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Abstract. The publication presents a three wheeled robot that has been designed 

to map rooms, halls and other indoor areas. The device uses an ultrasonic sensor 

for measuring distance, which is later used for both navigation and obstacle 

detection. Data were used later to compose a matrix – the schematic map of the 

room. This map could be uploaded to the cloud for later use by other 3rd party 

devices so they do not have to redo the mapping process again. 
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1. Expectations

When the robot was designed, the expectations were clear: a self-navigating robot 

should be built that could map indoor areas all by itself. This mapping process does not 

have to be very deep in terms of navigation, the limit was set to one clockwise turn 

from the main path as demonstrated in the Figure 1. 
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Fig.1. The robot's main path and the single allowed turn 

Fig. 2. Example represantiotion of the result matrix. Each number is a distance from the nearest 

obstacle, starting from ahead going in clockwise direction 

The device is capable of finding a way back to the main path should it navigate 

away. Besides of exploring the room, the robot was able to do 360 degree turns in order 

to measure distance from obstacles in each direction.  

The results were processed as an n-by-m matrix, where values of each cell were the 

result of the measurements as shown in the Figure 2. 

2. Basic properties

The robot used in the experiments was a specifically build three-wheeled vehicle. 

The back wheels were driven; the single front wheel had no specific function. The robot 

was able to move forward and backward and turn in 360 degrees without steering. 

Instead, when there was a need for turning, the wheels started spinning at different 

speeds [1][2][3]. Because the faster wheel travels further, it rotates the vehicle in the 

opposite direction. The downside of this method was that because there is no on-board 

gyroscope on the device, the angle could not be determined precisely and the robot had 

to be calibrated for different surfaces[4][5][6]. 
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Fig. 3. The device 

The device was designed to be small, so it could get under furniture and between 

furniture as shown in the Figure 3. However, due to the ultrasound sensor’s field of 

view these scenarios were ruled out [7][8]. The vehicle consists of the following 

components: 

 One Arduino board

 One Arduino shield

 Two servos

 One ultrasound sensor

 Housing

 Two wheels

 Cables

The Arduino board constitutes the main control unit. It runs the software and is 

wired to the shield board, the power button and the sensor. The shield board is 

connected to the servos, which have the wheels attached under the vehicle itself. The 

sensor was mounted higher above the main plain of the device. 

3. Methods for measuring distance, and navigation

Distance was measured using the sensor on the front of the device. The robot starts 

from a random starting position. At first, it does not know anything about the world 

around itself. The first step is to do a full circle and measure the distances from the 

obstacles as in the Figure 4 and the Figure 5. The computed starting point would be 

determined by the software. It tries to get to the nearest corner and use that point as a 

new starting point [9][10][11]. This method has been chosen to simplify the mapping 

process by not having to worry about fragments. By this way on the other hand the 

vehicle could travel farther at first. When the secondary starting point has been 
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determined, the robot tries to navigate there. In a special case, when all the distances are 

equal, the forward right corner is chosen as secondary starting point. Clearly, in this 

special case the original placement of the robot plays an important role. 

Fig. 4. Sample initial measurement 

Fig. 5. Starting position of the robot in the room if the measured data is from Figure 4 

Because there is no gyroscope on the robot, the operation is completely dead 

reckoning based. For the most cases, it is sufficient, as the robot travels mostly in a 

straight line. Straight runs can be measured using the onboard distance sensor. When 

the distance from the nearest obstacle changes, that measured value becomes the travel 

distance for that period. The cases where dead reckoning falls short were the turns. 

Without a compass or a gyroscope, the only way to execute them was by blindly 

powering one side of the wheels while holding the other one or spinning it backwards 

[12][13][14]. The problem with this method was the need for long calibration and that 

even with extensive calibration, the angle could not be trusted completely. When setting 

up the robot, different surfaces provided different grip for the wheels. It also means that 

if the system is set up with the parameters for carpet, it will not work properly on 

wooden floor or concrete.  

The navigation is rather simple as shown in the Figure 6. When the secondary start 

point is found, the robot moves one unit from the border of the world. This is parallel to 

the side border of the world, towards the other side of the room. The units are flexible 

and can be set up during the calibration process in the code. By default, this value is 

100 millimetres. After the first forward move, the robot checks its surroundings again 

by doing a 360 degree turn in four stops, 90 degrees each. These readings are saved and 

the process starts again. It runs in an infinite loop until the end of the room is found. In 

that position, the robot does a 90 degree turn, moves one unit forward, takes another 90 
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degree turn and the straight running part starts over. The robot’s movements can be 

described as a cycle: 

Fig. 6. The robot's movement cycle 

Likewise, the straight run forward consists of two elements, “Move one unit 

forward” and “Turn four times 90 degrees, measure distance”. In practice, this method 

means that these components could be defined as separate functions in the code. 

4. Measuring distance and composing matrices

The distance from the closest obstacle is measured after every step. The result is a 2x2 

matrix containing the values in millimetres in the following order (Table I): 

TABLE I.  

STRUCTURE OF THE MEASUREMENT MATRIX 

Top Right 

Bottom Left 

Since the device knows its direction (up-down or down-up) from the number of the 

columns it scanned already [15]...[30]. If the current column number is odd, the 

direction is up-down. If it’s even, it is down-up. In case of up-down direction, the 

“forward” measurement becomes “bottom”, the “back” “top”, the “left” and the “right” 

readings are swapped. In case of down-up direction, the “forward” data mean “top”, the 

“back” “down”, “left” and “right” are kept as they are.  At the end of the columns, the 

distance readings are not stored, they only signal to the software whether the end of the 

process was reached. The data are saved in the following form: 

start 

[0, 0, 1000, 1000] 

[30, 0, 970, 1000] 

… 
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[1000, 0, 0, 1000] 

eoc 

[1000, 30, 0, 970] 

[970, 30, 30, 970] 

… 

eoc 

… 

eof 

After the room has been processed, the results were uploaded to the computer, 

where an application converted those data to a matrix, which represented the schematic 

map of the room. 

The Figure 8 depicts the experiment which was performed in the room 3x3 m2. 

Objects in the room were the table, the square box and the round box. It was concluded 

that the errors occurred in instances where the objects were close to the walls, but that 

had no effect because those distances were smaller than the width of the robot. 

5. The cloud service

Probably the most important part of the project was the potential unified cloud based 

storage of the mapped rooms. A proof of concept version of this service has been 

implemented with some basic functionality [31]. 

Matrices can be uploaded from computers, tablets and mobile phones, in the future 

automatic upload from the devices themselves will be possible. This would enable 

seamless working and uploading, maybe even without human interaction. It could lead 

to scenarios, when the robot would map a whole factory and when the battery gets 

depleted it would find a charging station, continue the work and when each room is 

finished, the work would be uploaded to the internet.  

 Currently one can upload new maps and browse existing ones, search by several 

criteria and download the required maps. Users can also view the matrices in real time 

using the online interface. 
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Fig. 7. The interface of the map store 

As it can be seen on the figure, the interface is really simple and it was designed for 

functionality. The interface has three columns: 

 The name of the map

 The uploader

 The tags for easy finding

Fig. 8. The representation of the actual room and coresponding map matrix 

None of these fields has to be unique, maps with the same name are allowed. On the 

other hand, in case of some industrial designs, it might be required for the map to be 

private. This is not implemented in the current version, but requires only a simple 

“where” clause to be added to the current SQL (Structured Query Language) query.  

When one clicks on the map name a selection of options is shown. The user can 

either download the map in a .robomap file, they can open it in the online viewer or 

they can copy the link. In future versions, push-to-device support will be added, which 

would enable automatic upload to compatible devices. 

Because the above mentioned cloud based storage engine makes portability and the 

delivery of the map files really easy, a decision has been made to write a specification 

for devices that are supported by this cloud delivery system. Most importantly, Azure 

IoT Hub was to be used. Any device that supports Azure IoT Hub is mostly compatible 

with the delivery method. Another solution was to poll the server each thirty seconds. 

Because Microsoft supports a wide variety of devices, in most cases no 3rd party 

implementation is required when implementing the communication module of the 

solution. 

Processing the .robomap files can be difficult, too. The robot developed for the 

experiment uses an Arduino board, where the sensors’ readings were used to form the 

matrices. That means, if the inverse is performed, then the robot could be driven 

through the matrix by itself. While Arduino is popular, the main target for the map 

consuming feature was Raspberry Pi. It can be programmed using C# in .net, many 

libraries are available for the platform. Raspberry Pi also runs Windows 10 IoT Core. 
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6. Shortcomings and future improvements

After the experiments were done, some serious shortcomings were found in the 

solution, which were not foreseen during the design process. The most important one 

was the lack of compass or other sensor to measure the exact angle of turning. This 

would make the lengthy calibration process obsolete and improve the efficiency of the 

measurements, because the columns would be perfectly straight. This addition could 

also help eliminate the even-odd column number based direction detection. This is the 

most important problem, and as such, it has the highest priority to fix. 

Another improvement area would be the addition of steerable front wheel or wheels. 

It would increase the turning radius, which could affect the minimum width of the 

columns, but would reduce the wheel drag of the unpowered (front) wheel(s) and fix 

the issue with the sometimes uncontrollable turning front wheel. This addition requires 

deeper modifications to the way the robot is controlled. 

Regarding the sensors, other ones will be added to overcome the limitations of the 

ultrasound sensor, namely the blind spots occurring at angles around 45 degrees. It 

could also solve the too wide angle of the sensor and because of this, the vehicle could 

enter tighter spaces between furniture. 

7. Conclusion

During the development and the process of experimenting with the robot, it has been 

found that even though the device is capable of mapping rooms, halls and other indoor 

areas, it currently has numerous limitations. The current stage is considered as phase 1 

of the overall development, with features to be added to improve the precision and the 

efficiency. 

The main goals however were met. A robot has been developed, which can create a 

map of the room, process it, and format it as a matrix. That matrix can be uploaded to 

the cloud to be consumed by other similar smart devices. 
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