MOLECULAR LINE-SHAPE MODELING FROM FIRST PRINCIPLES
Piotr Wcislo, Franck Thibault, Hubert Cybulski, Ha Tran, Frédéric Chaussard, Roman Ciurylo

To cite this version:
Piotr Wcislo, Franck Thibault, Hubert Cybulski, Ha Tran, Frédéric Chaussard, et al.. MOLECULAR LINE-SHAPE MODELING FROM FIRST PRINCIPLES. The 24th Colloquium on High Resolution Molecular Spectroscopy HRMS 2015, Aug 2015, Dijon, France. <http://hrms2015.sciencesconf.org/>. <hal-01263170>

HAL Id: hal-01263170
https://hal.archives-ouvertes.fr/hal-01263170
Submitted on 21 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MOLECULAR LINE-SHAPING FROM FIRST PRINCIPLES

Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądz 5, 87-100 Toruń, Poland

Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, Bât. 118, F-35042 Rennes, France

Laboratoire Inter-universitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7563, Université Paris Est Créteil, Université Paris Diderot, Institut Pierre-Simon Laplace, 94010 Créteil Cedex, France

Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) CNRS (UMR 6303), Université de Bourgogne, BP 47870, F-21078 Dijon Cedex, France

What?

- **We performed** *ab initio* calculations of the H-Ar system and applied them to the simulation of the anomalous broadening of H, Q(1) line perturbed by Ar [1].
- **We performed** highly accurate *ab initio* calculations of the three dimensional H-Ar potential energy surface (PES).
- We calculated generalized cross sections for line broadening and shifting by solving the close-coupling (CC) equations.
- We used a hard-sphere approximation of the H-Ar potential to describe velocity-changing collisions.
- We simulated the shape of H line perturbed by Ar by solving the transport/relaxation equation for optical coherence [2,3].

Why?

- To understand the role of the velocity-changing collisions in the anomalous inhomogeneity in the Ar-broadening of the H2 Q(1) line.
- The *ab initio* modeling of molecular line shape is essential to eliminate systematic errors in optical metrology based on molecular spectroscopy.

How?

VELOCITY-CHANGING COLLISIONS

- We demonstrated that, to properly describe the velocity-changing collisions, the H-H and H-Ar potentials can be approximated by hard-sphere models [9].
- Spectral profile

PHASE/STATE-CHANGING COLLISIONS

- The hard-sphere diameters were chosen such as to obtain the Lennard-Jones curves at the mean collision energy (\(E_c = 1000\) K).
- We plotted the generalized spectroscopic cross sections for the broadening and shifting of H, vibrational state.

LINE-SHAPE MODEL

- Speed-dependent billiard-ball profile [12]

COMPARISON WITH EXPERIMENTAL DATA

- Speed-dependent Doppler broadening and shifting

REFERENCES

Project supported by the Foundation for Polish Science Team Programme co-financed by the EU European Regional Development Fund, Operational Program Innovative Economy.

The research was co-financed by the National Science Centre, Project No. DEC-2013/09/N/ST4/00327 and Foundation for Polish Science START project. The financial support provided by the French-Poland “Programme Hubert Curien” POLONIUM program is acknowledged.