
Emerging Research and Solutions in ICT 1(1):59–67 DOI: 10.20544/ERSICT.01.16.P06

 UDC: 004.455:159.953.5]:004.421

Software Learning System Based on Invariants

in Computer Programming

Jordan Enev1, and Elena Somova1

1The University of Plovdiv “Paisii Hilendarski”, Faculty of mathematics and informatics,

24 Tzar Assen st., 4000 Plovdiv, Bulgaria

yordan.enev@bgosoftware.com

eledel@uni-plovdiv.bg

Abstract. The paper considers the idea about invariant teaching and learning of

computer programming, independent of concrete programming language and

version. Software system, built on the base of template algorithms (called

invariants), is presented. 98 invariants are proposed for the course “Programming”

from the bachelor degree programs at Plovdiv University, Bulgaria, and 44

invariants – for the course “Algorithms and Data Structures”. The proposed

invariants are made till now with template codes on two programming languages

(С# and Visual Basic) with more than 170 realizations in one language. The

invariants are classified in 13 groups on the base of kinds of basic assignments

(algorithms), which are solved during learning computer programming. The

invariants have parameters of 5 types – variable, data type, random invariant,

invariant from given list and invariant from given kind. Several levels of difficulty

for solving of assignments are proposed. The system can be used as main learning

resource in self-learning during distance education or as additional auxiliary

resource in traditional learning.

Keywords: computer science, software learning systems, learning programming

languages, invariant programming.

1. Introduction

The continuous appearance of new versions of the programming languages, as well as

change of the teaching language with more “modern” one arises the question: “Is it

possible to prepare learning course on Programming, which to be independent of

frequently changing technologies?“. Making learning course with independent

(invariant) elements of used software resources, from one side will facilitate the work of

the teachers and from the other side will give to the learners a stable knowledge about

principles and main algorithms in computer programming, which they can use for a long

time after finishing their education.

60 Jordan Enev et al.

1.1. Invariant learning

Attempts for solving the similar problem in the field of learning information

technologies and fundamentals of computer science exist. For carrying out distance

education in the field of information technologies, learning materials [17] with invariant

elements are developed in 3 languages (Bulgarian, French and Lithuanian). On the base

of the same methodology, the basic university course “Fundamentals of Computer

Science” [20] at Plovdiv University and the training aid in Computer Science [19] are

created. On the base of invariant elements, the package with learning resources for high

school [1, 18] is made as well.

The idea of invariant learning is developed in [4, 5, 16], as in [4, 5] the examples

about invariant teaching of spreadsheets are given, and in [16] – about text processing.

In [16] the accent is put on the so called “invariant knowledge” (i.e. these, which are

relatively static in time and resistant to possible changes) in presenting/teaching of the

learning content. In [4, 5] the development of “invariant frame”, which to be defined as

standard for invariant presentation of learning content, whose subject is a concrete

technology in the field of information technologies and for which the elements

comprised in the frame are determined.

1.2. Learning Systems

The most of existing learning systems in the field of computer programming are

dependent of the programming language, for which they are designed (e. g. [3] and

[21]).

In Crunchzilla [3, 7], the learning is designed only for solving visual assignments in

JavaScript. The lessons in different levels of complexity and in dependence of the

learner’s age are proposed. The system represents virtual “teacher”, which leads

previously set dialogue with the learner and gives assignments connected to the

visualization and translation of objects on the screen. The learner uses two panels, the

codes given from the systems are edited in the first one and in the second one they are

interpreted and visualized. The system does not check about the correctness of the

solved assignments.

W3Schools [21] is a learning environment in some programming languages and

technologies (HTML, CSS, JavaScript, PHP, Bootstrap, etc.) on the base of tutorials.

Tutorials contain rich and systematized information with a lot of example assignments in

the respective programming languages and technologies. The environment, like

Crunchzilla, visualizes exemplary assignments in two panels: one for code, where it is

possible to edit and another for showing execution of examples and written by the

learner codes. This makes the platform a wonderful tool for reference and quick testing

of short programming codes, but does not assist progress in algorithmic thinking. The

platform is deeply linked with the syntax of studied programming language. There is no

support in the case of learner errors as well.

Other systems such as Codingame [2] are for advanced learners. Codingame proposes

learning in 23 programming languages through writing codes, which are interpreting in

games. The platform supports progress in algorithmic thinking during creating games, as

Software Learning System Based on Invariants in Computer Programming 61

it proposes on each step solving certain assignment, which is concrete algorithm in given

game. The learner obtains input information and has to write programming code, which

lead to actions in order to obtain searched output state. The written code after that is

tested with previously prepared test game examples, which leads to visual result (game

animation, which shows the proposed strategy by the learner). The system is not suitable

for use to teach beginners in computer programming.

The well-known system Scratch [6, 11, 12, 13] is a visual programming environment

that supports young learners (ages 8 to 16) in making the transition from graphical

languages to text-based languages. Scratch can be used to teach concepts of computer

science. The system uses graphical representation of programming constructions.

The system ToonTalk [8, 9, 10, 15] is also designed for learning children (ages 3 to

5) and is realized on the base of visual graphical objects, which represent objects

(statements and data types) from the world of programming.

The approach is really suitable in learning main principals of computer programming

by children, but it is inappropriate for adults, because the system do not propose linking

the designed visual algorithm with programming code in some algorithmic language.

A common characteristic feature of the most existing systems is the strong connection

to the syntax of the chosen programming language. This can lead to the appearance of a

multiple syntax errors that will discourage learners in the beginning stage of studying.

The paper presents software system, supporting teaching of computer programming

in algorithmic language, developed on the base of invariant approach. This approach

does not depend on the concrete language and uses set of templates, called invariants,

which represent common basic algorithms in each programming language. Each

template in the system is presented by exemplary codes with parameters in the particular

programming language.

2. Invariants in Programming

In [7] the found out basic algorithms (invariants) in teaching imperative language

programming, which do not depend on taught language, are presented. Their

representation as template codes on different languages is shown in [14].

For teaching course “Programming” in bachelor program at Plovdiv University,

Bulgaria 98 invariants are proposed, and for “Algorithms and Data Structures” – 44

invariants. Proposed invariants are made with template codes on two programming

languages (С# and Visual Basic) with more than 170 realizations in one language,

because some invariants are made in several ways (with different algorithms or

statements).

Invariants are classified in 13 groups on the base of the kinds of basic assignments

(algorithms), which are solved during learning computer programming: Declaration of

data, Input of data, Output of data, Inserting data, Deleting data, Transforming data,

Passing on data, Searching data, Sorting data, Checking conditions, Different

calculations, Sub-algorithms and Specific mathematical algorithms.

Below are given some examples of invariants, where programming codes are shown

in C#.

62 Jordan Enev et al.

Table 1. Parameter types of invariants

Type Parameter Choice of sub-invariant

1 variable no

2 data type no

3 random invariant choice from all invariants

4 invariant from given list choice from given invariants

5 invariant from given kind choice of invariant from given kind

Proposed invariants are considered according to the parameters they have. The

parameters are of 5 types (see Table 1) – variable, data type, random invariant, invariant

from given list and invariant from given kind. Invariants can have one or several

parameters of one type or of different types. The parameters (variables and data types)

of the invariants can be input, output or input-output, and the rest parameters are only

input.

Table 2. Example of invariant with parameter of Type 1

Invariant Finding sum sum of elements of the array arr with n

elements

Input Parameters arr, n

Output Parameters sum

Template code int sum=0;

for (int i=0; i<n; i++)

 sum+=arr[i];

When using invariants with first type parameters – variables (see Table 2) in solving

assignments (construction of computer program on the base of invariants) some

problems with naming of variables can arise. The variables are named automatically

with default name (e.g. a, arr, n, etc.). After placement of invariant the user have to

rename the variables if necessary in order to accomplish desired logic of the computer

program. Depending on the particular assignment, parameters can obtain another name

of a variable, expression or concrete value.

When using invariants with parameters from second type – data type (see Table 3), it

has to make a choice of the name of the proper type.

In the current example two parameters-variables х and у, which are input-output

parameters for the invariant and data type of the variables х and у have to be passed.

Through this invariant variable values from different types can be swapped.

Software Learning System Based on Invariants in Computer Programming 63

Table 3. Example of invariant with parameter of Type 2

Invariant Swapping values of two variables x and y

Input Parameters x, y, type

Output Parameters x, y

Template code type buf= x;

x=y;

y=buf;

Example of data type int

Table 4. Example of invariant with parameter of Type 3

Invariant Divisibility of number a to number b

Input Parameters а, b, invariant

Output Parameters –

Template code if (a%b == 0)

 invariant;

Example of sub-invariant Console.WriteLine (“{0} is divided to {1}”, a, b);

When using invariants, which have parameters from third type – random invariant,

each invariant can be chosen from the total set of invariants (see Table 4). For each

particular situation a proper sub-invariant has to be chosen. In the example, invariants

for output can be used for sub-invariant.

Table 5. Example of invariant with parameter of Type 4

Invariant Sorting array arr with n elements, using method

“Bubble Sort”!

Input Parameters arr, n, type,

list of invariants:

 Check if а is in relation rel with b (arr[i], arr[i+1], <),

 Check if а is in relation rel with b (arr[i], arr[i+1], >)

Output Parameters arr

Template code type buf;

for (int i=1; i<n; i++)

 for (int j=0; j<n-i; j++)

 invariant

 {

 buf=arr[j];

 arr[j]=arr[j+1];

 arr[j+1]=buf;

 }

Example of sub-invariant if (arr[j]>arr[j+1])

About invariants with fourth type parameter – invariant from given list, an invariant

from the previously given list of invariants is chosen according to the condition of the

assignment (see Table 5). In the example, one invariant is chosen from two invariants,

64 Jordan Enev et al.

which are the same (Check if a is in relation rel with b), but with

different values of the parameters: (arr[i], arr[i+1], <) and (arr[i],

arr[i+1], >) (they give the opportunity this code to solve both assignments: sorting

in ascending and descending order).

Table 6. Example of invariant with parameter of Type 5

Invariant Output of the array arr with n elements

Input Parameters аrr, n,

invariant: Output of data (аrr[i], type)

Output Parameters –

Template code for (int i=0; i<n; i++)

{

 invariant

}

Example of sub-invariant Console.WriteLine (“arr[{0}]= {1}”, i, arr[i]);

About invariants with parameters from last fifth type – invariant from given kind

(see Table 6) is necessary to choose one invariant from determined kind. For example,

for sub-invariant of kind Output of data (this kind includes all invariants, which

serve to output data from different types) invariant Output of integer value a

can be chosen, where parameter а is with value аrr[i], as chosen in Table 6. Through

this invariant, the output of the array is provided, independently from the type of the

array elements.

There is a possibility an invariant to contain another exactly fixed invariant. For

example, the invariant in Table 2 contains the sub-invariant Navigating the

array arr with n elements, and the invariant in Table 5 – Swapping

values of the variables x and y. In this way we do not obtain the new

kind of invariants, because it is not necessary to make a choice of invariant, i.e. the

invariant is not a parameter.

3. Software System for Invariant Learning of Computer

Programming

The proposed software system gives friendly visual interface for learning programming

through the same methodology for the different programming languages.

The system strives to eliminate the occurrence of syntax errors giving to the learners

a list with previously prepared templates (invariants) in order the learners to concentrate

into the design of concrete assignment and realization of the algorithm on the base of

basic algorithms. Thus learners only have to choose the right programming constructions

and link them in logically correct way.

The system proposes some kinds of assignments from different levels of difficulty for

learning computer programming:

1. Learning invariants – examining invariants, ordered in thematic groups. Each

invariant is presented with a name, description, parameters (input and/or

Software Learning System Based on Invariants in Computer Programming 65

output), template and example codes. If the invariant has a parameter of type

invariant (Types 4 or 5), list of possible sub-invariants is given too;

2. Matching programming codes – the teacher proposes two groups with short

programming codes, where the codes from the first group have to be linked

with the codes in the second group (e. g. with the following condition: ”Link

the programming codes, where the execution leads to the equal results”);

3. Removing unnecessary invariant from given computer program – the learner

have to find and choose unnecessary code in the program;

4. Choosing invariant from proposed list of invariants and inserting it in the

correct place in computer program – the teacher selects some invariants, from

which the learner have to choose and to put in the specified place/places in the

program;

5. Choosing invariant from total list of invariants and inserting it in the correct

place in computer program – in the program, only the places for insertion of

invariants are specified without any other help;

6. Constructing computer program from given invariants (without nesting) –

composing program is done from previously selected invariants from the

teacher, which learner has to put in the correct order without nesting of codes;

7. Constructing computer program from given invariants (with nesting) –

composing program is done from previously selected invariants from the

teacher, which learner has to put in the correct order. The nesting of code is

possible;

8. Constructing computer program through choosing and ordering invariants from

given list of invariants (without nesting) – in the list, there are more invariants,

that are necessary (in the difference to 6.);

9. Constructing computer program through choosing and ordering invariants from

given list of invariants (with nesting) – in the list, there are more invariants, that

are necessary (in the difference to 7.);

10. Constructing computer program through choosing and ordering invariants from

total list of invariants – for this kind of assignment only condition is given.

Below is given an example with condition of an assignment, design of the algorithm

through invariants, obtained decision and screenshot of the system with this decision.

Assignment 1.: In a company 10 workers work with salaries: 205.50, 560, 245,

2040.70, 536.20, 245, 2100, 560, 560 и 600. Show the incomes of the workers,

which has high-paid positions (receive more than 2000).

Algorithm (through used invariants and level of nesting, given with displacement):

Defining array income with concrete 10 elements of floating-point type

Navigating array income with 10 elements
Belonging of income[i] to the interval (2000, +∞)

Output the value of variable/expression

Decision:
double[] income= {205.50, 560, 245, 2040.70, 536.20, 245,

2100, 560, 560, 600};

for (int i=0; i<10; i++)

66 Jordan Enev et al.

{

 if (income[i]>2000)

 {

 Console.WriteLine(“Worker with high income: ”,

 income[i]);

 }

}

Fig. 1. Screenshot of the system with decision of the assignment 1

Part of the proposed assignments (2, 3 and 4) is evaluated entirely automatically by

the system, because actually they are closed answer test questions. Other part of

assignments (6, 7, 8 and 9) is proposed in two kinds: only with invariant names

(according to the kind of the assignment) or through prepared programming codes of

these invariants, where parameters (variables and types) are filled in appropriately for

the particular assignment. The first kind is evaluated semi-automatically – the structure

of the decision is evaluated by the system, but the teacher has to approve the evaluation

and review the correctness of the parameters. The second kind is evaluated

automatically by the system. The rest assignments (5 and 10) are evaluated by the

teacher, because they represent an open answer test question.

4. Conclusion

The paper presents software system, using approach for teaching computer programming

with algorithmic language, independent of concrete programming language, on the base

of set of templates, called invariants. The system is provided as main learning resource

in distance programs and as additional auxiliary resource in traditional learning at the

university.

Software Learning System Based on Invariants in Computer Programming 67

Until now 142 invariants of algorithms from courses “Programming” and

“Algorithms and Data Structures” are included in the system. These courses are carried

out in bachelor programs in the field of computer science in the Faculty of Mathematics

and Informatics at Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria.

5. References

1. Barnev, P., Totkov, G., Shkurtov, Vl., Doneva, R., Garov, K.: Computer Science, textbook

for 9th year students. Letera. (2001) (in Bulgarian)

2. Codingame, https://www.codingame.com/ (current January 2016)

3. Crunchzilla, http://www.crunchzilla.com/ (current January 2016)

4. Doneva, R., Gaftandjieva, S.: Information Technologies Learning in Bachelor Programs for

Nonprofesionals in Information Technologies. In Sience Session “Days of the science 2010”,

Plovdiv Bulgaria, 39-42. (2010) (in Bulgarian)

5. Doneva, R., Gaftandjieva, S.: Invariants in Learning of Spreadsheets. In Proceedings of

National Conference “Education in Information Society”. Plovdiv, Bulgaria, 293-302.

(2011) (in Bulgarian)

6. Dorling, M., White, D.: Scratch: A way to logo and python. SIGCSE 2015 - Proceedings of

the 46th ACM Technical Symposium on Computer Science Education, Kansas City, USA,

191-196. (2015)

7. Hamilton, B., Integrating technologies in the classroom. Tools to meet the needs of every

student. International Society for Technology in Education, USA. (2015)

8. Jung, J., Park, H., et al.: Gaming and simulations: Concepts, methodologies, tools, and

applications. volume 1, Information Resources Management Association USA (editor),

Information Science Reference, Hershey, New York. (2011).

9. Lieberman, H. (editor), Your wish is my command. Programming by example. Morgan

Kaufmann Publishers, USA. (2001)

10 Lytras, M., Gasevic, D., Pablos, P., Huang, W.: Technology enhanced learning: Best

practices. IGI Publishing, Hershey, New York. (2008)

11. Marji, M.: Learn to program with Scratch: a visual introduction to programming with games,

art, science and math. No Strach Press, San Francisco, USA. (2014)

12. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Learning computer science concepts with

Scratch. Computer Science Education, Vol. 23, No. 3, 239-264. (2013)

13. Scratch, https://scratch.mit.edu (current January 2016)

14. Somova E., Enev Y., Totkov G., Invariants in Learning of Programming. International

scientific on-line journal "Science & Technologies", Vol. 4, No. 3 (2014). Available:

http://journal.sustz.com/VolumeIV/Number3/Papers/ElenaSomova1.pdf (in Bulgarian)

15. ToonTalk, http://www.toontalk.com/(current January 2016)

16. Totkov, G., Doneva, R.:, Besaleva, L., Chakarova, I.: Invariants in Information Technologies

Learning. In Proceedings of National Conference “Education in Information Society”.

Plovdiv, Bulgaria, 22-29. (2010) (in Bulgarian)

17. Totkov, G., et al., Computer Science: Overview, (G. Totkov ed.). PHARE. (1999)

18. Totkov, G., Shkurtov, Vl., Doneva, R., Garov, K.: Information Technologies, textbook for

9th year students. Letera. (2001) (in Bulgarian)

19. Totkov, G., Shkurtov, Vl., Doneva, R.,Vidolov, B.: Computer Science (training aid).

Regional Distance Education Study Center at Plovdiv University, Plovdiv, (1999) (in

Bulgarian)

20. Totkov, G., Shkurtov, Vl., Doneva, R.: Fundamentals of Computer Science. University

Press, Plovdiv University, Plovdiv. (2001)

21. W3Schools, http://www.w3schools.com/(current January 2016)

https://www.codingame.com/
http://www.scopus.com/authid/detail.uri?authorId=55509148700&eid=2-s2.0-84942415333
http://www.scopus.com/authid/detail.uri?authorId=56872222500&eid=2-s2.0-84942415333
http://www.scopus.com/authid/detail.uri?authorId=36458825900&eid=2-s2.0-84886084732
http://www.scopus.com/authid/detail.uri?authorId=55970570800&eid=2-s2.0-84886084732
http://www.scopus.com/authid/detail.uri?authorId=7003907598&eid=2-s2.0-84886084732
http://www.scopus.com/source/sourceInfo.uri?sourceId=19700201422&origin=recordpage
http://journal.sustz.com/VolumeIV/Number3/Papers/ElenaSomova1.pdf

