

5.3.2 Fitting results 

The biaxial data was fit material parameters with fiber tortuosity and anisotropy ratio 

obtained from the histological analysis. The coupling parameter was a fitting parameter, and the 

effective ratio of anisotropy was specified. Using these histology parameters, a good fit was 

obtained for the planar biaxial stress tests, as seen in Figure 5-7. The data fit shows very good 

agreement with all loading cases, and captures the effective stress coupling of the material, as 

well as the anisotropy. The fit parameters are shown in Table 5-1.  

Table 5-1: The fit parameters for the fit obtained in figure 8. It it seen that the c1 
parameter is moderately negative. 
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 µ  µa  
µg  KA  0θ  0R l  κ  γ  c1 

Units kPa kPa kPa nm2/nm2 

(x10-3) 
° nm/nm 

(x10-3) 
   

Fit value 2.89 0.27 4.98 2.957 48.5 3.480 0.818 0.900 -4.31 
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Figure 5-7: The biaxial test data and corresponding fits. The model parameters of 
the sinusoid included angle and fiber distribution anisotropy were fixed from 
histology, while the other parameters were fit parameters. 

5.3.3 Parametric Study 

The presented model agrees well with experiments for the finite deformation anisotropic 

J-shape stress-stretch behaviors of arterial tissue. In order to provide a better understanding of 

the model, parametric studies were conducted to illustrate how the model captures these 

behaviors.  In particular, we focus on how the model captures anisotropic behaviors at a broad 

range of biaxial stress ratios and the engagement behaviors. 
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5.3.3.1 Collagen Fiber Behavior 

Using this equation for the calculation of force from stretch, the behavioral dependence 

on the stress can be observed. At low R/l0 values (R/l0 <0.1) there is very little stiffness in the 

low-stretch region, with a sharp transition to the fully-engaged stiffness (ultimate stiffness). With 

increasing R/l0, the fiber bears load earlier with a broader transition to the fully-engaged 

stiffness, but at high stretches retains the same fully-developed apparent stiffness. This parameter 

thus determines the low-stretch stiffness and the shape of the transition from low-stiffness to 

fully-engaged stiffness. The included angle 0θ  characterizes the shape of the fiber at its resting 

state, and thus defines the stretch at which the fiber begins to bear load axially, the engagement 

stretch. With increasing 0θ , the engagement stretch increases, and due to the additional total 

fiber length, the fully-engaged stiffness decreases. 

5.3.3.2 Effects of c1 to Fiber Stretch 

As discussed above, microscopic collagen fiber stretch is determined by the coupling in 

the macroscopic multiaxial deformation. Such coupling can be tuned by introducing a new 

invariant resembling the second order invariant and the coupling parameter c1. In order to 

simplify the math and better illustrate the influence of c1, we consider a case where the principal 

directions of C and H are aligned. Then λF can be rewritten as  

 

( )( )
3

2 4 2 2 2 2 2 21 14
1 1 2 1 2 1 3 1 3 2 3 2 3

1

1 1
2 2F n n n

n

c c
H H c H H H H H Hλ λ λ λ λ λ λ λ

=

  = + − + + + +  
  

∑

 
(5.21) 

The fiber stretch is investigated as a function of the stretch coupling and coupling 

parameter c1 in Fig. 5-8. Here, we assume that the material is incompressible, therefore 
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1 2 3 1λ λ λ = . Fig. 5-8(a) shows the fiber stretch contours with c1=-2, and a transversely isotropic 

structure tensor with out-of-plane thickness 0.1 (κ=γ=0.65). The contour lines here are more 

squared-off than those seen in Fig. 5-3. Fig. 5-8(b) shows the fiber stretch contours for c1=-4, 

with the same structure tensor as Fig. 5-8a. The contour lines here show an even more squared-

off profile, and thus a lower degree of stretch coupling. It is noted that with c1=-4 at a constant  

high x1 direction stretch, stretching in x2 direction may cause a decrease in fiber stretch. The 

reason and consequence of this observation will be discussed in section 5.4.3. It is also seen that 

the contour lines become closer together, and thus indicate a stiffer response along the plane 

strain cases of x1=1 or x2=1. In the equibiaxial stretch cases of x1=x2, however, the lines maintain 

the same spacing, and indicates that the material in the equibiaxial stretch case has the same 

stiffness regardless of the stretch coupling parameter. 
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Figure 5-8: Contour plots of the fiber stretch in the stretch space for a) c1=-2 and 
b) c1=-4. The stress coupling decreases with decreasing c1. 

By changing the stress coupling with a constant anisotropic structure tensor, a trend can 

be seen where the observed anisotropic behavior decreases with the stress coupling. This can be 

seen in equation 5.22, as the coefficients to λn
4  in  
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21 11
2 2n n

c c
H H

 + − 
  ,  (5.21) 

where n=1…3, change as a function of c1. When c1 decreases, the coefficients for λ1 and λ2 

become larger, because Hn-1<0 and the bias between the two coefficients decreases. This is 

shown in Fig. 5-5, which plots the contours of the fiber stretch at a constant λF=2. The contour 

for c1=0 shows high effective anisotropy, while decreasing c1 causes a marked decrease in the 

effective anisotropy. In order to retain the same effective anisotropy with decreasing stretch 

coupling, a higher anisotropy structure tensor must be used. The effective anisotropy can be 

taken from equation 5.21 as  

 

21 1
1 1

21 1
2 2

1
2 2

1
2 2

eff

c c
H H

r
c c

H H

 + − 
 =
 + − 
 

.  
(5.22)
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Figure 5-9: With decreasing stretch coupling parameter c1, a smaller effective 
anisotropy ratio is observed. 
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5.3.3.3 Stress Coupling under Biaxial Loading Condition 

To further understand the effects of c1 to the overall model performance, a parametric 

study was performed on the c1 parameter on the model prediction of stress-stretch behaviors 

Using a transversely isotropic structure tensor for clarity, the near-uniaxial and equibiaxial 

behaviors are plotted in Figure 5-10. As the coupling parameter is decreased (increasingly 

negative) the near-uniaxial behaviors become closer to the equibiaxial behavior. It is seen that 

the behavior of the equibiaxial case also has a leftward shift with decreasing c1, however this 

shift is not nearly as large as the shift in the uniaxial cases. This indicates that there is a marked 

decrease in the stretch coupling. Though this figure only shows the transversely isotropic case, 

the same effect is seen with orthotropic structure tensors. The novelty of this model is clearly 

shown here, allowing the tuning of the stretch coupling.  

 

Figure 5-10: The effect of c1 on the stretch coupling is shown here. Different 
values of c1 are shown by symbols, and loading ratios are shown by line styles. 
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For each value of c1, two stretch ratios are plotted, an equibiaxial case (dotted 
lines) and a near-uniaxial case with the transverse stretch of 1. The structure 
tensor here is transversely isotropic, with κ=γ=0.8, µ=1 µa= µg=10, 0θ =34°, 
R/l0=0.005, KA=0.05. 

 

 

Figure 5-11: The effect of c1 on the behavior of the anisotropy, with constant 
structure tensor anisotropy ratio. The near-uniaxial cases along the uniaxial and 
longitudinal directions are shown with varying c1. Here, κ=0.93, γ=0.67, µ=1 µa= 
µg=10, 0θ =34°, R/l0=0.005, KA=0.05. 

 

In section 5.3, it is shown that c1 influences the anisotropic behavior of the material. This 

effect of c1 on the anisotropy of the material is shown in figure 5-11. The two near-uniaxial 

behaviors along the circumferential and longitudinal directions are shown, while c1 is changed. It 

is seen that with lower stretch coupling, a lower effective anisotropy is also obtained. With c1=0, 
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the anisotropy is high, but with decreasing c1, the engagement stretch of the crimped fibers is 

also decreased, affecting the softer direction much more so than the stiffer direction. 

 

5.4 Discussion 

5.4.1 Model Parameter Identification 

This constitutive model has nine independent model parameters. Using the two 

parameters from histology, there are seven independent fitting parameters. The two parameters 

0θ  and the effective anisotropy of the material are fixed through the histology analysis. However, 

the three parameters corresponding to the elastin can be fit to the low-stretch regions only. This 

can be done with only the uniaxial tests and the equibiaxial stress tests. In doing so, there are 

now four independent fit parameters. There is an interplay between the coupling parameter and 

the anisotropy of the structure tensor, as shown in section 5.3.3. Because of this interplay, the 

coupling parameter and structure tensor anisotropy must be changed together and can be 

determined from the high-stretch portions of the biaxial test data. Because the structure tensor 

anisotropy is determined from the histology and the coupling parameter, the structure tensor 

thickness, the out-of-plane dimension, is another fitting parameter. The parameter associated 

with the bending stiffness, R/l0 is a fitting parameter, and affects the transition from elastin-

dominant to collagen-dominant regions. The parameter KA, the density of collagen fibers, 

affects the contribution of the collagen strain energy function multiplicatively, which acts as a 

scale factor. 
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5.4.1.1 Histology 

The histological images were assumed to be a snapshot of the overall fiber arrangement 

in the tissue. Because two-photon imaging image intensity is a function of many factors such as 

concentration and imaging depth, not all collagen fibers are imaged. This is acceptable, as the 

majority of fibers are imaged. Because there were eight sides to the slices of tissue imaged, it 

was assumed that the images sufficiently represented the tissue, from the adventitia to the media 

through to the intima. The tissue fixing process used could have produced a change to the fiber 

orientation due to non-uniform shrinking, however, this small change is not expected to greatly 

affect the results.  

There may be some error introduced due to the nature of the hand-traced fibers, but these 

errors were minimized. Three people performed the fiber tracing, with instructions to trace any 

fiber that was thought to be significant, with about 30-50 fibers traced per image slice. This 

sufficiently eliminated user bias, since the number of fibers traced per image were similar. This 

method, though, does not account for out-of-plane fiber tortuosity, as the fibers do not solely 

exist in the plane of the image. We then acknowledge that the measured tortuosity from the 

images is lower than the true tortuosity accounting for three-dimensional fiber crimp. This 

should not greatly affect the results, but with more advanced imaging methods, the true fiber 

tortuosity can be measured. 

5.4.1.2 Low Stretch Coupling in Artery Tissue 

From Table 5-1, it can be seen the coupling parameter c1 is -4.31, which represents a very 

weak coupling of multiaxial behavior from collagen fibers. Although the precise reason is not 

clear, we postulate that this is due to how collagen fibers are organized in arterial tissue. 



 

 107 

Collagen fibers in arterial tissue are mainly surrounded by non-proteinous solutions and may 

have some entanglement or attaching points with elastin network. Also, collagen fibers form a 

loosely crosslinked network with few crosslinking points. Therefore, because collagen fibers are 

not tightly connected to the matrix material, macroscopic deformation may not be easily 

transferred to collagen fiber. In particular, deformation of a few collagen fibers may not affect 

other collagen fibers. This is in a sharp contrast to rubbery networks, where the macroscopic 

deformation can be mapped into network deformation using a RVE element and the deformation 

of individual macromolecular chain can be calculated using the conditions of affine deformation  

and force balance, such as  Arruda-Boyce eight chain model.  

5.4.1.3 Constitutive model convexity requirements 

From equation 5.17 it is seen that with highly negative stretch coupling parameters, a loss 

of convexity can take place. That is, the contours of the fiber stretch can become concave at high 

stretches due to the stretch coupling parameter. With highly negative stretch coupling 

parameters, convexity of the strain energy function is retained at physiologically-relevant 

stretches, however exceeding stretches at which damage occurs would cause a change in the 

shapes of the contours as seen in figure 5-3, which would eventually cause a loss of convexity. 

The loss of convexity could indicate that fiber damage has occurred, and the parameters of the 

model have changed. As in Merodio and Ogden (2003), the loss of convexity could correlate 

with the fiber failure.  

5.5 Conclusions 

In this paper, an anisotropic constitutive model for the hyperelastic response of artery 

tissue is presented. The constitutive model is highly tunable and has nine parameters, however 
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some parameters can be taken from histological measurements. Because the constitutive model 

was driven by the microstructure of the collagen fibers, measurements of the collagen fibers can 

drive two parameters of the model, the tortuosity and the angular distribution. The constitutive 

model captures the stretch coupling of the tissue through the use of a coupling parameter. This 

parameters allows the model to account for the non-uniform distribution of the fiber orientation 

in order to capture the multiaxial in addition to the uniaxial behavior of the material. The model 

can lose convexity with certain combinations of model parameters, however the range of 

deformations at which a loss of convexity occurs is outside of the range of the pseudo-elastic 

response of the tissue. These inelastic effects are not considered, as they would cause an 

evolution of material parameters. 
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