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CHAPTER 1: INTRODUCTION AND AIMS 

1.1 Cell membranes 

Cell membranes are currently understood in terms of boundaries consisting 

of a hydrophobic matrix, formed by an oriented double layer of polar lipids, 

intercalated with proteins. Membrane carbohydrates exist bound to either lipids or 

proteins (Goñi, 2014). Moreover, eukaryotic sub-cellular organelles and both 

endocytic and exocytic vesicles are also delimited by a membrane. Cell membranes 

act not only as boundaries between two aqueous compartments but also perform a 

number of essential functions: i) they are a semipermeable barrier with the ability 

of exchanging essential materials between them, ii) help provide a shape to the 

cell, iii) interact with the extracellular matrix to maintain tissue organisation, and 

iv) are involved in many molecular processes such as cell signaling, cell adhesion, 

cell differentiation or cell death (Stillwell, 2016).  

The cell membrane model accepted nowadays has been defined as a result 

of a series of studies performed during the last century. The existence of cell 

membranes was not clearly suggested until the 1890s when Overton confirmed the 

presence of a semipermeable membrane in cells, after observing how non-polar 

molecules diffuse across the cell membrane with less difficulty than polar ones 

(Overton, 1895; Kleinzeller, 1997). Gorter and Grendel confirmed Overton 

proposition of phospholipids and cholesterol being the main components of cell 

membranes when they compared the surface occupied by the lipids of a cell 

against its total surface and concluded that the cell was surrounded by a lipid 

double layer, or bilayer (Gorter & Grendel, 1926). Even though the lipid bilayer 

hypothesis is widely accepted these days, the Gorter and Grendel experiment 

presented theoretical and technical issues (Dervichian & Macheboeuf, 1938). In 

1935 Danielli and Davson proposed the paucimolecular model in which the lipid 

bilayer was sandwiched between proteins in β-conformation (Danielli & Davson, 

1935). Although this model remained unchanged for almost 30 years, the 

development of electron microscopy led Robertson to rename it as “unit 

membrane”, when he replaced with globular proteins the proteins in β-sheet 

conformation. Additionally, Robertson confirmed that this structure could be 
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found in all biological membranes (Robertson, 1960). Moreover, the possibility to 

study membrane protein conformation showed how proteins were in a globular or 

alpha-conformation rather than a beta-structure (Maddy & Malcolm, 1965; Lenard 

& Singer, 1966; Zahler et al.., 1966). All these pieces of evidence were combined by 

Singer and Nicolson in 1972 when they postulated the basics of the current “fluid 

mosaic model” (Singer & Nicolson, 1972). 

Singer and Nicolson´s model was defined as a mosaic because they 

proposed lipids and proteins as its main components, organized in a structure 

reminiscent of the Roman mosaics. Lipids were forming a double layer because of 

their amphipathic nature, and proteins were scattered along the bilayer. Proteins 

could interact with the lipids, either being embedded in the lipid matrix (integral 

proteins), or being associated with them through polar interactions (peripheral 

proteins). In addition, the model was named fluid because they suggested that 

lipids and proteins were in constant motion in each of the lipid monolayers, 

making both sides of the bilayer different in composition and structure. 

 Although the fluid mosaic is the current model describing the cell 

membranes, it has required several adjustments during the last decades (Jacobson 

et al., 1995; Engelman, 2005; Goñi, 2014). Nowadays, it is widely known that 

membranes are highly crowded with proteins. The idea of proteins not being 

always in contact with the membrane and existing part-time in the cytosol and 

part-time docked to a membrane is 

currently accepted. This dynamic 

view of the bilayer affects also the 

lipids, accepting the presence of a 

high number of lipid phases and 

non-lamellar structures. The Singer 

and Nicolson model pointed to 

liquid-crystalline phases as the 

only relevant ones in the well-

organized lamellar structure, 

however a number of phases as the 

liquid-ordered, the inverted 

hexagonal or the cubic ones must 

also be considered, because the 

membrane can transiently adopt 

non-lamellar structures in small 

regions. Moreover, the presence of 

non-lamellar structures confirms 

that the lipid bilayer is curved and 

that the previous flat drawing 

Figure 1.1. The Singer and Nicolson model 

originally proposed (upper) and an amended 

and updated version (down). [Redrawn from 

(Engelman, 2005)].  
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requires some modifications. The current data point to the lateral heterogeneity of 

membranes in which small patches enriched in lipids and proteins (also called 

domains) can be found. These domains are associated with many molecular 

processes such as cell signaling, cell adhesion, cell differentiation or cell death. A 

further adjustment is related to the (limited) movement of the lipids across the 

bilayer since transbilayer lipid motion has been confirmed in several studies 

(Contreras et al., 2010). 

1.2 Membrane Lipids 

 One of the main components of cell membranes are the lipids. Lipids are 

organic molecules of an amphipathic nature, containing both hydrophobic (tail) 

and hydrophilic (headgroup) moieties. Lipids tend to be insoluble in water, so 

when they are exposed to a polar solvent they form the most thermodynamically 

stable structure, maximizing both hydrophobic and hydrophilic interactions. This 

tendency is due to the hydrophobic effect and can be affected by several 

parameters such as the chemical nature of the molecules, their size, the salinity, or 

pH of the solution. The most common structure is a double layer in which the polar 

headgroups are in contact with the solvent and the hydrophobic tails are facing 

each other, this is commonly known as the lipid bilayer, fundamental architecture 

of the membranes (Lombard, 2014; Stillwell, 2016).  

Lipids have several functions apart from maintaining the membrane 

structure, those include acting as energy and heat sources, because of their 

chemically reduced state, signaling molecules, protein recruitment platforms and 

substrates for translational protein-lipid modifications (Harayama & Riezman, 

2018).  

Most membrane lipids have fatty acids as their hydrophobic moieties. A 

fatty acid is a monocarboxylic acid that may be either saturated or unsaturated. 

Fatty acids usually have a chain of 4 to 24 carbons, being classified as short-chain 

(4-6 carbons), medium-chain (8-10 carbons) and long-chain (12-24 carbons). 

Long-chain fatty acids are the most common in membranes, in which they are 

relevant for the maintenance of membrane structure. Furthermore, fatty acid 

melting points and insolubility increase with chain length. The most common fatty 

acids found in membrane lipids are summarized in Table 1.1. 
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Table 1.1. The most common fatty acids in membranes. 

Name Structure Melting Point (ºC) 

Lauric 12:0 44.2 

Myristic 14:0 53.9 

Palmitic 16:0 63.1 

Stearic 18:0 69.6 

Linoleic (∆9,12) 18:2 -5 
Linolenic (∆9,12,15) 18:3 -11 

Arachidic 20:0 75.3 

Lignoceric 24:0 84.2 

Palmitoleic (∆9) 16:1 0.5 

Oleic (∆9) 18:1 16.2 

Arachidonic (∆5,8,11,14) 20:4 -50 
Nervonic (∆9) 24:1 39 

1.2.1 Membrane lipid classification 

 The chemical structures of lipids are related to their physicochemical 

properties, so it is crucial to focus on their chemical diversity to understand how 

lipids behave in cell membranes. The predominant lipids in cell membranes are 

glycerolipids, sphingolipids, and sterols. 

Glycerolipids 

 Glycerolipids can be further classified into glycerophospholipids and 

glyceroglycolipids. Glycerophospholipids are typically composed of one glycerol, 

two fatty acids, a phosphate group, and an alcohol. The fatty acids are bonded to 

the glycerol by an ester linkage at carbon positions sn-1 and sn-2, usually sn-1 is 

saturated and sn-2 is unsaturated. In mammalian cells, there are seven major 

classes of glycerolipids depending on the polar group bonded to the phosphate and 

on the length of the acyl chains (Box 1.1). Phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol 

(PI) are the most common lipids in mammalian cells, making up to 65 mol% of the 

lipid composition (van Meer & de Kroon, 2011). 
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Figure 1.2. General structure of glycerophospholipids.  A glycerol group (black), a saturated fatty 

acid in sn-1 and an unsaturated one in sn-2 (blue box), a phosphate group (orange box) and the 

polar headgroup substituent (red). 

 

Box 1.1. Structures of common glycerophospholipids. All saturated and unsaturated fatty acids 

in this box contain 18 carbon atoms. 

Glyceroglycolipids have a mono- or oligosaccharide group bound to carbon 

sn-3 of glycerol through an O-glycosyl linkage, instead of a phosphate group. 

Glyceroglycolipids are the predominant lipids in chloroplasts of plants and 

eukaryotic algae and in cyanobacteria (Hölzl & Dörmann, 2007; Rahim et al., 

2018). 
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Sphingolipids 

The basic building block of all sphingolipids is sphingosine, a long 

hydrophobic unsaturated amino octadecyl alcohol ((2S,3R,4E)-2-amino-octadec-4-

ene-1,3-diol). There are many sphingolipid species in cell membranes, which can 

be distinguished by the headgroup or the fatty acid attached to the sphingosine by 

an amide linkage. The headgroup can be a simple hydroxyl group (ceramide), a 

phosphorylcholine polar residue (sphingomyelin), a sugar (cerebroside) or several 

sugars (ganglioside), while the fatty acid is usually long and saturated.  

 

Figure 1.3. General structure of sphingolipids. A sphingosine backbone (blue box), a saturated fatty 

acid (orange box) and the polar headgroup substituent (red). 

 

Box 1.2. Structures of common sphingolipids. All saturated and unsaturated fatty acids in this 

box contain 18 carbon atoms. 
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Sterols 

Sterols are the major non-polar lipids in cell membranes, cholesterol being 

the most common one in mammalian cells. Its structure is composed of four 

hydrophobic fused rings attached to a hydrocarbon tail at one side and containing 

a hydrophilic alcohol at the opposite side. There are other sterols as ergosterol 

(fungi) and β-sitosterol (plants), whose structure is quite similar to cholesterol. 

 

Box 1.3. Structures of common sterols.  

1.2.2 Lipid distribution  

 The most common lipids in cell membranes are glycerophospholipids, 

sphingolipids, and sterols. Additionally, the variety of headgroups or acyl chains 

that can be attached to their backbones it is the main reason why the existence of 

more than 1000 different lipid species is estimated. Their distribution inside the 

cell is not homogeneous and is related to the local lipid metabolism of the 

organelles. Some lipids are transported away from where they are synthesized to 

their final destination where they perform their function. 

 Organelles such as the endoplasmatic reticulum (ER), the Golgi apparatus, 

and the mitochondria have an autonomous lipid synthesis system, in which at least 

some of their structural lipids are synthesized, while other organelles like the 

plasma membrane are composed of lipids transported from other regions. These 

systems are a good example of the heterogeneity in cells since the Golgi apparatus 
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is specialized in sphingolipid synthesis, almost all of which are destined to the 

plasma membrane, and the mitochondria is the only organelle that synthesizes 

cardiolipin. The ER produces structural and non-structural triacylglycerol and 

cholesteryl esters as much as ceramide (Van Meer et al., 2008). 

 

Figure 1.5. Lipid compositions of different organelles and plasma membranes inside the cell. 

[Taken from (Van Meer et al., 2008)]. Abbreviations: ERG, Ergosterol; PL, Total lipid in mammals 

(blue) in yeast (light blue); CHOL, Cholesterol. 

 The basis of lipid heterogeneity in cell membranes is found in the lipid 

synthesis but how lipids distribute in membranes has also a strong impact.  For 

example, the Golgi apparatus and the plasma membrane present an asymmetric 

distribution of their lipids. Most of PC and SM from the plasma membrane are 

found in the outer leaflet while PS and PE are found in the cytoplasmatic leaflet. In 

the ER, in order to maintain the symmetry, almost one-half of its newly-

synthesized lipids have to be transferred to the outer leaflet. Nevertheless, 

transbilayer movement is limited by the high energy barrier that must be 

overcome to move a polar headgroup through a hydrophobic core and by the 

increase in lateral tension in the membrane upon insertion. The presence of 
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proteins (flippases) assists lipid transport from one side of the membrane to 

another, decreasing the energy needed (Contreras et al., 2010). 

1.2.3 Lipid geometry and polymorphism   

 The lipid bilayer is the main structure in cell membranes. Lipids become 

arranged in a lamellar structure in water, so that their hydrophilic and 

hydrophobic moieties are compensated by the hydrophobic effect. Several 

parameters such as chemical nature of the molecules, temperature, pressure, 

salinity, and pH of the solution affect this arrangement. However, it has been 

observed that the formation of transient non-lamellar structures in lipid bilayers is 

related to important biological processes such as membrane fusion and fission, 

reproduction, vesicular transport, and viral infection (Epand, 1998; Burger, 2000; 

Basañez, 2002).  

 In 1980 Israelachvili proposed that the formation of lamellar and non-

lamellar structures is influenced by the lipid molecular geometry, suggesting that 

the structures of lipid aggregates are determined by the cross-sectional area of the 

lipid (Israelachvili et al., 1980). Thus, lipid shapes can be classified into three 

groups: conical, cylindrical or inverted-cone shapes. This classification depends on 

the relationship between the volume of the lipid molecule (V), the area of the 

molecule at the lipid-water interface (AO), and the length of the extended acyl chain 

(LC). 

   
 

     
 

 The parameter S is related to the area of the molecule at the lipid-water 

interface (A0) and the lipid cross-sectional area in the hydrophobic tail (AH), which 

would reflect a volume of V = AH·Lc for a lipid displaying cylindrical shape. We can 

review the different morphological geometries as: 

 A0 = AH (S = 1): The molecule presents a cylinder shape 

 A0 < AH (S > 1): The molecule presents a cone shape 

 A0 > AH (S < 1): The molecule presents an inverted cone shape 

  



Chapter 1 

 

12 

 

Figure 1.6. Molecular shape and curvature of physiological lipids. 

Depending on their molecular geometry lipids self-aggregate into different 

phases, in which all their properties are uniform. Their formation in a polar 

environment has been widely studied through X-ray scattering and 31P-NMR 

(Quinn & Wolf, 2010; Cullis & Kruijff, 1979; Luzzati & Tardieu, 1974). These phases 

can be lamellar (with cylindrical shape lipids) and non-lamellar (with cone- or 

inverted cone-shaped lipids) and are named using a capital letter, which describes 

their kind of lattice: unidimensional micellar (M) or lamellar (L), bidimensional 

hexagonal (H) or oblique (P) and tridimensional cubic (Q) or crystalline (C). 

Referring to non-lamellar phases, the curvature of their shape is classified into 

type I (positive) and type II (negative).  

As previously described, biological membranes adopt essentially a lamellar 

structure. Moreover, the presence of certain lipids gives rise to different coexisting 

phases in the membrane, which contribute to its overall heterogeneity. Among 

these phases the most common ones are a disordered or fluid phase (Lα), a solid 

ordered phase with fatty acyl chains perpendicular to the plane of the membrane 

(also called gel) (Lβ), a fluid-ordered phase with intermediate properties between 

fluid disordered and gel (Lo), a solid ordered phase with fatty acyl chains tilted 

with respect to the plane of the membrane (Lβ’), and a crystalline phase (Lc). 
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Unsaturated lipids are normally arranged in a Lα phase, in which they can 

diffuse laterally or rotationally. However, saturated lipids are arranged in a Lβ 

phase, in which the movement is not allowed. Temperature, pressure, and solvent 

proportion changes can cause phase transitions between phases. For example, 

temperature affects the transition between the gel and the fluid phase, commonly 

known as the main phase transition.  

 

Figure 1.7. Lipid phases of physiological lipids. 

In this thesis most studies will be performed on membrane models based 

on PC or SM, organized in lamellar phases due to their cylindrical shape. Others, 

like ceramide, cerebrosides, and sterols, with a cone shape and a spontaneous 

tendency to form inverted hexagonal phases will also be used. 
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1.3 Sphingolipids 

 Sphingolipids were named by J.L.W. Thudichum in 1884 when a brain 

compound with unusual properties was isolated. Thudichum´s interest in Greek 

mythology and the riddle of the new lipid function were the reasons why their 

name was related to the Sphinx (Thudichum, 1884). The field of sphingolipids was 

not relevant in biology for decades because they were considered as inert 

structural components of plasma membranes. Nowadays, they are considered as 

bioactive molecules of great interest due to their role as second messengers in 

many signaling pathways (Hannun et al., 1986; Merrill et al., 1986; Kolesnick, 

1987). Additionally, sphingolipids have attracted the attention of scientists due to 

recent findings of sphingolipid metabolism pathways, their biophysical properties, 

and their role in the formation of lateral structures or membrane domains 

(Hannun & Obeid, 2008; Goñi et al., 2014; Simons & Ikonen, 1997). 

Sphingosine is the basic building block of sphingolipids. Other bioactive 

sphingolipids are ceramide and their related phosphate analogs, sphingosine-1-

phosphate (S1P) and ceramide-1-phosphate (C1P). However, as previously 

described, lipids can suffer a great number of modifications that increase their 

complexity. At least five different sphingoid bases are known in mammalian cells, 

more than 20 species of fatty acid (varying in chain length, degree of saturation, 

and degree of hydroxylation) can be attached to the sphingoid base, and around 

500 different carbohydrate structures have been described in GSL (Futerman & 

Hannun, 2004). 

 

 

Box 1.4. Molecular structures of simple sphingolipids.  
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These sphingolipids play an important role in cell processes. Sphingosine is 

involved in the regulation of the actin cytoskeleton, endocytosis, the cell cycle and 

apoptosis (Smith et al., 2000), and it has been recently related to atherosclerosis 

(Smith, 1960). Ceramide and S1P have opposite roles: the first is involved in 

apoptosis and cell senescence (Obeid et al., 1993; Venable et al., 1995), while the 

second has a crucial role in cell survival, cell migration, and inflammation (Hla, 

2004). C1P has also a role in the inflammatory response and vesicular trafficking 

(Chalfant & Spiegel, 2005; Hinkovska-Galcheva et al., 2005). It has been suggested 

that the biophysical properties of the sphingolipids can have an influence on the 

physical properties of cell membranes, and be the basis for some of their 

physiological functions (Goñi et al., 2014). 

 

Table 1.2. The main biophysical properties of simple sphingolipids. 

Sphingolipid Property 

Sphingosine 

Net positive charge at physiological pH 

Increases membrane permeability 

Rigidifies bilayer acyl chains 

Facilitates cubic phase formation (with negatively 

charged lipids) 

Sphingosine-1-phosphate 

Somewhat water-soluble (critical micellar 

concentration 12 µM) 

Stabilizes lipid micellar structure 

Ceramide 

Increases lipid chain order 

Segregates laterally into rigid domains 

Increases membrane permeability  

Induces flip-flop motion of lipids 

Facilitates HII phase formation 

Ceramide-1-phosphate 
Spontaneously forms bilayers 

pKa very sensitive to phospholipid composition  
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Figure 1.8. An overview of the roles of sphingolipids in biology. The numbers in parentheses 

indicate the relative concentrations of these sphingolipids. Abbreviations: SMase, 

sphingomyelinases; SPT, Serin palmitoyl transferase; CDases, ceramidases; SK, sphingosine kinases; 

CAPP, ceramide-activated Ser-Thr phosphatase; IGF, insulin-like growth factor; IL-1, interleukin-1; 

oxLDL, oxidized low-density lipoprotein; PDGF, platelet-derived growth factor; PKC, protein kinase 

C; PKH, PKB homologue; TNFα, tumour necrosis factor-α; VEGF, vascular endothelial growth factor; 

YPK, yeast protein kinase. [Redrawn from (Hannun & Obeid, 2008)].  

 

The formation of lateral nanostructures or “rafts” (Simons & Ikonen, 1997) 

has been widely studied since their proposal, generating a huge amount of 

experimental work. However, the difficulty associated to their visualization, their 

complicated molecular composition, and the fact that they have been observed 

only in model membranes are the main drawbacks of this hypothesis (Munro, 

2003; Pike, 2006; Goñi, 2019). Lateral segregation of sphingolipids will be 

discussed in more detail in section 1.4.  
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1.3.1 Sphingolipid metabolism 

 The metabolic pathway of sphingolipids (Figures 1.9, 1.10) in eukaryotes 

has only one entry point. Serine and palmitate are condensed to 3-keto-

dihydrosphingosine, the first sphingolipid in the de novo pathway, by the action of 

serine palmitoyltransferase (SPT). Then, 3-keto-dihydrosphingosine is reduced to 

dihydrosphingosine, which is acylated to form dihydroceramide by ceramide 

synthase (CerS). Its desaturation gives rise to ceramide. Ceramide occupies the 

central position in sphingolipid biosynthesis and catabolism. All these processes 

happen in the endoplasmic reticulum (ER) and its associated membranes.  

  After that, ceramide is transported to the Golgi through the action of a 

transfer protein (CERT) or through vesicular transport. The transport of Cer by a 

transfer protein is the way for sphingomyelin (SM) synthesis in mitochondria, 

while vesicular transport delivers Cer for Glucosylceramide (GluCer). To transform 

GluCer in complex glycosphingolipids (GSLs) inside the mitochondria another 

transfer protein is needed, FAPP2. Ceramide can be phosphorylated by ceramide 

kinase (CK), glycosylated by glucosyl or galactosyl ceramide synthases (GCS), or 

can receive phosphatidylcholine (PC) in the biosynthesis of sphingomyelin through 

the action of SM synthases (SMS). 

 Sphingomyelin and complex GSLs are transferred to the plasma membrane 

through vesicular transport. In the plasma membrane, SM is metabolized to Cer 

and other bioactive lipids by the action of acid sphingomyelinase (in the outer 

leaflet) or neutral sphingomyelinase (in the inner leaflet). Then Cer can be 

transformed into sphingosine through the action of many ceramidases (CDase). 

Finally, sphingosine can be phosphorylated by a sphingosine kinase (SK), and S1P 

be treated with SAP lyase to generate ethanolamine phosphate and hexadecenal. 

 The endosomal pathway is responsible for the introduction of sphingolipids 

to the metabolic pathway. When SM and GSLs reach the lysosome, they are 

degraded through the action of sphingomyelinases and glucosidases to form 

sphingosine. After some processes, sphingosine is recycled in the ER to form 

ceramide (Hannun & Obeid, 2008).  
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Figure 1.9. Compartmentalization of sphingolipid metabolism. Abbreviations: CDase,  

ceramidase; CERT, ceramide transfer protein; CK, ceramide kinase; CoA, Coenzyme A; FAPP2, four-

phosphate-adaptor protein 2; GALC, galactosylceramidase; GCase, glucosylceramidase; SMase, 

sphingomyelinase. [Redrawn from (Hannun & Obeid, 2008)]. 
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Figure 1.10. Diagram of sphingolipid metabolism showing enzymatic pathways. 

Abbreviations: CDase = ceramidase, CerS = (dihydro)ceramide synthase, CK = ceramide kinase, , 

GCase = glucosylceramidase, GCS = glucosylceramide synthase, SK= sphingosine kinase, SMase = 

sphingomyelinase, SMS = sphingomyelin synthase, SPPase = sphingosine phosphate phosphatase, 

SPT = serine palmitoyl transferase. [Redrawn from (Hannun & Obeid, 2008)]. 

1.3.2 Structure and functions 

 The work performed in this thesis is focused on lipid-lipid interaction 

studies of sphingolipids such as sphingomyelin, ceramide, and cerebroside in 

model membranes. Here, a general overview of sphingolipids and specifically on 

their biophysical properties and their structure is given. 

Sphingomyelin: 

Sphingomyelin is the most abundant sphingolipid in mammalian cell 

membranes, constituting 2-15% in most tissues like brain, peripheral nervous, and 

also in ocular lenses, representing approximately 80% of total sphingolipids. As it 

was previously described, its cylindrical shape tends to form lamellar structures 

when it is dispersed in water. It is mostly located in the external leaflet of the 

plasma membrane. 

Its structure was reported in 1927, it is composed of a sphingosine molecule 

with a fatty acid linked through an amide linkage, and phosphorylcholine as the 

polar headgroup (Ramstedt & Slotte, 2002). Sphingomyelin can be classified based 
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on the fatty acid attached to the sphingosine moiety, being the saturated C16, C18 

and C24 and the unsaturated C24:1 the most common in plasma membrane 

(Manni et al., 2018). 

Sphingomyelin presents a gel-fluid phase transition at around 40 °C, much 

higher than most natural phospholipids, so that in the pure state it would exist in 

the gel phase at room temperature, unlike most natural phospholipids. These 

physical properties can be associated with its tendency to form highly ordered 

membrane domains. In this regard, cholesterol and ceramide display a preference 

for sphingomyelin instead of phosphatidylcholine (PC), its phospholipid analog 

(Ramstedt & Slotte, 2006; García-Arribas et al., 2016b) (see section 1.4 for more 

details).  

Sphingomyelin exerts a wide range of functions in the plasma membranes: 

from its structural role together with other phospholipids, sterols, and integral 

proteins to its specific role in cell signaling, and in some cell functions like 

apoptosis, cell ageing, and cell development, due to its role as a precursor of other 

bioactive lipids such as ceramides (Merrill et al., 1997; Hannun et al., 2001).  

 

Box 1.5. Sphingomyelin molecular structures used in this study.  
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Ceramides 

 In the last decades, ceramides have attracted the attention of the scientific 

community for their important role in biological processes. It is now well known 

that ceramides are involved in cell proliferation, apoptosis, cell senescence and 

disease (Hannun & Obeid, 2002; Goñi & Alonso, 2006a; Castro et al., 2014). 

Moreover, the increase of ceramide levels in resting cells when they are exposed to 

several stimuli or under stress conditions (cytokines, death receptors, anti-cancer 

drugs), explains their important role even when the basal amount of ceramides in 

cells is very low (Plesofsky et al., 2008; Yabu et al., 2015). 

Ceramide structurally differs from sphingosine in having a fatty acyl chain 

attached through an amide linkage. Both the length and the presence of 

unsaturations in the acyl chain are responsible for the high variety of ceramides in 

cells. They can be classified according to their acyl chain in short- and long-chain 

ceramides. The low polarity and highly hydrophobic structure of long-chain 

ceramides justify their high concentration in the stratum corneum, to avoid water 

evaporation through the skin (Wertz & Downing, 1983). However, short-chain 

ceramides can be dissolved in water forming micelles. See Sot et al., (2005a, 

2005b) for a comparative study of how differently short- and long-chain ceramides 

affect the membrane properties. 

As mentioned for the simple sphingolipids, ceramides can modify the 

membrane biophysical properties, which are associated with the cell functions. 

The cone-shape geometry of ceramide induces the formation of non-lamellar 

structures in small regions of the bilayers promoting processes such as membrane 

permeabilization (Ruiz-Argüello et al., 1996; Montes et al., 2002), transmembrane 

(flip-flop) lipid motion (Contreras et al., 2003, 2005) or membrane fusion (Basañez 

et al., 1997).   

The hydroxyl groups and the amide linkage confer ceramides the ability to 

form hydrogen bonds, which contribute to their high melting point and 

segregation into highly ordered gel-like domains, due to their low miscibility with 

other membrane lipids (Sot et al., 2006; Castro et al., 2007; Busto et al., 2009). 

Ceramide main transition temperature (92-93 °C) is significantly affected by the 

presence of unsaturations, while an increase in their acyl chain from 16 to 24 

carbons barely changes that value (Jiménez-Rojo et al., 2014). Furthermore, an 

increase in length affects the morphology and size of the domains while the degree 

of unsaturation causes a decrease in order (Pinto et al., 2011). Moreover, it has 

been proposed that ceramide domains can act as recruiting sites for different 

proteins that play a role in signal transduction processes (Cremesti et al., 2001; 

Zhang et al., 2009).  
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Box 1.6. Ceramide molecular structures used in this study.  

Glycosphingolipids 

 Glycosphingolipids (GSL) are, as sphingomyelin, components of most 

eukaryotic cell plasma membranes, but the amount of GSL is usually much lower 

(Hoetzl et al., 2007). Nevertheless, a high level of glycosphingolipids has been 

reported for apical membranes of epithelial cells, myelin, and neurons (Simons & 

Meers, 1988; Vanier, 1999). Cerebrosides (Crb) are among the simplest GSL and 

make up to 20 mol% of the lipids in myelin, as well as occurring in sizable amounts 

in epithelial cells from the small intestine and colon, and in the skin epidermis (Van 

Meer et al., 2003). 

Glycosphingolipids as glucosylceramides are synthesized in the luminal 

surface of the Golgi and then transported by vesicular transfer to the plasma 

membrane. There, GSL are mostly located at the outer leaflet of the membrane, 

where they interact with toxins, hormones, viruses and other external ligands 

(Ledeen et al., 1998). However, they are also located in the inner leaflet where they 

can be bound to cytoskeletal elements, cytoplasmic proteins, and enzymes (Maggio 

et al., 2006).   
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They differ structurally from SM in the polar headgroup, GSL containing one 

or more carbohydrates linked through an O-glycosidic linkage to the C1-hydroxyl 

of their backbone. Their polar head group consists in the simplest case of a hexose, 

commonly galactose (galactosylceramide, GalCer) or glucose (glucosylceramide, 

GlcCer) (Maggio et al., 2006).   

Their headgroup confers the glycosphingolipids a complex thermotropic 

behavior and a temperature transition higher than SM. Furthermore, these 

headgroups contribute to the creation of a hydrogen bonding network, which is 

associated to their ability to segregate laterally. GSL, and Crb in particular are 

known to segregate laterally into membrane domains, at least in model and 

probably also in cell membranes. Presumed GSL-enriched domains in cells have 

been related to signaling by immune receptors and other signal transduction 

events (Varela et al., 2017; Holowka et al., 2005; Hakomori, 2002; Mayor et al., 

2006). 

 

Box 1.7. Glycosphingolipid molecular structure used in this study.  

 

1.4 Lateral segregation of membrane lipids 

 As mentioned above, sphingolipids and other membrane lipids have the 

ability to segregate laterally, giving rise to regions, also referred to as membrane 

domains. This segregation contributes not only to the existence of heterogeneity 

among membranes but also within the same membrane. In this section, membrane 

lipid segregation as well as the lipid-lipid interactions will be reviewed. 
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1.4.1 Phase segregation: membrane rafts 

 The concept of membrane rafts was proposed by Simons and Ikonen 

(Simons & Ikonen, 1997). Rafts are defined as small (10-200 nm), transient, 

heterogeneous and highly dynamic microdomains enriched in sphingolipids and 

cholesterol, which associated with proteins can compartmentalize relevant 

signaling processes. 

 

Figure 1.11. Representation of membrane rafts. [Redrawn from (Luckey, 2008)]. 

 Although the membrane raft hypothesis was widely accepted and generated 

a huge amount of work since its proposal, it has not been possible to demonstrate 

the existence of rafts due to the difficulty associated to their visualization and their 

complex molecular composition (Pike, 2006; Goñi, 2019). Nowadays, the 

development of super-resolution optical microscopy such as photoactivated 

localization microscopy (PALM), stimulated emission depletion (STED) 

microscopy and near-field scanning optical microscopy (NSOM) has overcome the 

resolution limit of conventional optical microscopy and these techniques can play a 

key role in the resolution of a debate that has been alive for two decades (Sezgin et 

al., 2017).  

1.4.2 Lipid-lipid interactions: lipid domains. 

 In order to study the lateral segregation of lipids in the plasma membrane 

and due to its highly complex and heterogeneous environment, membrane model 

systems are used. In our studies these systems are usually composed of three or 

four components, among them: one with a high phase transition temperature (Tm), 

one with a low Tm, and cholesterol. Lipids are chosen to try to replicate the 

putative phase segregation present in a plasma membrane and not because they 

are necessarily a good mimic of cell membrane components (Feigenson, 2007). 
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Lipid lateral segregation ability is particularly related to their structure. 

Thus, lipids with long and saturated acyl chains tend to segregate into densely 

packed or highly ordered phases. However, the presence of double bonds in the 

acyl chain favors the packing defects and the formation of disordered or fluid 

phases. Additionally, their C-C bonds are preferentially found in a trans 

conformation maintaining a linear structure, which also favors the formation of 

packed and ordered phases. On the contrary, as long as temperature increases, the 

number of gauche isomers also increases, promoting the formation of disordered 

phases (Luckey, 2008). In addition to the presence of unsaturations in the acyl 

chain, other factors such as the polar headgroup or the hydrogen bonding ability 

play a key role in the lipid-lipid interactions associated to lateral segregation 

(García-Arribas et al., 2016b; Slotte, 2016).  

Sphingomyelin is one of the most widely studied lipids in phase segregation 

due to its biophysical properties. Its saturated acyl chain and its high phase 

transition temperature favor its interaction with other lipids such as cholesterol to 

form liquid-ordered phases enriched in sphingomyelin and cholesterol. These 

lipids together with glycerophospholipids such as 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) constitute a widely studied membrane model system (Veiga et al., 2001; De 

Almeida et al., 2003; Halling et al., 2008; Ramstedt & Slotte, 2006). All these studies 

confirm the preferential partition of cholesterol into sphingomyelin to form Lo 

phases. 

When cholesterol interacts with sphingomyelin or its glycerophospholipid 

analog dipalmitoylphosphatidylcholine (DPPC), it tends to occupy the space in the 

boundary between the acyl chains and the phosphocholine (PC), which is large 

enough to avoid its interaction with the polar solvent (Björkbom et al., 2010; 

Huang & Feigenson, 1999). Additionally, it was recently shown that sterols have a 

higher affinity for SM than for a saturated PC at equal acyl chain order (Lönnfors et 

al., 2011). Thus, the structural similarities between these lipids pointed to their 

hydrogen bonding ability as the determining factor involved. The interfacial region 

of SM has an amide group, a free hydroxyl, and an amide carbonyl, which confer 

SM the ability to act as hydrogen bond donor and acceptor, while PC has two ester 

carbonyls which act only as hydrogen bond acceptors. Consequently, the 

interaction between cholesterol and sphingomyelin could be a stronger one.   

 A lipid that somehow mimics the behavior of cholesterol in membrane 

model systems is ceramide. Its hydroxyl polar headgroup and the possibility to act 

as an electron donor or acceptor for hydrogen bonds, result in a strong interaction 

with lipids such as sphingomyelin. Ceramide is able to segregate into highly-

ordered phases with different packing properties than the gel phases formed by 
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glycerophospholipids and sphingolipids, perhaps due to the high phase transition 

temperature of pure ceramides (around 90 ºC) (Jiménez-Rojo et al., 2014). An 

example of the different packing properties of SM and Cer is observed when giant 

unilamellar vesicles of SM:Cer are observed using confocal microscopy, SM is 

shown stained by the fluorescent probe used, while Cer domains appear in black 

because their highly packed domains exclude the probe (Sot et al., 2006).   

 

Figure 1.12. Representation of liquid-ordered and liquid-disordered phase coexistence, and 

of gel and liquid-disordered phases. A lipid bilayer (yellow), segregated phases (brown), 

cholesterol (blue) and ceramide (red). 

This kind of phase segregation has been extensively studied (Sot et al., 

2006; Busto et al., 2009; Pinto et al., 2011; Castro et al., 2007) and it was proposed 

that the shape and size of ceramide domains arise as a result of a balance between 

the domain line tension and the dipole-dipole repulsion. If the domain line tension 

is the predominant force, round-shaped domains are formed; however, if dipole-

dipole repulsion is the strongest force, flower-shape domains are obtained as a 

result (Perkovic & Mcconnell, 1997). A mixture of DPPC, SM and Chol (liquid 

ordered and disordered phases) (De Almeida et al., 2003) shows round-shape 

domains, while ceramide domains in samples with a gel and fluid phase 

coexistence appear with a flower-shape (Fidorra et al., 2006; Garcia-Arribas et al., 

2015). Several studies have shown how different ceramide domains are if they 

have been premixed with other lipids upon preparation or generated in situ by 

sphingomyelinase. The generation of ceramides upon activation of 

sphingomyelinases gives rise to heterogeneous ceramides located at the 

boundaries of a liquid-ordered phase (Ira & Johnston, 2008; Ira et al., 2009). 

 The high amount of cholesterol and sphingomyelin in the plasma 

membrane, and the fact that sphingomyelin is considered as the main source of 

ceramide stimulated the study of the interaction between these lipids. A relevant 

work in this regard was developed by Megha and London, who observed how 

ceramide displaced cholesterol from the raft-like structure (Megha & London, 

2004). Further studies confirmed the higher affinity of SM for ceramide due to its 

higher hydrogen bonding ability (Chiantia et al., 2006a; Sot et al., 2008; Alanko et 
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al., 2005). More recent studies suggested that other factors could play a key role in 

this interaction when ceramide domain solubilization was observed at higher 

cholesterol concentrations (Silva et al., 2007, 2009). All these results pointed to a 

competition for SM between ceramide and cholesterol, in which cholesterol 

concentration would modulate the formation of ceramide-enriched domains. 

However, Castro et al. (2009) observed how cholesterol and ceramide maintain 

their behavior even in the absence of sphingomyelin, suggesting an interaction 

rather than a competition. Recent studies in our laboratory have explored the 

interaction between these lipids in the absence of a disordered phase (Busto et al., 

2010) and the incorporation of ceramide and cholesterol into bilayers of either 

palmitoylsphingomyelin (pSM) or DPPC (Busto et al., 2014; Garcia-Arribas et al., 

2015). 
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1.5 Aims 

The present thesis is intended to explore lipid-lipid interactions associated 

with the lateral segregation of sphingolipids and cholesterol in membrane model 

systems of three and four components. 

The specific aims of this thesis are the following: 

 To define the structure of pure sphingolipids (egg SM and pSM) through 

their phase transitions in a broad temperature interval using X-ray 

scattering.  

 

 To characterize the interaction between ceramide, cholesterol and a 

saturated phospholipid (pSM or DPPC) in ternary mixtures and analyze 

how the system evolves at different lipid ratios. 

 

 To study the behavior of a three-component system (DOPC, SM, and Chol) 

upon ceramide incorporation and how the presence of unsaturation in the 

acyl chains affects its biophysical properties. 

 

 To describe the mixing behavior of brain glycosphingolipids (cerebrosides) 

in binary mixtures with ceramide, cholesterol, ePC or bSM, using mainly 

differential scanning calorimetry. 

 



 

 

 

 

 

CHAPTER 2: 
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CHAPTER 2: EXPERIMENTAL TECHNIQUES 

2.1 Membrane lipid model systems 

 Lipid vesicles or liposomes have been the main membrane model systems 

used in this work. These are small lipid bilayers of spherical shape which form 

closed structures when they are hydrated in aqueous solution (Bangham & Horne, 

1964). The main reason why many membrane studies rely on model membranes is 

the complexity of cell membranes and the problem caused by the presence of 

molecules like proteins, phospholipids, and sterols when a study of the properties 

and behavior of each component has to be independently observed. Even when the 

liposome results cannot be directly related to a cell membrane, these can be used 

to evaluate the interactions of its membrane components. Liposomes are usually 

prepared of pure lipids, lipid mixtures or lipid-protein mixtures (proteoliposomes) 

and their properties differ considerably with lipid composition, surface charge, 

size, and the method of preparation. 

These systems can be classified according to their size and number of 

lamellae (either unilamellar or multilamellar). Unilamellar vesicles can also be 

classified into three categories: giant unilamellar vesicles (GUV), large unilamellar 

vesicles (LUV), and small unilamellar vesicles (SUV) (Figure 2.1). The main 

difference between unilamellar and multilamellar vesicles is the number of lipid 

bilayers that form the vesicles. A unilamellar vesicle is formed by a single 

phospholipid bilayer sphere that encloses the aqueous solution, while a 

multilamellar vesicle is formed by several unilamellar vesicles inside others 

separated by layers of water, giving rise to an onion-like structure. Additionally, 

these models can be adapted to several other techniques and can be used to 

prepare multilayers, or supported planar bilayers (Gennis, 1989). 
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Figure 2.1. Representation of different sized liposomes and their phospholipid organization. 

(Figure not drawn to scale). 

Biophysical phenomena such as fusion, fission, solubilization, leakage, lipid 

flip-flop, or lipid-protein interactions can be measured using liposomes. 

Additionally, liposomes have diagnostic and therapeutic applications in medicine 

and pharmacology containing markers or drugs, reducing the side effects and 

releasing the drug gradually within the target area (Gregoriadis, 1978; Gregoriadis, 

2008). Liposomes have been extensively tested as drug carriers in anticancer 

therapies (Yingchoncharoen et al., 2016). 

2.1.1. Multilamellar vesicles (MLV) 

Multilamellar vesicles are lipid vesicles usually containing 7 - 10 concentric 

bilayers, displaying an average diameter of around 700 nm, but ranging from 100 

to 5000 nm. Their generation is the simplest and fastest of all liposome formation 

methods. These vesicles can be further treated to form unilamellar vesicles of 

different sizes. A detailed protocol for multilamellar vesicle preparation used in the 

present work is described below (Protocol 1. Figure 2.2). 

In this work, MLV is used to study lipid-lipid interactions in lipid mixtures 

through differential scanning calorimetry (DSC). 
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Protocol 1: Multilamellar vesicles (MLV) 

1) Pure lipid stocks are prepared by diluting lipids in powder in 
chloroform:methanol (2:1 v/v) to the desired concentration. If the stock is 
previously prepared, it is recommended to check the concentration by 
phosphorus determination assay. 
 

2) The desired amount of lipids is pipetted from the stock in organic solution 
into a glass test tube. Then, it is evaporated under a stream of nitrogen gas 
until a lipid film is formed. 

 
3) The sample is introduced into a high-vacuum desiccator for 2 h to 

completely remove any residual solvent that might remain. 
 

4) The dried lipid film obtained is hydrated by addition of the desired buffer 
solution and mixed for lipid detachment from the bottom of the test tube. 
Both sample and buffer are maintained at a temperature above the lipid 
main phase transition temperature in order to obtain a homogeneous MLV 
solution when the sample is mixed by vigorous vortexing. 
 

5) The sample is then sonicated in a bath sonicator at the same temperature 
as hydration for 10 min, in order to obtain a more homogeneous sample.  

 
6) If the lipid mixture is formed by lipids with a high-temperature phase 

transition the hydration step is slightly different. Increasing amounts of the 
buffer solution are added while the sample is stirred with a glass rod. 
Finally, in order to obtain a homogeneous solution, the vesicles are passed 
through a narrow tube (0.5 mm internal diameter, 10 cm long) 50-100 
times between two syringes. 

 

 

Figure 2.2. Outline of MLV formation protocol as explained above. (Figure not drawn to scale). 
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2.1.2. Large unilamellar vesicles (LUV) 

MLV is easy and fast to prepare but its onion-like structure is an important 

drawback. Some biophysical phenomena like leakage or flip-flop motion require a 

single bilayer and the presence of multiple bilayers makes difficult data analysis 

and interpretation. To overcome this issue, unilamellar vesicles are generally used. 

These are classified according to their size: giant unilamellar vesicles (GUV) with a 

micrometer-range diameter, large unilamellar vesicles (LUV) with an average 

diameter between 60 and 500 nm, and small unilamellar vesicles (SUV) with an 

average diameter of less than 60 nm. Each of them differs not only in size but also 

in the method of preparation.  

Large unilamellar vesicles have been used for the leakage and flip-flop 

motion experiments due to their size, which makes curvature stress considerably 

lower than in SUV. When preparing LUV containing a mixture of lipid species, a 

homogeneous lipid distribution through both monolayers in stable lipid vesicles is 

generally obtained. LUV are prepared by mechanical extrusion of MLV suspensions 

through polycarbonate porous filters of the desired size (Mayer, 1986). A protocol 

is detailed below (Protocol 2. Figure 2.3): 

 

Protocol 2: Large unilamellar vesicles (LUV) 

1) Pure lipid stocks are prepared by diluting lipids in powder in 
chloroform:methanol (2:1 v/v) to the desired concentration. If the stock is 
previously prepared, it is recommended to check the concentration by 
phosphorus determination assay. 
 

2) The desired amount of lipids is pipetted from the stock in organic solution 
into a glass test tube. Then, it is evaporated under a stream of nitrogen gas 
until a lipid film is formed. 

 
3) The sample is introduced into a high-vacuum desiccator for 2 h to 

completely remove any residual solvent that might remain. 
 

4) The dried lipid film obtained is hydrated by addition of the desired buffer 
solution and mixed for lipid detachment from the bottom of the test tube. 
Both sample and buffer are maintained at a temperature above the lipid 
main phase transition temperature in order to obtain a homogeneous MLV 
solution when the sample is mixed by vigorous vortexing. 
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5) MLV are subjected to 10 freeze/thaw cycles. In each cycle, the sample is 

immersed in liquid nitrogen for 1 minute. Once frozen, the sample is 
transferred into a water bath at a temperature above that of the lipid in the 
mixture with the highest main phase transition temperature until it is 
defrosted. Then, it is vortexed. 

 
6) The vesicles are finally extruded by passing the sample 10 times through 

polycarbonate filters with the desired pore diameter (usually between 0.1 
and 0.4 μm) in an extruder with the help of nitrogen gas pressure (18-20 
bar). The extruder is maintained at a constant temperature above that of 
the lipid with the highest main phase transition temperature using a water 
bath. 

 
7) Large unilamellar vesicles of the desired size are generated and their size 

checked using dynamic light scattering (DLS). It is recommended to check 
the concentration by phosphorus determination assay due to the loss of 
some lipid within the polycarbonate filters while extruding.  
 

 

 

Figure 2.3. Outline of LUV formation protocol as explained above. (Figure not drawn to scale). 

 

2.1.3. Small unilamellar vesicles (SUV) 

SUV are characterized by the high-stress curvature of their structure due to 

their small diameter (smaller than 60 nm), which induces an asymmetry. The lipid 

concentration is higher in the external monolayer compared to the inner one (F. 

Szoka & Papahadjopoulos, 1980). Their curvature stress makes these vesicles good 

model membranes for the study of membrane fusion- and/or fission-related 

processes (Nieva et al., 1989), in which such stress conditions occur in vivo.  
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Small unilamellar vesicles are prepared sonicating MLV suspensions. This is 

basically done either with bath sonication or by the use of probe tip sonication, 

with Ti probes that are immersed within the MLV suspension for sonication. Bath 

sonicators are often used for the preparation of SUV instead of probe sonicators 

because the latter deliver high energy to the lipid suspension causing overheating 

and degradation. Sonication tips also tend to release titanium particles into the 

lipid suspension which must be removed by centrifugation prior to use.  

In this work, SUV is used to prepare supported planar bilayers (SPB), to be 

measured under atomic force microscopy (AFM). 

 

Protocol 3: Small unilamellar vesicles  (SUV) 

1) Pure lipid stocks are prepared by diluting lipids in powder in 
chloroform:methanol (2:1 v/v) to the desired concentration. If the stock is 
previously prepared, it is recommended to check the concentration by 
phosphorus determination assay. 
 

2) The desired amount of lipids is pipetted from the stock in organic solution 
into a glass test tube. Then, it is evaporated under a stream of nitrogen gas 
until a lipid film is formed. 

 
3) The sample is introduced into a high vacuum desiccator for 2 h to 

completely remove any residual solvent that might remain. 
 

4) The dried lipid film obtained is hydrated by addition of the desired buffer 
solution and mixed for lipid detachment from the bottom of the test tube. 
Both sample and buffer are maintained at a temperature above the lipid 
main phase transition temperature in order to obtain a homogeneous MLV 
solution when the sample is mixed by vigorous vortexing. 

 
5) The sample is then sonicated in a FB-15049 bath sonicator (Fisher 

Scientific Inc., Waltham, MA) at the same temperature as hydration for 1 
hour, in order to obtain SUV. Sonication effects which can be directly 
observed as the vesicle solution becomes transparent. 
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Figure 2.4. Outline of SUV formation protocol as explained above. (Figure not drawn to scale). 

2.1.4 Giant unilamellar vesicles (GUV) 

Giant unilamellar vesicles are used in this work because their size makes 

them suitable for imaging. GUV was first described in 1969 by John P. Reeves and 

Robert M. Dowben (Reeves & Dowben, 1969), who exposed dry lipid films to 

aqueous solutions at temperatures above the lipid main transition temperature for 

24 h. This method has been modified along the years, and nowadays  an electric 

field is used following the method developed by Angelova et al.. (Angelova & 

Dimitrov, 1986; Angelova et al., 1992) (Figure 2.5). Vesicle generation under 

electric fields is strongly dependent on the lipid composition, aqueous solution 

ionic strength and pH, and on the electric voltage and frequency conditions 

(Bagatolli, 2003). In particular, only very low ionic strengths can be used in the 

buffers to prepare GUV under this procedure. However, improvements to this 

method have allowed using physiological salt solutions and even generating giant 

vesicles from erythrocyte membranes (Montes et al., 2007). 

 

Figure 2.5. Liposome electroformation (not drawn to scale). A lipid film is deposited onto 

platinum wires (A) then an electric field is applied to make the lipid bilayers grow (B) and detach 

(C). [Adapted from Angelova and Dimitrov (1986)]. 

Regarding the present work, an important application for the use of giant 

vesicles is the study of lipid lateral segregation by direct confocal microscopy of 

individual vesicles. With this aim, a vesicle generation procedure has been applied 

to obtain giant vesicles attached to a platinum wire for direct microscopy 

measurements. A special chamber designed for direct microscopy is used, based on 
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the design by Prof. Luis A. Bagatolli (University of Southern Denmark, Odense, 

Denmark) (Figure 2.6). A general overview of the procedure is given.  

 

Figure 2.6. Electroformation chamber and polytetrafluoroethylene (PTFE)-made cylindrical 

cells for obtaining GUV attached to platinum wires. 

 

Protocol 4: GUV attached to a platinum wire  

1) Pure lipid stocks are prepared by diluting lipids in powder in 
chloroform:methanol (2:1 v/v) to the desired concentration. If the stock is 
previously prepared, it is recommended to check the concentration by 
phosphorus determination assay. 
 

2) 2-3 μl of the appropriate stock solution are added onto the surface of 
different platinum electrodes attached to specially designed PTFE-made 
cylindrical units. 

 
3) The chamber is covered with aluminum foil to protect fluorescent 

molecules from bleaching, and it is introduced into a high vacuum 
desiccator for 2 hours to remove any remaining solvent traces. 

 
4) Then, the units are fitted into specific holes within a specially designed 

chamber to which a glass cover slide has been previously attached using 
epoxy glue. Once fitted, the platinum wires stay in direct contact with the 
glass cover slide. 
 

5) The chamber is then equilibrated to the desired temperature by an 
incorporated water bath for 15 min. 
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6) Later, the platinum wires are covered with the desired aqueous solution 

(previously equilibrated at the desired temperature) through a small hole 
within the cylindrical polytetrafluoroethylene (PTFE) units, which are then 
covered with tightly fitting caps to avoid evaporation during 
electroformation. 

 
7) The platinum electrodes are connected to a generator and the desired 

electric field applied for 2 hours. Vesicles are then generated attached to 
the platinum wires. Temperature during the assay is always higher than 
that of the lipid with the highest main phase transition temperature. 

 
8) The electric field and water bath are disconnected and vesicles left to 

equilibrate for 30 min. 
 

9) The chamber is finally mounted on top of the microscope and direct 
confocal fluorescence microscopy performed on vesicles attached to the 
platinum wire. 
 

 

 

Figure 2.7. Representative image showing GUV formation protocol explained above. 

2.1.5 Supported planar bilayers (SPB) 

 The generation of supported lipid bilayers on top of solid supports is a 

powerful and largely used model system for the study of lipid domains or lateral 

phase segregation by means of scanning atomic force microscopy (AFM). In this 

work, SPB have been achieved following two protocols: vesicle adsorption method 

and spin-coated film method. 

The vesicle adsorption method is based on the spontaneous liposome 

adsorption upon incubation with specific solid support such as glass or mica. It 
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was adapted for the AFM in 2000 by Jass and collaborators (Jass et al., 2000).  It is 

known that upon incubation liposomes adsorb to the solid support, get deformed 

and break down leading to the generation of a single planar bilayer. The exact 

mechanism by which such an energetically unfavorable process occurs remains 

unclear. A possible explanation has been depicted in Figure 2.8. In this way, 

vesicles will adsorb onto the surface, suffer a strong deformation leading to a 

superposition of bilayer areas from opposing poles on the vesicle and would then 

break down at the edges due to the high curvature stress. A superposition of two 

bilayers would be generated. Finally, the upper bilayer would slide through the 

bilayer on the bottom towards the solid support leading to a homogeneous single 

bilayer patch on top of the solid support. 

 

Figure 2.8. Representative image showing the proposed vesicle adsorption and single 

surface planar bilayer generation. [Adapted from Jass et al.. (2000)]. 

In order to enhance the absorption method a series of guidelines are 

followed: i) small vesicles are preferably used due to their high curvature stress 

because upon contact with the solid support their high instability leads to a good 

adsorption and nice bilayer extensions, ii) the presence of divalent cations such as 

Mg2+ or Ca2+ appears to facilitate as well as increase the rate of planar membrane 

formation from liposomes (Attwood et al., 2013), iii) if the sample is heated at a 

temperature higher than that of the lipid with the highest main phase transition 

temperature a better lipid motion and leaflet coupling would be achieved 

(Alessandrini et al., 2012), iv) after heating, lipids are left to equilibrate at room 

temperature for at least 40 minutes in order to avoid artifacts due to rapid cooling 

(Attwood et al., 2013) and rinsed in calcium-free buffer, as divalent ions are not 

desirable and can affect nanomechanical resistance of SPB (Garcia-Manyes & Sanz, 

2010). Proper rinsing is needed to clean the SPB from extra bilayers, lipid 

aggregates or non-fused vesicles (Oncins et al.., 2005). 
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Protocol 5: Supported planar bilayer formation: Adsorption method  

1) Small or large unilamellar vesicles are prepared as previously described. 
 

2) A sheet of muscovite mica (1.5 x 1.5 cm) is adhered with epoxy glue into a 
glass slide fitting the liquid cell for AFM measurements. 

 
3) The mica surface is cleaved with common scotch tape and mounted on the 

BioCell temperature controller (JPK Instruments, Berlin, Germany). 
 

4) A small amount of assay buffer with divalent ions such as calcium or 
magnesium is added over the mica. 

 
5) A 100 μL 400 μM liposome suspension with 200 μL of assay buffer at a 

temperature above that of the lipid with the highest main phase transition 
temperature is added on top of the mica and left adsorb for 30 min at a 
constant temperature. The sample must be kept hydrated at every moment 
with calcium-free buffer and MilliQ. 

 
6) SPB are left to slowly cool down to room temperature (30-45 min). Then, 

the temperature controller is set to the desired temperature (23 ºC) and 
the SPB are rinsed with assay buffer. Later, the sample is left to equilibrate 
at room temperature for at least 40 minutes. Note: never allow the mica 
surface to dehydrate as the SPB will break down. 

 
7) SPB are generated and ready for scanning under AFM. 

 
 

 

 The vesicle absorption method is used with lamellar fluid phase lipids 

whose temperature phase transition is below 60 °C, the maximum temperature 

reached with our set-up (BioCell, from JPK Instruments). For samples with higher 

temperature phase transitions, another method like spin coating is required. 

 Adam Simonsen and Luis Bagatolli were pioneers in the formation of 

supported lipid bilayers using a spin-coater (Simonsen & Bagatolli, 2004). It was 

developed to solve the problem of working with high transition temperature lipids, 

whose adsorption capacity is quite low. Usually these lipids are made of gel phases 

that also exhibit ceramide-enriched domains, for example, SUV formed by 

pSM:pCer (from 9:1 to 7:3 mol ratios) are unable to extend onto mica surfaces due 

to high transition temperatures (Sot et al., 2006; Busto et al., 2010). Its main 

disadvantage is the formation of stacked extra bilayers that need thorough rinsing 
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to be removed. Nevertheless, spin-coating formation method has been successfully 

used since its development (Fidorra et al., 2006; Nielsen & Simonsen, 2013; Garcia-

Arribas et al., 2015). 

 

Protocol 6: Supported planar bilayer formation: Spin-coating  

1) Pure lipid stocks are prepared by diluting lipids in powder in 
chloroform:methanol (2:1 v/v) to the desired concentration. If the stock is 
previously prepared, it is recommended to check the concentration by 
phosphorus determination assay. 
 

2) The desired amount of lipids is pipetted from the stock in organic solution 
into a glass test tube. Then, it is evaporated under a stream of nitrogen gas 
until a lipid film is formed. 

 
3) The sample is introduced into a high vacuum desiccator for 2 h to 

completely remove any residual solvent that might remain. 
 

4) The dried lipid film obtained is hydrated by addition of 
isopropanol:hexane:water (3:1:1). 

 
5) A droplet (5 – 10 µL) of the spin-coating stock is added onto a freshly 

cleaved mica sheet and spin-coated at 3000 rpm for 40 seconds in a KW-4A 
spin-coater (Chemat Technology, Northridge, CA, USA). 

 
6) Spin-coated film is left under high-vacuum overnight. 

 
7) The sample is transferred to in the BioCell (JPK Instruments, Berlin, 

Germany) and hydrated with 400 µL assay buffer. Then, it is heated at a 
temperature above that of the lipid with the highest main phase transition 
temperature for 30 min.  

 
8) The sample is rinsed thoroughly with hot MilliQ and assay buffer. 

 
9) SPB are left to slowly cool down to room temperature (30-45 min). Then 

the temperature controller is set to the desired temperature (23 ºC). Later, 
the sample is left to equilibrate at room temperature for at least 40 
minutes. Note: never allow the mica surface to dehydrate as the SPB will 
break down. 

 
10)  SPB are generated and ready for scanning under AFM. 
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2.2 Lipid phosphorous concentration assay 

 The method to accurately quantify the phospholipid concentration is based 

on the initial procedure for the quantification of inorganic phosphorus developed 

in 1925 by Fiske and Subbarow (Fiske and Subbarow, 1925), later modified by 

Bartlett (Bartlett et al., 1958) and Böttcher (Böttcher et al., 1961). This approach 

consists of hydrolyzing the phospholipids until the phosphate group is free to 

interact with other reagents, which will color the solution in a concentration-

dependent manner.  

All of the phospholipid stock solutions or liposomes prepared in this thesis 

were assayed following the procedure shown below. Note that some key lipids 

under study such as cholesterol, cerebroside or ceramide cannot be quantified by 

this method. Nevertheless, other methodologies are commercially available for 

cholesterol detection and quantification. 

 

Protocol 7: Lipid phosphorous concentration assay 

1) A calibration curve is prepared pippeting 0, 25, 50, 75, 100 nmol 
phosphorous into duplicate test tubes from Na2HPO4 standard solution. 
 

2) The sample is then pipetted into separate tubes to contain approximately 
50 nmol lipid phosphorous, which will be in the center of the calibration 
curve (at least a triplicate). 

 
3) 500 µL of a 60% perchloric acid (HCl4) are added to each tube. After that, 

all tubes are vortexed and placed into a heating block over 200 oC for 45-60 
minutes. Phospholipid hydrolysis is achieved yielding free inorganic 
phosphate. 

 
4) Tubes are cooled down at room temperature. 4 mL of an ammonium 

heptamolybdate solution (22 g [(NH4)6Mo7O24.4H2O], 143 ml H2SO4, 857 ml 
H2O) and 500 μl of 10% ascorbic acid solution are added to each tube, 
followed by vigorous vortexing. The inorganic phosphate reacts with 
molybdate, which in turns reacts with ascorbic acid generating a yellow-
colored solution. 

 
5) The tubes are placed into a boiling water bath for 7 minutes. The solution 

color is blueshifted depending on the amount of phosphorous. 
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6) Finally, the tubes are cooled down and their absorbance is measured at 812 

nm in a Ultrospec 500 pro spectrophotometer from Amersham Biosciences 
(Piscataway, NJ, USA).  

 
7) To obtain the concentration of our sample, the standard values are plotted 

against the phosphorous concentration and adjusted to a straight line. The 
slope of the curve and the sample absorbance values are used to calculate 
the concentration of interest. 

 
 

2.3 Dynamic light scattering (DLS) 

 Dynamic light scattering (DLS, also known as photon correlation 

spectroscopy or quasi-elastic light scattering) measures the particle size in 

emulsions, micelles, polymers, proteins, nanoparticles, or colloids in suspension, 

which undergo Brownian motion. Particle velocity can be used to measure the 

hydrodynamic radius (Rh) using the Stokes-Einstein equation. 

 

   
    

        
 

 

 where: 

 D = diffusion coefficient.  
 kB = Boltzmann constant. 
 T =  temperature. 
 ρ =  viscosity of the medium. 
 Rh = hydrodynamic radius of 

spherical particles. 

 

DLS extracts information from time-dependent fluctuations of the light 

scattered from a small volume within the sample. When a suspension of particles is 

hit by a beam of light, generated scattered light intensities are measured. These 

intensities provide a correlation function from which, by the use of several 

algorithms, a vesicle size distribution in solution can be obtained (Figure 2.9). 

Information about the homogeneous or heterogeneous vesicle size distribution is 

obtained from a polydispersity index (PDI). The PDI varies between 0 and 1, where 

values close to zero indicate clean homogeneous monodisperse solutions. 
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Figure 2.9. Size distribution plot for an eSM:ePE:Chol (2:1:1) vesicle population extruded 

using 100 nm polycarbonate filters. 

 Measurements have been performed in a Malvern Zeta-Sizer Nano ZS 

(Malvern Instruments, Malvern, UK) with a detection range for sizes between 0.6 

nm to 6 μm and a He-Ne laser beam of 5 mW (λ = 633 nm). 50 μl of the samples 

(0.1-0.2 mM in lipid) were measured in standard acryl-cuvettes at room 

temperature and the scattered light was detected with a photomultiplier placed at 

173o to the beam. The results were analyzed by the commercial software of the 

instrument. 

2.4 Differential scanning calorimetry (DSC) 

 Differential scanning calorimetry (DSC) is a useful technique for measuring 

how the thermodynamic properties of biomolecules, such as proteins, polymers, 

and lipid membranes, change with temperature (Goñi & Alonso, 2006b). Protein 

denaturation, DNA unfolding or lipid phase transition are some of its most 

common applications. 

 A differential scanning calorimeter is composed of two cells: the reference 

(a buffer solution) and the sample (lipid in suspension, usually MLV). To avoid 

signal noise coming from gasses, bubble generation, or liquid boiling, both 

solutions have to be degassed before adding to the cells. These are been closed, 

and then the pressure is increased up to a pre-fixed constant value. The difference 

in temperature between the cells is controlled by a Peltier system, which heats or 

cools the cells at a controlled temperature rate. In an ordinary DSC experiment, 

temperature is varied in the cells until the sample undergoes a physical transition, 

either absorbing (endothermic process) or releasing (exothermic process) energy. 

The system, trying to keep the same temperature in both cells, will absorb or give 

energy to the sample cell. This parameter is given by the calorimeter as heat 

capacity (Cp) in units of energy/temperature. In our case, the results are 
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normalized with the lipid concentration and the Cp units are kcal/mol/oC. The 

amount of energy provided is associated to the phase transition of the lipid and 

represented as Cp against temperature in a thermogram. Three main 

thermodynamic parameters can be obtained from such data: phase transition 

temperature (Tm), phase transition width (ΔT1/2) and phase transition enthalpy 

(ΔH).  

 Tm is usually given at the maximum of the transition, the center in the case 

of symmetric transitions.  

 ∆T1/2 is the transition width in the middle of the transition height. ∆T1/2 

provides information about the molecular cooperativity between lipids 

molecules, a higher cooperativity causing a lower ∆T1/2 value.  

 ∆H measures the amount of heat necessary to complete the phase 

transition, determined by integration of Cp over the whole phase transition. 

 

 

 

Figure 2.10. A DSC thermogram of pure palmitoylsphingomyelin (pSM) and its endothermic 

main phase transition with its associated thermodynamic parameters are shown. A DSC 

thermogram of pSM:pCer (70:30) and its sub-transitions are also shown. 
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In this work, differential scanning calorimetry is used to study lipid-lipid 

interactions. The effects of the lipid addition are studied in binary, ternary and 

quaternary mixtures. The presence of another lipid in the sample changes its phase 

transition: increasing, decreasing, displacing or creating a new one. These samples 

usually give rise to an asymmetric transition, which has to be fitted to different 

symmetric peaks to obtain their thermodynamic parameters. The number of 

different symmetric transition components is related to the lipid regions present in 

the sample. In this way, each transition component will have its own 

thermodynamic parameters. 

 

Protocol 8: Differential scanning calorimetry (DSC) 

1)  Multilamellar vesicles (MLV) are prepared as previously described in 
assay buffer (20 mM PIPES, 150 mM NaCl, 1 mM EDTA, pH 7.4). 
  

2) 5 mL buffer solution are degassed for 30 minutes before adding it into the 
VP-DSC high-sensitivity microcalorimeter (MicroCal, Northampton, MA, 
USA). 

 
3) A buffer scan is performed, under the same conditions to be used with the 

sample, to obtain the reference thermogram. 
 

4) After the first scan, when the microcalorimeter is cooling and equilibrating 
the cells for the next scan, it is possible to exchange the buffer solution for 
the previously degassed sample. 

 
5) Once the sample is inside the sample cell, 7 scans are performed trying to 

reach a constant thermogram.  
 

6) When the scans are finished, the original MLV sample concentration is 
calculated in terms of lipid phosphorous. 

 

7)  Knowing the concentration, ORIGIN 7.0 (Microcal) software provided with 
the microcalorimeter is used to subtract the reference thermogram to the 
last sample thermogram. The resulting thermogram baseline is adjusted 
and normalized using the sample concentration to obtain its 
thermodynamic parameters. 

 



Chapter 2   

 

48 

2.5 Fluorescence confocal microscopy 

 Confocal microscopy was pioneered by Marvin Minsky in 1955 and its 

development resulted in one of the major advances in optical microscopy, making 

possible to generate high-resolution images with less haze and better contrast.   

Epifluorescence microscopy and confocal microscopy differ in the fluorescence 

that reaches the detector. Modern microscopy avoids out-of-focus plane 

fluorescence by the use of a pinhole next to the detector that only allows emission 

from the focal plane to reach the detector, however, when viewed with a 

conventional microscope these images would be blurred.  

Figure 2.11 shows the main components of a fluorescence confocal 

microscope. The sample is excited by a laser beam focused into a dichroic mirror, 

which selects the light that will be directed through an objective into a small spot 

in the sample. Then, emitted fluorescence will be directed across the same dichroic 

mirror into a pinhole that will let in-focus plane fluorescence pass to the detector 

while it blocks out-of-focus fluorescence.  

 Thus, a confocal microscope has the ability to build three-dimensional (3D) 

images using data from the x-y plane. In this way, by precisely controlling the z 

sample movement, 3D images can be constructed. For this purpose, special mirrors 

are introduced.    

 

Figure 2.11. Central components of a fluorescence confocal microscope. 
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Confocal microscopy is commonly used in the characterization of 

membrane lateral heterogeneity in GUV (Bagatolli, 2006). Domain segregation can 

be visualized in giant liposomes using fluorescent probes with differential 

partitioning between domains with different properties. Most fluorescent dyes, 

such as the fluorescently labeled lipid Rhodamine PE or the hydrophobic probe DiI, 

partition favourably into the most disordered domains present in the bilayer, 

while some probes such as napthopyrene show a preference for cholesterol-

enriched domains (Juhasz et al., 2010; Baumgart et al., 2007; Klymchenko & 

Kreder, 2014). There are also probes, for example NBD-ceramide, which distribute 

homogeneously between fluid and gel domains (Sot et al., 2008). However, all such 

fluorescent probes are completely unable to enter the highly rigid ceramide-

enriched domains. 

2.6 Atomic force microscopy 

 Atomic force microscopy (AFM) is a member of the family of scanning probe 

microscopes. AFM was a development of the scanning tunneling microscope (STM) 

invented by Binning and Rohrer in 1982, who received the Nobel Prize in 1986. 

STM scanned the surface at atomic resolution; however, it was limited to 

conducting surfaces because both, the tip and the sample, should be conductive. In 

1986, Binning et al.. invented the atomic force microscope making possible to 

study any kind of surface, including biological samples (Binnig et al., 1986). 

Nowadays, AFM is one of the most powerful techniques to obtain topographical 

information of biological membranes at a lateral resolution of less than 1 nm and a 

vertical resolution between 0.1 and 0.2 nm. The set of biological samples ranges 

from the smallest biomolecules (phospholipids, proteins, DNA, RNA) to subcellular 

structures (membranes), all the way down to living cells and tissues. Furthermore, 

AFM allows the analysis of mechanical, chemical or functional properties.  

The basic principle of AFM is that a probe, which is mounted at the end of a 

cantilever, is maintained in contact with the sample surface across the x-y axis and 

the sample topography is obtained by the movement of the probe over the surface. 

The movement of the probe is controlled by a scanner (piezoelectric material). The 

interaction between the sample and the tip is measured with a laser beam, which is 

focused on the top-end of the cantilever. The beam is reflected towards a position-

sensitive four quadrant photodetector by the use of a mirror. The signal from the 

photodetector passes through a feedback circuit, which relates the movement in z-

axis needed by the scanner to maintain the cantilever deflection constant with the 

sample topography. 
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Figure 2.12. Basic principle of atomic force microscopy measurements. 

The tip and the cantilever play a crucial role in AFM. The quality of the data 

and the resolution of the AFM depend to a large extent on them. The material being 

machined of, its shape, the coating, the spring constant and its resonance 

frequency among other characteristics have to be specifically selected for a tip to 

work with during each assay. Silicon nitride cantilever chips are normally used to 

work in liquid, with typical spring constants ranging from 0.01 N/m to 100 N/m. 

However biological sample softness limits the force applied during the imaging 

process so the recommended spring constant is below 1 N/m (usually between 

0.01-0.5 N/m). Tips can be rectangular or triangular, and usually have a metal 

coating for increased reflectivity. Nowadays, the technique has evolved in such a 

way that tips can be functionalized with specific molecules or even cells for the 

measurement of protein-protein or cell-cell interaction studies. 

The correct selection and preparation of the support is also an important 

element in AFM measurements. In 1994, Schabert and Engel described a method to 

prepare support for AFM in which the support is glued to a teflon disc. The teflon 

repels the fluid droplet and contains it on the mica support. In our case, muscovite 

mica (Mica) glued to a coverslip is used in our experiments. Mica has to be 

atomically flat prior to sample incubation, upon cleavage of the upper sheets, and 

clean to avoid a poor image resolution. Hydrophobic, highly oriented pyrolytic 

graphite (HOPG) and glass are also commonly used as supports.  

When imaging samples in aqueous media, the absorption of the sample 

depends on the buffer conditions, which needs optimal pH and ionic strength. 

Furthermore, the scan speed, scanning angle and/or the force applied by the tip on 

the sample must be properly controlled. Please refer to reviews: Alessandrini and 

Facci (2005); Goldsbury, Scheuring, and Kreplak (2009) for a more extended 

overview. 
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Figure 2.13. AFM height profile along the thick black line in B. Ceramide-enriched domains 

in a gel-like phase state (approximately 2 nm) can be observed (A). AFM image of pSM:pCer 

(70:30)(B). 

The force applied between the sample and the tip during imaging is related 

to the operation modes in AFM. Measurements can be performed under two 

different modes: contact or intermittent, also denoted as tapping mode. The 

principal characteristics of both modes are described: 

Contact mode: In this mode, the force between the sample and the tip is 

always repulsive and the tip is physically in contact with the sample. The 

force applied is maintained constant during scanning and the topography is 

obtained by recording the piezo-vertical movement required to keep the 

force constant. The highest resolution is obtained; however, the high force 

applied can damage soft samples. Lateral deflection is also measured, to 

give information about the friction between tip and sample, which greatly 

depends on the physical properties of the sample. Thus, areas with different 

chemical compositions can be distinguished even when displaying no height 

differences. The error signal is also measured during the scan; this reflects 

the vertical deflection of the cantilever and shows contrast at the edges of 

areas with different heights. 

Intermittent mode: In this mode, the tip is not always in contact with the 

sample, therefore both attractive and repulsive forces are present, and it is 

less aggressive with the sample. The oscillation of the cantilever at its 

resonance frequency plays an important role in this mode. When the tip is 

in contact with the sample, a change in its signal amplitude is observed and 

the feedback signal required to maintain the signal amplitude constant will 

be used to obtain the topography. Its development made possible the 

analysis of soft samples and the use of stiffer cantilevers.  
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 The measurement of molecular interaction forces or even the surrounding 

solvent environment using force spectroscopy mode is also possible. The force 

curve is a single molecule experiment and is the AFM tool used to characterize our 

samples. In this experiment, the tip is approached to the sample with an increasing 

force and then retracted, resulting in a force curve as shown in Figure 2.14. How 

the van der Waals interactions and the electrostatic and steric-hydration forces 

influence the approaching process and how an increasing force, applied over the 

sample, affects its elastic and plastic regime can be observed using this tool. Garcia-

Manyes and Sanz (2010) is recommended for a review about the approaching and 

retracting process and to study the effect of additional parameters like 

temperature or ionic strength (Garcia-Manyes & Sanz, 2010). 

 The indentation process is summarized in Figure 2.14 (A). The tip is 

approached and exerts pressure atop the SPB until the bilayer is pierced by the tip. 

Finally, the tip is retracted using the same way that was already opened by the 

approaching process. Panel B shows a force curve generated by the software after 

the indentation process. When the tip and the sample are in contact the 

electrostatic and steric-hydration forces have been overcome, and the sample is 

deformed elastically until a force is reached and the tip pierces the bilayer. The 

force that the membrane is able to withstand before breaking is called 

breakthrough force (Fb) and it is shown as a step in the force curve. It can be 

related to the mechanical stability of the bilayer. After that, the tip presses the mica 

in a linear plastic regime until the maximum (defined) force is reached. The 

retracted curve can show hysteresis when the tip adheres to the sample, which 

depends on the bilayer and tip chemistries.  
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Figure 2.14. Outline of the indentation process of a supported planar lipid bilayer (A) and 

information about the different areas that can be found in the generated force curve (B). 

[Adapted from Garcia-Manyes and Sanz (2010)]. 

  

In our case, AFM is used to measure the topography of supported lipid 

bilayers of different compositions and compare the formation of lipid domains 

within them (Chiantia et al., 2006a; Connell & Smith, 2006). After imaging, force 

spectroscopy is applied to obtain the breakthrough force, which is the force that 

the membrane is able to withstand before being indented. It is a measurement of 

the nanomechanical stability and it is used to characterize supported planar 

bilayers and evaluate the differences under the same conditions of ionic strength 

and temperature. As mechanical stability can act as a ‘fingerprint’ of a lipid 

mixture, a change in the lipid mixing ratios will supply information about the 

evolution of our system. 
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2.7 Fluorescence anisotropy 

Photoselective oxidation of fluorophores by polarized light is the basis of 

fluorescence anisotropy. This technique shows how the rotational diffusion of a 

fluorophore changes in an excited state. Consider a homogeneous solution in 

which all fluorophores in a ground-state are oriented randomly. When these 

fluorophores are exposed to polarized light, those fluorophores whose absorption 

transition dipole is parallel to the electric vector of the excitation will be excited. At 

this moment, the excited-state population is partially oriented and its emission will 

be polarized too. Nevertheless, there are several phenomena that decrease the 

value of anisotropy, e.g. energy transfer or rotational diffusion. Rotational diffusion 

changes the direction of these transition moments during the lifetime of the 

excited state. 

 

Figure 2.15. Fluorescence anisotropy. Fluorophores are exposed to polarized light and 

are excited (A). Fluorophores with a slow rotation will have a highly polarized emission with a high 

anisotropy value (B). Rotation diffusion decreases the polarization and the polarized emission and 

anisotropy value are lower (C).   

Fluorescence anisotropy measurements are carried out with vertically 

polarized light. In the beginning, the sample is exposed to this light and the 

emission intensity is measured through a polarizer. If the sample emission 

intensity and the polarized excitation intensity are oriented, parallel    is obtained, 

but if the orientation is perpendicular the intensity obtained is   . Fluorescence 

anisotropy value is calculated using the equation (Lakowicz, 2006): 
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When the emission intensity is completely parallel to the polarized light   = 

0, and r =1. This situation can be observed with scattered light and oriented 

samples. However, if the emission is completely depolarized         and r = 0. 

The method used to measure anisotropy when the fluorometer has a single 

emission channel is the L-Format or Single-Channel method. In this case, the 

emission is observed using a monochromator. The monochromator usually has 

different transmission efficiency for vertically and horizontally polarized light. The 

intensities measured are not exact but are proportional to the transmission 

efficiencies of the monochromator. In fact, the intensities measured and the true 

values differ by a factor G, which is the relation between the sensitivities of the 

detection system by vertically (SV) and horizontally (SH) polarized light. Factor G is 

calculated using horizontally polarized excitation doing both the horizontally and 

vertically polarized components equal and proportional to   .  

  
       

        
 

  
  

  

The measurement of fluorescence anisotropy is widely used in biochemical 

research. For example, anisotropy measurements can be used to measure the 

association of proteins with other macromolecules. As these measurements are 

rapid and simple they can be used to study reaction kinetics occurring in fractions 

of a second, like the unwinding of DNA by helicase. Furthermore, fluorescence 

measurements can also be used to study biological membranes. The steady-state 

polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) is commonly used to study 

phase transition temperatures, which allow us to determine the order of lipid 

bilayers. When DPH is present in an ordered bilayer, its movements will be 

restricted and a high anisotropy will be observed, however, if DPH is in a 

disordered bilayer a low anisotropy will be observed. 

In this work, DPH has been used to study the anisotropy changes during 

different phase transition temperatures and how the presence of cholesterol 

affects these samples. These experiments have been measured with MLV at 0.2 mM 

plus 1 mol% DPH using a 1-cm path length quartz cuvette in a QuantaMaster 40 

spectrofluorometer (Photon Technology International, Lawrenceville, NJ) under 

continuous stirring. DPH was excited at 360 nm and its emission recovered at 430 

nm. The anisotropy was calculated by the software (PTI FelixGX), automatically 

corrected for factor G. 
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2.8 Membrane polarization (Laurdan assay) 

 Laurdan (6-lauroyl,1-2-dimethylaminonaphthalene) is one of the most used 

sensitive dyes based on a naphthalene structure, designed and synthesized by 

Weber in 1979 (Weber & Farris, 1979). Laurdan has an electron donor (alkyl 

amino group) and an acceptor (acyl substituted carbonyl group) in position 2 and 

6, which confer a dipole moment due to its partial charge separation in polar 

solvents (Sanchez et al., 2007). 

 

Figure 2.16. Laurdan molecule structure (A). Laurdan emission spectra (B). More ordered 

(black); less ordered (blue). 

  When Laurdan is excited, its dipole moment increases and may cause 

reorientation of the surrounding solvent dipoles. This reorientation decreases the 

energy of its excited state and a shift in its emission spectrum is observed. The 

General Polarization (GP) function was proposed by Parasassi in 1990 and it is 

used to study this displacement (Parasassi et al., 1990). 

    
         
         

 

 where: 

 I440 = emission intensity at 440 nm. 

 I490 = emission intensity at 490 nm. 

 Theoretically the values for the GP function vary from +1.0 and -1.0; 

however, experimentally they range from +0.6 to -0.3. For membranes in a gel 
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phase, the emission maximum is centered at 440 nm with a GP value that ranges 

from 0.5 to 0.6, while for membranes in liquid phase GP goes from +0.3 to -0.3, 

with an emission maximum around 490 nm. 

 The spectral shift of Laurdan can be used to study the lipid order in cellular 

membranes or to detect the lipid main phase transition, among other applications. 

Protocol 9: Membrane polarisation (Laurdan assay) 

1) Prepare multilamellar vesicles (MLV) as previously described with 1 mol% 
Laurdan in assay buffer (20 mM PIPES, 150 mM NaCl, 1 mM EDTA, pH 7.4). 
  

2) Acquire fluorescence spectra using a Quanta Master 40 spectrofluorometer 
(Photon Technology International) under the following conditions:  
* λex = 360 nm  
* λem = 400- 600 nm 

 

2.9 Vesicle content efflux measurements (Leakage assay) 

 One of the main functions of lipid bilayers is to act as natural barriers 

creating a non-selective permeability barrier. This technique measures the ability 

of particular molecules such as detergents, pore-forming proteins, and lipids to 

permeabilize the vesicle lipid bilayer using a fluorescence probe as an indicator. 

Detergent addition to the sample causes the solubilization of vesicle regions 

through which entrapped fluorescent molecules are externalized. This approach is 

of great interest for instance in the characterization of the pore and/or channel 

forming molecules. Nevertheless, in the present study, the solubilizing effects of 

different lipids were tested by following the externalization of the low molecular 

weight 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS) fluorescent molecules 

and its quencher p-xylene-bis-pyridinium bromide (DPX) (Ellens et al., 1985). 

 When ANTS and DPX are encapsulated inside the vesicles, their proximity 

allows DPX to interact with ANTS, quenching its fluorescence. The addition of a 

permeabilization agent causes the slow externalization of the fluorophores. Now, 

ANTS fluorescence can be measured because of the dilution of the fluorophores 

into the external medium, decreasing their interaction. Finally, Triton addition 

gives us information about the percentage of leakage observed (Goñi et al., 2003; 

Nieva et al., 1989). An outline of the ANTS-DPX assay is shown in Figure 2.17. 
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Figure 2.17. Outline of the vesicle content efflux measurement (leakage assay). 

 

Protocol 10: Vesicle content efflux measurements (Leakage assay) 

1) Large unilamellar vesicles (LUV) are prepared as previously described in 
the following buffer containing both ANTS and DPX (20 mM ANTS, 70 mM 
DPX, 10 mM Hepes, 40 mM NaCl, pH 7.4). A high DPX/ANTS ratio is used to 
ensure complete quenching inside the vesicles. Samples are covered with 
aluminum foil to protect fluorescent molecules from bleaching. 

 
2) The vesicle suspension is passed through a Sephadex G-25 column to 

remove non-entrapped ANTS and DPX molecules using an isoosmotic 
buffer solution (10 mM Hepes, 150 mM NaCl, pH 7.4), previously adjusted. 

 
3) Lipid concentration is determined using the lipid phosphorous 

concentration assay as previously described. 
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4) 10 mol% permeability agent (e.g. ceramide) is added to 0.1 mM vesicles in 

a 1-cm path length quartz cuvette and leakage is followed in terms of ANTS 
fluorescence in FluoroMax-3 spectrofluorometer (Horiba Jobin Yvon, 
Edison, NY), under continuous stirring with the following conditions: 
 
 λex: 355 nm 
 λem: 520 nm 
 Interference filter at 515 nm. 
 0% release: Initial fluorescence of pure vesicles. 
 100% release: Fluorescence after complete vesicle solubilization with 

Triton X-100 10% detergent. 
 

To calculate the amount of leakage the following equation is used: 
 

             
      

         
      

 
F= Fluorescence at the end of the time course. 
F0 = Fluorescence of vesicles at time zero. 
F100 = Maximum leakage (after Triton-X addition). 

 

 

2.10 Lipid transbilayer movement (Flip-flop assay) 

 The rapid movement of lipids across the membrane is needed in order to 

maintain the symmetric (endoplasmatic reticulum, ER) or asymmetric (plasma 

membrane) lipid distribution. Their movement is usually very slow due to the 

unfavorable transit of a polar headgroup through a hydrophobic area (Kornberg & 

Mcconnell, 1971) and requires the action of lipid transport proteins, flippases, to 

increase the movement across the membrane using the energy of ATP hydrolysis. 

However, some lipids as ceramides, cholesterol or diacylglycerol, composed of a 

simple hydroxyl moiety as a headgroup, have a fast transbilayer movement by 

themselves.  

 In order to study the transbilayer movement of different lipids, N-(7-

nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoetha-

nolamine (NBD-PE) is used. NBD-PE is a phosphatidylethanolamine whose 

headgroup is labeled with the fluorophore NBD. Once NBD-PE is symmetrically 

distributed across the vesicle, a sodium dithionite solution is slowly added to 

reduce the NBD NO2 groups present in the outer leaflet of the vesicle into amine 

groups, and abolish its fluorescence transforming the NBD group to a non-
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fluorescent derivative termed ABD (McIntyre & Sleight, 1991). After that, the 

sample must be passed through a Sephadex G-25 (GE Healthcare, UK) to remove 

the sodium dithionite excess, which tends to permeate after a short time. NBD-PE 

movement from the inner to the outer leaflet is promoted adding different lipids to 

the solution. Finally, sodium dithionite is used to confirm the transbilayer 

movement reducing the NBD groups present in the outer leaflet. 

 

 

Figure 2.18. NBD-PE flip-flop measurements. The probe is symmetrically added to the vesicles. 

NBD-PE translocation is confirmed by the loss of fluorescence when sodium dithionite is added. If 

there is no translocation, the fluorescence value remains constant.  
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Protocol 11: Lipid transbilayer movement (Flip-flop assay) 

1) Large unilamellar vesicles (LUV) are prepared as previously described with 
0.6 mol% NBD-PE in buffer (10 mM Hepes, 150 mM NaCl, pH 7.4). Samples 
are covered with aluminum foil to protect fluorescent molecules from 
bleaching. 

 
2) 0.6 mM sodium dithionite is added to reduce the NBD groups present in the 

outer leaflet of the vesicle. Fluorescence reduction is monitored in an 
Aminco-Bowman (Urbana, IL) AB-2 spectrofluorometer using a 1 mL 
quartz cuvette with continuous starring. 

 
3) The vesicle suspension is quickly passed through a Sephadex G-25 column 

to remove the excess sodium dithionite and to avoid the reduction of the 
inner leaflet NBD groups. 

 
4) Lipid concentration is determined using the lipid phosphorous 

concentration assay as previously described. 
 

5) 0.1 mM vesicles are incubated with 10 mol% lipid for 30 minutes. After 
incubation, 50 µL 0.5 mM sodium dithionite are added and flip-flop is 
followed in terms of NBD fluorescence in Aminco-Bowman (Urbana, IL) 
AB-2 spectrofluorometer, under continuous stirring under the following 
conditions: 
 
 λex: 463 nm 
 λem: 536 nm 
 Interference filter at 515 nm. 

 
To calculate the amount of flip-flop the following equation is used: 
 

                 
  
  

      

 
FR= Fluorescence after sodium dithionite addition. 
F0 = Fluorescence before sodium dithionite addition. 
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2. 11 X-ray scattering 

X-ray scattering is a powerful non-invasive technique, which is commonly 

used to characterize structures of materials (polymers and fibers) and biological 

systems as lipids. In X-ray-scattering experiments, a laser beam strikes the sample 

of interest and the scattered radiation intensity is collected by a detector at given 

scattering angles with respect to the incident radiation direction.  

In our case, through a collaboration with S. Tristram-Nagle (Carnegie 

Mellon University, Pittsburgh, USA), we have used their X-ray scattering setup to 

obtain diffuse scattering data that yields not only structure but also elastic 

parameters of N-palmitoyl-D-erythro-sphingosylphosphorylcholine (pSM) and egg 

sphingomyelin (eSM) vesicles. The X-ray pattern provides information about the 

sample structure, as the bending modulus (kc) and the order parameter Sxray in the 

fluid phase and the area per lipid (AL), the bilayer thickness (DB) and the tilt angle 

in the gel phase. 

In the present work, samples measured were either oriented or unoriented. 

Oriented samples were prepared by the “rock and roll” method, which was 

designed in Tristram-Nagle´s group (Tristram-Nagle 2007). X-ray scattering setup 

consists of a Rigaku rotating anode and a CCD detector. Low angle X-ray scattering 

(LAXS) and wide angle X-ray scattering (WAXS) were obtained from a Rigaku 

RUH3R rotating anode. Wavelength was 1.5418 Å, and sample-to-detector (S)-

distance was 280.6mm (LAXS) or 133.7mm (WAXS). Data were collected using a 

Rigaku (The Woodlands, TX, United States) Mercury CCD array detector 

(1024×1024, 68 μm pixels) for 5 or 10 min. Temperature was controlled using a 

Julabo Model F25 circulating water bath. Data analysis for the ripple phase was 

performed using TiffView software. Brief protocols for sample preparation are 

given: 

Protocol 12: Oriented sample preparation by the “rock and roll” method 

1) To prepare the substrate, the Si wafers have to be bathed with a mixture of 
sulfuric and chromic acid in a Petri dish for 1 hour. Then, the wafers are 
cleaned with water. Finally, Si wafers are bathed with chloroform in a glass 
Petri dish inside the glove box and rubbed with a cotton swab. Thus a 
chloroform-saturated atmosphere is created in the glove box. The Si wafers 
are sometimes rubbed with a Kimwipe in the final step to remove any 
remaining residue, and any lint is carefully blown away with a small rubber 
bulb. 
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2) Lyophilized lipid is weighed using an analytical balance and placed into a 

disposable, small glass test tube. Disposable test tubes are used to assure 
cleanliness. 400 µL Chloroform:2,2,2-Trifluoroethanol (TFE) (1:1) are 
added to solubilize the lipid. 

 
3) In the glove box, the lipid in solvent is poured onto the substrate with 

rocking and rolling. As the sample dries, a higher angle of rocking (up to 
90°) may be required in order to induce the now-viscous solution to move 
down the wafer. The rocking continues until the rolling of lipid in solvent 
over the surface stops; at this point the substrate is removed from the 
sticky tack and placed onto a flat surface in the glove box, which is why flat 
substrates work best. The entire process takes about 5 min. The film is left 
to dry for 2 hours in the hood to ensure complete removal of the solvent. 

 
4) If the film is completely smooth, well oriented, and homogeneous, the 

sample is prehydrated at close to 100% relative humidity (RH) in a 
polypropylene hydration chamber at 60 °C for 2 h and allowed to slowly 
cool to room temperature. 
 

5) Approximately 10 μm thick samples were trimmed to leave 5mm (in the 
direction of the X-ray beam) by 30 mm (to provide many locations for the 
∼1 mm wide beam to minimize radiation damage), using a fresh single-
edge razor blade, followed by wiping off any remaining lipid with a dry 
cotton swab. 

 

 

Protocol 13: Unoriented sample preparation 

1) 2–10 mg of lyophilized lipid is mixed with 100 μL of MilliQ water. 
 

2) Then, the sample is hydrated by vortexing and temperature cycling 3 times 
between 60 °C and 0 °C to form multilamellar vesicles (MLV).  

 
3) Hydrated lipids are mildly centrifuged using a desk-top centrifuge in a 

glass test tube at 1000 rpm for 10 min and the concentrated lipid is loaded 
into 1 mm diameter thin-walled X-ray capillaries (Charles Supper 
Company, Natick, MA) and flame-sealed.  

 
4) Finally, the X-ray capillaries are centrifuged in a capillary holder at 1000 

rpm for an additional 2 min to further concentrate the lipid in the beam. 
The final ratio of water to lipid was at least 2:1 so the MLV was fully 
hydrated as evidenced by their contact with excess water in the capillary. 
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Protocol 14: Volumetric sample preparation 

1) 10-50 mg of lyophilized lipid is added to 1.204 g MilliQ water. 
 

2) Then, the sample is hydrated by vortexing and cycling three times between 
60 ºC and 0 ºC. 
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CHAPTER 3: PHASE BEHAVIOR OF PALMITOYL AND 

EGG SPHINGOMYELIN 

3.1 Introduction 

The major lipids in biological membranes are glycerophospholipids, 

sphingolipids and sterols. While sphingolipids include glycosphingolipids and 

sphingomyelins (SMs), the latter are the most abundant sphingolipids in 

mammalian cells (Van Meer et al., 2008) reaching concentrations of 15% of the 

total phospholipid content in the outer leaflet of the plasma membranes (Shaw et 

al., 2012). Structurally, SMs are similar to phosphatidylcholines (PCs) in that both 

lipids have phosphatidylcholine as the polar headgroup and both have long 

hydrocarbon tails, but there are considerable differences in the linkages to these 

parts of the lipids (Ramstedt & Slotte, 2002). 

Recent interest in SMs arises from their interaction with cholesterol in 

generating cholesterol-rich lateral membrane domains, their specific binding to 

and regulation of particular membrane proteins, and their involvement as 

precursors to simpler sphingolipids in cell signaling events (Goñi & Alonso, 2006c; 

Slotte, 2013). The preferential mixing of sterols with SMs over PCs is mainly 

attributed to two properties: Firstly, SMs usually have saturated or trans-

unsaturated tails and they apparently pack more tightly (Van Meer et al., 2008); 

secondly, the amide and hydroxyl groups in SMs can act as hydrogen bond donors 

and acceptors, so they can form both intra- and intermolecular hydrogen bonding 

(Slotte, 2016; Venable et al., 2014). 

Since pure SMs are more expensive than pure PCs, many experimental 

studies of systems involving them are performed using natural SM extracts e.g., 

egg, brain and milk SMs, which have mixtures of hydrocarbon chains. On the other 

hand, simulation studies use pure SM lipids with homogeneous chains. ESM stands 

out as the most homogeneous of the natural SMs; it has predominantly 86%  N-

palmitoyl (16:0) acyl chain (Filippov & Ora, 2006) with 93% of the sphingosine 

(18:1) long-chain base (Ramstedt & Slotte, 1999). Therefore from the viewpoint of 
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composition, eSM is the closest natural extract to the pure palmitoyl 

sphingomyelin (pSM), so experimental properties using eSM are frequently 

compared to simulation studies using pSM (Niemela et al., 2004); such 

comparisons should be made carefully, especially as the main transition 

temperature of pSM (Tm=41°C) (Barenholz et al., 1979) is somewhat  higher than 

for eSM (Tm = 38 °C) (Jiménez-Rojo et al., 2014).  This chapter will further address 

differences between eSM and pSM. 

Even the nature of the generic SM main transition has been unclear.  By 

analogy with saturated PC lipids, the transition is often inferred to be from ripple 

phase to fluid (liquid-crystalline or liquid-disordered) phase if a pretransition is 

observed and gel-to-fluid phase if it is not. Many thermotropic studies did not 

observe a pretransition, either in pSM (De Almeida et al., 2003; Maulik & Shipley, 

1996), or in eSM (Mannock et al., 2003; Steinbauer et al., 2003; Veiga et al., 2001; 

Chien & Huang, 1991; Filippov & Ora, 2006; García-Arribas et al., 2016c; Jiménez-

Rojo et al., 2014; Mckeone et al., 1986; Epand & Epand, 1980; Rujanavech et al., 

1986; Anderle & Mendelsohn, 1986; Arsov & Quaroni, 2008), and have described 

the transition as a gel-to-fluid (liquid-crystalline or liquid-disordered) phase. 

 In other pSM studies (Barenholz et al., 1979; Calhoun & Shipley, 1979a) a 

pretransition was observed using DSC. Turning to structural studies one of the first 

low- and wide-angle X-ray scattering (LAXS and WAXS) studies on pSM reported a 

gel phase structure below Tm despite observing a pretransition using DSC (Calhoun 

& Shipley, 1979a). Maulik & Shipley (1996) also reported no X-ray evidence for a 

ripple phase in pSM. However, other X-ray studies have reported that eSM is in a 

ripple phase below Tm (Chemin et al., 2008; Quinn & Wolf, 2009a; Shaw et al., 

2012).  All of these X-ray studies employed unoriented MLV samples where ripple 

reflections are either small or weak. By contrast, X-ray diffraction from oriented 

lipid samples is particularly well suited to differentiate between flat gel or 

interdigitated phases and the ripple phase (Akabori & Nagle, 2015; Guler et al., 

2009; Katsaras et al., 2000; Sun et al., 1996a). To clarify the above mentioned 

differences in the literature for both eSM and pSM individually, as well as what the 

actual differences are between eSM and pSM, the aim of this work is to 

characterize the structure of the phases, particularly for T < Tm, using oriented 

hydrated samples. 

Furthermore, the interaction between eSM and eCer has been studied using 

15 mol% and 30 mol% egg ceramide in binary mixtures. Their phases are 

characterized in a broad temperature interval through their main phase transition 

(Sot et al., 2006) to observe how the presence of ceramide affects to the ripple 

phase of eSM. Additionally, the suitability of X-ray scattering to study the 

formation of ceramide domains is tested. 
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3.2 Materials and methods 

3.2.1 Materials 

 Egg sphingomyelin (Lot Egg-SM 860061-01-115) (eSM) palmitoyl 

sphingomyelin (pSM) (Lot 860584-01-017), and egg ceramide (eCer) (Lot ECER-

18) were purchased from Avanti Polar Lipids (Alabaster, AL) and used as received. 

Avanti estimates 1–1.5% L-erythro impurity, no D- or L-threo impurity, and 

greater than 99% purity with respect to total sphingomyelin content in PSM, 

whereas as much as 10% L-threo may occur when synthesizing by hydrolysis of 

natural SM. HPLC organic solvents were purchased from Sigma/Aldrich (St. Louis, 

MO).  

3.2.2 Sample preparation 

Oriented samples. 4 mg of lyophilized lipid was dissolved in 200 mL 

chloroform:TFE (1:1) (v/v) and plated onto a silicon wafer (15x30x1 mm) via the 

rock and roll method (Tristram-Nagle, 2007) to produce stacks of ~1800 aligned 

bilayers (Tristram-Nagle et al., 2002). Solvents were removed by evaporation in a 

fume hood, followed by 2 hours under vacuum at room temperature. The oriented 

samples were prehydrated at close to 100% RH (relative humidity) in a 

polypropylene hydration chamber at 60 °C for 2 hours and allowed to slowly cool 

to room temperature. Thin layer chromatography indicated no degradation due to 

this annealing procedure.  Approximately 10 μm thick samples were trimmed to 

leave 5mm (in the direction of the X-ray beam) by 30 mm (to provide many 

locations for the 0.5 mm wide beam to minimize radiation damage). 

 Unoriented samples. 2-10 mg of lyophilized lipid was mixed with 100 µL of 

MilliQ water.  Samples were hydrated by vortexing and temperature cycling 3 

times between 60 °C and 0 °C to form multilamellar vesicles (MLV).  Hydrated 

lipids were mildly centrifuged using a desk-top centrifuge in a glass test tube at 

1000 rpm for 10 minutes and the concentrated lipid was loaded into X-ray 

capillaries (Charles Supper Company, Natick, MA) and flame-sealed.  The X-ray 

capillaries were centrifuged in a capillary holder at 1000 rpm for an additional 2 

minutes to further concentrate the lipid in the beam. The final ratio of water to 

lipid was at least 2:1 so the MLVs were fully hydrated as evidenced by their contact 

with excess water in the capillary.  

 Volumetric samples. 48.9 mg lyophilized eSM was added to 1.204 g MilliQ 

water and hydrated by vortexing and cycling three times between 60 and 0 °C. ~10 
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mg lyophilized pSM was added to ~1.1 g MilliQ water and hydrated by vortexing 

and cycling three times between 60 ºC and 0 ºC.   

3.2.3 X-ray Scattering 

Oriented stacks of membrane mimics were hydrated through the vapor 

phase in a temperature-controlled hydration chamber described in (Kucerka et al., 

2008). Low angle X-ray scattering (LAXS) and wide angle X-ray scattering (WAXS) 

were obtained from a Rigaku RUH3R rotating anode as described in (Tristram-

Nagle et al., 2002, 1994).  Wavelength was 1.5418 Å, and sample-to-detector (S)-

distance was 280.6 mm (LAXS) and 133.7 mm (WAXS).  Data were collected using 

a Rigaku (The Woodlands, TX) Mercury CCD array detector (1024x1024, 68 µm 

pixels) during 5- or 10-minute dezingered scans.  Temperature was controlled 

using a Julabo Model F25 circulating water bath.  Data analysis for the ripple phase 

was performed as in (Sun et al., 1996a; Akabori & Nagle, 2015) using our 

proprietary TiffView software. 

3.2.4 Volume measurements 

The 4.1% aqueous eSM or ~1% aqueous pSM suspension was loaded into 

the Anton-Paar 5000M DMA scanning density meter and heated at 12 degrees/h.  
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3.3. Results 

3.3.1 Characterization of pure eSM and pSM 

Figure 3.1 A shows the typical X-ray pattern obtained for eSM. Oriented 

samples clearly show off-specular peaks below Tm, indicated by white arrows; such 

peaks are required for in-plane periodicity that occurs for the ripple phase. The 

peaks are arranged symmetrically around the meridian because the sample is a 

powder average, in-plane only. This rippled pattern was present at every 

temperature investigated in this work from 3 to 35 °C.  Additional oriented eSM 

data are shown in the Supplementary Material (Figures 3.S1 – 3.S8).  Following the 

literature (Akabori & Nagle, 2015; Sun et al., 1996a; Wack & Webb, 1989) these 

peaks can be indexed as (h,k) where the (h,0) peaks are the usual lamellar peaks 

that occur on the meridian with qr=0.  The ripple side peaks are labeled with the k 

index.  In Figure 3.1 A, the visible side peaks are, from the top, (4,-2), (3,-1), (3,-2), 

(2,-1), (1,-1) and a weak (1,1).  Figure 3.1 B shows that eSM is also in the ripple 

phase at 35 °C. 

 

Figure 3.1.  LAXS data from oriented eSM. Overnight equilibration at 3 °C (A), followed by 

equilibration at 35 °C (B).  White arrows in A point to the off-specular peaks. D-spacing is 60.3 Å in 

A and is 65.8 Å in B.  
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Figure 3.2 shows LAXS data for pSM. At 37 °C (Figure 3.2 B) pSM is clearly in 

the ripple phase, however, at 3 °C (Figure 3.2 A) the absence of side peaks is 

consistent with a gel phase.  In Figure 3.2 A, arcs with FWHM ~6°, instead of spots, 

are due to mosaicity (Nagle et al., 2016). Additional oriented pSM data are shown 

in the Supplementary Material (Figures 3.S9-3.S15). 

 

 

Figure 3.2.  LAXS data from oriented pSM. After overnight equilibration at 3 
o
C (A), and at 37 

o
C 

(B).  D-spacing in A is 60.0 Å, and in B is 63.6 Å 

. 

 In order to describe our structural results, a diagram of some of the basic 

structural parameters of ripple phases is shown in Figure 3.3.  The usual lamellar 

D-spacing in the z direction perpendicular to the substrate and the stack of 

bilayers includes the average bilayer thickness and the water spacing; it was 

obtained from the qz positions of the specular (h,0) peaks.  Following previous 

studies (Akabori & Nagle, 2015; Sun et al., 1996a; Wack & Webb, 1989), the in-

plane spacing λr is the length of the rippled repeat distance; it was obtained from 

the qx positions of the off-specular (h,k) peaks. γ is the angle in the two 

dimensional unit cell; it was obtained from the angle of the lines joining  the 

central (h,0) peaks to the (h,k<0) side peaks (Akabori & Nagle, 2015; Sun et al., 

1996a).   
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Figure 3.3.  Diagram of structural parameters characterizing the ripple phase. The bold solid 

lines represent the centers of three adjacent bilayers.  M represents the major arm and m the minor 

arm in a typical saw-toothed asymmetric ripple (Akabori and Nagle, 2015; Katsaras et al.., 2000; 

Sun et al.., 1996b). D is the usual lamellar repeat D-spacing, λr is the ripple wavelength and γ the 

ripple offset angle in the unit cell indicated by the parallelogram containing the middle of the 2nd 

bilayer. 

Figure 3.4 shows results for λr and γ.  The result that γ values differ from 

90° requires that the ripple be asymmetric unlike the symmetric ripple phases that 

occur metastably in DPPC and which have λr greater than 200 Å (Katsaras et al., 

2000; Mason & Gaulin, 1999; Rappolt & Rapp, 1996; Yao et al., 1991).  

Furthermore, the stronger intensity of the negative k peaks compared to the 

positive k peaks means that the asymmetry is as drawn in Figure 3.3 (Akabori & 

Nagle, 2015; Sun et al., 1996a).   

 

Figure 3.4.  Temperature dependence of λr of the ripple phase (A), and the γ angle (B) for 

eSM (open black circles) and pSM (open red triangles).  The solid symbols show values before 

correction for hydration level (see below).   
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 Figure 3.5 shows wide-angle WAXS scattering for the same pSM sample as 

in Figure 3.2. With the longer exposure time appropriate for the WAXS scattering, 

Figure 3.5 A shows LAXS orders h=1-4 that are overexposed and weak h=5, 7 and 9 

LAXS orders.  The WAXS scattering in Figure 3.5 A looks similar to the WAXS 

pattern from the Lβ gel phase in DMPC (Tristram-Nagle et al., 2002), where tilted 

chains cause the (1,1) peak to be lifted up off the equator near qr = 1.4 Å-1.  Also 

visible at the same qr and smaller qz is a satellite that comes from modulation of 

the continuous form factor along the (1,1) Bragg rod (Sun et al., 1994).  The wide 

angle scattering in Figure 3.5 B is consistent with the much higher resolution 

WAXS from DMPC in the ripple phase (Akabori & Nagle, 2015) suggesting that 

there is a stronger Bragg rod centered near qr = 1.5 Å-1 and qz ~ 0.3 Å-1 and a 

weaker Bragg rod at smaller qr and qz, although such a separation is not visible in 

Figure 3.5 B.  Figures S3-S5 for eSM are more suggestive of such a wide angle 

pattern.  

 

 

Figure 3.5.  Wide angle WAXS intensity together with overexposed LAXS for the same sample 

and temperatures as in Figure 2.  pSM at 3 
o
C (A), pSM at 37 

o
C (B).  D-spacing in A is 59.2 Å, and 

in B it is 63.0 Å. 

 WAXS data shown in Figure 3.5 A were used to determine the gel phase 

chain tilt angle for PSM, θtilt = 30.4, the area/chain perpendicular to the chains, AC = 

19.2 Å2, and the  area/lipid AL = 2AC/cosθtilt following Tristram-Nagle et al.. (2002); 

Tristram-Nagle et al.. (1994).  

Although data from oriented samples are more important, unoriented MLV 

samples are also informative. Figure 3.6 shows X-ray scattering from eSM MLVs. In 

the WAXS regime, a single sharper ring is observed below the transition 

temperature, indicating chain ordering, and this becomes broad at 50 °C, indicating 

chain melting. PC lipids have a single sharp WAXS ring in their ripple phase, 

whereas in their gel phase there are two separate WAXS rings, one sharp and one 
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broader, due to chain tilt.  It is important to note that the single WAXS ring below 

Tm in Figure 3.6 does not prove, contrary to what is commonly assumed, that eSM 

is in a ripple phase. Separation of the two rings in PC lipids is just due to 

orthorhombic splitting of the hexagonal packing of the chains.  A gel phase does 

not require such splitting, in which case one would also observe a single ring that 

would be misidentified with a ripple phase even though it is a gel phase.  

Several peaks are observed in the LAXS regime in Figure 3.6, but these can 

be satisfactorily indexed as lamellar peaks with no obvious off-specular reflections 

that would indicate that the sample is in the ripple phase. To further illustrate the 

difficulty of verifying a ripple phase in unoriented samples, we have taken the 

oriented data in Figure 3.1 A and powder averaged it into isotropic rings (Figure 

3.S16); this blurs the relatively weak but clearly separated off-specular peaks in 

Figure 3.1 A with the lamellar orders and gives intensity plots similar to the 

isotropic data in Figure 3.6 B. 

 

Figure 3.6.  X-ray scattering data from eSM MLVs in a glass capillary collected on a 2D CCD 

detector at the temperatures indicated (A).  The rings close to the beam (white center) are in the 

LAXS regime, while the single ring close to the edge of the pie sectors is in the WAXS regime. 

Intensity plots of capillary data shown in A (B). Small black numbers indicate lamellar orders, 

h= 1,2,3,6,9.   Inset: zoomed WAXS region.   
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Figure 3.7. Powder average of LAXS data shown in Figure 1A, eSM at 3 °C. As shown, off-

specular side peaks are difficult to distinguish from the background scattering between lamellar 

peaks (numbered). D-spacing is 60 Å. 

 

 There is one advantage of unoriented MLV samples, which are immersed in 

excess water and are therefore fully hydrated, over our oriented samples, which 

are hydrated from the vapor. While it is an advantage to be able to hydrate 

oriented samples to different D-spacings, it is time consuming to achieve the 

preferred full hydration.  As shown previously, D-spacing is extremely sensitive to 

humidity close to 100% relative humidity (Chu et al., 2005). Figure 3.7 compares 

the actual D-spacings of our oriented samples with those of the fully hydrated MLV 

samples. Although we did not achieve full hydration for all temperatures in the 

oriented samples, our experience has been that this amount of dehydration is small 

enough that the basic properties of fluid and gel phase bilayers are little changed.  

In Supplementary Material, it is shown how our capillary data compare to capillary 

D-spacings from the literature (Figures 3.S16).   
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Figure 3.8. D-spacings of capillary and oriented samples as a function of temperature.  

Capillary eSM (open circles), oriented eSM (black circles), capillary pSM (open triangles), oriented 

pSM (red triangles).   

 

However, relative humidity affects the values of the ripple phase unit cell 

parameters as is shown in Figure 3.8 for pSM. This impacts the temperature 

dependence of the raw data in Figure 3.4 because those values were affected by 

both temperature and relative humidity. Figure 3.8 shows how much the hydration 

level differed from full hydration in terms of the D-spacing for our sample at 

different temperatures. Figure 3.9 shows how much λr and γ change as a function 

of D-spacing at the same temperature.  Combining these two sets of data allows us 

to estimate the effect of temperature alone, as is shown by the corrected values in 

Figure 3.4.    
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Figure 3.9. Effect of hydration level, as indicated by D-spacing, upon unit cell parameters λr 

(solid red triangles, right axis) and γ (open red triangles, left axis).  Sample was pSM at 37 oC. 

 

Density data yielded a molecular volume for eSM as shown in Figure 3.10 A.  

The main phase transition was centered at Tm=38.3 °C, but it was broad (~4 

degrees) as expected for a mixture of chain lengths. No pretransition was observed 

for eSM. Similar density traces were obtained for pSM, but the absolute molecular 

volumes are not accurate because the amount of material was much smaller and 

was not quantitated precisely.  The scan in Figure 3.10 B gave Tm = 40.7 °C for pSM 

with a smaller width of ~2 degrees, but no pretransition was visible.  However, 

when the sample was held at 3 °C for 4.5 days, a pretransition was readily visible at 

Tp = 24.2 °C in Figure 3.10 C, which is a similar value to the DSC literature results 

for Tp shown in Table 3.S1.  
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Figure 3.10. Densitometer scan of eSM immediately after cooling to 3 °C (A). Densitometer 

scan of pSM immediately after cooling to 3 °C (B). Densitometer scan of pSM after incubating 

the sample at 3 °C for 4-1/2 days (C). The Tm was determined as the midpoint of the straight line 

connecting the extensions of the upper and lower slopes. The heating rate was 12 °C/h. 

For the fluid phase, measured volume data were used to construct electron 

density profiles (Figure 3.11) which were used to obtain AL at 45 °C by fitting the 
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form factors (Figure 3.S17) that result from diffuse LAXS (Figures S8 and S15) to a 

model of the electron density of a bilayer (Scattering Density Profile program) 

(Kucerka et al., 2008). One input into the SDP program is the headgroup volume 

with the volume ratio of the two headgroup components (phosphocholine and 

sphingosine linkage).  To estimate these, we subtracted the hydrocarbon chain 

volume from the total lipid volume (see 3.4.6); the sphingosine linkage volume was 

obtained by subtracting the phosphocholine volume from the total headgroup 

volume (Armen et al., 1998).   

 

Figure 3.11. Electron density profiles of pSM (solid lines) and eSM (dashed lines) in the fluid 

phase at 45 
o
C. Bilayer components are: total (black), phosphocholine headgroup (red), glycerol 

backbone linkage (blue), CH2 groups (green), terminal CH3 groups (magenta) and water (cyan). 

3.3.2 Characterization of eSM:eCer binary mixtures 

 Figure 3.12 shows the X-ray pattern obtained for the eSM:eCer (85:15) 

binary mixture. In contrast to the previous results, the sample is clearly in a gel 

phase bellow the SM main phase transition. This is confirmed by LAXS images, that 

show the absence of side peaks, and WAXS images, that confirm a tilted gel phase. 

This is further evidenced by a wide-angle reflection that is lifted up off the equator. 

Additional oriented eSM:eCer (85:15) data are shown in the supplementary 

material (Figures 3.S18-3.S24). These images are used to calculate the gel phase 

chain tilt angle θtilt=28.4o, the area/chain perpendicular to the chain, Ac=24.7 Å2 

and the area/lipid, AL=56.1 Å2 at 3 °C. 
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Figure 3.12.  LAXS data from oriented eSM:eCer (85:15). LAXS image after equilibrating the 

sample for two days at 3 °C (A), WAXS image after equilibrating the sample for two days at 3 °C (B). 

LAXS image at 35 °C (C), WAXS image at 35 °C (D). White arrows point to the tilt of the gel phase, 

which is evidenced by a wide-angle reflection that is lifted up (1) off the equator (2). D-spacing in 

A,B. is 63.4 Å and in C,D. is 65.5 Å.  

 

 Figure 3.13 shows the X-ray data for eSM:eCer (70:30) binary mixture. An 

increase in egg ceramide concentration confirms the existence of a tilted gel phase 

instead of the ripple phase, which is maintained until the end of its main transition 

when it becomes fluid. However, the tilt angle is notably smaller than the one 

observed in eSM:eCer (85:15). Additional oriented eSM:eCer (70:30) data are 

shown in the supplementary material (Figures 3.S25-3.S31). These images are 
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used to calculate the gel phase chain tilt angle θtilt=10.1o, the area/chain 

perpendicular to the chain, Ac=25.5 Å2 and the area/lipid, AL=51.8 Å2 at 3oC. 

 

Figure 3.13.  LAXS data from oriented eSM:eCer (70:30). LAXS image at 30 °C (A), WAXS image 

at 30 °C (B). LAXS image at 59 °C (C), WAXS image at 59 °C (D). D-spacing in A,B. is 67.2 Å and in 

C,D. is 68.9 Å.  

 

 Unoriented samples are analyzed to obtain D-spacing values for fully 

hydrated samples. Figure 3.14 compares the D-spacing of both, oriented and 

unoriented samples. As in the pSM and eSM experiments, D-spacing values for our 

oriented samples are lower than for the unoriented ones. The difference in 

eSM:eCer (85:15) is small enough to obtain valuable data except at 35 °C. However, 

unoriented eSM:eCer (70:30) shows two different D-spacing values from the 
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beginning of its main phase transition to its end. The existence of two D-spacing 

values can be related to the presence of two populations in the sample. 

 

Figure 3.14.  D-spacings of capillary and oriented samples as a function of temperature. eSM:eCer 

(85:15) (A), eSM:eCer (70:30) (B).   

3.4 Discussion 

3.4.1 Identification of phases 

The most important result from this work is the difference in phase 

behavior between eSM and pSM at T<Tm.  We clearly find that the ripple phase in 

eSM is the stable phase below the main transition at least down to 3 °C.   Our result 

that there is no phase transition below the main transition at Tm agrees with many 

previous investigations that have reported only a single transition in eSM at 36-

39.5 °C by differential scanning calorimetry (Calhoun & Shipley, 1979a; Chien & 

Huang, 1991; Filippov & Ora, 2006; García-Arribas et al., 2016c; Jiménez-Rojo et al., 

2014; Mannock et al., 2003; Mckeone et al., 1986), scanning densitometry (Epand 

& Epand, 1980), fluorescence spectroscopy (Rujanavech et al., 1986), 2H-NMR 

spectroscopy (Steinbauer et al., 2003) and FTIR spectroscopy (Anderle & 

Mendelsohn, 1986; Arsov & Quaroni, 2008; Veiga et al., 2001).  (Additional DSC 

literature results are summarized in Table 3.S1).  However, in all of these studies, 

the transition at Tm was interpreted as a gel-to-fluid transition, whereas our results 

clearly identify the main transition as a ripple-to-fluid transition.  Our result agrees 

with previous X-ray studies that have reported a ripple phase for eSM.  The SAXS 

data of (Chemin et al., 2008) showed weak  (0,1) and (1,1) ripple reflections.  Using 

X-ray diffraction, (Shaw et al., 2012) found that the SAXS pattern below Tm in eSM 

showed a number of broad peaks which could not be resolved from each other.  
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These peaks fit within the same envelope as the ripple phase peaks of bovine brain 

sphingomyelin which they were able to resolve, so they concluded that eSM was 

also likely to be in a ripple phase below Tm.  A third X-ray investigation reported 

that after prolonged equilibration at 20 °C, bilayers of eSM formed a ripple 

structure with a somewhat smaller periodicity of 125 Å that was obtained from the 

(0,1) in-plane reflection (Quinn & Wolf, 2009a).  Based on this peak and on their 

WAXS results, the authors suggested that at 20 °C eSM showed a phase coexistence 

of a ripple phase with an interdigitated phase, but it appears that they 

misinterpreted the higher order ripple peaks. Unlike these previous X-ray works 

which studied isotropic MLV samples, our oriented samples much more clearly 

show a rippled phase that is stable from 35 down to 3 °C.  This is because oriented 

samples have clear separations between lamellar and off-specular peaks 

(Hentschel & Rustichelli, 1991), that are easily measured using a two-dimensional 

digital CCD detector.  

In contrast to eSM, in pSM the ripple phase is only stable down to about 24 
oC and below that the stable phase is a flat gel phase.  Previous structural studies 

(Calhoun & Shipley, 1979a; Maulik & Shipley, 1996) found no evidence for a ripple 

phase in pSM.  Some calorimetric studies (Maulik & Shipley, 1996) did not observe 

a pre-transition in pSM and concluded that pSM is in the gel phase below Tm.  Other 

calorimetric studies reported a pre-transition (Barenholz et al., 1979; Calhoun & 

Shipley, 1979a), and those are consistent with our pSM structural results.  It has 

been suggested that this difference in results may be due to the synthesis of pSM 

resulting in a fraction being in the L-threo form instead of the D-erythro form 

(Ramstedt & Slotte, 1999; Venable et al., 2014). In any case, we believe that we 

have now established the pSM phase behavior and that it differs from eSM.   

What could be the origin of the stability of the ripple phase in eSM?  Recall 

that the fatty acid composition of Avanti Polar Lipid eSM is 86% 16:0, 6% 18:0, 3% 

22:0, 3% 24:0 and 2% unknown.  We suggest that it is the presence of a small 

percentage of longer chain length lipids (18, 22 and 24 carbons) that stabilize the 

ripple phase in eSM, perhaps by locating in the major arm (M), since the major arm 

has been shown to be thicker than the minor arm (m), at least in DMPC (Akabori & 

Nagle, 2015; Sun et al., 1996a).  Adding longer chain lipids to the M arm would 

then increase the disparity between the M and m arms, which would have the 

tendency to stabilize the ripple phase in eSM to lower temperature. Future 

experiments on well-defined mixtures could test this suggestion. 
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3.4.2 Ripple phase wavelength λr 

The temperature change is the primary modulator of the ripple structure in 

our study.  As shown in Figure 3.4 A for eSM, the ripple wavelength λr decreases 

from ~170 to 145 Å over a 32 degree increase.  This result is in the same direction, 

but not as dramatic, as that observed using X-ray diffraction for DMPC, where the 

ripple repeat decreased from 135 to 120 Å when the temperature increased from 

15.2 to 20 oC (Matuoka et al., 1994).   

3.4.3 Ripple phase γ angle    

 Hydration is the primary modulator of the stacking angle γ which is an 

indicator of the asymmetry of ripples (Lubensky & Mackintosh, 1993).  

Asymmetric ripples are defined by the length of the M arm being different from the 

length of the m arm.  Then, interbilayer interactions establish different thickness of 

the water layers between adjacent bilayers and the stacking of adjacent unit cells 

may be shifted along the x axis as well as along the z axis, thereby resulting in a 

value of γ not necessarily equal to 90°.   In contrast, if the ripples were symmetric, 

γ would necessarily be 90°.  In l-DPPC and dl-DPPC (Katsaras et al., 2000) and in  

DMPC by (Wack & Webb, 1989) γ decreases as a function of increasing D-spacing.  

In l-DPPC, γ decreased from ~98o at 64 Å to ~90° at 68 Å, and then decreased 

further to 85° at 73 Å lamellar D-spacing (Katsaras et al., 2000).  In eSM, we find 

that γ > 90o at our largest D-spacings close to Tm, although these D-spacings are not 

as large as those for  l-DPPC.   In pSM γ decreases from 101 to 98° at lamellar D 

from 59.5 to 64 Å (Figure 3.8).  For the same level of hydration, Fig. 4B indicates 

little effect of temperature on γ. 

3.4.4 Gel and fluid phase properties  

Results for pSM and eSM in the fluid phase are summarized in Table 3.1, 

including bending modulus KC and the order parameter Sxray (Mills et al., 2008) in 

the fluid phase, area/lipid AL, and bilayer thickness (DB = VL/AL) and tilt angle in 

the gel phase.  As shown, there was little difference in fluid phase structure 

between eSM and pSM, although pSM was stiffer than eSM and somewhat more 

ordered as determined by Sxray. Literature results for DPPC are shown for 

comparison.  Except for the considerably smaller value of Sxray, which agrees with 

NMR <SCD> result of Mehnert et al.. (2006), differences are small. Further 

comparison of these results with X-ray and NMR studies from the literature can be 

found in Tables 3.S2 and 3.S3. 
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Results for the gel phase of pSM are also compared in Table 3.1 to results 

for DPPC extrapolated to 3 °C.  Not shown in Table 3.1 are values for the 

area/chain AC perpendicular to the chains.  That value is 19.2±0.2 Å2 for pSM and 

for DPPC it is 19.5±0.2 Å2 (Sun et al., 1996b). This indicates a slightly tighter 

packing of pSM than DPPC.  The other primary difference is the smaller tilt angle in 

pSM.  Those two differences make a noticeable difference in the area/lipid through 

the relation AL = 2AC/cosθtilt. 

 

Table 3.1.  Elastic and structural results for gel and fluid phases 

+ Results without including a tilt degree of freedom (Nagle, 2017)  

*(Guler et al.., 2009) , **(Kucerka et al.., 2008), ***(Sun et al.., 1996a) 

3.4.5 Contact with MD simulations 

Simulations are very poor for ripple phases and even problematic for gel 

phases.  One point of contact we can make presently is with our obtained volume 

of 1187± 1 Å3 at 45 °C for eSM in the fluid phase.  To compare to simulations of 

pSM at 50oC, using (Nagle & Wilkinson, 1978) we added 6 Å3 for thermal expansion 

and subtracted 27 Å3 per extra methylene in the longer chains in the eSM mixture 

to obtain 1178 Å3.   Lipid volumes from GROMACS MD simulations of pSM at 50 °C 

yielded 1168 ± 12 Å3 (Metcalf & Pandit, 2012) and 1180 ± 10 Å3 (Niemela et al., 

2004).  Another point of contact is our AL of 64 Å2 for both eSM and pSM.  Our area 

in Table 3.1 is significantly larger than the average 54 ± 3 Å2  obtained in several 

MD simulations, (Venable et al.. 2014 and references therein), which suggests that 

the SM force fields might have to be re-evaluated. 

Sample 
KC x10-20 

(J)+ 
Sxray AL (Å2) 

Tilt 

Angle (o) 
DB (Å) 

pSM (fluid, 45
o
C) 8.3 ± 0.1 0.54 ± 0.02 64 ± 2 --- 36.6 ± 1.2 

eSM (fluid, 45
o
C) 6.7 ± 0.4 0.48 ± 0.02 64 ± 2 --- 37.1 ± 1.2 

DPPC (fluid, 50
o
C)* 6.7 ± 0.7 0.41 ± 0.03 

64 ± 1
* 

63 ± 1
** --- 

38.5 ± 0.5
* 

39 ± 0.5
** 

pSM (gel, 3
o
C) --- --- 44.5 ± 0.5 30.4 ± 0.6 49.4 ± 0.3 

DPPC (gel, 3
o
C)*** --- --- 47.0 ± 0.3 34.0 ± 0.4 48.0 ± 0.2 
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3.4.6 General comment 

 Our results address the question of whether the less expensive eSM mixture 

is likely to be a suitable replacement for the more specific pSM lipid in bilayer 

studies that assume that eSM is a single component or when comparing 

simulations that use pSM to compare to experimental data obtained from eSM.   

Our result that the lipid areas are essentially the same is encouraging that such 

replacements can be used in the fluid phase, which is where simulations are most 

reliable. However, for phase behavior, our results show different propensities to 

form ripple versus gel phases.  While ripple phases are unlikely to form in ternary 

mixtures, the different propensity to form them shows that pSM and eSM have 

different interactions that could affect the stability of liquid ordered phases in lipid 

raft mixtures, depending on which lipid is used. However, this difference in 

interactions that could play a role in ternary mixtures for which the interaction of 

sphingomyelin with cholesterol induces the liquid ordered phase. However, this 

difference occurs only for temperatures substantially below the main transition 

temperature, which is itself different by a few degrees between eSM and pSM.  

Probably, these differences would only be significant for the most careful studies of 

phase behavior. 

3.4.7 Identification of ceramide domains 

 The interaction of eCer with eSM is investigated using two binary mixtures 

at different ceramide proportions. In agreement with the calorimetry results of 

eSM:eCer (Sot et al., 2006),  when 15 mol% eCer is added a complex main phase 

transition is observed, that includes components associated to the melting of pure 

eSM domains. However, when eCer is saturating the system (30 mol% Cer), pure 

eSM lamellar phase transition is no longer observed so that a full mixing of both 

lipids can be inferred. These phase transitions can be followed using X-ray 

scattering with the same results: a single phase transition is observed.  

 The addition of ceramide produces a change in the ripple phase of eSM 

below the transition since both samples present a tilted gel phase, the tilt angle 

being smaller at higher ceramide concentrations. The effects of ceramide can be 

studied using gel phase data as the area/chain perpendicular to the chain (Ac) and 

the area per lipid (AL). These data indicate a higher packing for the sample with 30 

mol% of ceramide due to its higher Ac and its smaller value of AL, which can be 

confirmed by previous atomic force microscopy results of pSM:pCer binary 

mixtures in which the presence of ceramide increases the force needed to pierce 

the bilayer (Garcia-Arribas et al., 2015). 



Chapter 3 

 

88 

 Despite structural data confirming the presence of ceramide in the sample, 

a double D-spacing, associated to the formation of ceramide domains could only be 

observed for eSM:eCer (70:30) mixtures. X-ray scattering seems to require a high 

concentration of ceramide to detect the formation of highly ordered ceramide 

domains as compared to other techniques like electron microscopy and atomic 

force microscopy (Sot et al., 2006; Busto et al., 2009).   
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3.5 Supplementary data 

 

Figure 3.S1. 2D CCD X-ray scattering data from oriented, hydrated  eSM collected at the following temperatures: Ripple phase. 20 °C, after annealing at 60 °C for 2 

hours (A), 15 °C, upon cooling from 20 °C (B), 10 °C, upon cooling from 15 
o
C (C), 3 °C, upon cooling from 10 

o
C (D), 30 

o
C, upon heating from 3 °C (E), 35 °C, upon 

heating from 30 °C (F), Fluid phase. 45 °C, after annealing at 60 °C for 2 hours (G). Red pixels indicate negative intensity after background subtraction. 
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Figure 3.S2. Oriented eSM at 20 °C in the ripple phase, collected after annealing at 60 °C for 2 

hours. D-spacing is 64.9 ± 0.9 Å. 

 

 

 

Figure 3.S3. Oriented eSM at 15 °C in the ripple phase, collected after cooling from 20 °C. D-spacing 

is 60.8 ± 0.8 Å. 
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Figure 3.S4. Oriented egg SM at 10 °C in the ripple phase, collected after cooling from 15 °C. D-

spacing is 60.8 ± 0.8 Å. 

 

 

 

Figure 3.S5. Oriented eSM at 3 °C in the ripple phase, collected after cooling from 10 °C. D-spacing 

is 60 ± 0.2 Å. 
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Figure 3.S6. Oriented eSM at 30 °C in the ripple phase, collected after heating from 3 °C. D-spacing 

is 65 Å. The light, diffuse scattering in the upper right hand corner of the WAXS image is due to 

excess water on the sample. 

 

 

 

Figure 3.S7. Oriented eSM at 35 °C in the ripple phase, collected after heating from 30 °C. D-spacing 

is 65.8 ± 1.2 Å. 
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Figure 3.S8. Oriented eSM at 45 °C in the fluid phase, collected after annealing at 60 °C for 2 hours. 

At 45 °C, SPM is in the fluid phase, as evidenced by the absence of ripple reflections in LAXS and 

broad, diffuse scattering in WAXS. D-spacing is 62.7 ± 1.1 Å. 

 

Figure 3.S9. 2D CCD X-ray scattering data from oriented, hydrated pSM collected at the following 

temperatures: Gel phase: 3 °C, upon cooling from 37 °C and equilibrating overnight at 3 °C (A), 15 
o
C, upon heating from 3 °C (B), 24 °C, upon heating from 15 °C (C), Ripple phase: 30 °C, upon 

heating from 24 °C (D), 37 °C, upon heating from 24 °C (E), Fluid phase: 45 °C, upon heating from 37 

°C (F). 
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 Figure 3.S10. Oriented pSM at 3 °C in the gel phase, collected after cooling from 37 °C and 

equilibrating overnight at 3 °C. D-spacing is 60 ± 0.2 Å. 

 

 

Figure 3.S11. Oriented pSM at 15 °C in the gel phase, collected after heating from 3 °C. D-spacing is 

60.6 ± 0.3 Å. 



Phase behavior of palmitoyl and egg sphingomyelin 

 

95 

 

Figure 3.S12. Oriented pSM at 24 °C gel phase with incipient ripple phase, collected after heating 

from 15 °C. D-spacing is 61 ± 0.3 Å. 

 

 

Figure 3.S13. Oriented pSM at 30 °C in the ripple phase, collected after heating from 24 °C. D-

spacing is 63.2 ± 0.2 Å. 
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 Figure 3.S14. Oriented pSM at 37 °C in the ripple phase, collected after heating from 30 °C. D-

spacing is 63.6 ± 0.8 Å. 

 

Figure 3.S15. Oriented PSM at 45 °C in the fluid phase, collected after heating from 37 °C. D-spacing 

is 61.9 ± 0.2 Å. 



Phase behavior of palmitoyl and egg sphingomyelin 

 

97 

 

Figure 3.S16. Capillary D-spacings from literature: pSM, open black squares (Calhoun and Shipley, 

1979a), open red circles (Maulik and Shipley, 1996), open black stars (ThisWork, 2018); ESM, solid 

green inverted triangles (Chachaty et al.., 2005), solid blue triangles (Quinn and Wolf, 2009), solid 

cyan hexagons (Chemin et al.., 2008), solid magenta star (Shaw et al.., 2012), solid black squares 

(ThisWork, 2018). 

 

Figure 3.S17. Form factor data obtained from x-ray diffuse scattering used to obtain the EDPs 

shown in Fig. 11 in the main chapter. 
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Figure 3.S18. Oriented eSM:eCer (85:15) at 3 °C in a tilted gel phase after holding for 2 days at 3 °C. 

D-spacing is 63.4 Å. 

 

 

Figure 3.S19. Oriented eSM:eCer (85:15) at 10 °C in a tilted gel phase, collected after heating from 

3 °C. D-spacing is 64.2 Å. 
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Figure 3.S20. Oriented eSM:eCer (85:15) at 15 °C in a tilted gel phase, collected after heating from 

10 °C. D-spacing is 62.2 Å. 

 

Figure 3.S21. Oriented eSM:eCer (85:15) at 20 °C in a tilted gel phase, collected after heating from 

15 °C. D-spacing is 64.7 ± 0.2 Å. 
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Figure 3.S22. Oriented eSM:eCer (85:15) at 30 °C in a tilted gel phase, collected after heating from 

20 °C. D-spacing is 64.9 Å. 

 

Figure 3.S23. Oriented eSM:eCer (85:15) at 35 °C in a tilted gel phase, collected after heating from 

30 °C. D-spacing is 65.5 Å. 
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Figure 3.S24. Oriented eSM:eCer (85:15) at 39 °C (A), 44.6 °C (B), 50.5 °C (C), 55 °C (D), 58.6 °C (E), 

in a tilted gel phase, at 59.5 °C (F) in a fluid phase, collected after heating from the previous sample. 

D-spacing is 64.3 Å. (A), 66.6 Å. (B), 62.9 ± 0.2 Å. (C), 63.0 Å. (D), 61.8 Å. (E), 62.1 Å. (F). 
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Figure 3.S25. Oriented eSM:eCer (85:15) at 3 °C (A), 10 °C (B), 15 °C (C), 20 °C (D), in a tilted gel 

phase, at 59.5 °C (F) in a fluid phase, collected after heating from the previous sample. D-spacing is 

65.3 (A), 65.9 (B), 66.0 (C), 66.4 Å. (D). 

 



Phase behavior of palmitoyl and egg sphingomyelin 

 

103 

 

Figure 3.S26. Oriented eSM:eCer (70:30) at 30 °C in a tilted gel phase, collected after heating from 

35 °C. D-spacing is 67.2 ± 0.2 Å. 

 

 

Figure 3.S27. Oriented eSM:eCer (70:30) at 35 °C in a tilted gel phase, collected after heating from 

45 °C. D-spacing is 67.2 Å. 
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Figure 3.S28. Oriented eSM:eCer (70:30) at 45 °C in a tilted gel phase, collected after heating from 

48 °C. D-spacing is 67.5 Å. 

 

 

Figure 3.S29. Oriented eSM:eCer (70:30) at 48 °C in a tilted gel phase. D-spacing is 70.3 Å. 
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Figure 3.S30. Oriented eSM:eCer (70:30) at 55 °C in a tilted gel phase, collected after heating from 

3 °C. D-spacing is 69.3 Å. 

 

 

Figure 3.S31. Oriented eSM:eCer (70:30) at 59 °C in a tilted gel phase, collected after heating from 

55 °C. D-spacing is 68.9 Å.  
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Table 3.S1a. Literature phase transition DSC results. 

pSM    
Heating 

Rate 
 

Reference Pretransition TP(ºC) Tm(ºC) (ºC/h) Material 
(Barenholz et 

al., 1979) 
Probably 25 41.3 15 

1 

(Barenholz et 

al., 1979) 
Yes 25 41.3 3-50 

1 

(Calhoun & 

Shipley, 

1979a) 

Yes (small) 31 40.5 300 D,L* 

(Ahmad et 

al., 1985) 
No - 41.5 150/300 

1 

(Sripada et 

al., 1987) 
No - 41.0 300 D,L* 

(Maulik & 

Shipley, 

1996) 

No - 41.0 300 D,L* 

(Bar et al., 

1997) 
Yes (small) 29.6 41.1 20 Lipitek 

(Ramstedt & 

Slotte, 1999) 
Yes (small) 28.9 41.1 18 D-erythro 

(Ramstedt & 

Slotte, 1999) 
No - 39.9 18 

Racemic, 

D,L* 

(Chemin et 

al., 2008) 
No - 45 120 D-erythro 

(Kodama et 

al., 2012) 
Yes (small) 27.5 40.4 45 D-erythro 

(Jiménez-

Rojo et al., 

2014) 

Yes 30.9 41.7 45 Avanti 

(Nyholm et 

al., 2003) 
Yes 27.4 40.9 30 D-erythro 

(Estep et al., 

1979) 
No - 41 15 

1 

1Possibly stereospecificity is lacking 

*D,L = D-erythro, L-threo SM 
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Table 3.S1b. Literature phase transition DSC results. 

ESM    
Heating 

Rate 
 

Reference Pretransition TP(ºC) Tm(ºC) (ºC/h) Material 
(Calhoun & 

Shipley, 

1979a) 

No -  300 Avanti 

(Ahmad et 

al., 1985) 
No - 39-40 150/300 Sigma 

(Mckeone et 

al., 1986) 
No - 37.7 30 Avanti 

(Chien & 

Huang, 

1991) 

No - 37.5 300 Avanti 

(Mannock 

et al., 2003) 
No - 39.1 10 Avanti 

(Filippov & 

Ora, 2006) 
No - 38.8 20 Avanti 

(Chemin et 

al., 2008) 
No - 39.3 30 Avanti 

(Jiménez-

Rojo et al., 

2014) 

Yes? - 38.1 45 Avanti 

(García-

Arribas et 

al., 2016c) 

No - 36 45 Avanti 

1Possibly stereospecificity is lacking 

*D,L = D-erythro, L-threo SM 
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Table 3.S2. Summary of structural parameters from PSM experiments. 

 T(ºC) DPP(Å) AL (Å2) Volume 
(Å3) 

DB (Å) DC (Å) Tilt (º) d-space 
(Å) 

<SCD> 

(Calhoun & Shipley, 

1979b) 

10 - 54.8*  38.4*  47* 4.14  

50  59.4*  35.4*   4.6  

(Maulik et al., 1986) 50 36.5 64.3* 1173*      

(Maulik & Shipley, 

1996) 

29 48 41* 1103* 54*   4.2  

55 42 46* 1181* 51*   4.6  

(Li et al., 2000) 

(monolayer) 

10  46.3       

(Mehnert et al., 2006) <30      0   

48        0.258 

48        0.214 

(DPPC) 

 3 

(DPPC) 

- 47 

(DPPC) 

1128 

(DPPC) 

48 

(DPPC) 

 34 (DPPC) 4.27 (d20) 

4.03 (d11) 

(DPPC) 

 

(Guler et al., 2009) 48 

(DPPC) 

 64 

(DPPC) 

1229 

(DPPC) 

38.4 

(DPPC) 

    

(Bunge et al., 2008) 40     16.2*   0.221 

(Bartels et al., 2008) 20  43.8+   19.8    

30     19.1    

45     16.2   ~0.25 

60     14.9   ~0.22 

(Arsov et al., 2018) 3 - 44.5 1099* 49.4 - 30.4 3.95 (d20) 

4.14 (d11) 

 

(Arsov et al., 2018) 45 37.6 64 1172* 36.6 13.3    

*Some assumptions, or calculated from other quantities,  

+Assumed tilt = 0 degrees.
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Table 3.S3. Summary of structural parameters from ESM experiments. 

 T(ºC) DPP(Å) AL (Å2) Volume 
(Å3) 

DB (Å) DC (Å) Tilt (º) d-space 
(Å) 

<SCD> 

(Chachaty 

et al., 2005) 

20       4.2  

50       4.6  

(Chemin et 

al., 2008) 

20  40.2+     4.17  

55    ~48     

(Quinn & 

Wolf, 

2009a) 

20 42.1 (ave)      4.21  

50 39.6 (ave)    17.3 0   

(Leftin et 

al., 2014) 
48  53.2 (ave)  

49.9 (DB) 

(ave) 
17.0 (ave)   ~0.32 

(Arsov et 

al., 2018) 
45 38.6 64 1187 37.1 13.6    

+Assumed tilt = 0 degrees 
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CHAPTER 4: BILAYERS OF TERNARY LIPID 

COMPOSITIONS CONTAINING EQUIMOLAR 

CERAMIDE AND CHOLESTEROL 

4.1 Introduction 

Sphingolipids are important biomolecules, some of them acting as second 

messengers in cellular processes such as cell proliferation, signal transduction, and 

apoptosis (Hannun & Obeid, 2008). A number of findings in the last decade suggest 

that cellular membranes are laterally heterogeneous at the submicrometer scale, 

sphingolipids acting as lateral segregation inducers (Goñi, 2019; Sezgin et al., 

2017). Lateral segregation of liquid-ordered (Lo) domains has been observed with 

cholesterol (Chol) in saturated and unsaturated phospholipids such as 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC), but sphingosine-based lipids, such as 

sphingomyelin (SM), seem to enhance the phospholipid:Chol interaction mainly 

through hydrogen bonding (García-Arribas et al., 2016b; Ramstedt & Slotte, 2006). 

The formation of  (SM + Chol)-enriched domains in the Lo phase is well known 

(Veiga et al., 2001; Quinn & Wolf, 2009b), and may be related to nanodomain (lipid 

raft) formation (Lingwood & Simons, 2010). A further lipid with the ability to 

segregate laterally together with SM is ceramide (Cer) (Busto et al., 2009). Cer 

consists of a fatty acid linked to a sphingosine base through an amide bond. 

Normally Cer levels in cell membranes are quite low (0.1-1 mol % of total 

phospholipid), however higher concentrations can be found under cellular stress 

conditions, e.g. apoptotic cells (Castro et al., 2014). Previous studies in model and 

cell membranes containing Cer revealed its capacity to induce membrane 

permeability (Ruiz-Argüello et al., 1996), transbilayer flip-flop lipid motion 

(Contreras et al., 2003), and lateral domain segregation (Veiga et al., 1999). In fact, 

Cer can give rise to highly ordered gel-like domains (Sot et al., 2006), which could 

in turn act as ‘membrane platforms’ clustering receptor molecules and mediating 

signal transduction processes (Cremesti et al., 2001; Zhang et al., 2009).  

Cer are generated in cells under stress conditions primarily through SM 

hydrolysis by sphingomyelinases (Goñi & Alonso, 2002). Because of the abundance 
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of Chol in plasma membranes, sphingomyelinase-generated Cer could give rise to 

the formation of platforms enriched in SM, Chol and Cer. On that account, Chol-Cer 

interaction was studied and it was proposed that Cer displaces Chol from tightly 

packed SM/Chol liquid-ordered (Lo) phases (Megha & London, 2004; Chiantia et 

al., 2006a). However, high concentrations of Chol are needed to induce Cer 

depletion from Cer-enriched domains (Silva et al., 2007, 2009). Furthermore, Cer 

and Chol interact even in the absence of SM (Castro et al., 2009b). These findings 

led to our studies of mixtures of Chol and Cer with N-palmitoylsphingomyelin 

(pSM) or DPPC in the absence of a disordered phase. In particular the 

phospholipid:Chol:pCer (54:23:23 mol ratio) mixture was found to originate 

apparently homogeneous ternary phases with unique thermotropic and 

nanomechanical properties (Busto et al., 2014; Garcia-Arribas et al., 2015), 

although the presence of a minor fraction of pCer-enriched nanodomains was 

detected using confocal microscopy (Busto et al., 2010). 

The purpose of this work is to further characterize bilayers composed of 

ternary mixtures including a saturated phospholipid (pSM or DPPC), Chol, and 

pCer, varying the proportions of (Chol + Cer) between 46 and 30% while keeping 

constant their 1:1 mol ratio. We have used differential scanning calorimetry (DSC) 

to study how the proportion of (Chol + pCer) affects their thermotropic behavior, 

trans-parinaric acid (tPA) and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence to 

study membrane order and thermostability of the ordered bilayers, DiIC18 and NAP 

to analyze the existence of segregated phases in giant unilamellar vesicles (GUV), 

and atomic force microscopy (AFM) to study their topology and nanomechanical 

properties. Fluorescence spectroscopy results agree with previous studies, which 

support the formation of a ternary phase, while AFM and confocal microscopy 

confirm the existence of pCer-enriched nanodomains that largely increase in size 

as the proportion of phospholipid increases. 

4.2 Material and methods 

4.2.1 Materials 

DPPC, pSM, pCer and Chol were purchased from Avanti Lipid Products 

(Alabaster, AL, USA). 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,1ʼ-dioctadecyl-

3,3,3ʼ3ʼ-tetramethylindocarbocyanine perchlorate (DiIC18) was from Molecular 

Probes (Eugene, OR). Naphtho[2,3-a]pyrene (NAP) was from Sigma-Aldrich (St. 

Louis, MO). Colloidal silica (Ludox) was supplied by Sigma (St. Louis, MO). Trans-

parinaric acid (tPA) was kindly provided by Prof. J. P. Slotte (Åbo Akademi 

University, Turku, Finland). Due to its labile nature this fluorophore was stored 

dried in a N2 atmosphere at -80 °C. Methanol and chloroform were from Fisher 
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(Suwanee, GA). Buffer solution, unless otherwise stated, was 20 mM PIPES, 1 mM 

EDTA, 150 mM NaCl, pH 7.4. All other reagents (salts and organic solvents) were of 

analytical grade.  

4.2.2 Liposome preparation 

Lipid vesicles were prepared by mixing the desired lipids dissolved in 

chloroform/methanol (2:1, v/v) and drying the solvent under a stream of nitrogen. 

The lipid film was kept under high vacuum for 90 min to ensure the removal of 

undesired organic solvent. Multilamellar vesicles (MLV) were formed by hydrating 

the lipid film with the buffer solution at 90 °C, helping the dispersion with a glass 

rod. The samples were finally sonicated for 10 min in a bath sonicator at the same 

temperature in order to facilitate homogenization. 

4.2.3 Differential scanning calorimetry (DSC) 

The measurements were performed in a VP-DSC high-sensitivity scanning 

microcalorimeter (MicroCal, Northampton, MA, USA).  MLV to a final concentration 

of 1 mM were prepared as described above with a slightly different hydration step: 

instead of adding the buffer solution at once, increasing amounts of the solution 

were added, helping the dispersion by stirring with a glass rod. Then the vesicles 

were homogenized by forcing the sample 50-100 times between two syringes 

through a narrow tube (0.5 mm internal diameter, 10 cm long) at a temperature 

above the transition temperature of the lipid mixture. Before loading the MLV 

sample into the appropriate cell both lipid and buffer solutions were degassed. 0.5 

mL of suspension containing 1 mM total lipid concentration was loaded into the 

calorimeter, performing 8 heating scans at a 45 °C/h rate, between 10 and 100 °C 

for all samples. Phospholipid concentration was determined as lipid phosphorus, 

and used together with data from the last scan to obtain normalized thermograms. 

The software Origin 7.0 (MicroCal), provided with the calorimeter, was used to 

determine the different thermodynamic parameters from the scans. 

4.2.4 Confocal microscopy of giant unilamellar vesicles (GUV) 

GUVs are prepared as described previously, using the electroformation 

method developed by Angelova and Dimitrov (Angelova et al., 1992; Angelova & 

Dimitrov, 1986). Lipid stock solutions were prepared in 2:1 (v/v) 

chloroform/methanol and appropriate volumes of each preparation were mixed. 

Labelling was carried out by pre-mixing the desired fluorescent probe (NAP or 

DiIC18) with the lipids in organic solvent. Fluorescent probe concentration was 0.4 

mol % DiIC18 or 0.5 mol % NAP. The samples were deposited onto the surface of 
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platinum (Pt) wires attached to specially designed polytetrafluoroethylene (PTFE)-

made cylindrical units, which were placed under vacuum for 2 h to completely 

remove the organic solvent. The sample was covered to avoid light exposure. Then, 

the units were fitted into specific holes within a specially designed chamber, to 

which a glass cover slip had been previously attached with epoxy glue. Once fitted, 

the platinum wires stayed in direct contact with the glass cover slip. The chamber 

was then equilibrated at the desired temperature by an incorporated water bath. 

400 µL sucrose, prepared with high-purity water (SuperQ, Millipore, Billerica, MA) 

and heated at 90 °C, were added until the solution covered the Pt wires. The 

chambers were stopped with tightly fitting caps, and the latter were connected to a 

TG330 function generator (Thurlby Thandar Instruments, Huntingdon, UK). The 

alternating current field was applied with a frequency of 10 Hz and an amplitude of 

940 mV for 120 min. The temperatures used for GUV formation were over the gel 

to liquid phase transition in all cases. The generator and the water bath were 

switched off, and vesicles were left to equilibrate at room temperature for 30 min. 

A slow cooling was needed to observe large enough domains in fluorescence 

microscopy (Castro et al., 2007). After GUV formation, the chamber was placed 

onto an inverted confocal fluorescence microscope (Nikon D-ECLIPSE C1, Nikon, 

Melville, NY). The excitation wavelength was 458 nm for NAP, and 543 nm for 

DiIC18. Emission was recovered between 478–520 nm for NAP, and 563–700 nm for 

DiIC18. Image treatment and quantitation were performed using the software EZ-C1 

3.20 (Nikon). No difference in domain size, formation, or distribution was detected 

in the vesicles during the observation period or after laser exposure. 

4.2.5 Measuring non-stained areas in GUV 

The percent area of non-stained domains in GUV was calculated using 

ImageJ software in four steps as follows (see Supplementary Figure 4.S1). (i) 

Images were processed and converted from RGB to a binary image (black and 

white). Thus, non-stained domains appeared in white while the more fluid phase 

appeared in black. (ii) GUV total area, and the fluid phase area (in black, AB) in the 

image were measured. AB percentage could then be computed. (iii) The non-

stained domain area (AW) was measured following the same procedure. (iv) The 

non-stained domain percentage was obtained from the ratio: % non-stained 

domains = AW/(AW + AB) (Artetxe, 2017). 
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4.2.6 Time-resolved tPA fluorescence 

Time-resolved measurements of tPA fluorescence were performed as 

follows. MLV with the desired lipid composition were prepared at 0.2 mM plus 1 

mol% tPA and incubated at the desired temperature before performing the 

measurements. tPA intensity decays were measured in a Fluoromax-3 

spectrofluorometer with a time-correlated single-photon counting (TCSPC) 

accessory (Horiba Jobin Yvon, Edison, NY) connected to a water bath for 

temperature control and under continuous stirring. The samples were excited with 

a pulsed 289 nm LED and the emission was recorded at 430 nm. The emission slit 

was adjusted so that the count rate was always 0.6-0.3% (0.6-0.3 photons detected 

per 100 excitation pulses). The instrument response function was measured for 

each sample at each temperature at an emission of 289 nm using a scattering 

solution of colloidal silica. Data were analyzed with the DAS6 software using the 

nonlinear least squares analysis method (Lakowicz, 2006; Wolber & Hudson, 

1981) and the intensity decays measured were fitted to a bi-exponential decay 

model: 

     α 
 
  
  

 
  α 

 
  
  

 
 

where  1 and  2 are the lifetime components and α1 and α2 their respective 

pre-exponential factors. When αi is normalized to unity, α1 and α2 represent the 

fractional amplitude of their corresponding lifetimes. Since the radiative decay rate 

of tPA is independent of the environment, the fractional amplitudes can be 

considered proportional to the mole fraction of tPA exhibiting the corresponding 

lifetime (Wolber & Hudson, 1981). In our case the data could be fitted to bi-

exponential decays. 

The author thanks Dr. I. Artetxe for his help with these experiments. 

4.2.7 Fluorescence anisotropy 

Anisotropy measurements were carried out with MLV at 0.1 mM plus 1 

mol% tPA or DPH using a QuantaMaster 40 spectrofluorometer (Photon 

Technology International, Lawrenceville, NJ), under continuous stirring. Samples 

were equilibrated for 5 min at the desired temperature before the anisotropy 

measurements. tPA was excited at 305 nm and its emission recovered at 410 nm, 

while DPH was excited at 360 nm and its emission recovered at 430 nm. The 

anisotropy was calculated by the instrument software (PTI FelixGX) from an 
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average of measurements for each experimental point, automatically correcting for 

the G factor, which was measured for every sample at each temperature. 

The author thanks Dr. I. Artetxe for his help with these experiments. 

4.2.8 Supported planar bilayer (SPB) formation 

SPB were prepared on high V-2 quality scratch-free mica substrates 

(Asheville-Schoonmaker Mica Co., Newport News, VA, USA) previously attached to 

round 24-mm glass coverslips with a two-component optical epoxy resin (EPO-

TEK 301-2FL, Epoxy Technology Inc., Billerica, MA). SPB were prepared by the 

vesicle spin coating method (Simonsen & Bagatolli, 2004). Samples were dissolved 

at the desired ratio in an isopropanol/hexane/H2O (3:1:1) solution at 10 mM total 

lipid concentration. 0.4 mol% DiIC18 was included. 10 µl of the lipid mixture were 

directly pipetted onto a freshly cleaved mica substrate and rotated at 3000 rpm for 

40 s using a KW-4A spin-coater (Chemat Technology, Northridge, CA). The 

substrate was left under high vacuum overnight, mounted onto a Biocell sample 

holder (JPK Instruments, Berlin, Germany), and hydrated with 250 µl assay buffer. 

Multiple bilayers were then generated. The temperature was raised to 70 °C for 30 

min and the sample washed 10 times throughout with assay buffer at 70 °C. In this 

way bilayers not directly adhered to the mica substrate were discarded. Bilayers 

were then left to equilibrate at room temperature for 1 hour prior to 

measurements. Finally, the BioCell was set to 23 °C for the AFM measurements. 

4.2.9 AFM imaging 

The measurements were performed with a NanoWizard II AFM (JPK 

Instruments, Berlin, Germany) at 23 °C, using MLCT Si3N4 cantilevers (Bruker, 

Billerica, MA) with a nominal spring constant of 0.1-0.5 N/m in contact mode 

scanning (constant vertical deflection). Sample temperature was controlled with 

the BioCell sample holder. 512x512 pixel resolution images were collected at a 

scanning rate between 1 and 1.5 Hz and line-fitted using the JPK Image Processing 

software as required.  

4.2.10 Force measurements 

The thermal noise method was used to calibrate the MLCT Si3N4 cantilevers 

in a lipid-free mica substrate in assay buffer. Force spectroscopy was performed at 

a speed of 1 µm/sec in no less than 500 x 500 nm bilayer areas in the form of 

10x10 or 15x15 grids. Force steps were determined for each of the indentation 

curves as reproducible jumps within the extended traces. The resulting values 
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were obtained from at least 3 independent sample preparations with at least 3 

independently calibrated cantilevers. Control indentations were always performed 

in lipid-free areas before and after bilayer indentations to ascertain the formation 

of a single bilayer and the absence of artifacts or debris on the tip, assessed by the 

lack of any force-distance step on both trace and retrace curves. 

4.3 Results 

4.3.1 Time-resolved tPA fluorescence 

tPA is a fluorescent lipid, highly informative on the molecular order and 

lateral heterogeneity of bilayers. It is known to show two lifetimes in isotropic 

solvents and in bilayers in either fluid or gel state (Wolber & Hudson, 1981; 

Ruggiero & Hudson, 1989; De Almeida et al., 2002; Artetxe et al., 2013; Maula et al., 

2012). The main advantage of this fluorescent probe is its high preference towards 

gel domains that, even at very low fractions, will give rise to a fingerprint long-

lifetime component above 30 ns (Castro et al., 2007; Silva et al., 2007). 

Before studying how tPA was incorporated into the ternary mixtures, both 

Chol and Cer effects were individually studied in binary mixtures with a saturated 

phospholipid. The long and short lifetimes of tPA intensity decays in the various 

mixtures are collected in the Supplementary Figure 4.S2. The intensity decay of 

tPA was also measured at different temperatures (Supplementary Figure 4.S3). 

The results are in good agreement with published DSC data (Busto et al., 2009). 

4.3.2 DPH and tPA anisotropy 

The various samples were studied using DPH anisotropy as a tool for 

measuring bilayer order (Figure 4.1). Both pure DPPC and pure pSM liposomes 

show high anisotropy values below their gel-fluid transition temperatures, typical 

of bilayers in the gel phase, while low anisotropy values are recorded above their 

Tm, indicative of fluid bilayers (Figure 4.1 A, B, squares). In the binary mixtures 

with pCer, the anisotropy shows a clear melting profile (Figure 1 A, B, triangles). At 

low temperatures the anisotropy stays unchanged at a value similar to pure DPPC 

or pSM; it then starts to drop at ~45 °C for DPPC:pCer and at ~55 °C for pSM:pCer 

until the bilayer appears to become fluid (similar anisotropies than for pure DPPC 

or pSM in fluid state) at around 70 °C (Figure 4.1 A, B), similarly to what was seen 

with tPA lifetimes (Figure 4.S3). In the binary mixtures with Chol, the anisotropy 

values at low T are slightly below the values of the pure bilayers but decrease 
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slowly and remain significantly higher than those of pure bilayers or binary 

mixtures with pCer at high temperatures (Figure 4.1 A, B, circles).  

 

Figure 4.1. Fluorescence anisotropy of DPH (A, B) and tPA (C, D) as a function of temperature 

in MLV of varying compositions. Bilayer compositions are given in the insets. Values shown are 

averages of three separate experiments ± SD, but for the controls (a single experiment). The 

controls were a mixture of equal amounts of liposomes of each binary mixture, either (DPPC:Chol 

7:3 + DPPC:pCer 7:3) or (pSM:Chol 7:3 + pSM:pCer 7:3).  

 

The anisotropy of the ternary mixture at 25 °C exhibits a value intermediate 

between those of the binary mixtures with Chol and pCer, then it slowly decreases 

without a clear melting profile but in a similar way to the Chol-containing binary 

mixtures (Figure 4.1 A, B, diamonds). Again, the anisotropy at high temperatures is 

kept at higher values than those of typical disordered bilayers. The anisotropy 

values of the controls are at all temperatures intermediate between those of the 

binary mixtures with Chol or pCer (Figure 4.1 A, B inverted triangles). This is an 

expected result for a mixture of equal amounts of liposomes of both binary 

mixtures. The profile is also clearly different from that of the ternary mixture. The 

results are quite similar for both DPPC- and pSM-containing bilayers, the only 

noticeable difference being a slightly higher thermostability of ordered bilayers 

containing pSM as compared to those with DPPC (Figure 4.1 A, B). 
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DPH and tPA can be considered as complementary probes in studies with 

bilayers containing pCer, since the former fluorophore is excluded from pCer-rich 

domains whereas the latter presents a high preference for such domains (Castro et 

al., 2007; Silva et al., 2007). Therefore, fluorescence anisotropy of tPA was also 

measured in the same lipid mixtures to confirm the results obtained with DPH 

(Figure 4.1 C, D). Overall, the results with tPA anisotropy resemble those of DPH, 

the main differences being: lower anisotropy values for binary mixtures with Chol, 

higher values for pure bilayers and binary bilayers with pCer in the fluid phase, 

and higher thermostability of the ordered phase of DPPC:pCer bilayers (Figure 

4.1), all of them probably due to the higher affinity of this probe to gel and pCer-

rich domains. 

 

4.3.3 Differential scanning calorimetry 

In order to study how the lipid composition influences the formation of a gel 

ternary phase, pSM:pCer:Chol and DPPC:pCer:Chol ternary bilayers with 

decreasing amounts of (pCer + Chol) were studied by DSC (Figure 4.2). At high 

(pCer + Chol) concentrations (≥40 mol%) the SM-containing ternary mixture 

exhibits a symmetric endotherm centered at 60 °C, as previously reported (Busto 

et al., 2010). In the DPPC-based mixture, the transition temperature is slightly 

lower and its endotherm is centered at 55 °C. Both pSM- and DPPC-containing 

samples present an increase in transition enthalpy as (pCer + Chol) decreases, 

while their transition temperatures decrease slightly (Table 4.1). Also with the 

decrease in (pCer + Chol) the thermograms become clearly asymmetric, as 

confirmed upon fitting the endotherms with Gaussian functions: while two 

components are obtained for the samples at 54:23:23 and 60:20:20 ratios, a third 

small component appears at 66:17:17, becoming more noticeable in 70:15:15 

samples (Figure 4.2). The overall shape of the endotherms for the latter samples 

was similar to that observed in previous DSC studies of the pSM:pCer:Chol mixture 

at low Chol proportions (Busto et al., 2010).  
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Figure 4.2. DSC of aqueous dispersions of pSM:pCer:Chol and DPPC:pCer:Chol at 

different mol ratios. The endotherms can be fitted with 2 or 3 Gaussian curves (dotted lines). The 

arrows correspond to 0.5 kcal/mol/°C. 
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Table 4.1. Thermodynamic parameters of DSC endotherms of pSM:pCer:Chol and 

DPPC:pCer:Chol liposomes at different mol ratios. Data from thermograms of Figure 4.2. 

Averages ± SD (n = 3) are given. 

Bilayer composition ∆H (cal/mol) Tm (°C) ∆T1/2 (°C) 

pSM:pCer:Chol (54:23:23) 2800 ± 210 59.0 ± 0.5 11.5 ± 0.4 

pSM:pCer:Chol (60:20:20) 3260 ± 70 56.7 ± 0.1 7.2 ± 1.0 

pSM:pCer:Chol (66:17:17) 4900 ± 190 56.2 ± 0.1 6.9 ± 0.3 

pSM:pCer:Chol (70:15:15) 5500 ± 200 55.3 ± 0.1 7.3 ± 0.5 

DPPC:pCer:Chol (54:23:23) 1878 ± 177 54.92 ± 0.1 8.3 ± 0.3 

DPPC:pCer:Chol (60:20:20) 2239 ± 94 55.07 ± 0.1 7.2 ± 0.2 

DPPC:pCer:Chol (66:17:17) 3574 ± 406 53.3 ± 0.1 7.9 ± 0.1 

DPPC:pCer:Chol (70:15:15) 6360 ± 1324 52.2 ± 0.7 9.5 ± 1.0 

 

4.3.4 DiIC18 and NAP in the study of ternary phases 

To further characterize the ternary mixtures, giant unilamellar vesicles 

(GUV) stained with DiIC18 or NAP were examined by confocal fluorescence 

microscopy. DiIC18 is a dye with a saturated long-chain hydrocarbon that favors its 

partition into fluid areas, besides being a suitable tool in fluorescence microscopy 

due to its high brightness and photostability (Klymchenko & Kreder, 2014). NAP is 

a polycyclic aromatic fluorescence molecule with a high affinity for cholesterol- 

enriched areas (Juhasz et al., 2010). pSM:pCer:Chol bilayers at 54:23:23 mol ratio 

are differently stained with DiIC18 and NAP, although the heterogeneity is hardly 

noticeable when DiIC18 alone is used (Figure 4.3), as previously described (Busto et 

al., 2010). This situation can be explained by the coexistence of two ternary 

mixtures with slightly different lipid proportions, or by the coexistence of 

immiscible binary and ternary mixtures or other similar combinations (Busto et al., 

2010). When ternary mixtures at a 60:20:20 ratio are studied, the presence of 

clearly visible DiIC18-depleted areas is observed. These domains appear to be 

roughly circular, and the border of their areas appears enriched in DiIC18-stainable 

material. As a consequence the DiIC18-depleted areas appear surrounded by a 

(cholesterol-poor) red rim in the merged image (Figure 4.3). When SM proportion 

is 66 or 70 mol%, larger unstained areas are seen, that could arise from the partial 

coalescence of smaller domains. DPPC ternary mixtures appear in general more 
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homogeneous than their SM counterparts, with non-stained domains being clearly 

visible only in the 70:15:15 composition (Figure 4.4), which suggests that the 

ternary phase is more stable with DPPC than with SM, i.e. that a high affinity of 

pCer and Chol for SM is not the main factor for ternary gel phase formation.  

The proportion of non-stained domains in the GUV was estimated as shown 

in the Supplementary Figure 4.S1.  The results are given in Figure 4.5. The 

proportion of GUV surface covered by non-stained domains increases with the 

proportion of phospholipid, either SM or DPPC. The effect is detected above 60 

mol% phospholipid. At the lower phospholipid concentrations the non-stained 

surface for DiIC18 was smaller than that for NAP. However, as the proportion of 

(pCer + Chol) decreases, the percentage of both DiIC18- and NAP-depleted areas 

becomes very similar. The increase in DiIC18- and NAP-depleted areas seems to be 

related to the formation of tightly-packed gel-like pSM:pCer domains containing a 

relatively low Chol amount, Chol at these low ratios not being able to displace Cer 

from SM.  

 

Figure 4.3. Confocal microscopy 3D (z-stack) images of pSM:pCer:Chol fluorescent giant 

unilamellar vesicles at different mol ratios, stained with 0.4 mol% DiIC18 and 0.5 mol% NAP.  
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Figure 4.4. Confocal microscopy 3D (z-stack) images of DPPC:pCer:Chol fluorescent giant 

unilamellar vesicles at different mol ratios, stained with 0.4 mol% DiIC18 and 0.5 mol% NAP.  

 

 

Figure 4.5. Non-stained domain percentage (%) in pSM:pCer:Chol (A) and DPPC:pCer:Chol 

(B) fluorescent GUV of different phospholipid mol ratios, stained with 0.4 mol % DiIC18 and 

0.5 mol % NAP. Average values ± S.D. (n = 25-27). 
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4.3.5 Atomic force microscopy 

In order to examine the possible pCer displacement or other effects due to 

Chol incorporation supported planar bilayers of the above compositions were 

examined. pSM- and DPPC-based samples were prepared by spin-coating, the use 

of this procedure being due to the high transition temperature of pCer (93.2 °C) 

(Jiménez-Rojo et al., 2014), [note that no significant differences were detected 

either in topography images or force spectroscopy results when SUV adsorption 

and spin-coating methods were compared (Garcia-Arribas et al., 2015)]. pSM and 

DPPC bilayers were left to equilibrate for 1 h in order to avoid artifacts due to 

rapid cooling (Attwood et al., 2013) and to ensure that samples had reached 

equilibrium, because changes in topography were detected during the first hour 

after cooling the sample.  

In previous studies from our laboratory the pSM:pCer:Chol (54:23:23) 

mixture was found to be slightly heterogeneous (Busto et al., 2014), i.e. containing 

a major and a minor gel phase, at least when examined by confocal fluorescence 

microscopy using the NAP probe, but not when DiIC18 was used. This partially 

unclear result has been confirmed by our present, detailed AFM studies. 

Segregated domains have been found (Figure 4.6) with clearly different 

topographic and nanomechanical properties. A ring-shaped segregated phase is 

observed (Figure 4.6 A) that could correspond to the narrow, elongated minor 

phase detected by NAP fluorescence [Figure 4 of ref. (Busto et al., 2014)]. 

This ring-shaped phase divides the bilayer in two regions, inside and 

outside the ring (Figure 4.6 A). The continuous (outside) region presents an 

average bilayer thickness of 5.30 nm (Table 4.2) compared to 5.24 nm obtained 

previously (Garcia-Arribas et al., 2015), which is in the range of thicknesses 

measured for supported phospholipid-based bilayers in a gel phase (Domènech et 

al., 2007), Note however that supported gel phases commonly present slightly 

higher thicknesses (> 5.5 nm). The segregated (ring-shaped) phase has a thickness 

of 5.7 nm, while thickness is the same in the inner and the continuous phase. 

pSM:pCer:Chol (60:20:20) shows a similar behavior, and bilayer thickness inside 

and outside is also quite similar (5.0 ± 0.6 nm) (Figure 4.6 B). The measured 

thicknesses in the various samples/domains are summarized in Table 4.2. 

A notable change is observed in bilayer topography when pSM:pCer:Chol 

(66:17:17) is used. Under these conditions domains of a discontinuous phase are 

interspersed in a continuous phase. In this case domain thickness is lower than 

that of the continuous phase (Figure 4.6 C), respectively 4.5 and 6.4 nm. Finally, the 

behavior of pSM:pCer:Chol (70:15:15) is quite similar to that of pSM:pCer:Chol 
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(66:17:17), again showing two different areas with a remarkable difference in 

thickness (see Table 4.2). 

 

Figure 4.6. AFM images of pSM:pCer:Chol-based SPB at different mol ratios. pSM:pCer:Chol 

(54:23:23) (A), (60:20:20) (B), (66:17:17)  (C) and (70:15:15) (D). Scale bars: 1 μm. 

Next, we studied the DPPC:pCer:Chol (54:23:23) ternary mixture, which 

gives rise to a homogeneous phase from the point of view of height (Figure 4.7 A) 

as described previously (Garcia-Arribas et al., 2015). The bilayer presents an 

average thickness of 4.5 ± 0.5 nm, as compared to 5.3 ± 0.2 nm of the pSM-based 

continuous phase, although the difference is not statistically significant. However, 

the observed homogeneity does not correlate with the result obtained by GUV 

fluorescence microscopy (Busto et al., 2014), that showed a narrow, filamentous 

minor phase. It is possible that the segregation shown in GUV reflects the 

generation of two ternary phases of similar but not identical compositions. 

DPPC:pCer:Chol (60:20:20) samples look very similar to the 54:23:23 ones (Figure 

4.7 B). Moreover, when the pCer + Chol amount is decreased, in DPPC:pCer:Chol 

(66:17:17) samples, micron-sized segregated domains of thickness 5.7 ± 0.6 nm 

appear (Figure 4.7 C). Domains show a different behavior in DPPC:pCer:Chol 

(66:17:17) and in pSM:pCer:Chol (66:17:17) because DPPC bilayers do not 
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undergo a Cer-induced reduction in thickness as the pSM-based ones (Garcia-

Arribas et al., 2015). Domain thickness reaches 6.2 nm against 4.1 nm in the 

continuous phase with DPPC:pCer:Chol (70:15:15) (Figure 4.7 D; Table 4.2). 

 

Figure 4.7. AFM images of DPPC:pCer:Chol-based SPB at different mol ratios. DPPC:pCer:Chol 

(54:23:23) (A), (60:20:20) (B), (66:17:17)  (C) and (70:15:15) (D). Scale bars: 1 μm. 

 

4.3.6 Force spectroscopy of ternary mixtures 

Force spectroscopy-based indentations were performed to characterize the 

interaction between these lipids through measurements of the nanomechanical 

resistance of the bilayer. Usually the force-distance obtained is a jump of 4-6 nm, 

depending on bilayer thickness (Alessandrini et al., 2012). A region of SPB was 

imaged and a series of force curves were performed, using the topographical 

images as a guide. This jump reflects the force with which the tip pierces through 

the bilayers, the so-called breakthrough force (Fb) (Unsay et al., 2015). In our 

experiments, force spectroscopy is used to follow the intermolecular packing of 



Bilayers of ternary lipid compositions containing equimolar Cer and Chol 

 

129 

pSM- and DPPC-based ternary SPB through Fb measurements (Figures 4.8 and 4.9 

respectively, Table 4.2). pSM:pCer:Chol (54:23:23) shows three different 

nanomechanical behaviors, confirming the topographic result. In summary, the 

continuous phase presents the same Fb value (35.4 ± 9.1 nN) as the homogeneous 

phase found in our previous analysis (Garcia-Arribas et al., 2015), with a very high 

increase for the ring-shape-segregated phase value (96.3 ± 9.6 nN), while we have 

been unable to break through the inner phase with the maximum available applied 

force (130 nN). This fact supports the high intermolecular packing of the inner 

phase. pSM:pCer:Chol was analyzed at all proportions tested by AFM topography 

and a number of Fb values equal to the number of phases observed in imaging was 

obtained (Figure 4.8). Bilayer breakthrough events occur as smooth steps or 

changes in the slope of the curve, rather than in sharp peaks in most cases, 

showing that the tip does not undergo a violent and quick punch-through process 

between lipids but a slower and more difficult flattening of the lipid molecules in 

order to find a way across the membrane. This speaks in favor of a great degree of 

intermolecular packing. The Fb values decrease with (pCer + Chol) concentration 

for the pSM-based ternaries under study. Breakthrough force data can be found in 

Table 4.2. Moreover, DPPC:pCer:Chol (54:23:23) and (60:20:20) each show two 

smooth reproducible steps centered at ≈24 and ≈40 nN, respectively (Figure 4.9 A, 

B, Table 4.2 C1 and C2). It has been shown that the two-step piercing process is 

related to the distal and proximal leaflets of the bilayer (Alessandrini et al., 2012), 

and it has been described previously for DPPC:pCer:Chol (54:23:23) (Garcia-

Arribas et al., 2015). A higher Fb value (73 - 75 nN) is obtained when 

DPPC:pCer:Chol mixtures are studied, respectively (66:17:17) and (70:15:15) 

(Figure 9 C, D), related to the appearance of scattered micron-sized domains in the 

topographic image. For DPPC-based ternaries, Fb values increase along with (pCer 

+ Chol) concentration, reversing the trend of the pSM-based ones (Table 4.2). 

However this is heavily influenced by the fact that the DPPC-based ternaries 

(54:23:23) and (60:20:20) do not exhibit micron-sized domains (Fig 4.7 A, B). 
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Table 4.2. Bilayer thickness and bilayer nanomechanical resistance of the different SPB 

under study. Thickness measurements have been made by cross-section height analysis (n = 

50−100) of the AFM images taken from each sample. Breakthrough force (Fb) values have been 

obtained by force spectroscopy (n=800-1300). Continuous phase (C), Segregated phase (S), Inner 

phase (I). Average values ± SD are shown. 

 

Bilayer composition Bilayer thickness (nm) Breakthrough Force (nN) 

pSM:pCer:Chol (54:23:23) 
C: 5.3 ± 0.3  

 S: 5.7 ± 0.1  

 

C: 35.4 ± 9.1  

S: 96.3 ± 9.6  

 

pSM:pCer:Chol (60:20:20) 
C: 5.0 ± 0.6  

S: 5.4 ± 0.2  

C: 29.17 ± 7.7  

S: 67.5 ± 6.9  

I: 82.3 ± 7.8  

pSM:pCer:Chol (66:17:17) 
C: 6.4 ± 0.5  

S: 4.5 ± 0.8  

 

C: 45.0 ± 8.1  

S: 74.0 ± 6.2  

 

pSM:pCer:Chol (70:15:15) 
C: 6.5 ± 0.5  

S: 4.4 ± 0.9  

C: 42.6 ± 11.4  

S: 78.6 ± 10.3  

 

DPPC:pCer:Chol (54:23:23) 

 

C: 4.5 ± 0.5  

 

C1: 24.6 ± 5.7  

C2: 40.5 ± 2.6  

DPPC:pCer:Chol (60:20:20) C: 4.3 ± 0.4  

 

C1: 23.1 ± 4.1  

C2: 39.2 ± 4.8 

  

 DPPC:pCer:Chol (66:17:17) 
C: 4.31 ± 0.6  

S:5.67 ± 0.56 

 

C:38.3 ± 9.1  

S: 75.5 ± 4.4  

 

DPPC:pCer:Chol (70:15:15) 
C: 4.1 ± 0.6 

S: 6.2 ± 0.25  

C: 39.9 ± 3.5  

S: 72.7 ± 5.7  
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Figure 4.8. Representative AFM tip indentation curves. Representative force curves from the 

different nanomechanical behaviors detected in pSM:pCer:Chol (54:23:23) (A), pSM:pCer:Chol 

(60:20:20) (B), pSM:pCer:Chol (66:17:17) (C), pSM:pCer:Chol (70:15:15) (D). The retraction curves 

are shown as dotted lines. Arrows point to breakthrough events. 

 

Figure 4.9. Representative AFM tip indentation curves. Representative force curves from the 

different nanomechanical behaviors detected in DPPC:pCer:Chol (54:23:23) (A), DPPC:pCer:Chol 

(60:20:20) (B), DPPC:pCer:Chol (66:17:17) (C), DPPC:pCer:Chol (70:15:15) (D). The retraction 

curves are shown as dotted lines. Arrows point to breakthrough events. 
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4.4 Discussion 

This work was aimed at extending our understanding of SM:Chol:Cer 

ternary phases in which Chol:Cer exist at equimolar ratios. The origins of our 

investigation are, on one hand, the capacity of cholesterol and Cer to displace each 

other in tightly packed bilayers (Megha & London, 2004). On the other hand, we 

had described the gel phase properties of the ternary mixtures SM:Chol:Cer and 

DPPC:Chol:Cer at the 54:23:23 mol ratio (Busto et al., 2014). 

Cer and Chol are both highly hydrophobic molecules with a small polar 

headgroup. They both have a tendency to intercalate between phospholipid acyl 

chains, occupying the same spaces and opening the possibility for mutual 

displacement. This was first described by Megha and London (2004) (Megha & 

London, 2004). Alanko et al.. (2005) (Alanko et al., 2005) showed that, in liquid-

ordered bilayers consisting of pSM and Chol, Cer would displace Chol from SM if 

the concentration of both Cer and Chol were in the 10–20 mol% range. The 

resulting gel phase formed by Cer and SM had a higher packing than the original 

liquid-ordered phase, thus its nanomechanical properties and thickness were 

strongly affected (Chiantia et al., 2007, 2006c; Garcia-Arribas et al., 2015; Sullan et 

al., 2009, 2010). 

The Cer-enriched gel phase in phospholipid:Cer binary systems (i.e. in the 

absence of Chol) seems to be stoichiometrically constant, as a higher content in Cer 

does not affect its nanomechanical resistance or thickness, but only domain size 

(Garcia-Arribas et al., 2015). Conversely, when the lipid system is highly saturated 

in cholesterol, Cer is not able to displace the former (Castro et al., 2009b; Silva et 

al., 2009; Busto et al., 2010, 2014). This suggests that Cer–Chol displacement is not 

a matter of a particular affinity, but rather depends on the relative ratio of both 

molecules, as both have a tendency to occupy the spaces between the lipid acyl 

chains of phospholipids. Further molecular dynamics simulations showed that for 

both 54:23:23 ternaries ceramide molecules displace themselves several 

angstroms from the lipid tails zone towards the lipid tails-heads interphase of the 

bilayer to accommodate and facilitate Cer-Chol interactions (García-Arribas et al., 

2016c). This molecular behaviour could enhance interdigitation events which 

could cause stronger lipid-lipid hydrophobic interactions, such as van der Waals 

interactions, which are distance-dependant. This would explain the rather low 

bilayer thickness detected for the ternary mixtures. 

The above observations and hypotheses led to the question on what would 

be the case if both lipids were present at saturating concentrations in the system, 

at an equimolar Cer:Chol mol ratio. To achieve maximum saturation, 

phospholipid:Chol mol ratio should be around 70:30 (Maulik & Shipley, 1996) 
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while for phospholipid:Cer the maximum stable ratio would be 67:33 (Busto et al., 

2009). Thus a simple model to study this phenomenon would be a 54:23:23 (a 

70:30:30 system recalculated on a 100-basis) phospholipid:Chol:Cer mol ratio, 

with a Cer:Chol ratio of 1:1. This system would contain a phospholipid being 

equally and simultaneously saturated by both Cer and Chol. As mentioned above, 

Cer and Chol are actually able to coexist in a 54:23:23 single gel phase with 

intermediate properties between Cer- enriched domains and Chol-driven liquid-

ordered phases (Busto et al., 2014; Garcia-Arribas et al., 2015) and the phase 

would probably be stabilized by direct Cer–Chol interactions. This phase is 

probably non-stoichiometrically constant (as opposed to SM:Cer domains) and the 

properties would depend on its composition. In this work, using tPA and DPH 

fluorescence measurements, we have provided further evidence that the 54:23:23 

ternary mixtures have unique properties that cannot be reproduced by a mixture 

of phospholipid:Chol (70:30) and phospholipid:Cer (70:30) vesicles (Figure 4.1). 

Furthermore we have observed the properties of a series of mixtures in which the 

phospholipid mol ratio has been varied, while keeping constant the 1:1 Cer:Chol 

mol ratio. 

The main observation in this paper is that in ternary mixtures of pSM (or 

DPPC):Cer:Chol at a mol ratio X:Y:Y, for X=54% the corresponding bilayers appear 

largely homogeneous, while for higher values of X, e.g. 60, 66, or 70 mol%, 

macroscopic heterogeneity becomes obvious. A comment on the concept of 

‘homogeneity’ might be pertinent here. At least in the context of this study, the 

words homogeneity/heterogeneity apply to direct observations of bilayers using 

mainly confocal microscopy, AFM, or DSC. They should not be confused with the 

thermodynamic concepts of ideal or non-ideal mixing. Ideal mixing of membrane 

lipids is rarely observed, particularly when different lipid classes are mixed. Yet 

non-ideal mixing may occur at the nanoscopic level, with apparent homogeneity 

being observed at the micrometre scale. An additional caveat on ‘homogeneity’: a 

GUV bilayer may appear homogeneous when stained with one particular dye, but 

not when another dye is used, see e.g. DiIC18 and NAP stains in Busto et al.. (2014) 

(Busto et al., 2014), or in Figure 4.3, 54:23:23 mixture in this paper. 

Homogeneity can also be observed with one technique, but not with 

another, e.g. the 54:23:23 mixture in Figures 4.3 (DiIC18) and 4.6 (AFM). The latter 

case is interesting because AFM detects three different phases: a continuous phase, 

ring-shaped segregated domains, and the domains inside the rings. This segregated 

phase did not appear in our previous AFM analysis, and it was only visible with 

NAP staining, in the form of thin filaments (Garcia-Arribas et al., 2015), we 

attribute the difference to our recent improvements in the AFM Nanowizard II z-

piezo components. Force spectroscopy measurements (Table 4.2) have shown that 

the continuous phase has the lowest breakthrough force (Fb), while the inner 



Chapter 4 

 

134 

phase could not be pierced with the maximum available applied force (130 nN). 

These results point to a very tight lipid packing inside the rings, although we 

cannot provide quantitative data on their mechanical resistance properties. A 

similar situation was described previously by Zou’s laboratory, who were unable 

to break through SM:Cer-rich domains using DNP-S cantilevers with spring 

constants of 0.06 − 0.28 N/m (Sullan et al., 2009). It is possible that the ring-shape 

segregated phase that surrounds the inner phase further limits its mobility, thus 

increasing its mechanical resistance. pSM:pCer:Chol (60:20:20) shows a similar 

behavior, although in this sample we were able to pierce through the inner phase 

(see values in Table 4.2). The fact that the inner phase shows the highest Fb value 

suggests again the ‘fence’ role of the ring-shaped segregated phase. 

Noticeable differences are however found in pSM:pCer:Chol (66:17:17) and 

(70:15:15). DSC thermograms are displaced to higher temperatures showing 

clearly asymmetric endothermic transitions (Figure 4.2 Table 4.2), and giant 

unilamellar vesicles show an increase in the area occupied by NAP- and DiIC18-

depleted phases (Figure 4.5), perhaps because cholesterol concentration is not 

enough to abolish pSM:pCer-enriched domains. This would also explain the 

coexistence of segregated pSM:pCer domains in SPBs (Figure 4.6) when the 

saturated phospholipid concentration increases. pSM:pCer-enriched domains 

show a decrease in bilayer thickness compared to the surrounding DiIC18-

continuous phase, perhaps related to lipid interdigitation, as previously mentioned 

(Garcia-Arribas et al., 2015). 

The effect of replacing pSM with DPPC in ternary mixtures was investigated 

to characterize the different affinities of pCer and Chol for DPPC and for pSM. In 

general, DPPC:pCer:Chol ternary mixtures follow the same trend as pSM-based 

ones in DSC and confocal microscopy experiments. DSC shows an endothermic 

transition which is displaced to higher temperatures when (Chol + pCer) 

concentration decreases. Giant unilamellar vesicles show an increase in DiIC18- and 

NAP-depleted areas when (pCer + Chol) decreases (Figure 4.5). However 

DPPC:pCer:Chol (54:23:23) and DPPC:pCer:Chol (60:20:20) appear homogeneous 

when SPB are imaged with AFM. The formation of a homogeneous bilayer can be 

related to the pCer and Chol lower degree of packaging with DPPC, which allows a 

higher freedom of motion to these lipids. When (pCer + Chol) decreases in 

DPPC:pCer:Chol (66:17:17) or particularly in DPPC:pCer:Chol (70:15:15), 

DPPC:pCer-enriched domains appear (Figures 4.4, .4.5, 4.7). These domains show 

an increase in bilayer thickness compared to the surrounding DiIC18-continuous 

phase, due to a lower degree of lipid interdigitation as described previously 

(Garcia-Arribas et al., 2015). Again, a lower degree of lipid interdigitation in 

DPPC:pCer-enriched domains is perhaps at the origin of the lower mechanical 

resistance of these domains when they are compared to pSM:pCer at lower (pCer + 
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Chol) amounts (Table 4.2). These results are in agreement with the suggestions 

that pCer or Chol, individually considered, have a higher affinity for pSM than for 

DPPC, which can be due to the amide and hydroxyl groups of pSM acting as 

hydrogen bond acceptors and donors while the DPPC polar head presents only 

hydrogen bond-accepting groups (García-Arribas et al., 2016b). Moreover the 

existence of a (near)-homogeneous ternary phase at DPPC:pCer:Chol at 60:20:20, 

while the corresponding pSM-based bilayers show lateral phase separation 

(Figures 4.3, 4.4, 4.6, 4.7) indicates that the high affinities of Cer and Chol for SM 

are not an essential factor in the formation of the gel ternary phase. 

It is difficult to ascertain at present whether or not these observations are 

directly applicable to the situation in the cell membranes. It is well-known that the 

plasma membrane is rich in SM and Chol, and that SM is partly hydrolyzed to 

ceramide and phosphorylcholine by an acid sphingomyelinase under stress 

conditions. Thus the three main molecules in our study could well coexist in a very 

small area under certain conditions. Note that ternary-like domains (i.e. enriched 

in both Cer and Chol) have been detected in fluid model bilayers, such as red blood 

cell lipid extracts (García-Arribas et al., 2016a). The currently available technology 

does not allow the in vivo direct observation of transient nanodomains, as SM, Chol 

and Cer would probably form in the cellular environment, but fast progress is 

being made in this area, so that our hypothesis might become amenable to direct 

testing very soon (Goñi, 2019; Sezgin et al., 2017). 

In conclusion, we have found that, for bilayers consisting of mixtures of 

composition phospholipid:Chol:pCer at X:Y:Y mol ratios, the phospholipid being 

either pSM or DPPC, mixtures close to 54:23:23 give rise to a pure (or at least a 

highly predominant) gel phase, as detected by DSC, GUV confocal fluorescence 

microscopy, or AFM. However when the proportion of phospholipid increases 

beyond 60 mol%, i.e. in 66:17:17 or 70:15:15 mixtures, a clear lateral phase 

separation occurs at the microscopic (i.e. µm) scale. Heterogeneity, or lateral phase 

separation, occurs more easily with pSM than with DPPC. These data can be 

interpreted in terms of a pCer:Chol interaction, that would predominate at low 

phospholipid concentrations, while at the higher phospholipid concentrations 

pSM:pCer and pSM:Chol interactions would become more important, giving rise to 

coexisting gel and liquid-ordered phases respectively. The lower hydrogen-

bonding capacity of DPPC with respect to pSM would explain the lower tendency 

towards macroscopic phase separation of the DPPC-based mixtures. 
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4.5 Supplementary data 

4.5.1 Supplementary methods 

Measuring non-stained areas in GUV. The Supplementary Figure 4.S1 shows 

two examples of the non-stained areas quantification procedure, respectively for 

GUV containing micro- and nano-domains. 

 

Figure 4.S1. Measuring non-stained areas in GUV method. 
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4.5.2 Supplementary results 

tPA fluorescence lifetimes. In bilayers of pure pSM or DPPC, tPA showed a bi-

exponential intensity decay with a long lifetime component of 45-50 ns and a 

shorter lifetime around 15 ns. Addition of 30 mol% Chol led to a decrease in the 

longest lifetime component and its fractional amplitude as described in (Wolber & 

Hudson, 1981), while addition of 30 mol% pCer resulted in an increase in the 

longest lifetime component, probably due to the gel-phase forming effect of the 

latter lipid. All binary mixtures exhibited bi-exponential decays, in accordance with 

studies supporting the presence of a single phase in bilayers with those 

compositions: an Lo phase in the case of Chol-containing bilayers (Busto et al., 

2010) and a highly rigid gel-like phase in the case of membranes with Cer (Busto et 

al., 2009). The longest lifetime component of the ternary mixtures containing both 

Chol and pCer showed an intermediate value as compared to those of the binary 

mixtures, although the fractional amplitude was more similar to that of the Chol-

containing binary mixtures. Similarly to the other compositions, the ternary 

mixture also showed a bi-exponential intensity decay. However, when a control 

sample containing a mixture of equal amounts of DPPC:Chol and DPPC:pCer 

liposomes was studied, the recovered intensity decay was still well adjusted to a 

bi-exponential decay. Therefore, the intensity decay of tPA seemed to be unable to 

distinguish between different ordered domains, so that the result obtained was 

just an average of the longest lifetimes of such domains and of their corresponding 

fractional amplitudes. It must be noted, however, that while the longest lifetimes of 

the control and the corresponding ternary mixture were identical, that was not the 

case for their fractional amplitudes (Supplementary Figure 4.S2). 
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Figure 4.S2. tPA fluorescence lifetimes. Effect of Chol and/or pCer 

incorporation into pSM or DPPC bilayers at room temperature. tPA intensity 

decays were fitted to obtain two lifetime components (top panels, filled circles and 

empty circles). The bottom panels show the fractional amplitudes corresponding 

to the long lifetime (filled circles) and the short lifetime (empty circles). The binary 

mixtures were 7:3 (mol ratio) and the ternary mixtures were 54:23:23 (mol ratio). 

The control was a mixture of equal amounts of liposomes of both DPPC binary 

mixtures (DPPC:Chol 7:3 and DPPC:pCer 7:3). Values shown are averages of three 

separate experiments ± SD, but for the control (a single experiment). 
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Figure 4.S3. Shortening of the tPA longest lifetimes with increasing 

temperatures. Bilayer compositions are given in the insets. Values shown are 

averages of three separate experiments ± SD, but for the controls (a single 

experiment). The controls were a mixture of equal amounts of liposomes of each 

binary mixture, either (DPPC:Chol 7:3 + DPPC:pCer 7:3) or (pSM:Chol 7:3 + 

pSM:pCer 7:3).  

As temperature was increased, the longest tPA lifetime component was 

shortened (Figure 4.S3). Both pure pSM and DPPC bilayers showed a sharp 

decrease of the longest lifetime to < 10 ns at 45 ºC, when both bilayers became 

fluid (Figure 4.S3, squares). Binary mixtures with pCer showed a nearly linear 

decrease of the longest lifetime with a drop below 10 ns at 70 ºC (Figure 4.S3, 

triangles). This is in good agreement with the DSC thermograms (Busto et al., 

2009) where the gel-fluid transition was completed around that temperature. 

Binary mixtures with Chol exhibited a different trend with no sudden drop but a 

gradual change of slope when reaching the range of short lifetimes (<10 ns) at 50-

55 ºC (Figure 4.S3, circles). An intermediate behavior was observed in ternary 

mixtures: at low T, the longest lifetime values were similar to those of the binary 

mixtures with pCer, then the trend of the decrease resembled that of the Chol-

containing mixtures, and the low lifetime regime was reached at an intermediate 

temperature of 60-65 ºC (Figure 4.S3, diamonds). Controls containing a mixture of 

equal amounts of DPPC:Chol (or pSM:Chol) and DPPC:pCer (or pSM:pCer) 

liposomes showed a similar behavior to that of the pSM:pCer binary, or of the 

ternary mixtures (Figure 4.S3, inverted triangles). 
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CHAPTER 5: COMPLEX EFFECTS OF 24:1 

SPHINGOLIPIDS IN MEMBRANES CONTAINING 

DIOLEIOYL PHOSPHATIDYLCHOLINE AND 

CHOLESTEROL 

5.1 Introduction 

The role of sphingolipids as second messengers in diverse cellular 

processes has attracted the attention of biophysicists and biochemists in recent 

years (Futerman & Hannun, 2004; Hannun & Obeid, 2011; Castro et al., 2014). 

Ceramides are among the most studied sphingolipids due to their proposed role in 

cell death processes (Obeid et al., 1993; Kolesnick, 2002; Taha et al., 2006; Chipuk 

et al., 2012; Zhu et al., 2014; Lang et al., 2015) and their capacity to induce bilayer 

heterogeneity, i.e. domain segregation of ceramide-enriched areas within the 

membrane (Stancevic & Kolesnick, 2010). Long chain ceramides are also able to 

modify the biophysical properties of membranes as they induce lipid flip-flop 

(Contreras et al., 2003) and enhance solute efflux across the membrane (Montes et 

al., 2002; Siskind et al., 2002). Most of the aforementioned studies focus on C16:0 

ceramide (palmitoyl ceramide, pCer) since pCer has been considered paradigmatic 

among long chain ceramides. 

However recent studies in lipidomics show that nervonoyl sphingolipids 

(C24:1) are also abundant and, in some cases, concentration levels are on par with 

their C16:0 counterparts (Quinn et al., 2005; Maté et al., 2014). Very few studies 

have been performed to characterize the effect of C24:1 sphingolipids in lipid 

membranes and while comparative experiments between C16:0 and C24:1 

sphingolipids as pure lipids are common in the literature (Pinto et al., 2008, 2011; 

Slotte, 2013; Jiménez-Rojo et al., 2014; Pinto et al., 2014), studies of their effects in 

multicomponent bilayers are scarce (Maté et al., 2014; Maula et al., 2015), and the 

effects of different combinations of C16:0 and C24:1 sphingolipids of different class 

(e.g. sphingomyelin, ceramide) are virtually unexplored. 
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Bilayers in the gel (Lβ) phase present low fluidity and increased lipid chain 

order. They typically exhibit higher nanomechanical resistance (Garcia-Manyes et 

al., 2010; Garcia-Arribas et al., 2015) and cause a significant increase in bilayer 

thickness (Nagle & Tristram-Nagle, 2000; Domènech et al., 2007). In turn the ‘lipid 

raft’ hypothesis is focused on liquid-ordered phases (which are often defined as a 

middle ground between gel and fluid phases) enriched in sphingolipids and 

cholesterol (Simons & Ikonen, 1997; Simons & Gerl, 2010). However, sphingolipids 

such as ceramides are able to segregate into highly packed gel domains that could 

serve as signaling platforms in vivo for ceramide-related signaling cascades, such 

as those involved in cell death processes (Cremesti et al., 2001, 2002; Kornhuber et 

al., 2014). Ceramide-rich platforms would also facilitate protein clustering and 

membrane reorganization (Kolesnick et al., 2000; Cremesti et al., 2002; Gulbins & 

Li, 2006; Kornhuber et al., 2014), thus being a strong governing factor of protein-

based interactions.  This hypothesis is supported by some in vivo experiments 

regarding the effects of ceramide-rich domains (Grassmé et al., 2001; Grassme et 

al., 2002). However, the complete confirmation of this hypothesis is hampered by 

problems such as the large number of components present in cell signaling 

cascades and, particularly, in the cell-death machinery. 

The effect of cholesterol has been reported as a modulator of the generation 

of ceramide-enriched domains by displacing ceramide from mixtures with other 

lipids (Castro et al., 2009b; Busto et al., 2014) and ceramide generation can also 

cause disassembly of liquid-ordered phases enriched in cholesterol by 

sphingomyelin recruitment (Megha & London, 2004; Chiantia et al., 2006a, 2007; 

Sot et al., 2008). Therefore the presence of cholesterol could indeed have effects on 

the cell death-inducing capacities of ceramide (Montero et al., 2008; Garcia-Ruiz et 

al., 2009). Even in some situations non-stoichiometrically constant gel phases 

enriched in both ceramide and cholesterol can also appear, caused by direct 

ceramide-cholesterol interaction  (García-Arribas et al., 2016c, 2016a), thus 

ceramide:cholesterol ratios could be managed by living cells to fine tune 

membrane properties (García-Arribas et al., 2016b). These studies are though 

focused on C16:0 sphingolipids, particularly C16:0 ceramide, and no further 

studies have been performed on C24:1 sphingolipids. 

In the present study we aim to describe the effects of different combinations 

of C16:0 and C24:1 sphingolipids in model membranes composed of DOPC:SM:Chol 

(2:1:1) + Cer in order to recreate a Lα-Lo cell membrane environment in the 

presence of ceramide, where SM can be nervonoyl sphingomyelin (nSM), palmitoyl 

sphingomyelin (pSM) or an equimolecular mixture of both, and Cer can be 

nervonoyl ceramide (nCer), pCer o an equimolecular mixture of both. For this 

purpose, a combination of techniques was used: atomic force microscopy (AFM), 

confocal microscopy, and differential scanning calorimetry (DSC).  
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5.2 Materials and methods 

5.2.1 Materials 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-palmitoyl-D-erythro-

sphingosylphosphorylcholine (16:0 SM, pSM), N-nervonoyl-D-erythro-sphingosyl-

phosphorylcholine (24:1 SM, nSM), N-palmitoyl-D-erythro-sphingosine (16:0 Cer, 

pCer), N-nervonoyl-D-erythro-sphingosine (24:1 SM, nCer) and lipophilic 

fluorescent probe 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine 

rhodamine B sulfonyl) (Rho-PE) were purchased from Avanti Polar Lipids 

(Alabaster, AL, USA). Buffer solution (‘assay buffer’) for experiments was 20 mM 

PIPES, 1 mM EDTA, 150 mM NaCl, pH 7.4. All other reagents were of analytical 

grade. 

5.2.2 Differential scanning calorimetry (DSC) 

The measurements were performed in a VP-DSC high-sensitivity scanning 

microcalorimeter (MicroCal, Northampton, MA, USA). Both lipid and buffer 

solutions were degassed prior to loading into the appropriate cell in the form of 

MLVs. MLVs were prepared as described previously, but in assay buffer (NaCl 150 

mM, 20 mM PIPES, 1 mM EDTA) and at a 1 mM concentration. 0.5 ml at 1 mM total 

lipid concentration was loaded into the calorimeter, performing 3-9 heating scans 

at a 45 °C/h rate, between 10 and 100 °C for all samples. Phospholipid 

concentration was determined as lipid phosphorus, and used together with data 

from any of the reproducible scans, to obtain normalized thermograms. The 

software Origin 7.0 (MicroCal), provided with the calorimeter, was used to 

determine the different thermodynamic parameters from the scans. The software 

PeakFit (Systat Software Inc., Chicago, IL, USA) was used for endotherm 

deconvolution. 

5.2.3 Confocal microscopy of giant unilamellar vesicles (GUV) 

Giant vesicles were prepared at 60 °C by electroformation on a pair of 

platinum (Pt) wires by a method first developed by Angelova and Dimitrov, 

modified as described previously (Angelova & Dimitrov, 1986; Dimitrov & 

Angelova, 1988; Montes et al., 2007). Lipid stock solutions were prepared in 2:1 

(v/v) chloroform/methanol at 0.27 mg/mL, and appropriate volumes of each 

preparation were mixed. Labeling was carried out by premixing the desired 

fluorescent probe (Rho-PE) with the lipids in organic solvent. Fluorescent probe 

concentration was 0.4 mol % Rho-PE. The samples were deposited on platinum 

(Pt) wires. The Pt wires were placed under vacuum for 2 h to completely remove 
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the organic solvent. The sample was covered to avoid light exposure and allowed 

to precipitate onto the Pt wires for 5 min. One side of the chamber was then sealed 

with a coverslip. We added 500 mL assay buffer, prepared with high-purity water 

(SuperQ, Millipore, Billerica, MA) heated at 75 °C, until it covered the Pt wires and 

the latter were connected to a TG330 function generator (Thurlby Thandar 

Instruments, Huntingdon, UK). The alternating current field was applied in three 

steps, all performed at 60 ºC: 1), frequency 500 Hz, amplitude 220 mV (35 V/m) 

for 5 min; 2), frequency 500 Hz, amplitude 1900 mV (313 V/m) for 20 min; and 3), 

frequency 500 Hz, amplitude 5.3 V (870 V/m) for 90 min. The temperatures used 

for GUV formation correspond to those at which the different membranes display a 

single fluid phase. The generator and the water bath were switched off, and 

vesicles were left to equilibrate at room temperature for 1 h. After GUV formation, 

the chamber was placed onto an inverted confocal fluorescence microscope (Nikon 

D-ECLIPSE C1, Nikon, Melville, NY). The excitation wavelength for Rho-PE was 561 

nm, and the images were collected using a band-pass filter of 593 ± 20 nm. Image 

treatment and quantitation were performed using the software EZ-C1 3.20 

(Nikon). No difference in domain size, formation, or distribution was detected in 

the vesicles during the observation period or after laser exposure. 

5.2.4 Supported planar bilayer (SPB) formation 

SPB were prepared on high V-2 quality scratch-free mica substrates 

(Asheville-Schoonmaker Mica Co., Newport News, VA, USA) previously attached to 

round 24 mm glass coverslips by the use of a two-component optical epoxy resin 

(EPO-TEK 301-2FL, Epoxy Technology Inc., Billerica, MA, USA). SPB are prepared 

by the vesicle adsorption method (McConnell et al., 1986; Jass et al., 2000). 

Multilamellar vesicles (MLV) were initially prepared by mixing the appropriate 

amounts of synthetic pure lipids in chloroform:methanol (2:1, v/v) solutions, 

including 0.4 mol% Rho-PE. Samples were then dried by evaporating the solvent 

under a stream of nitrogen and placing them under vacuum for 2 h. The samples 

were then hydrated in assay buffer and vortexed at a temperature above that of 

the sample lipids highest phase transition. After complete lipid detachment from 

the test tube bottom, formed MLV were introduced in a FB-15049 (Fisher Scientific 

Inc., Waltham, MA, USA) bath sonicator and kept at 70 °C for 1 h. In this way a 

proportion of small unilamellar vesicles (SUV) were generated. Thereafter, 120 μl 

assay buffer containing 3 mM CaCl2 were added onto previously prepared 1.2 cm2 

freshly cleaved mica substrate mounted onto a BioCell coverslip-based liquid cell 

for atomic force microscopy (AFM) measurements (JPK Instruments, Berlin, 

Germany). 60 μl sonicated vesicles were then added on top of the mica. Divalent 

cations such as Ca2+ or Mg2+ have been described as enhancers of the vesicle 

adsorption process onto mica substrates (Attwood et al., 2013). Final lipid 

concentration was 150 μM. Vesicles were left to adsorb and extend for 30 min 
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keeping the sample temperature at 60 °C. In order to avoid sample evaporation 

and ion concentration, after the first 5 min the buffer was constantly exchanged 

with assay buffer without CaCl2 at 60 °C for the remaining time. Additional 30 min 

were left for the samples to equilibrate at room temperature, discarding the non-

adsorbed vesicles by washing the samples 10 times with assay buffer without 

CaCl2, in order to remove remaining Ca2+ cations from the solution which are 

reported to drastically affect the breakthrough force (Fb) results of lipid bilayer 

nanoindentation processes (Garcia-Manyes et al., 2010). The efficiency of rinsing 

processes to obtain proper and clean supported lipid bilayers has been reported 

(Oncins et al., 2005). This extension and cleaning procedure allowed the formation 

of bilayers that did not cover the entire substrate surface. The presence of lipid-

depleted areas helped with the quantification of bilayer thicknesses and the 

performance of proper controls for force-spectroscopy measurements. Planar 

bilayers were then left to equilibrate at room temperature for 1 h prior to 

measurements in order to avoid the presence of possible artifacts as segregated 

domains appear at high temperatures (over the Tm) (Garcia-Manyes et al., 2005) 

and could still be present at lower temperatures if the cooling process was too fast 

(> 1 °C/min) (Attwood et al., 2013). Finally, the BioCell was set to 23 °C to start the 

AFM measurements.  

5.2.5 AFM imaging  

 Planar bilayer topography was performed under contact mode AFM 

scanning (constant vertical deflection) in a NanoWizard II AFM (JPK Instruments, 

Berlin, Germany). For proper measurements the AFM was coupled to a Leica 

microscope and mounted onto a Halcyonics Micro 40 anti-vibration table 

(Halcyonics, Inc., Menlo Park, CA, USA) and inside an acoustic enclosure (JPK 

Instruments). The BioCell liquid sample holder (JPK Instruments) was used in 

order to control the assay temperature at 23 °C. V-shaped MLCT Si3N4 cantilevers 

(Bruker, Billerica, MA, USA) with nominal spring constants of 0.1 or 0.5 N/m were 

used for bilayer imaging, always keeping the minimum possible force (0.5 – 1 nN). 

512 x 512 pixel resolution images were collected at a scanning rate between 1 and 

1.5 Hz and line-fitted using the JPK Data Processing software as required prior to 

topography-related data collection. In this regard, bilayer thicknesses were 

calculated by cross-section height analysis (n=50-100) from no less than 3 images 

of at least 3 independent sample preparations with individual cantilevers.  

5.2.6 Epifluorescence microscopy 

 Direct AFM-coupled inverted epifluorescence microscopy was performed in 

a Leica DMI 4000B microscope (Leica Microsystems, Wetzlar, Germany) using an 
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appropriate filter cube for Rho-PE fluorochrome (excitation filter HQ545/30x, 

dichroic mirror Q570LP and emission filter HQ610/75m) (Chroma Tech., Bellows 

Falls, VT, USA). Images were acquired using a 40X/0.60 LD objective (Leica 

Microsystems) with a high resolution ORCA-R2 digital CCD camera (Hamamatsu 

Photonics, Shizuoka, Japan). 

5.2.7 Force spectroscopy 

 Prior to imaging, V-shaped MLCT Si3N4 cantilevers (Bruker, Billerica, MA, 

USA) with nominal spring constants of 0.1 or 0.5 N/m were individually calibrated 

in a lipid-free mica substrate in assay buffer using the thermal noise method. After 

proper bilayer area localization by means of AFM topography and direct 

epifluorescence microscopy, force spectroscopy was performed at a speed of 1 

µm/sec in no less than 500 x 500 nm bilayer areas in the form of 10x10 or 15x15 

grids. Force steps were determined for each of the indentation curves as 

reproducible jumps within the extended traces. The resulting histograms were 

generated from at least 3 independent sample preparations with at least 3 

independently calibrated cantilevers (n=350-1800). Control indentations were 

always performed in lipid-free areas before and after bilayer indentations to 

ascertain the formation of a single bilayer and the absence of artifacts or debris on 

the tip, assessed by the lack of any force-distance step on both trace and retrace 

curves.  

5.3. Results 

Lipid gel phases surrounded by a fluid phase are identifiable using 

fluorescence techniques involving lipid fluorophores. Throughout this study the 

lipid fluorophore is Rho-PE, which partitions preferentially into fluid phases and 

tends to be excluded from the more ordered phases. In some cases, only a relative 

partition is observed, which means that the fluidity of the various phases differs 

but only to a certain degree. Rho-PE is used for confocal fluorescence visualization 

of GUV (Figure 5.1) and for epifluorescence visualization of supported planar 

bilayers, coupled with atomic force microscopy. In turn, AFM allows the direct 

detection of segregated phases either by imaging (segregated ordered phases tend 

to have increased thickness, and they appear with brighter colors on the images) 

or by force spectroscopy (ordered phases present higher nanomechanical 

resistance when force indentation curves are applied). By combining the above 

data the lipid bilayer can be characterized and different lipid compositions can be 

comparatively studied. 
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5.3.1 pSM-based samples 

DOPC:pSM:Chol (2:1:1) samples containing additional 30 mol% ceramide 

were prepared (either 30 mol% pCer, or 30 mol% nCer, or 15 mol% pCer + 15 

mol% nCer) in order to study the effects of nCer as compared to those of pCer. The 

30 mol% pCer and the 30 mol% nCer mixtures present both a clear gel/fluid phase 

segregation that can be identified by fluorescence-depleted areas in GUV (Figures 

5.1 A and 5.1 B respectively) and SPB (Figures 5.2 B and 5.2 D respectively), while 

AFM imaging also reveals phase segregation, as gel phase domains protrude out of 

the membrane with an increased thickness (Figures 5.2 A and 5.2 C respectively). 

Force spectroscopy data (Table 5.1) reveal that pCer domains are much stiffer than 

nCer domains, and DSC thermograms (Figure 5.3 A, 5.3 C) also point in the same 

direction, as Tm values are lower for nCer samples. 
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Figure 5.1. Confocal microscopy 3D (z-stack) images of fluorescent giant unilamellar vesicles 

containing 0.4% Rho-PE. DOPC:pSM:Chol (2:1:1) + 30% pCer (A), + 30% nCer (B), +15% pCer & 

15% nCer (C). Scale bars: 10 μm. 

 

Figure 5.2. AFM and epifluorescence images of DOPC:pSM:Chol-based SPB containing 0.4% 

Rho-PE. DOPC:pSM:Chol (2:1:1) + 30% pCer (A & B), + 30% nCer (C & D), +15% pCer & 15% nCer 

(E, F) and zoom-in of the highlighted area in E (G). Scale bars: 5 μm. 
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Table 5.1. Bilayer nanomechanical resistance and bilayer thickness of the different SPB 

under study. Data expressed as mean ± SD, n= 300 – 1000. 

Samples 

Breakthrough Force 
(nN) 

Bilayer Thickness (nm) 

Continuous 
phase 

Segregated 
domains 

Continuous 
phase 

Segregated 
domains 

DOPC:pSM:Chol 

pCer 6.5 ± 2.9 57.4 ± 2.3 4.57 ± 0.20 5.40 ± 0.13 

nCer 3.4 ± 1.5 17.3 ± 2.0 5.23 ± 0.17 5.95 ± 0.14 

pCer + 

nCer 
2.4 ± 0.6 

3.7 ± 0.8 

20.9 ± 2.5 
4.94 ± 0.20 

5.32 ± 0.28 

5.73 ± 0.16 

 

The pSM sample containing 15 mol% of each ceramide displays a 

thermogram (Figure 5.3 B) which is close to the nCer-containing sample (Figure 

5.3 C), although the Tm is slightly higher than the nCer- and clearly lower than the 

pCer-containing one (Figure 5.3 A). However, a close inspection of the data reveals 

an additional segregated phase, which can be identified both by confocal 

microscopy (Figure 5.1 C) and AFM imaging. In the zoom-in of Figure 5.2 G three 

lipid phases can be observed, with a clear difference in thickness (AFM image 

color), quantified in Table 5.1. Confocal microscopy visualization of this additional 

gel phase is revealed by a different degree of enrichment of Rho-PE (Figure 5.1 C), 

as some areas are completely devoid of fluorescence (first segregated phase) but 

others are only partially depleted (second segregated phase), while the continuous 

phase is clearly more fluorescent. This indicates that the second segregated phase 

is compositionally closer to the continuous fluid phase, as Rho-PE is present in 

both phases. This is corroborated by force spectroscopy data, as their 

breakthrough forces are much lower than for the fluorescence-depleted gel phase 

(Table 5.1).  

Force spectroscopy data (Table 5.1, representative force curve in Supp. Fig. 5.S1 A) 

shows that gel domains exhibit lower nanomechanical resistance when nCer is 

present, in accordance with a noticeable decrease in Tm measured by DSC (Figure 

5.3 for thermograms, Table 5.2 for quantitative results). In addition, the presence 

of nCer increases the overall bilayer thickness of every phase present, as measured 

by AFM imaging (Table 5.1). This could be a direct consequence of the longer N-

acyl chain (C24:1 vs. C16:0) of nCer. 
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Figure 5.3. DSC thermograms. DOPC:pSM:Chol (2:1:1) + 30% pCer (A), + 15% pCer & 15% nCer 

(B), + 30% nCer (C). Arrow represents 0.5 kcal/mol·°C. 

Table 5.2. Thermodynamic parameters of the gel-fluid transition, as obtained from DSC 

experiments. Average ± values SD (n=3). 

Samples ∆H (kJ/mol) T
m

 (°C) T
1/2 

(°C) 

 pCer 35.6 ± 16.9 48.5 ± 0.1 9.5 ± 0.4 

DOPC:pSM:Chol nCer 24.4 ± 0.8 39.0 ± 0.4 8.4 ± 0.5 

 pCer + nCer 28.6 ± 1.7 39.5 ± 0.3 9.5 ± 0.6 

ΔH: transition enthalpy change.  

ΔT1/2: transition width at half-height 

Confocal microscopy also points to both segregated phases sharing a part of 

the interphase boundary (instead of being completely separated by the continuous 

phase) and AFM data suggest, accordingly, that the thickest segregated phase could 

indeed be surrounded by the second segregated phase, and not by the continuous 

fluid phase. The potential composition of each phase will be discussed later. The 

thickest phase exhibits a slight increase in nanomechanical resistance when 

compared to nCer-enriched domains (20.9 nN vs. 17.3 nN), while it is still 

significantly lower than the resistance of pCer-enriched domains (Table 5.1), 

following the same trend as Tm values (Figure 5.3, Table 5.2). Moreover, pCer-
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enriched domains present the same thickness and stiffness than in pure pSM:pCer 

mixtures in the same buffer (57 nN according to previous reports (Garcia-Arribas 

et al., 2015)), which, as expected (Chiantia et al., 2006b),  indicates an almost 

complete displacement of DOPC and Chol from this phase to the continuous phase 

in the DOPC:pSM:Chol:pCer sample. 

In summary, these results point to both ceramides as gel phase-inducing 

agents, pCer being much more effective than nCer for that purpose as pCer-

induced gel phases are clearly stiffer. 

5.3.2 nSM-based samples 

Following the same procedure, similar experiments were performed on 

DOPC:nSM:Chol (2:1:1) + 30% ceramide (pCer, nCer or an equimolar mixture 

pCer/nCer). As with pSM (previous section), ceramides were able to generate 

segregated domains in a gel phase, although Rho-PE fluorescent probe is not 

completely excluded from the domains (Figure 5.4 A for pCer, Figure 5.4 B for nCer 

and Figure 5.4 C for the mixture of both ceramides), which points to domains being 

less ordered (or less packed) than in pSM-based samples. This case is of special 

interest as nSM is reportedly able to override phase segregation for liquid-ordered 

phases (Maté et al., 2014) but to the best of our knowledge this had not been tested 

for ceramide-enriched gel phases.  

 

Figure 5.4. Confocal microscopy 3D (z-stack) images of fluorescent giant unilamellar vesicles 

containing 0.4% Rho-PE. DOPC:nSM:Chol (2:1:1) + 30% pCer (A), + 30% nCer (B), +15% pCer & 

15% nCer (C). Scale bars: 10 μm. 
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Figure 5.5. AFM and epifluorescence images of DOPC:nSM:Chol-based SPB containing 0.4% 

Rho-PE. DOPC:nSM:Chol (2:1:1) + 30% pCer (A & B), + 30% nCer (C & D), +15% pCer & 15% nCer 

(E & F). Scale bars: 5 μm. 

AFM imaging and epifluorescence (Figure 5.5) corroborate confocal 

microscopy data as segregated gel domains can be detected in all three cases, due 

to their higher thickness and stiffness (Table 5.2). AFM results for the pCer+nCer 
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sample reveal two types of different segregated phases, while fluorescence reveals 

only one. This is discussed in the paragraph below. The presence of black areas in 

AFM images, such as in Figure 5.5 E, is caused by bare mica zones that are not 

covered by lipid bilayer. These zones are common in vesicle-adsorption SPB 

preparation and they are useful for bilayer thickness quantization (from mica, zero 

height, to the top surface of the lipid bilayer).  

Table 5.3. Bilayer nanomechanical resistance and bilayer thickness of the different SPB 

under study. Data expressed as mean ± SD, n= 300 – 1000. 

Samples 

Breakthrough Force (nN) Bilayer Thickness (nm) 

Continuous 
phase 

Segregated 
domains 

Continuous 
phase 

Segregated 
domains 

DOPC:nSM:Chol 

pCer 2.5 ± 0.4 10.2 ± 0.7 4.31 ± 0.45 5.07 ± 0.51 

nCer 1.8 ± 0.4 7.8 ± 2.7* 4.51 ± 0.22 6.31 ± 0.38 

pCer + 

nCer 
2.4 ± 0.9 

13.1 ± 1.1 

10.7 ± 1.5* 
4.04 ± 0.32 

4.94 ± 0.42 

5.86 ± 0.55 

*Force curves present adhesion during tip retraction. 

 

Additional differences exist between the two data sets (nSM- and pSM-

based). The presence of nSM instead of pSM caused a sharp reduction in bilayer 

stiffness measured by AFM for every phase present (Table 5.3). As previously 

stated in the paragraph above, when both ceramides are present two kinds of 

domains appear, but in this case these two segregated phases cannot be 

distinguished through fluorescence as Rho-PE barely reveals the second one. This 

could be caused by the domains being compositionally close (inefficient 

fluorescent probe partition between the domains). Another difference with the 

two-domain pSM-based sample is that, in the case of nSM, these two segregated 

phases are separated from each other (i.e. they are both completely surrounded by 

the continuous phase, as seen in Figure 5.5 E) and, more importantly, both exhibit 

a higher nanomechanical resistance than the single-Cer samples (Table 5.3), which 

points to both phases being in a gel state. The possible nature of these domains will 

be further assessed in the Discussion section. 

DSC data (Figure 5.6, Table 5.4) show that Tm decreases again in the order 

TmpCer > TmpCer+nCer > TmnCer, although all three values are around 6 °C below 

the corresponding pSM-based samples (Table 5.2) and moreover in this case the 
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TmpCer+nCer is intermediate between the other two and not particularly close to 

any of them, while in the pSM-based results the TmpCer+nCer was closer to Tm 

nCer. 

 

Figure 5.6. DSC thermograms. DOPC:nSM:Chol (2:1:1) + 30% pCer (A), + 15% pCer & 15% nCer 

(B), + 30% nCer (C). Arrow represents 0.5 kcal/mol·°C. 

 

Table 5.4. Thermodynamic parameters of the gel-fluid transition, as obtained from DSC 

experiments. Average ± values SD (n=3). 

Samples ∆H (kJ/mol) T
m

 (°C) T
1/2 

(°C) 

 pCer 31.0 ± 0.9 38.8 ± 0.1 8.7 ± 0.2 

DOPC:nSM:Chol nCer 13.0 ± 1.1 31.2 ± 0.8 8.0 ± 0.3 

 pCer + nCer 21.8 ± 1.0 35.8 ± 0.1 9.4 ± 1.6 

ΔH: transition enthalpy change.  

ΔT1/2: transition width at half-height 
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5.3.3 Samples containing both nSM and pSM 

The case of DOPC:nSM:pSM:Chol (2:0.5:0.5:1) + 30% ceramide represents 

the most complex sample set of our study. As in the previous cases, segregated gel 

phases are observed using confocal microscopy (Figure 5.7 A for pCer, Figure 5.7 B 

for nCer and Figure 5.7 C for the mixture of both ceramides). When one kind of 

ceramide is present, segregated domains generated are shown as completely 

depleted areas using Rho-PE, however, when both ceramides are present exhibits a 

partial partition of the fluorescent probe, i.e. the latter is not completely excluded 

from any domain.  

 

Figure 5.7. Confocal microscopy 3D (z-stack) images of fluorescent giant unilamellar vesicles 

containing 0.4% Rho-PE. DOPC:nSM:pSM:Chol (2:1:1) + 30% pCer (A), + 30% nCer (B), +15% 

pCer & 15% nCer (C). Scale bars: 10 μm. 

DSC data follows the same trend as in the pSM sample set (Figure 5.8), 

although the three Tm are around 3 °C lower (Table 5.5), and higher than the nSM 

sample set.  

Table 5.5. Thermodynamic parameters of the gel-fluid transition, as obtained from DSC 

experiments. Average ± values SD (n=3). 

Samples ∆H (kJ/mol) T
m

 (°C) T
1/2 

(°C) 

 pCer 25.1 ± 9.1 44.3 ± 0.3 8.8 ± 0.4 

DOPC:nSM:pSM:Chol nCer 19.5 ± 0.6 36.9 ± 0.8 8.6 ± 0.1 

 pCer + nCer 23.3 ± 0.1 37.2 ± 1.0 10.2 ± 0.3 

ΔH: transition enthalpy change.  

ΔT1/2: transition width at half-height 
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Figure 5.8. DSC thermograms. DOPC:nSM:pSM:Chol (2:1:1) + 30% pCer (A), + 15% pCer & 15% 

nCer (B), + 30% nCer (C). Arrow represents 0.5 kcal/mol·°C. 

AFM imaging (Figure 5.9) reveals that there is only one single segregated 

gel phase for every case, even when both ceramides are present. Force 

spectroscopy (Table 5.6) correlates with DSC data, as breakthrough forces 

decrease for pCer and nCer, although the nCer + pCer exhibits the same stiffness as 

the highest domain of DOPC:pSM:Chol + both ceramides. This information is 

helpful for a better understanding of the nature of each phase, which will be 

addressed in the Discussion. In summary, these data suggest that the presence of 

nSM and pSM gives rise to a trend governed mainly by pSM, although the lipid 

phases tend to lose stiffness by the effect of nSM. 

Table 5.6. Bilayer nanomechanical resistance and bilayer thickness of the different SPB 

under study. Data expressed as mean ± SD, n= 300 – 1000. 

Samples 

Breakthrough Force (nN) Bilayer Thickness (nm) 

Continuous 
phase 

Segregated 
domains 

Continuous 
phase 

Segregated 
domains 

DOPC:nSM:pSM:

Chol 

pCer 5.3 ± 2.1 49.1 ± 3.6 4.82 ± 0.31 5.65 ± 0.16 

nCer 3.0 ± 1.1 15.8 ± 2.7 4.66 ± 0.48 6.59 ± 0.62 

pCer + 

nCer 2.7 ± 0.9 21.2 ± 3.0 4.53 ± 0.43 5.55 ± 0.52 

*Force curves present adhesion during tip retraction. 
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Figure 5.9. AFM and epifluorescence images of DOPC:pSM:nSM:Chol-based SPB containing 

0.4% Rho-PE. DOPC:pSM:nSM:Chol (2:0.5:0.5:1) + 30% pCer (A & B), + 30% nCer (C & D), +15% 

pCer & 15% nCer (E & F). Scale bars: 5 μm. 
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5.4 Discussion 

 The presence of more than one kind of segregated phase in a lipid 

environment is a difficult issue to assess as different lipid phases present different 

degrees of lipid enrichment, but still a small concentration of every lipid is 

probably present in every phase. Moreover, the effects of different ceramides in 

the same lipid bilayer have not been studied previously, to the best of our 

knowledge. This increases the complexity of a complete analysis, but our data 

provide enough clues to at least suggest which lipids are the most abundant in 

each phase. 

 First, the comparison of the three techniques used for every sample 

provides consistent results, apart from small differences, e.g. when comparing 

confocal fluorescence of GUV with epifluorescence of SPB, as the latter is deposited 

onto a mica support. While the nature of supports has been shown to have an 

effect on lipid segregation, reducing the size of segregated phases in rough surfaces 

(Honigmann et al., 2012, 2014), low-roughness supports such as mica (freshly 

cleaved and atomically flat) have drawn a good degree of consistency when 

compared to free, i.e. unsupported,  vesicles, both in terms of phase segregation 

and fluorophore behavior. In our study, the only discrepancy observed is that the 

nSM-based sample with both Cer does not reveal two segregated phases in 

confocal microscopy but only one (Figure 5.4 C), epifluorescence barely reveals the 

second one (Figure 5.5 F), while atomic force microscopy clearly detects both 

segregated phases in terms of topography (Figure 5.5 E) and nanomechanical 

resistance (Table 5.3). This seems an exceptional case as both gel phases are 

compositionally close, but speaks in favor of force spectroscopic techniques in case 

of discrepancy. 

 Our experiments demonstrate that both ceramides (nCer and/or pCer) are 

able to form segregated gel phases even in a fluid environment and in presence of 

Chol. Most notably, the presence of nSM is not able to override gel phase 

segregation despite the reported capacity of this lipid to solubilize liquid-ordered 

phases in fluid environments (Maté et al., 2014). However, nSM reduces the 

stiffness of Cer-enriched gel phases (Table 5.3), which could be caused by a partial 

destabilization of the phase, i.e. a lower degree of molecular packing. The 

possibility of interdigitation should also be taken into account, particularly in the 

case of nSM-based samples (Róg et al., 2016), although this eventuality is hard to 

assess with our current methodologies. 

 For the complex cases where there are two ceramides present, the case of 

DOPC:nSM:Chol + both ceramides is probably the simplest to explain (Figure 5.5 

E), as both segregated domains appear clearly separated from each other. A close 
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inspection of the force curves gives us further insights. For nCer domains, the 

curve presents an adhesion event on the retractive part (Supp. Fig. 5.S1 B), and this 

event also appears for one of the two domains of the nCer+pCer sample (Table 

5.3). The simplest explanation is that each domain is enriched in one of the 

ceramides. However, domains grow stiffer in both cases when compared to pCer 

and nCer domains (Table 5.3), so the possibility of cooperation (i.e. synergic 

interaction) between ceramides seems plausible. Thus we consider that both 

ceramides are present in both domains, but the degree of enrichment of each 

ceramide varies as one domain (the stiffest one) would be enriched in pCer, while 

the other, more adhesive one, would be enriched in nCer. The continuous phases 

are enriched in DOPC and Chol, while nSM would also be present in the domains as 

SM has more preference for Cer than for Chol in non-saturated samples (Fidorra et 

al., 2006; Chiantia et al., 2007; Silva et al., 2007; Sot et al., 2008), although the 

presence of nSM in the continuous phase as well cannot be discarded. 

 One of the most surprising findings in our study is that the most complex 

sample, DOPC:pSM:nSM:Chol + both ceramides exhibits only one segregated 

domain (Figure 5.7), while the initially expected outcome should be that each 

ceramide would induce formation of a different domain (as in the previous 

sample), which could even be enriched in their respective SM as well. However, 

this is not the case as a single segregated domain is observed. As both ceramides 

are able to form segregated gel phases in a DOPC:pSM:nSM:Chol environment 

(Figure 5.9), the domain is necessarily enriched in both ceramides at the same time 

(otherwise we would have two types of different segregated domains), but in this 

case no cooperation between Cer is happening as the stiffness of the domain is 

intermediate when compared to single-ceramide DOPC:pSM:nSM:Chol samples. 

Thus, we can conclude that the presence of two ceramides in a single segregated 

phase can have two different and distinct effects: a cooperative effect with one 

ceramide enriched over the other where the stiffness grows for each domain or a 

non-cooperative effect (in the presence of pSM) where the stiffness is 

intermediate. 

 In DOPC:pSM:Chol + both ceramides, again two segregated phases appear 

(Figure 5.2), although in this case the thickest and stiffest phase appears 

surrounded by the other (Figure 5.1 C & Figure 5.2 G), acting as “domains within 

the domains”. Again, the presence of two ceramides could initially explain the 

existence of two segregated phases, one for each ceramide. However, force 

spectroscopy data (Table 5.1) points to a different explanation for the existence of 

these two domains, as one of them exhibits a very low breakthrough force, 

inappropriate for a gel phase under these ionic strength conditions (Garcia-Manyes 

et al., 2010; Garcia-Arribas et al., 2015), suggesting that both ceramides are 

present in the stiffest phase, and not in the second segregated phase. This implies 
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that a different ceramide arrangement is occurring and suggests instead another 

type of phase (probably liquid-ordered, which is supported in terms of 

nanomechanical resistance (García-Arribas et al., 2016a). Interestingly, the stiffest 

phase shares the same breakthrough force (p = 0.319) and thickness (p = 0.325) 

than the DOPC:pSM:nSM:Chol + both ceramides single domain (Table 5.1), which 

points to a similar composition: the stiffest domain would be (partially) enriched 

in pSM, pCer and nCer, and the liquid ordered phase would be (partially) enriched 

in pSM  and Chol. This conclusion is also supported by the absence of this liquid-

ordered phase in the DOPC:pSM:nSM:Chol + both ceramides (Figure 5.9 5 E and 

Figure 5.9 F), as nSM has been reported to override liquid-ordered phase 

segregation, thus nSM would be excluded from the domain. The conclusions of the 

lipid phase compositional analysis have been summarized in Table 5.7 for clarity. 

Table 5.7. Summary of the DOPC:X:Chol:pCer:nCer samples and the expected composition of 

the phases formed in each case. 

 Main lipids present 

Brief Description Continuous phase Domain 1 Domain 2 

X: pSM L
o 

domain (1) with 

L
β
subdomain (2) DOPC, Chol pSM, Chol pSM, pCer, 

nCer 

X: nSM 
Separated L

β
 

domains (1,2) DOPC, Chol nSM, nCer nSM, pCer 

X: nSM + 

pSM 
L
β
 domain (1) DOPC, Chol, nSM pSM, pCer, nCer - 

 A more difficult task would be to assess the effects of multiple ceramides 

present in smaller concentrations (i.e. with a total mol% Cer concentration far 

below the 30% used in our study) which is the case for actual cell membranes in 

living cells. Ceramide levels have been reported to increase up to 10 mol% during 

cell death processes, but there is no data available on how the levels of each 

ceramide species increase. A logical assumption, particularly after analysing the 

results in this study, is that the modulation of the ratio of each species of ceramide 

could be an essential tool for regulating the biophysical properties of the 

membrane and their functional effects. Furthermore, the presence of different 

sphingomyelins in the membrane is well known, but how sphingomyelinase 

activity is modulated by the presence of such a wide array of sphingomyelins, or if 

it presents any preference towards any specific sphingomyelin depending on the 

local composition of the membrane, are still unsolved questions. Our study opens 

the field for further studies on the possible cooperation (or displacement) between 

different ceramides in presence of a variety of lipids, including different 

sphingomyelins. 
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 Finally, it is also worth mentioning that the presence of Chol in the bilayers 

could indeed be having an impact on the possible arrangements of different 

ceramides, as well as in the biophysical properties of the distinct phases present. 

Further studies with increasing (or decreasing) Chol content could give more 

information on the possibility of Chol-Cer displacements or interactions. 

5.5 Supplementary data 

 

 Figure 5.S1. Representative force curves. Extension (solid lines) and retraction (dashed 

lines) of a bilayer nanoindentation process on DOPC/pSM/Chol + nCer + pCer (A, gel phase), and on 

DOPC/nSM/Chol + nCer (B, gel phase). Breakthrough forces are identifiable by the step (circles) 

detected in the extension curves. B shows a reproducible adhesion event at the end of the 

rectraction curve (arrow). 
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CHAPTER 6: MIXING BRAIN CEREBROSIDES WITH 

BRAIN CERAMIDES, CHOLESTEROL AND 

PHOSPHOLIPIDS. 

6.1 Introduction 

Glycosphingolipids (GSL) are components of most eukaryotic cell plasma 

membranes. They consist of a ceramide backbone linked to a saccharide polar 

headgroup through an O-glycosidic linkage to the C1-hydroxyl of ceramide (Cer) 

(Maggio et al., 2006) (Supplementary Figure 6.S1). Total sphingolipids, mostly 

sphingomyelin (SM), constitute 15-20 mol% of the plasma membrane lipids, but the 

amount of GSL is usually much lower (Hoetzl et al., 2007). Cerebrosides (Crb) are 

among the simplest GSL. Their polar head group consists of a hexose, commonly 

galactose (galactosylceramide, GalCer) or glucose (glucosylceramide, GlcCer) (Maggio 

et al., 2006; Hoetzl et al., 2007). Crb make up to 20 mol% of the lipids in myelin, and 

they occur in sizable amounts in epithelial cells from the small intestine and colon, 

apart from the skin epidermis (Van Meer et al., 2003). They are known to be involved 

in cell division, growth, survival and membrane trafficking processes (Van Meer et al., 

2003). GlcCer has been shown to increase Ca2+ mobilization from intracellular stores 

(Lloyd-Evans et al., 2003). Inborn enzyme defects may lead to cerebroside 

accumulation in cells, giving rise to Gaucher’s and other diseases (Van Meer et al., 

2003; Lloyd-Evans et al., 2003; Varela et al., 2017; Holowka et al., 2005). 

GSL, and Crb in particular, are known to segregate laterally into membrane 

domains, at least in lipid mixtures and probably also in cell membranes. Presumed 

GSL-enriched domains in cells have been related to signaling by immune receptors 

and other signal transduction events (Varela et al., 2017; Holowka et al., 2005; 

Hakomori, 2002; Mayor et al., 2006). A number of studies have been published on the 

properties of Crb mixtures with other membrane lipids (see review in (Maggio et al., 

2004)). Morrow et al.. (Morrow et al., 1992) used 2H-NMR to examine N-lignoceroyl 

(C24:0) GalCer in bilayers with 1-stearoyl-2-oleoyl phosphatidylcholine (PC). At 

glycolipid concentrations below 20 mol% the lipid components were miscible, both in 
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the fluid and the gel phases, while at higher concentrations separation of Crb-rich and 

PC-rich phases occurred under most conditions. Further studies have been published 

on this subject, with concurring results (Morrow et al., 1992; Longo & Blanchette, 

2010; Varela et al., 2013; Blanchette et al., 2006). 

Cholesterol (Chol) has in common with GSL its relative abundance in plasma 

membranes, thus it is not surprising that Crb:Chol mixtures have attracted the 

attention of many investigators. In a relatively early study Slotte and co-workers 

(Slotte et al., 1993), using Langmuir monolayers, observed that Chol did not induce 

significant condensation of monohexose Crb in binary mixtures, indicating that Chol 

did not increase the order of the acyl chains. However with dihexoside Crb, a Chol-

induced condensing effect was observed. More recently Slotte and co-workers 

(Maunula et al., 2007) examined bilayers composed of 1-palmitoyl-2-oleoyl PC 

(POPC), palmitoyl SM, Crb and Chol, at molar ratios close to 60:15:15:10, using 

differential scanning calorimetry (DSC), and fluorescence spectroscopy. They found 

that Crb was less effective than SM in forming laterally segregated domains with Chol, 

even if the various Crb tested associated with SM:Chol domains, i.e. Crb:Chol domains 

did not readily form, however mixed SM- and Chol-rich domains appeared to 

incorporate Crb. Also large differences in domain forming properties were seen 

between GlcCer and GalCer, the glucosyl derivative being more active in segregating 

with Chol (Maunula et al., 2007; Westerlund & Slotte, 2009). Varela et al.. (Varela et 

al., 2016) also studied the interactions of Crb (specifically GlcCer) with POPC and 

Chol, and provided ternary phase diagrams of the mixture at neutral and acidic (~5.5) 

pH. The phase diagrams are dominated by an extensive 3-phase coexistence region of 

fluid disordered (Lα, phospholipid-enriched), fluid ordered (Lo, Chol-enriched), and 

gel (Lβ, Crb-enriched phases). 

In the present contribution, the mixing properties of brain Crb (bCrb) with 

brain SM (bSM), brain Cer, Chol, and/or a lipid representing typical fluid bilayers 

(ePC) have been explored using DSC, Laurdan fluorescence spectroscopy, and 

confocal fluorescence microscopy of giant unilamellar vesicles (GUV). Using almost 

exclusively lipids of natural origin brings our studies closer to the biological situation, 

while the previous data on chemically-defined compounds are used to shed light on 

our results. In most previous studies Crb were minority components in the various 

mixtures, while we have explored mixtures in which Crb is usually >50 mol%, 

corresponding in the ternary phase diagrams of Varela et al.. (Varela et al., 2016) to 

the lower, right-hand region of the triangle. This may reflect the overall cell 

membrane situation in Gaucher’s or Krabbe’s diseases, or the case of Crb-enriched 

microdomains expected to occur in healthy cell plasma membranes (Van Meer et al., 

2003; Lloyd-Evans et al., 2003; Varela et al., 2017). Moreover, some parallel studies in 

which the sphingolipid is either SM or Crb help us compare the role of two polar head 

groups in sphingolipids, namely hexose and phosphorylcholine. 



Mixing brain cerebrosides with brain ceramides, cholesterol and phospholipids 

 

169 

6.2 Materials and methods 

6.2.1 Materials 

L-α-phosphatidylcholine (PC) from hen eggs was purchased from Lipid 

Products (South Nutfield, UK); main fatty acid distribution C16:0 33%, C18:0 12%, 

C18:1 32%, C18:2 17%. The following lipids were obtained from Avanti Polar 

Lipids (Alabaster, AL): porcine brain cerebrosides (bCrb) [main fatty acid 

distribution C16:0 6%, C18:0 7%, C22:0, 11%, C24:0 22%, C24:1 9%, others, 

predominantly hydroxylated, 42%], porcine brain sphingomyelin (bSM) [main 

fatty acid distribution C18:0 50%, C20:0 5%, C22:0 7%, C24:0 5%, C24:1 21%], 

porcine brain ceramide (bCer) [main fatty acid distribution C18:0 67%, C20:0 

17%, C24:1 7%], cholesterol (Chol), N-palmitoyl Crb, N-palmitoyl Cer, N-palmitoyl 

SM, and the lipophilic fluorescent probe 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rho-PE). 1,6-

diphenyl-1,3,5-hexatriene (DPH), 8-aminonaphtalene-1,3,6-trisulfonic acid 

(ANTS), p-xylene-bis-pyridinium bromide (DPX) and (N-(7-nitrobenz-2-oxa-1,3-

diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, 

triethylammonium salt) (NBD-PE) were from Molecular Probes (Eugene, OR). 

Methanol and chloroform were from Fisher (Suwanee, GA). Buffer solution for 

experiments was 20 mM PIPES, 1 mM EDTA, 150 mM NaCl, pH 7.4. All other 

materials (salts and organic solvents) were of analytical grade. 

6.2.2 Differential scanning calorimetry (DSC) 

DSC is commonly used in lipid studies to detect thermotropic phase 

transitions (most commonly of the gel-fluid sort) in fully hydrated lipid 

dispersions. Mid-point transition temperature (Tm), measured at the endotherm 

maximum, provides an indication of the stability of the gel phase, the higher Tm the 

more stable the gel phase. ∆T1/2 is the transition width at mid-height, this 

parameter being related to the transition cooperativity, more cooperative 

transitions giving rise to narrower endotherms, i.e. smaller ∆T1/2. ΔH, the change in 

transition enthalpy, is measured from the endotherm area (more specifically from 

the integration of CP vs. T), and is highest for the transitions of a single component 

(Goñi & Alonso, 2006b). For DSC measurements lipid vesicles were prepared by 

mixing the desired lipids dissolved in chloroform:methanol (2:1, v/v) and drying 

the solvent under a steam of nitrogen. The lipid film was kept under high vacuum 

for 90 minutes to ensure the removal of undesired organic solvent. Multilamellar 

vesicles (MLV) were formed by hydrating the lipid film with the buffer solution at 

90 °C, helping the dispersion with a glass rod. The measurements were performed 
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in a VP-DSC high-sensitivity scanning microcalorimeter (MicroCal, Northampton, 

MA, USA). Before loading the MLV sample into the appropriate cell both lipid and 

buffer solutions were degassed. 0.5 mL at 1 mM total lipid concentration was 

loaded into the calorimeter, performing 8−10 heating scans at a 45 °C/h rate, 

between 10 and 100 °C for all samples. bCrb concentration and sample volume 

were known for each sample, and used together with data from the last scan to 

obtain normalized thermograms. The software Origin 7.0 (MicroCal), provided 

with the calorimeter, was used to determine the different thermodynamic 

parameters (Tm, ∆T1/2 and ΔH, and the onset and completion temperatures of the 

transition) from the scans. Temperatures at the onset and completion of the 

endothermic phase transitions were used to build the phase diagrams. 

6.2.3 Confocal Microscopy of Giant Unilamellar Vesicles (GUV) 

GUV are prepared by the electroformation method described previously 

(Montes et al., 2007; Angelova & Dimitrov, 1986; Angelova et al., 1992). Lipid stock 

solutions were prepared in 2:1 (v/v) chloroform:methanol at 0.2 mg/mL, and 

appropriate volumes of each preparation were mixed. Labelling was carried out by 

premixing the desired fluorescent probe (Rho-PE) with the lipids in organic 

solvent. Fluorescent probe concentration was 0.4 mol % Rho-PE. The samples 

were added onto the surface of platinum (Pt) wires attached to specially designed 

polytetrafluoroethylene (PTFE)-made cylindrical units. The Pt wires were placed 

under vacuum for 2 h to completely remove the undesired organic solvent. The 

sample was covered to avoid light exposure. Then, the units were fitted into 

specific holes within a specially designed chamber to which a glass cover slip had 

been previously attached with epoxy glue. Once fitted, the platinum wires stayed in 

direct contact with the glass cover slip. The chamber was then equilibrated at the 

desired temperature by an incorporated water bath. 400 µL sucrose, prepared 

with high-purity water (SuperQ, Millipore, Billerica, MA) and heated at 90 °C were 

added, so that the solution covered the Pt wires. The cells were stopped with 

tightly fitting caps. The wires were connected to a TG330 function generator 

(Thurlby Thandar Instruments, Huntingdon, UK). The alternating current field was 

applied with a frequency of 10 Hz and an amplitude of 940 mV for 120 min. The 

temperatures used for GUV formation were above the gel to liquid phase transition 

in all cases. The generator and the water bath were switched off, and the vesicles 

were left to equilibrate at room temperature for 30 min. After GUV formation, the 

chamber was placed onto an inverted confocal fluorescence microscope (Nikon D-

ECLIPSE C1, Nikon, Melville, NY). The excitation wavelength for Rho-PE was 561 

nm, and the images were collected using a band-pass filter of 593 ± 20 nm. Image 

treatment and quantification were performed using the software EZ-C1 3.20 

(Nikon). No difference in domain size, formation, or distribution was detected in 

the vesicles during the observation period or after laser exposure. 
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6.2.4 Laurdan fluorescence experiments 

The experiments were performed in a QuantaMaster 40 spectrofluorometer 

(Photon Technology International, Lawrenceville, NJ) using Laurdan. Laurdan is a 

solvatochromic dye that exhibits an increase in charge separation when excited in 

polar solvents, which results in a larger dipole moment (Owen et al., 2011). 

Laurdan shows different maximum emission intensities with liquid-ordered (440 

nm) and liquid-disordered phases (490 nm). The emission spectrum changes in 

response to variations in the membrane environment, particularly in the glycerol 

backbone region in the phospholipid membrane. In order to quantify the spectral 

changes the generalized polarization function (GP) is used, that is obtained from 

measurements of wavelength displacements.  

    
         
         

 

GP measurements are performed using excitation light at 360 nm and 

recording emission intensities both at 440 and 490 nm. Multilamellar vesicles 

(MLV) were prepared as described above with 1 mol% Laurdan, and 

measurements were carried out at room temperature and constant stirring. 

Theoretically, GP values can vary from -1.0 (disordered) to +1.0 (ordered phases) 

but experimental values usually occur in the -0.3 to +0.6 range (Sanchez et al., 

2007). 

6.2.5 DPH fluorescence polarization measurements 

The experiments were performed in a QuantaMaster 40 spectrofluorometer 

(Photon Technology International, Lawrenceville, NJ) using DPH. DPH is a 

fluorescent membrane probe widely used to determine the molecular order of 

lipid bilayers. Anisotropy values will be near to 0.4 when DPH rotational diffusion 

is restricted in a gel state bilayer, however they will be quite lower above the 

phase transition temperature, when rotation diffusion of DPH increases. DPH was 

excited at 360 nm and its emission measured at 430 nm using the instrument 

software (PTIFelixGX), which computed the G factor before each measurement. 

Fluorescence intensities were recorded at an integration rate of 1 point/s for 60 s. 

The anisotropy (r) is obtained from measurements of emission intensities parallel 

(IVV) and perpendicular (IVH) to the polarization plane:  
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The grating factor G is an instrumental preference of the emission optics for 

the horizontal orientation to the vertical orientation. It can be computed as: 

   
   

   
 

where IHV and IHH are the intensities of the vertically and horizontally 

polarized components of DPH emission. 

 

6.2.6 Membrane permeabilization (leakage) assays 

The permeabilizing effects of different lipids were tested following the 

release of vesicle-entrapped ANTS and its quencher DPX (Ellens et al., 1985). A 

high DPX/ANTS ratio is used to ensure complete quenching inside the vesicles. 

Non-entrapped probes were removed by passing the vesicle suspension through a 

Sephadex G-25 column using an iso-osmotic buffer solution prepared with the help 

of a cryoscopic osmometer (Osmomat 030, Gonotec, Berlin, Germany) with NaCl. 

10 mol% of the desired lipid is added to 0.1 mM ePE:Chol (3:1) vesicles in a 1-cm 

path lengt quartz cuvette and leakage is followed as the enhancement of ANTS 

fluorescence in a FluoroMax-3 spectrofluorometer (Horiba Jobin Yvon, Edison, 

NY), under continuous stirring. Excitation and emission wavelengths were 355 and 

520 nm, respectively. An interference filter with a nominal cutoff value of 515 nm 

was placed in the emission light path to avoid the scattered-light contribution of 

the vesicles. When leakage reached equilibrium, 10% Triton X-100 was added to 

induce 100% release. To calculate the amount of leakage the following equation is 

used: 

             
      

         
      

where F, F0 and F100 are respectively the fluorescence at equilibrium, at time 

zero, and at maximum leakage. 

 

6.2.7 Transbilayer (flip-flop) lipid motion assays 

A fluorescent-labeled PE (NBD-PE) was used to study the transbilayer lipid 

motion across the membrane. ePE:Chol (3:1) LUV were prepared as described 

previously, including 0.6 mol% NBD-PE. The assay was performed in an Aminco-

Bowman (Urbana, IL) AB-2 spectrofluorometer using a 1 mL quartz cuvette with 
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continuous stirring. NBD-PE was excited at 465 nm and emission wavelength was 

530 nm. A cutoff filter at 515 nm was used to avoid scattered light. Sodium 

dithionite was used to reduce NBD in the outer leaflet, thus quenching its 

fluorescence. A decrease in fluorescence intensity of about one-half marked the 

reduction of NBD in the outer monolayer. Then the liposome suspension was 

passed through a Sephadex G-25 column for removing the excess dithionite. After 

30 min incubation of LUV with the appropriate sphingolipids, 50 µL of 0.6 mM 

dithionite solution were added into the cuvette. Fluorescence intensity would 

decrease slowly as long as NBD-PE moved to the outer membrane leaflet. Flip-flop 

was estimated according to this equation: 

 

                 
  
  

      

where FR and F0 are respectively the fluorescence at the end of the time 

course and at time zero (before the second dithionite addition). 

6.3 Results 

6.3.1 Gel-fluid transition of bCrb bilayers 

According to X-ray diffraction data (Saxena et al., 1999) aqueous 

dispersions of Crb (GlcCer or GalCer) give rise to bilayers. DSC measurements 

(Saxena et al., 1999) show that N-palmitoyl GlcCer undergoes a gel-fluid transition 

at 87ºC, while N-palmitoyl GalCer does so at 85 °C. The transition enthalpy for the 

N-palmitoyl GalCer transition is ΔH = 17.9 kcal/mol. The natural bCrb used in the 

present study exhibits a calorimetric transition centered at Tm = 64.8 ± 0.07 °C (n = 

3) (Figure 6.1). The transition enthalpy is ΔH = 3.15 ± 0.19 kcal/mol (n = 3). The 

fact that bCrb melts at a much lower temperature than the pure homologues is 

probably due to its mixed fatty acid composition (see Materials), since the glucose 

and galactose homologues have virtually the same Tm (Saxena et al., 1999). The 

sugar composition of bCrb is galactose and glucose at a ~2.5 mol ratio 

(unpublished observation from the manufacturer). The smaller ΔH in bCrb has 

probably the same origin, i.e. mixed fatty acid composition. The bCrb endotherm is 

somewhat asymmetric, and in fact it can be decomposed into two Gaussian 

components (Figure 6.1). In the absence of specific proof, the two components 

might correspond to bCrb linked to hydroxylated and non-hydroxylated fatty acids. 

This would be supported by the behavior of hydroxylated vs. non-hydroxylated 

fatty acyl Cer (Saxena et al., 1999). The former melts with a single, symmetric 

endotherm, while the latter exhibiting two well-resolved endotherms, one of them 
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several degrees below, and the other at Tm values comparable to those of the 

hydroxylated counterparts (Shah et al., 1995b). Thus in the case of bCrb the lower-

melting component would arise from the lower-melting of non-hydroxylated 

cerebroside molecules, while the higher-melting component would be originated 

by the higher-melting hydroxylated plus the whole of the non-hydroxylated 

molecules. Alternatively the observed asymmetry of the signals could be attributed 

to the asymmetrical shape of the region of the phase diagram where the gel and 

fluid phases coexist.  

The gel-fluid transition of bCrb has also been monitored by Laurdan 

fluorescence emission GP (Figure 6.1, squares), it is centered at ~67 °C, in 

agreement with the DSC data. However, the transition as detected by Laurdan 

appears much broader than the calorimetric signal. This probably occurs because 

of the different phenomena measured by both techniques, Laurdan is monitoring 

events at the lipid-water interface, while DSC detects the cooperative melting of 

the hydrocarbon chains. 

 

Figure 6.1. Gel-fluid thermothropic transition of bCrb in aqueous solution. Continuous line: 

DSC thermogram. The dotted curves correspond to the best fit of the endotherm to two Gaussian 

lines. Round symbols: Laurdan GP data (average ± S.D., triplicate).  

 

6.3.2 Binary mixtures with ceramide (bCer) 

DSC thermograms of bCrb/bCer mixtures, of compositions 100:0 to 60:40 

mol ratios, are shown in Figure 6.2. The Tm of pure Cer are usually in the range of 
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80-90 °C (Shah et al., 1995b, 1995a) thus it is not surprising that adding bCer shifts 

the bCrb gel-fluid transition to higher temperatures, at least up to 20% bCer 

(Figures 6.2 and 6.3 A). The two components of the bCrb thermogram observed in 

Figure 6.1 remain visible, and in apparently similar proportions, in all mixtures 

(Figure 6.2). The ΔH transition enthalpy of the mixture increases with addition of 

bCer (Figure 6.3 C), perhaps because Cer gel-fluid transitions have ΔH values above 

those of Crb (Saxena et al., 1999; Jiménez-Rojo et al., 2014). As a consequence of 

the above properties, the partial phase diagram for fully hydrated bCrb:bCer 

mixtures (Figure 6.3 D) is dominated by an extensive area of gel phase(s), below 

55-60 °C. The system becomes fluid only above 70 °C.  
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Figure 6.2. Representative DSC thermograms corresponding to the gel-fluid transition of 

pure bCrb and various bCrb:bCer mixtures in excess water. Mol percentage of bCer is indicated 

for each sample as a function of bCer concentration. Arrow: 1 kcal/mol/°C. 
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Figure 6.3. Thermodynamic parameters of bCrb:bCer mixtures. (A) Mid-point temperature of 

the gel-fluid transition. (B) Transition width at half-height. (C) Transition enthalpy, in cal/mol bCrb. 

(D) Temperature-composition diagram for the bCrb:bCer mixtures. The predominant phases are 

given for each area. (Average ± S.D., triplicate). Sometimes the errors are smaller than the symbols. 

 

bCrb:bCer mixtures were also studied using Laurdan fluorescence GP. 

Bilayers containing 0, 15 and 30 mol% bCer were examined. The results in Figure 

6.4 A are in agreement with the DSC data. Moreover, at room temperature 

(Supplementary Figure 6.S2 A, B), Laurdan shows that addition of increasing 

amounts of bCer hardly modify the polarity of the lipid-water interface in the 

bilayer the GP remaining at values typical of solid (gel) phases, in agreement with 

the above observations. 
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Figure 6.4. Thermotropic transitions of various bCrb-based bilayers, as detected through 

changes in Laurdan GP. Mixtures of bCrb with (A) bCer, (B) Chol, (C) ePC, (D) bSM. (Average ± 

S.D., triplicate). Sometimes the errors are smaller than the symbols. 

 

6.3.3 Binary mixtures with cholesterol (Chol) 

Several previous studies have been devoted to the Crb:Chol interactions 

(Varela et al., 2017; Slotte et al., 1993; Montes et al., 2007), mainly with systems 

containing less than 50 mol% Crb. The influence of Chol on the gel-fluid transition 

of Crb has not been studied, to these authors’ knowledge. This aspect of Crb 

behavior can be readily observed in the DSC thermograms in Figure 6.5. The 

calorimetric behavior of the mixture is very different from that of bCrb:bCer. With 

Chol the Tm transition temperature hardly changes, but the endotherm becomes 

progressively wider, until, at about 25 mol% Chol, it becomes hardly detectable. 

The marked widening and corresponding decrease in ΔH are clearly seen in the 

plots in Figure 6.6 B, C respectively. This is precisely the behavior of Chol in 

mixtures with phospholipids exhibiting a narrow gel-fluid phase transition, e.g. the 

saturated PC (Ladbrooke et al., 1968; Mabrey et al., 1978) or SM (Contreras et al., 

2004). The evolution of the two components found in the pure bCrb thermogram 

(Figure 6.1) is also interesting. With 5 mol% Chol (Figure 6.5) the two components 

are perfectly detectable. However already at 10 mol% Chol the endotherm is more 

symmetrical, and the two components observed are very different from the 
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previous ones: both are centered at the Tm, only one is much wider than the other. 

The situation is exactly the same as seen by Mabrey et al.. (Mabrey et al., 1978) 

with DPPC:Chol thermograms. In our case we propose that, above a certain ratio, 

Chol interacts equally with the two Crb species (or sets of species) that gave origin 

to the asymmetric pure bCrb peak, the two novel components consisting 

presumably of Chol-poor and –rich domains. The partial phase diagram (Figure 6.6 

D) is as expected quite similar to e.g. the one proposed for DMPC:Chol by Rivas and 

co-workers (Sáez-Cirión et al., 2000; Vist & Davis, 1990). 

 

Figure 6.5. Representative DSC thermograms corresponding to the gel-fluid transition of 

pure bCrb and various bCrb:Chol mixtures in excess water. Mol percentage of Chol is indicated 

for each sample as a function of Chol concentration. Arrow: 1 kcal/mol/ºC. Arrow (insets, 25 and 30 

mol% Chol): 0.02 kcal/mol/°C. 
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Figure 6.6. Thermodynamic parameters of bCrb:Chol mixtures. (A) Mid-point temperature of 

the gel-fluid transition. (B) Transition width at half-height. (C) Transition enthalpy, in cal/mol bCrb. 

(D) Temperature-composition diagram for the bCrb:Chol mixtures. The predominant phases are 

given for each area. (Average ± S.D., triplicate). Sometimes the errors are smaller than the symbols. 

Laurdan GP studies of bCrb:Chol mixtures as a function of temperature 

(Figure 6.4 B) provide information complementary to the above. Essentially Chol 

exerts an ordering effect on the fluid bilayer chains, i.e. GP values at T>60 °C 

increase clearly with Chol concentration. A smaller, fluidifying effect is also seen at 

the lower temperatures. Studies of DPH fluorescence polarization in either pure 

bCrb or in 70:30 (mol ratio) bilayers over an extensive range of temperatures 

(Supplementary Figure 6.S3) also show the ordering properties of Chol on fluid 

bCrb bilayers and the smaller disordering effect at low temperatures. Once again 

the results are parallel to those obtained with the DMPC:Chol system (Harris et al., 

2002; Vist & Davis, 1990). This is an indication for the formation of liquid-ordered 

(Lo) phases. At room temperature (gel phase) Laurdan GP changes but little with a 

wide range of Chol concentrations, indicating only a small decrease in chain order 

(Supplementary Figure 6.S2 C, D). 
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6.3.4 Binary mixtures with egg PC (ePC) 

In this series of experiments ePC is used as a typical lipid giving rise to a 

liquid-crystalline, or fluid (Lα) phase when fully hydrated at room temperature. 

Studies by previous authors have shown non-ideal miscibility of Crb and PC, both 

in monolayers and bilayers (Morrow et al., 1992; Slotte et al., 1993; Ali et al., 1991; 

Maggio et al., 1988, 1985). This is confirmed and expanded by the DSC 

thermograms in Figure 6.7. As expected from the low Tm of ePC (<0 ºC) increasing 

amounts of PC shift the bCrb transition towards lower temperatures. The two 

components seen in pure bCrb (Figure 6.1) remain distinct in all mixtures, but the 

low-T one appears to mix preferentially with the low-melting ePC, in agreement 

with the regular solution rule, with the outcome that, at a 60:40 bCrb:ePC mol 

ratio, the endotherm appears to arise exclusively from the high-T component 

(corresponding, according to our hypothesis, to hydroxylated bCer). In the 

hypothetical case of ideal miscibility of Crb and PC both Crb components would be 

equally affected by PC, and the asymmetry of the overall thermogram would not 

increase with PC concentration. The ePC-induced decrease in Tm and increase in 

T1/2 (decrease in cooperativity) are quantitatively shown in Figure 6.8 A, B. Figure 

6.8 C shows that, unlike Chol, ePC does not cause a decrease in transition enthalpy, 

perhaps even increases it, while 8B depicts an increase in T1/2, i.e. a decrease in 

cooperativity. This may suggest that the bilayer is being fragmented into small 

domains (low cooperativity), but without extensive molecular mixing of bCrb and 

ePC (little change in ΔH). The above observations explain the partial phase 

diagram shown in Figure 6.8 D. Note that a major effect of ePC is to lower the onset 

of the transition, while its completion remains almost unchanged. This is also 

shown by the decrease in Laurdan GP with increasing concentrations of ePC, at 

room temperature (Supplementary Figure 6.S2 E, F): ePC is disordering the bCrb 

gel phase. Conversely additions of bCrb (in the 0-40 mol% range) increase linearly 

the order of fluid ePC bilayers at room temperature, according to Laurdan GP 

(Supplementary Figure 6.S4). Laurdan GPvalues as a function of T for different 

bCrb:ePC ratios (Figure 6.4 C) confirm the above observations.  
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Figure 6.7. Representative DSC thermograms corresponding to the gel-fluid transition of 

pure bCrb and various bCrb:ePC mixtures in excess water. Mol percentage of ePC is indicated 

for each sample as a function of ePC concentration. Arrow: 1 kcal/mol/°C. 
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Figure 6.8. Thermodynamic parameters of bCrb:ePC mixtures. (A) Mid-point temperature of 

the gel-fluid transition. (B) Transition width at half-height. (C) Transition enthalpy, in cal/mol bCrb. 

(D) Temperature-composition diagram for the bCrb:ePC mixtures. The predominant phases are 

given for each area. (Average ± S.D., triplicate). Sometimes the errors are smaller than the symbols. 

 

GUVs composed of bCrb:ePC could be formed and examined at room 

temperature by confocal fluorescence spectroscopy using Rho-PE, a probe that 

partitions preferentially into the more disordered domains. (Note that no GUV 

could be formed with either pure bCrb, or with bCrb:bCer or bCrb:Chol mixtures. 

Apparently bCrb requires mixing with some strongly bilayer-forming lipid, in our 

case ePC or bSM, to give rise to GUV under our conditions). A representative image 

of a vesicle containing bCrb:ePC at a 60:40 mol ratio is shown in Figure 6.9 A. 

Partially ordered (gel?), flower-like dark domains coexist with a continuous fluid 

disordered phase. The observed phase separation may be related to the different 

behavior of the two thermogram components seen in the DSC traces (Figure 6.7). 

This does not preclude the presence of the above-discussed microdomains in the 

overall fluid, continuous phase. 
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Figure 6.9. Confocal fluorescence microscopy of giant unilamellar vesicles of compositions: 

(A) bCrb:ePC (60:40 mol ratio) , (B) bCrb:bSM (60:40 mol ratio). 

 

6.3.5 Binary mixtures with brain sphingomyelin (bSM) 

Both Crb and SM are abundant in the myelin Schwann’s cell membranes, 

thus their mixing properties are particularly relevant. bSM has a Tm transition 

temperature around 37 ºC (De Almeida et al., 2003) vs. 64.8 ºC for bCrb (Figure 

6.1). Consequently mixing of both lipids should lead to a decreased Tm of the 

mixture as bSM is included. This is what happens according to the DSC 

measurements (Figure 6.10). The endotherms are widened, particularly due to a 

decrease in the onset T above 20 mol% bSM (Figure 6.11 D). Many effects of bSM 

on bCrb are similar to those of ePC (Figure 6.8 and 6.12), perhaps because both 

bSM and ePC are phospholipids whose Tm are well below that of bCrb.  
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Figure 6.10. Representative DSC thermograms corresponding to the gel-fluid transition of 

pure bCrb and various bCrb:bSM mixtures in excess water. Mol percentage of bSM is indicated 

for each sample as a function of bSM concentration. Arrow: 1 kcal/mol/°C. 
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Figure 6.11: Thermodynamic parameters of bCrb:bSM mixtures. (A) Mid-point temperature of 

the gel-fluid transition. (B) Transition width at half-height. (C) Transition enthalpy, in cal/mol bCrb. 

(D) Temperature-composition diagram for the bCrb:bSM mixtures. The predominant phases are 

given for each area. (Average ± S.D., triplicate). Sometimes the errors are smaller than the symbols. 

 

An important difference between both phospholipids is that, with bSM, little 

mixing appears to occur in the gel phase at and below 20 mol% concentration 

(Figure 6.11 D), while with ePC mixing starts as soon as some ePC molecules occur 

in the bCrb bilayer (Figure 6.8 D). This is most likely attributed to the higher Tm of 

bSM as compared to ePC. Similar results are found with Laurdan (Figure 6.4 C, D) 

in that ePC, but not bSM, causes a decrease in GP in the gel state. bSM is also unable 

to cause a dose-dependent decrease in Laurdan GP at room temperature, at 

variance with ePC (Supplementary Fig S2 E, G). All of the above data concur in 

showing that bSM and bCrb hardly mix at or below 20 mol% bSM. Some 60:40 

(mol ratio) GUV vesicles, as seen by confocal fluorescence microscopy at room 

temperature, are shown in Figure 6.9 B. A lateral separation of more and less fluid 

domains (respectively bright and dark) is clearly seen. The dark patches display 

irregular contours, indicative of coexisting domains with little or no lipid 

intermixing, in agreement with the above data.  
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6.3.6 Crb induces very little membrane permeability or lipid transbilayer 

motion 

Cer is known to make lipid bilayers and cell membranes permeable even to 

high molecular weight (protein-sized) solutes (Montes et al., 2002). We have 

performed experiments in which either Cer or Crb in organic solvent are added to 

LUV composed of ePC:Chol (3:1 mol ratio) loaded with the water-soluble probes 

ANTS/DPX, as described in Montes et al.. (Montes et al., 2002). N-palmitoyl Cer and 

N-palmitoyl Crb were tested separately, with N-palmitoyl SM as a control (Figure 

6.12 A). The N-palmitoyl derivatives of all three lipids are used to facilitate 

comparison. Leakage values were recorded when an apparent equilibrium was 

achieved (30 min). Crb was clearly less active than Cer in promoting bilayer 

permeabilization. 

An additional property of Cer is that they can induce lipid transbilayer (flip-

flop) motion (De Almeida et al., 2003). In this assay vesicles containing NBD-PE 

located in the inner monolayer were incubated with sodium dithionite, a 

fluorescence quencher for which the membranes are impermeable. Lipid flip-flop 

causes NBD-PE molecules to move to the outer monolayer, where they are 

quenched by dithionite. Thus transbilayer lipid motion was assayed as a decrease 

in NBD fluorescence (Contreras et al., 2003). ePC:Chol (3:1 mol ratio) LUV were 

used, to which the appropriate sphingolipids (N-palmitoyl Cer, Crb or SM) are 

added at time 0. The decrease in NBD fluorescence was measured after an 

apparent equilibrium was reached. As seen in Figure 6.12 B Crb are again clearly 

less active than Cer in causing lipid flip-flop in bilayers. 
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Figure 6.12. (A) Release of vesicular aqueous contents induced in LUV composed of ePC:Chol 

(3:1) by addition of C16:0 Cer, C16:0 Crb, or C16:0 SM. (B) Transbilayer (flip-flop) motion of 

lipids in LUV composed of ePC:Chol (3:1) by addition of C16:0 Cer, C16:0 Crb, or C16:0 SM. 

Average ± S.D (triplicate). 

 

6.4 Discussion 

6.4.1 The physical properties of bCrb in bilayers 

From the combined experiments described above, one can conclude that the 

main relevant properties of bCrb are (i) its capacity to rigidify fluid bilayers, (ii) its 

relatively good mixing with both fluid phospholipids and ceramides, and (iii) its 

interaction with Chol. The rigidifying, or ordering capacity of bCrb is best seen 

when the calorimetric (Figure 6.8 A, 6.11 A) and Laurdan GP data (Figure 6.5 C, D) 

are seen for bCrb mixtures with ePC and bSM. The DSC data show that the higher 

the bCrb concentration, the higher the Tm. More clearly, the Laurdan data show 

that in mixtures with ePC (Figure 6.4 C), that is fluid at all temperatures, pure bCrb 

is more ordered than the bCrb:ePC mixtures at all T. With bSM, that is fluid only 
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above ~40 °C, the ordering effect of bCrb is only seen above that temperature. The 

rigidifying effect of bCrb is detectable at all concentrations. Supplementary Figure 

6.S3 shows the Laurdan GP of ePC at room T with increasing bCrb concentrations 

(mol ratios 0-40%). This is in agreement with the data in (Morrow et al., 1992; 

Longo & Blanchette, 2010; Varela et al., 2013). 

bCrb mixes (to some extent) and rigidifies fluid phospholipid bilayers. It 

also acts, conversely, disordering the highly rigid bCer bilayers. bCer cannot form, 

at least easily, bilayers when in pure form, it rather forms rigid patches in 

phospholipid bilayers, even at very low Cer:phospholipid ratios (Carrer & Maggio, 

1999; Veiga et al., 1999; Sot et al., 2008; Goni & Alonso, 2009). However when bCrb 

is mixed with bCer under conditions when bilayers are formed, i.e. at high bCrb 

ratios, bCrb tends to increase bilayer fluidity, both lipids  mixing even in the gel 

phase up to 20 mol% bCer concentration (Figure 6.3 A, D, Figure 6.4 A). bCrb 

miscibility with fluid phospholipid bilayers appears to be limited: several data 

report on phase separation at bCrb concentrations above 20 mol%. Nevertheless 

bCrb miscibility is clearly higher than that of Cer, for which < 5 mol% are sufficient 

to give rise to rigid domains (Sot et al., 2006). However in GUVs containing 15 

mol% bCrb in either bSM or ePC (Supplementary Figure 6.S4), no domains are 

detected  

The data on bCrb:Chol mixtures provide the rather interesting observation 

that bCrb interacts with cholesterol in such a way that the main gel-fluid transition 

of bCrb is widened, and the associated ΔH decreases with increasing 

concentrations of Chol, while Tm remains essentially unchanged (Figure 6.5, 6.6). 

bCrb is acting like the saturated PC (DMPC, DPPC), or like many SM in mixtures 

with sterols (Ladbrooke et al., 1968; Mabrey et al., 1978; Contreras et al., 2004; 

McMullen & McElhaney, 1995). In view of the very different head groups of SM and 

Crb, it appears that the observed behavior is mainly due to the presence of a two-

chain, rigid lipid in the mixture with cholesterol. Note however the observation by 

Slotte et al.. (Slotte et al., 1993) that Crb is weaker than SM in forming laterally 

segregated domains with Chol. Hall et al.. (Hall et al., 2010), using atomistic 

molecular dynamics simulations in bilayers containing 5 mol% Crb, observed a 

specific interaction of the sphingolipid with Chol, in which Chol would be shielded 

from the water phase by Crb. 
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6.4.2 Cerebroside, ceramide, sphingomyelin: tamed tiger, wild tiger, caged 

tiger 

These three lipids can exist in very different concentrations in cell 

membranes. Cer and Crb occur at <1% of the total membrane lipids in the average 

normal cell, while SM vary from 2 to 15%, depending on the tissue (Lloyd-Evans et 

al., 2003). Cer concentration cannot increase much above the normal levels 

without irreversible damage to the cell, because Cer is a signal for apoptosis. Only 

in apoptotic cells can Cer levels reach values well above 1% (Reynolds et al., 2004). 

In the relatively inert myelin membranes however, whose main role is that of 

acting as electrical insulators of the cell, Crb is found at up to 20% of the total 

lipids, and the bilayers are stable.  

These different concentrations can be related to the different physical 

properties and physiological role of these lipids, as follows. (i) The simplest of 

them i.e. ceramide is also the one that is more disruptive for the bilayer: Cer hardly 

mixes with the other lipids, permeabilizes the cell membrane, destroys membrane 

asymmetry, and facilitates non-lamellar phase formation (Alonso & Goñi, 2018). 

Apart from being a metabolic intermediate, its main role in cell physiology appears 

to be as a pro-apoptotic signal. It is only natural that it is always found at very low 

concentrations in healthy cell membranes. (ii) At the other end of the sphingolipid 

spectrum SM occurs in large amounts, being one of the major phospholipids in all 

mammalian plasma membranes, forms very stable bilayers, and its main role 

appears to be largely structural. However SM is also the origin of Cer generation in 

the plasma membrane in response to stress conditions, through the action of acid 

sphingomyelinase (Merrill et al., 1986; Kolesnick et al., 2000). (iii) Crb has 

somewhat intermediate properties between Cer and SM. Its concentration in 

membranes may vary by two orders of magnitude without major changes in 

membrane stability or functionality. Crb can act as a metabolic intermediate just as 

readily as Cer, not only can it be at the origin of complex glycosphingolipid 

synthesis, but it can give rise to Cer through the glucosyl ceramidase reaction. As 

seen from the above results, Crb mixes much better than Cer with other membrane 

lipids, thus it can exist in high concentrations serving as a sphingolipid store, and it 

does not perturb the bilayer structure of the membrane. Using a fair amount of 

poetic licence, one could compare Cer to the wild tiger, SM to the caged tiger, 

waiting to be released through the sphingomyelinase reaction, and Crb to the 

tamed tiger, which can make itself useful in a variety of ways, relatively free of 

danger for its owner. 
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6.5 Supplementary data 

 

 

Figure 6.S1: Structures of the sphingolipids relevant to the present study. 
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Figure 6.S2: Laurdan spectra and their corresponding GP values for mixtures of bCrb with 

additional lipids. Measurements were performed at room temperature. (A, B) bCrb + bCer. (C, 

D) bCrb + Chol. (E, F) bCrb + ePC. (G, H) bCrb + bSM. Average values ± S.D. (triplicate).  
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Figure 6.S3: DPH fluorescence anisotropy of bCrb and bCrb:Chol (70:30 mol ratio) as a 

function of temperature. Average values ± S.D. (triplicate).  

 

 

Figure 6.S4: Confocal fluorescence microscopy of giant unilamellar vesicles of compositions: 
(A) bCrb:bSM (15:85 mol ratio) , (B) bCer:ePC (15:85 mol ratio). 
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CHAPTER 7: OVERVIEW AND CONCLUSIONS 

 The present thesis deals with the study of the lipid-lipid interactions 

associated to the lateral segregation of sphingolipids and cholesterol. These 

studies have been performed employing membrane model systems composed of 

three or four components, and using different biophysical techniques, mainly 

differential scanning calorimetry (DSC), fluorescence spectroscopy and 

microscopy, and atomic force microscopy (AFM), with the following aims: 

 To characterize the structure of natural eSM and synthetic pSM phases 

below their main phase transition temperature. 

 

 To analyze the behavior of Cer and Chol with a saturated phospholipid in 

three component systems. 

 

 To study the effect of unsaturated sphingolipid incorporation into 

phospholipid model membranes.  

 

 To describe the interaction of natural glycosphingolipids (Crb) in binary 

systems with sphingolipids, glycerolipids or Chol.  

 7.1 Phase behavior of palmitoyl and egg sphingomyelin 

 SM has become one of the most studied lipids in the last decades due to its 

role in Cer generation and to its interaction with Chol to form Chol-enriched 

domains. Our studies have characterized the phase behavior of natural SM (egg) 

and synthetic SM (palmitoyl) in a broad temperature interval with different 

results. Some of the previous studies observed a pretransition below the main 

phase transition, pointing to the existence of a ripple-gel phase transition, while 

others reported only one transition from the gel to the fluid phase. 
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 In chapter 3 a structural characterization of both, egg and palmitoyl SM 

lamellar phases is performed, using X-ray scattering in a collaboration with S. 

Tristram-Nagle (Carnegie Mellon University, Pittsburgh, USA). The method 

developed by Dr. Tristram-Nagle is suitable to characterize the phase behavior of 

the lipids of interest. 

 Our results demonstrate that natural SM presents a stable ripple phase at all 

temperatures below its main phase transition, which is clearly identified as a 

ripple-fluid transition instead of a gel-fluid transition as previously reported. The 

stability of the ripple phase in this wide temperature range is associated with the 

presence of longer fatty acids in the sample. Otherwise, synthetic (N-palmitoyl) SM 

presents a pretransition from gel to ripple phase below its main phase transition.  

 The formation of highly ordered domains has been examined using oriented 

samples. The effects of Cer incorporation on eSM phases are observed, showing a 

change from ripple to gel phase. However, X-ray scattering requires a high 

proportion of Cer (≈ 30 mol%) to detect the formation of these domains, that may 

go unobserved at lower Cer concentrations.  

7.2 Ceramide and cholesterol interaction with a saturated 

phospholipid 

 As previously described, SM has been widely studied due to its interaction 

with Chol; however, it also has an important role as a precursor of bioactive lipids 

such as Cer that also have a strong interaction with SM. The lateral segregation 

ability of both lipids has promoted several studies about their interactions, 

concluding: i) Cer displace Chol from tightly packed SM:Chol liquid-ordered (Lo) 

phases, ii) a high concentration of Chol is needed to induce Cer-enriched domain 

depletion, and iii) Cer and Chol interact even in the absence of SM. Additionally, 

previous studies in our laboratory have shown how Cer and Chol (at saturating 

concentrations) interact with a saturated-chain phospholipid giving rise to a 

homogeneous bilayer with unique properties. 

 In chapter 4 a study about the interaction between Cer and Chol with 

saturated phospholipids such as SM and DPPC is performed. Samples are prepared 

varying the concentration of both lipids but maintaining their ratio constant. This 

work intends to clarify if this interaction depends on the affinity between these 

lipids or their relative ratio, using atomic force microscopy (AFM), confocal 

microscopy and differential scanning calorimetry (DSC). 
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Our results show a predominant gel phase behavior (high molecular order 

and thermostability) of a ternary sample in which Cer and Chol are saturating the 

system. However, when the concentration of the phospholipid is increased, both 

lipids tend to segregate laterally. These observations are associated with the 

predominant lipid-lipid interaction in the sample, pCer:Chol  being more important 

in the saturated sample (54:23:23), and pSM:pCer and pSM:Chol becomes 

detectable when the quantity of the phospholipid increases. Moreover, the lower 

affinity of Cer and Chol for DPPC over SM leads to a lower tendency towards 

macroscopic phase separation of the DPPC-based samples. 

7.3 Unsaturated sphingolipid incorporation into phospholipid model 

membranes 

 Most studies on SM:Cer interaction have been focused on saturated 

sphingolipids; however recent studies have shown that the cell levels or 

unsaturated sphingolipids (C24:1) are higher than expected, and in some cases are 

on par with their C16:0 counterparts. Additionally, it has been described how 

C24:1 SM is not able to form liquid-ordered domains in the presence of DOPC and 

Chol. 

  In chapter 5 a four-component model system is used to characterize the 

effects of unsaturated sphingolipid incorporation into phospholipid membranes. 

DOPC, SM, Chol and Cer are used to replicate a Lα-Lo cell membrane environment. 

DOPC, SM and Chol are abundant in the plasma membrane, while Cer is obtained 

upon hydrolysis of SM. To characterize the biophysical properties of these model 

systems a number of techniques were used such as differential scanning 

calorimetry (DSC), confocal microscopy, and atomic force microscopy (AFM). 

 Our results conclude that unsaturated SM does not avoid the formation of 

highly ordered ceramide domains and tends to decrease the temperature phase 

transition in all cases studied. Moreover, we observe how saturated SM tends to 

accommodate both saturated and unsaturated Cer while unsaturated SM 

accommodates only partially Cer. This result is associated with a clear preference 

of Cer for palmitoyl SM. Our results also suggest that C24:1 SM favors the 

cooperation between Cer. In addition, it is confirmed that unsaturated Cer give rise 

to less ordered domains than their saturated counterparts.  
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7.4 Glycosphingolipid interaction with sphingolipids and cholesterol 

 The main difference between glycosphingolipids and SM is found in their 

polar headgroup, the former having a saccharide instead of a phosphorylcholine. 

Among them, Crb are the simplest glycosphingolipids and are components of most 

eukaryotic cell plasma membranes, although at a concentration considerably lower 

than SM. They are associated with cellular processes such as cell division, growth, 

survival and membrane trafficking. It has been demonstrated that the 

accumulation of Crb in cells gives rise to diseases such as Gaucher´s and Krabbe´s, 

however, most studies in the past have been performed with low Crb 

concentrations (5-10 mol%).  

 In chapter 6 the interaction between glycosphingolipids, sphingolipids and 

Chol is studied at high concentrations of Crb in binary mixtures, using mainly 

differential scanning calorimetry. In addition, the ability of Crb to induce 

membrane permeability and transbilayer movement is tested. 

 Our results show a relative good mixing between Crb and all sphingolipids 

tested, and with Chol. It is possible to observe how an increase in Chol 

concentration affects its main phase transition. Crb, as Cer, are not able to form 

lipid bilayers by themselves and tend to segregate laterally within a fluid lipid 

bilayer. However their miscibility is clearly higher (20 mol%) than that of Cer, 

which tend to segregate at concentrations below 5 mol%. Furthermore, Crb have 

somewhat intermediate properties between Cer and sphingomyelins. Their 

concentration in membranes may vary by two orders of magnitude without major 

changes in membrane stability or functionality. Crb can act as a metabolic 

intermediate just as readily as Cer, not only can they be at the origin of complex 

glycosphingolipid synthesis, but they can also give rise to Cer through the glucosyl 

ceramidase reaction. As seen from the above results, Crb mix much better than Cer 

with other membrane lipids, thus they can exist at high concentrations serving as a 

sphingolipid store, without perturbing the bilayer structure of the membrane.     
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7.5 Conclusions 

 The main conclusions of this work include: 

 Egg SM forms a ripple phase below its main phase transition, in the 3 - 55 °C 

temperature range, while pSM presents a gel to ripple pretransition below 

its main phase transition, at ≈ 24 °C. 

 

 (Cer + Chol) interaction in ternary mixtures with a saturated phospholipid 

depends on the phospholipid concentration of both lipids rather than on the 

Cer:Chol ratio. 

 

 Unsaturated sphingolipids tend to decrease the stiffness of the sample. 

Specifically, unsaturated SM does not prevent the formation of Cer-enriched 

domains, and instead favors the cooperation between Cer.  

 

 Crb have somewhat intermediate properties between Cer and SM. They mix 

much better than Cer with other membrane lipids and do not affect 

membrane stability or functionality as much as Cer. 
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CAPÍTULO 7: RESUMEN Y CONCLUSIONES 

La presente tesis se ha centrado el estudio de las interacciones lípido-lípido 

asociadas a la segregación lateral de esfingolipidos y colesterol. Estos estudios se 

han llevado a cabo utilizando sistemas de membranas modelo compuestos por tres 

o cuatro componentes, y utilizando diferentes técnicas biofísicas, principalmente 

calorimetría diferencial de barrido, espectroscopia y microscopía de fluorescencia 

y microscopía de fuerza atómica, con los siguientes objetivos: 

 Caracterizar la estructura de las fases de la eSM y la pSM por debajo de su 

temperatura de transición principal de fase. 

 

 Analizar el comportamiento de la ceramida y el colesterol con un fosfolípido 

saturado en un sistema modelo de tres componentes. 

 

 Estudiar el efecto de la incorporación de esfingolipidos insaturados en 

membranas fosfolipídicas modelo. 

 

 Describir la interacción de glicoesfingolipidos naturales (cerebrósidos) en 

sistemas binarios con esfingolípidos, glicerolípidos o colesterol. 

 

7.1 Comportamiento de fase de la SM de huevo y la pSM 

 La esfingomielina se ha convertido en uno de los lípidos más estudiados en 

las últimas décadas debido a su papel en la generación de ceramidas, y a su 

interacción con el colesterol para formar dominios enriquecidos en colesterol. 

Nuestros estudios han caracterizado el comportamiento de fase de la 

esfingomielina de huevo y la esfingomielina sintética (palmitil) en un amplio 

intervalo de temperaturas con diferentes resultados. En algunos estudios previos 

se había observado una pretransición por debajo de su transición de fase principal, 

apuntando a la existencia de una transición de fase ondulada a fase gel, mientras 

que otros solo observaron una transición de fase gel a fluida.  
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 En el capítulo 3 se lleva a cabo una caracterización estructural de ambas 

esfingomielinas utilizando difracción de rayos X en colaboración con S. Tristram-

Nagle (Carnegie Mellon University, Pittsburgh, United States). El método 

desarrollado por la Dra. Tristram-Nagle es adecuado para caracterizar el 

comportamiento de fase de los lípidos estudiados. 

 Nuestros resultados demuestran que la SM natural presenta una fase 

ondulada estable a todas las temperaturas estudiadas por debajo de su transición 

de fase principal, la cual es identificada como una transición de fase ondulada a 

fluida en lugar de ser una transición de fase gel a fluida como se había descrito 

previamente. La estabilidad de la fase ondulada en este amplio intervalo de 

temperaturas se asocia a la presencia de ácidos grasos de cadena larga. Por otro 

lado, la esfingomielina sintética presenta una pretransición de fase ondulada a fase 

gel por debajo de su transición principal.    

 Por último, se estudia la formación de dominios de ceramida altamente 

ordenados utilizando muestras orientadas. La incorporación de ceramida en la 

muestra provoca un cambio de fase ondulada a fase gel en la esfingomielina de 

huevo. Sin embargo, la difracción de rayos X requiere una gran cantidad de 

ceramida para detectar la formación de estos dominios, que probablemente 

aparecen a concentraciones de ceramida más bajas sin ser detectados.   

7.2 Interacción de ceramida y colesterol con un fosfolípido saturado 

 La esfingomielina ha sido ampliamente estudiada debido a su interacción 

con el colesterol, sin embargo, tiene un papel importante como precursor de 

lípidos bioactivos tales como las ceramidas, que a su vez tienen una fuerte 

interacción con la esfingomielina. La capacidad de ambos lípidos de segregar 

lateralmente ha propiciado numerosos estudios sobre su interacción, concluyendo: 

i) la ceramida desplaza al colesterol de su interacción con la esfingomielina, ii) el 

colesterol regula la formación de dominios de ceramida, y iii) la ceramida y el 

colesterol interaccionan incluso en ausencia de esfingomielina. Además, estudios 

previos en nuestro laboratorio han demostrado cómo el colesterol y la ceramida 

(en concentraciones saturantes) interaccionan con fosfolipidos saturados dando 

lugar a una bicapa homogénea con propiedades singulares. 

 En el capítulo 4 se estudia la interacción entre la ceramida y el colesterol 

con fosfolípidos saturados tales como la esfingomielina y el DPPC. Se preparan 

muestras variando la concentración de ambos lípidos pero manteniendo constante 

su relación molar. En este capítulo se intenta aclarar si dicha interacción depende 

de la afinidad entre los lípidos o de su relación molar relativa, utilizando la 
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microscopía de fuerza atómica,  la microscopía confocal y la calorimetría 

diferencial de barrido. 

 Nuestros resultados muestran un comportamiento de fase gel 

predominante (alto orden molecular y termoestabilidad) de una fase ternaria en la 

que el colesterol y la ceramida están saturando el sistema. Sin embargo, cuando la 

concentración del fosfolípido aumenta, ambos tienden a segregar lateralmente. 

Estas observaciones se asocian con la interacción lipídica predominante en la 

muestra, siendo la interacción ceramida-colesterol más importante en la muestra 

con menos fosfolípido (54:23:23), mientras que predomina la interacción de  

dichos lípidos con la esfingomielina por separado cuando la cantidad de fosfolípido 

aumenta. Además, la menor segregación lateral observada con el DPPC confirma la 

menor afinidad de la ceramida y el colesterol por el DPPC que por la 

esfingomielina.  

7.3 Incorporación de esfingolipidos insaturados en membranas 

modelo fosfolipídicas 

 La mayoría de los estudios de interacción de SM:Cer se han enfocado en los 

esfingolipidos saturados, sin embargo, estudios recientes han demostrado que los 

niveles celulares de ciertos esfingolípidos insaturados como la esfingomielina 24:1 

son más altos de los esperado. En algunos casos se encuentran muy igualados a 

otros esfingolipidos saturados como los esfingolipidos 16:0. Además, se ha 

observado que la esfingomielina 24:1 no segrega lateralmente en presencia de 

DOPC y colesterol. 

 En el capítulo 5 se utiliza un sistema modelo de cuatro componentes para 

caracterizar los efectos de la incorporación de esfingolipidos insaturados en 

membranas fosfolipídicas. Lipidos como el DOPC, la esfingomielina, el colesterol y 

la ceramida son utilizados para replicar la segregación de fases observada en las 

membranas celulares. El DOPC, la esfingomielina y el colesterol son abundantes en 

la membrana plasmática, mientras que la ceramida se obtiene mediante la 

hidrólisis de la esfingomielina. Para llevar a cabo una caracterización de las 

propiedades biofísicas de estas membranas se utilizan técnicas como la 

microscopía de fuerza atómica, la microscopía confocal y la calorimetría diferencial 

de barrido. 

 Nuestros resultados concluyen que la esfingomielina insaturada no evita la 

formación de dominios de ceramida altamente ordenados y tiende a disminuir la 

temperatura de transición de fase en todos los casos estudiados. Además, se 

observa cómo la esfingomielina saturada tiende a acomodar a ambas ceramidas, 
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saturada e insaturada, mientras que la esfingomielina insaturada solo acomoda 

parcialmente las ceramidas. Este resultado se asocia a una preferencia de ambas 

ceramidas por la palmitil esfingomielina. Nuestros resultados también sugieren 

que la esfingomielina 24:1 favorece la cooperación entre las ceramidas. Por último, 

se confirma que la ceramida insaturada forma dominios menos ordenados que la 

saturada.   

7.4 Interacción de glicoesfingolipidos con esfingolipidos y colesterol  

 La diferencia principal entre los glicoesfingolípidos y la esfingomielina se 

encuentra en su cabeza polar, el primero tiene un grupo sacárido en lugar de una 

fosfocolina. Entre ellos, los cerebrósidos son los glicoesfingolípidos más simples, y 

son componentes de la membrana plasmática de la mayoría de las células 

eucariotas, aunque a una concentración considerablemente menor que la 

esfingomielina. Se asocian con procesos celulares como la división, el crecimiento, 

la supervivencia y el tráfico en la membrana. Además, se ha demostrado que la 

acumulación de cerebrósidos en las células provoca enfermedades como las de 

Gaucher y Krabbe, sin embargo, la mayoría de los estudios previos se han llevado a 

cabo a concentraciones muy bajas.  

 En el capítulo 6 se estudia la interacción entre los cerebrósidos (utilizando 

altas concentraciones) con esfingolipidos y colesterol en mezclas binarias, 

utilizando principalmente calorimetría diferencial de barrido. Además, se 

comprueba la habilidad de los cerebrósidos para inducir el movimiento 

transbicapa y la permeabilidad en la membrana.  

 Nuestros resultados muestran que los cerebrósidos se mezclan 

relativamente bien con todos los esfingolípidos e incluso el colesterol. Se puede 

observar cómo cambia su transición de fase principal a medida que se aumenta  la 

concentración de colesterol. Los cerebrósidos, al igual que las ceramidas, no son 

capaces de formar estructuras lamelares por sí mismos y tienden a segregar 

lateralmente dentro de una bicapa lipídica fluida. Sin embargo su miscibilidad (20 

% mol) es mucho más alta que la de las ceramidas, la cuales segregan a 

concentraciones menores (5 % mol). Además, los cerebrósidos tienen propiedades 

intermedias entre las ceramidas y las esfingomielinas, entre las que se encuentran: 

i) su concentración en las membranas puede variar en torno a dos órdenes de 

magnitud sin provocar grandes cambios en la estabilidad y la funcionalidad de las 

membranas, ii) pueden actuar como intermediarios metabólicos, al igual que las 

ceramidas, iii) pueden dar lugar a glicoesfingolipidos más complejos así como a 

ceramidas mediante la acción de la glucosil ceramidasa, iv) se mezclan mucho 

mejor que las ceramidas con otros lípidos de membrana, y v) pueden encontrarse a 
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altas concentraciones, sirviendo como precursor de esfingolípidos,  sin perturbar 

la estructura de la membrana.  

7.5 Conclusiones 

 Las conclusiones principales de este trabajo son: 

 La esfingomielina de huevo muestra una fase lamelar ondulada por debajo 

de su transición de fase principal, en el rango de temperatura estudiado, 

mientras que la pSM presenta una pretransición de una fase gel a una fase 

ondulada por debajo de su transición principal. 

 

 La interacción entre la ceramida y el colesterol en mezclas ternarias con 

fosfolípidos saturados depende de la concentración de ambos lípidos con 

respecto al fosfolípido, en lugar de su relación molar.  

 

 Los esfingolípidos insaturados tienden a disminuir la rigidez de la muestra. 

Específicamente, la esfingomielina insaturada no impide la formación de 

dominios enriquecidos en ceramida, y en su lugar favorece la cooperación 

entre ceramidas. 

 

   Los cerebrósidos presentan un comportamiento intermedio entre las 

ceramidas y las esfingomielinas. Estos se mezclan mucho mejor que las 

ceramidas con otros lípidos de membrana y no afectan a la estabilidad ni a 

la funcionalidad de la membrana como las ceramidas. 
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