
Quantum tomography and nonlocality

Evgeny V. Shchukin∗

Institute of Physics, Johannes-Gutenberg University of Mainz, Staudingerweg 7, 55128 Mainz, Germany

Stefano Mancini†

School of Science and Technology, University of Camerino, 62032 Camerino, Italy

& INFN Sezione di Perugia, I-06123 Perugia, Italy

We present a tomographic approach to the study of quantum nonlocality in multipartite systems.

Bell inequalities for tomograms belonging to a generic tomographic scheme are derived by exploiting

tools from convex geometry. Then, possible violations of these inequalities are discussed in specific

tomographic realizations providing some explicit examples.

I. INTRODUCTION

The Bell inequalities [1] demonstrate paradigmatic difference of quantum and classical worlds. They

were originally written for dichotomic (spin−1
2 ) variables [2]. Spin−1

2 operators realize the Lie algebra of

the SU(2) group. For several spin particles their spin operators form Lie algebra of the tensor product of

the Lie algebras. Due to algebraic equivalence of the operators satisfying commutation relations of the Lie

algebra constructed from particle spin operators and constructed from creation and annihilation operators of

a field, one can obtain Bell inequalities also for the case of continuous variables besides discrete ones [3].

Beyond the specific operators involved in the Bell inequalities, their possible violations obviously depend

on the state under consideration.

For a (multipartite) classical system with fluctuations, the system state is described by means of a joint

probability distribution function of random variables corresponding to the subsystems. In contrast, for a

(multipartite) quantum system the state is described by the density matrix. In view of this difference the

calculations of the system’s statistical properties (including correlations) are accomplished differently in

classical and quantum domains.

Recently, a probability representation of quantum mechanics has been suggested [4]. This representa-

tion, equivalent to all other well known formulations of quantum mechanics (see, e.g. [5]), goes back to

quantum tomography, a technique used for quantum state reconstruction [6]. The approach makes use of a
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set of fair probabilities, tomograms, to “replace” the notion of quantum state. It has also been understood

[7] that for classical statistical mechanics the states with fluctuations can be described as well by tomo-

grams related to standard probability distributions in classical phase-space. A comparison of classical and

quantum tomograms can be found in Ref.[7, 8].

Thus, in the probability representation, tomograms turned out to be a unique tool to describe both classi-

cal and quantum states. As a consequence they represent a natural bed where to place inequalities marking

the boarder-line between quantum and classical worlds. Tomograms can be either continuous or discrete

variable functions depending on the tomographic scheme (realization). In both cases they might be directly

used to test nonlocality. This possibility was described for symplectic tomography [9] in bipartite system

[10] and spin tomography [11] still in bipartite system [12].

Here we shall derive Bell inequalities for multipartite systems in terms of tomograms belonging to a

generic tomographic scheme. Then, we shall discuss the possibility to violate such inequalities depending

on the tomographic realization.

The layout of the paper is the following. In Section II we formalize quantum tomography in a multipar-

tite setting. Then, in Section III we derive the Bell inequalities in terms of tomograms. In Section IV we

provide some evidences of violations of such inequalities for spin−1
2 systems as well as for field modes and

finally draw the conclusions in Section V.

II. QUANTUM TOMOGRAPHY

Here we briefly review the general quantum tomography approach for a single system, by detailing three

relevant cases (optical [13], spin [11] and photon-number tomography [14]) and then extend the formalism

to multipartite systems.

The basic ingredients of any tomographic scheme are a Hilbert spaceH associated with space of the sys-

tem under consideration and a pair of measurable sets (X,Λ) with measures µ(x) and ν(λ) correspondingly.

More precisely, the set of system states is the set S(H) of Hermitian non-negative trace-class operators on

H with trace 1. Usually the set X is the spectrum of an observable of the system and the set Λ plays the

role of transformations.

We use the notation P(X) for the set of probability distributions on X , i.e. the set of nonnegative

measurable functions p : X → R normalized to one in the following sense
∫
p(x) dµ(x) = 1.

Both sets S(H) and P(X) are closed with respect to the convex combinations: if %̂, σ̂ ∈ S(H) (resp.

p(x), q(x) ∈ P(X)) and a ∈ [0, 1] then

a%̂+ (1− a)σ̂ ∈ S(H) (resp. ap(x) + (1− a)q(x) ∈ P(X)).
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Definition 1 A map T : S(H) → RX×Λ is called tomographic map if the following three conditions are

satisfied:

1. for any %̂ ∈ S(H) the image T (%̂) : X × Λ → R restricted on the set X × {λ} is a probability

density on X

Tλ(%̂) ∈ P(X) ∀λ ∈ Λ, where Tλ(%̂) = T (%̂)|X×{λ} : X → R.

2. the map T preserves convex combinations

T (a%̂+ (1− a)σ̂) = aT (%̂) + (1− a)T (σ̂), ∀%̂, σ̂ ∈ S(H), a ∈ [0, 1].

3. the map T is one-to-one

T (%̂) = T (σ̂)⇔ %̂ = σ̂.

These conditions have simple meaning: (i) means that the tomogram T (%̂) of any state %̂ is a probability

distribution on X parameterized by the points of Λ, (ii) is the linearity condition, and (iii) requires that the

tomogram of each state be unique, or, in other words, that any state can be unambiguous reconstructed from

its tomogram.

In the present work we deal with tomographic maps of the following form

T (%̂)(x, λ) ≡ p%̂(x, λ) = Tr
(
%̂Û(x, λ)

)
, (1)

where Û(x, λ) is a family of operators on H parameterized by points (x, λ) of the set X × Λ. In the

examples considered below the state %̂ can be reconstructed from its tomogram p%̂(x, λ) according to the

formula

%̂ =

∫ ∫
X×Λ

p(x, λ)D̂(x, λ) dµ(x) dν(λ), (2)

for the appropriate (x, λ)-parameterized family of operators D̂(x, λ) onH.

The set X is the spectrum of an observable Ô and the set Λ is a group equipped with a representation

(in general projective) π : Λ→ H inH. The operators Û(x, λ) have the following form

Û(x, λ) = π(λ)|x〉〈x|π†(λ), (3)

where |x〉 is an eigenstate of the observable Ô. For a group theoretical approach to quantum tomography

see [15]. See also [16] for a relation to grupoids.
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A. Spin tomography

Let us consider a system with spin j. In this case we have: H = C2j+1, X = {−j,−j+1, . . . , j−1, j}

and Λ = SO(3,R). We denote the elements of the sets X and Λ as s and Ω respectively. The measure

on X is equal to one on each element, so the corresponding integral is simply the finite sum over 2j + 1

terms. The measure on SO(3,R) is Haar’s one. For the group SO(3,R), parameterized with Euler angles

Ω ≡ (ϕ,ψ, θ) the measure ν(Ω) reads ν(Ω) ≡ ν(ϕ,ψ, θ) = sinψ dϕdψ dθ and the operator Û of (3) takes

the form

Û(s,Ω) = K̂(Ω)|j, s〉〈j, s|K̂†(Ω). (4)

Here the vectors |j, s〉, s = −j,−j + 1, . . . , j − 1, j are the basis of the space C2j+1 (eigenvectors of the

spin projection ŝz) and the operators K̂(Ω) are the operators of the irreducible representation of SO(3,R)

in C2j+1. Their matrix elements are given by

〈j, s|K̂(Ω)|j, s′〉 = ei(sθ+s
′ϕ)

√
(j + s′)!(j − s′)!
(j + s)!(j − s)!

× coss+s
′
(ψ/2) sins

′−s(ψ/2)P
(s′−s,s′+s)
j−s′ (cosψ), (5)

with P (α,β)
n (x) the Jacobi polynomials.

Then the tomogram p(s,Ω) ≡ p(s, ϕ, ψ, θ) of (1) is

p(s,Ω) = 〈j, s|K̂(Ω)%̂K̂†(Ω)|j, s〉. (6)

Due to the property 〈j, s|K̂(Ω)|j, s′〉 = (−1)s
′−s〈j,−s|K̂(Ω)|j,−s′〉, the tomogram does not depend on

the angle θ, i.e. p(s, ϕ, ψ, θ) ≡ p(s, ϕ, ψ).

Finally, the operator D̂ of (2) results

D̂(s,Ω) =

j∑
n,m=−j

〈j, n|D̂(s,Ω)|j,m〉|j, n〉〈j,m|,

where the matrix elements 〈j, n|D̂(s,Ω)|j,m〉 are given by the following expression

〈j, n|D̂(s,Ω)|j,m〉 =
(−1)s+m

8π2

2j∑
j3=0

(2j3 + 1)2

×
j3∑

k=−j3

〈j, k|K̂(Ω)|j, 0〉

 j j j3

n −m k

 j j j3

s −s k

 , (7)

in terms of Wigner 3j-symbols.
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B. Optical tomography

Here we have : H = L2(R), X = R and Λ = {eiθ|θ ∈ [0, 2π]}. The measures on X and Λ are

Lebegue’s ones. The operator corresponding to Eq.(3) reads

Û(X, θ) = R̂(θ)|X〉〈X|R̂†(θ), (8)

where R̂(θ) is the rotation operator

R̂(θ) = exp

(
i
θ

2
(x̂2 + p̂2)

)
,

acting on and the canonical position x̂ and momentum p̂ operators as

R̂(θ)

 x̂

p̂

 R̂†(θ) =

 cos θ − sin θ

sin θ cos θ

 x̂

p̂

 .

In other words, Û(X, θ) of (8) is the projector on the rotated eigenvector |X〉 of the position operator x̂.

The tomogram p(X, θ) of (1) is the diagonal matrix element

p(X, θ) = 〈X|R̂(θ)%̂R̂†(θ)|X〉. (9)

Furthermore, the operator D̂ of (2) results

D̂(X, θ) =
1

4π

∫
|r| exp

(
−ir(X − cos θx̂− sin θp̂)

)
dr.

C. Photon-Number tomography

Here we have: H = L2(R), X = Z+ = {0, 1, . . .} and Λ = C. We denote the elements of the sets X

and C as n and α respectively. The measure on X is equal to one on each element and the measure on C is

(1/π)d2α, where d2α = dReαdImα is the Lebegue’s measure on the real plane. Here, the operator Û is

the projector onto the displaced Fock state

Û(n, α) = D̂(α)|n〉〈n|D̂†(α), (10)

with

D(α) ≡ exp

[
α− α∗√

2
x̂− iα+ α∗√

2
p̂

]
.

From (1) the tomogram p(n, α) reads

p(n, α) = 〈n|D̂(α)%̂D̂†(α)|n〉. (11)

Furthermore, the operator D̂ of (2) becomes in this case

D̂(n, α) = 4(−1)n
+∞∑
m=0

(−1)mD̂(α)|m〉〈m|D̂†(α).
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D. Tomography for multi-partite systems

The generalization for multi-partite systems is straightforward.

Definition 2 Consider a n-partite system with the state space H⊗n and n tomographic schemes, one for

each part with sets (Xk,Λk) and operators Ûk(xk, λk) and D̂k(xk, λk), k = 1, . . . , n. The tomographic

scheme for the whole system is then constructed as the direct product of these schemes, by using

X ≡
n∏
k=1

Xk, Λ ≡
n∏
k=1

Λk,

Û(x, λ) ≡
n⊗
k=1

Ûk(xk, λk), D̂(x, λ) ≡
n⊗
k=1

D̂k(xk, λk), (12)

where x ≡ (x1, . . . , xn), λ ≡ (λ1, . . . , λn) and the measures µ(x), ν(λ) on X , Λ are direct products of

µ1(x1), . . . , µn(xn) and ν1(λ1), . . . , νn(λn) respectively. The tomogram p(x,λ) of a state %̂ (generalizing

(1)) is

p(x,λ) = Tr
(
%̂Û(x,λ)

)
. (13)

For any λ ∈ Λ it is a probability distribution on X , thus
∫
X p(x,λ) dµ(x) = 1.

Remark. From the definition (12) of the operator Û(x,λ) it immediately follows that the tomogram p(x,λ)

of a factorized state

%̂ = %̂1 ⊗ . . .⊗ %̂n (14)

is also factorized, i.e.

p(x,λ) = p1(x1, λ1) . . . pn(xn, λn), (15)

where pk(xk, λk) is the tomogram of the state %̂k. More generally, the tomogram of a separable state

%̂ =

+∞∑
i=0

ai%̂
(i)
1 ⊗ . . . %̂

(i)
n , ai > 0,

+∞∑
i=0

ai = 1 (16)

is also separable in the following sense

p(x,λ) =

+∞∑
i=0

aip
(i)
1 (x1, λ1) . . . p(i)

n (xn, λn), (17)

where p(i)
k (xk, λk) is the tomogram of the state %̂(i)

k .
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III. BELL INEQUALITIES FOR TOMOGRAMS

Let us consider a n-partite system in tomographic representation, whith each subsystem supplied by a

tomographic map Tk, k = 1, . . . , n. The tomogram p(x,λ) of a state %̂ is a function of 2n arguments and

with respect to one half of them it is a probability distribution. We will show that in general it cannot be

considered as a classical joint probability.

Definition 3 For any k = 1, . . . , n let Yk and Zk be two measurable sets such that

Xk = Yk
⋃
Zk, Yk

⋂
Zk = ∅,

and for any λk ∈ Λk let Ak(λk) be a dichotomic random variable on X =
∏
kXk such that

P(Ak(λk) = 1) =
∫
Yk

Tr
(
%̂Ûk(xk, λk)

)
dµk(xk),

P(Ak(λk) = −1) =
∫
Zk

Tr
(
%̂Ûk(xk, λk)

)
dµk(xk). (18)

Symbolically the variables Ak(λk) can be written as

Ak(λk) =

 1 if xk ∈ Yk,

−1 if xk ∈ Zk
(19)

in the coordinate system deformed by the operator Ûk(xk, λk). The joint probability distribution of the

random variables A1(λ1), . . . , An(λn), namely

pε1,...,εn(λ1, . . . , λn) = P(A1(λ1) = ε1, . . . , An(λn) = εn),

where εk = ±1, is given by

pε1,...,εn(λ1, . . . , λn) =

∫
W1

. . .

∫
Wn

p(x,λ) dx, (20)

with

Wk =

 Yk if εk = 1,

Zk if εk = −1.

The correlation function of A1(λ1), . . . , An(λn) results

E(λ1, . . . , λn) ≡
〈
A1(λ1) . . . An(λn)

〉
=

∑
ε1,...,εn=±1

pε1,...,εn(λ1, . . . , λn)ε1 . . . εn. (21)
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Definition 4 Let us fix two parameters λ(1)
k and λ(2)

k for k = 1, . . . , n and denote

E(j1, . . . , jn) ≡ E(λ
(j1)
1 , . . . , λ(jn)

n ), jk = 1, 2. (22)

Since each index jk can take 2 values independently on all the other indices, there are 2n correlation

functions (22). Then we define by

e ≡
(
E(j1, . . . , jn)

)
∈ R2n . (23)

the vector of these correlation functions with some order of multi-indices (j1, . . . , jn).

It is convenient to enumerate the functions E(j1, . . . , jn). For this purpose we use the binary base with

“digits” 1 and 2 instead of 0 and 1. This means that we use the following one-to-one correspondence

{1, . . . , 2n} 3 j ↔ (j1, . . . , jn), jk = 1, 2,

where j and (j1, . . . , jn) are related to each other according to

j = (j1 − 1)2n−1 + . . .+ (jn − 1)2 + jn. (24)

By virtue of such an ordering, the vector e (23) can be written as

e =
(
E(1), . . . , E(2n)

)
=
(
E(1, . . . , 1), . . . , E(2, . . . , 2)

)
∈ R2n . (25)

What region Ωn ⊂ R2n fills the vector e of (25)? Due to the fact that each observable has only two

outcomes ±1 it follows that each correlation function (22) is bounded by one by absolute value and, so, the

set Ωn is a subset of 2n-dimensional cube [−1, 1]2
n

.

Suppose that it is possible to model the result of the measurement by a random variable, Ak(jk), which

can take two values ±1. We assume that these random variables can be arbitrary correlated.

Definition 5 Let us define by

p(i1(1), . . . , in(2)) ≡ P
(
A1(1) = i1(1), . . . , An(2) = in(2)

)
, (26)

the joint probability distribution for random variables Ak(jk), with ik(jk) = ±1. Since each index ik(jk)

can take independently 2 values we have 22n numbers (26) which completely describe statistical character-

istics of the random variables under consideration. We enumerate them with a single number i = 1, . . . , 22n

using the same rule as for the correlation functions E(j), namely

{1, . . . , 22n} 3 i↔ (i1(1), . . . , in(2)),
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where i and (i1(1), . . . , in(2)) are related to each other according to

i = (i1(1)− 1)22n−1 + (in(1)− 1)2 + in(2). (27)

Enumerated in such a way the probabilities (26) form a 22n-dimensional vector

p ≡ (p1, . . . , p22n) ∈ R22n . (28)

The point (28) lies in the standard simplex

S22n−1 =

(p1, . . . , p22n)

∣∣∣∣ 22n∑
i=1

pi = 1, pi > 0

 ⊂ R22n . (29)

What region Ωn ⊂ R2n fills the vector e (25) when the point p (28) runs over the simplex S22n−1

(29)? To answer this question we are going to explicitly relate e and p assuming the former expressed like

classical joint probabilities. Then, the correlation function E(j) is intended as a simple linear combination

of pi with proper coefficients. Looking at (21) we consider such coefficients, E(j, i), given by the product

E(j, i) = i1(j1) . . . in(jn), (30)

where jk and ik(jk) are “digits” of the numbers j and i in the binary representations (24) and (27). The

numbers E(j, i), j = 1, . . . , 2n, i = 1, . . . , 22n form a 2n× 22n matrix En and the relation between e and p

can then be written as

e = Enp. (31)

We see that the region Ωn is the image of the standard simplex S22n−1

Ωn = En(S22n−1), (32)

where we do not distinguish the linear map En : R22n → R2n and its matrix En in the standard bases of

R22n and R2n .

Thus, we have reduced the problem of finding Bell inequalities to find the set Ωn. It means that the

problem of finding Bell inequalities boils down to a standard problem of convex geometry, referred to

as convex hull problem: given points ci find their convex hull, or facets of maximal dimension of the

corresponding polytope (for notions of convex geometry see, e.g. [17]).

Now we will get the Bell inequalities explicitly. Note that permutations of the columns of the matrix En

do not change their convex hull and that they correspond to permutations of the components of the vector

p or different orderings of the probabilities (28), so one can safely permute columns of En without altering

(31).
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Theorem 1 The set Ωn is specified by the (Bell) inequalities for the vector of the correlation functions

(e, H2nc) 6 2n, ∀c = (±1, . . . ,±1). (33)

The matrix H2n is the Hadamard matrix recurrently defined as

H2n = H2 ⊗ . . .⊗H2︸ ︷︷ ︸
n

, H2 =

 1 1

1 −1

 .

Proof. The key fact in deriving the Bell inequality (33) is that the matrix En can be written in the following

block form

En =
(
H2n −H2n . . . H2n −H2n︸ ︷︷ ︸

2n

)
(34)

after appropriate arrangement of its columns. One can rewrite the r.h.s. of (34) as the product of two

matrices

En = H2n

(
E2n −E2n . . . E2n −E2n

)
= H2nAn,

which means that the linear map En : R22n → R2n can be decomposed into two maps

En = H2n ◦An, An : R22n → R2n , H2n : R2n → R2n .

According to this decomposition (31) reads

e = H2nq, (35)

where the vector q = Anp ∈ R2n is explicitly given by the following expression

q =


p1 − p2n+1 + . . .− p(2n−1)2n+1

...

p2n − p2·2n + . . .− p22n

 . (36)

Define the following convex polytope ON ⊂ RN

ON = {x ∈ RN |(x, c) 6 1, ∀c = (±1, . . . ,±1)}. (37)

As one can easily see the image of the standard simplex S22n−1 is exactly the polytope O2n , that is

An(S22n−1) = O2n . From this fact we have

Ωn = H2n(O2n). (38)
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Now the Bell inequalities can be straightforwardly obtained from this relation. Just notice that a non-

degenerate linear map f : RN → RN with the matrix F maps a half-space h = {x ∈ RN |(x,a) 6 b} to

the half-space f(h) = {y ∈ RN |(y, (F T )−1a) 6 b}. Taking into account the following representation of

the polytope (38)

O2n =
⋂

c=(±1,...,±1)

{q|(q, c) 6 1}, (39)

the symmetry of the Hadamard matrix H2n and the formula for its inverse H−1
2n = 1

2nH2n , we get the

explicit form of the set Ωn, i.e.

Ωn =
⋂

c=(±1,...,±1)

{e|(e, H2nc) 6 2n}. (40)

Hence, the Bell inequalities (33).

Remark. Explicitly (33) can be written as∣∣∣∣∣∣
2∑

j1,...,jn=1

aj1,...,jnE(j1, . . . , jn)

∣∣∣∣∣∣ 6 2n, (41)

where the coefficients aj1,...,jn are connected with the vector c by the following relation

aj1,...,jn =
∑

ε1,...,εn=±1

c(ε1, . . . , εn)εj1−1
1 . . . εjn−1

n . (42)

The number c(ε1, . . . , εn) here is the i-th component of the vector c, where the binary representation of i is

i = (ε1 . . . εn)2 with digits +1 and −1 instead of 0 and 1.

One can easily see that there are 2n+1 inequalities of the form ±E(j1, . . . , jn) 6 1. They correspond

to the functions c(ε1, . . . , εn) that are columns of either H2n or −H2n and they are referred to as trivial

inequalities.

Finally, notice that the well known CHSH inequality [18] is a particular instance of (41) corresponding

to n = 2 and

c(−1,−1) = −1, c(−1,+1) = c(+1,−1) = c(+1,+1) = +1.

Theorem 2 Any separable state satisfies (33) with correlation functions (22).

Proof. Let us start with a factorized state (14) whose tomogram (15) is also factorized. Due to this the

random variables A1(λ1), . . . , An(λn) are independent and the correlation function E(λ1, . . . , λn) reads

E(λ1, . . . , λn) = q1(λ1) . . . qn(λn) (43)
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with

qk(λk) = p
(k)
1 (λk)− p

(k)
−1(λk),

where

p(k)
εk

(λk) = P(Ak(λk) = εk), εk = ±1.

Due to the fact that

p
(k)
1 (λk) + p

(k)
−1(λk) = 1, ∀k = 1, . . . , n ∀λk ∈ Λk,

it is clear that −1 6 qk(λk) 6 1. The left hand side of the inequality (33) is a linear function of any

qk(λ
(jk)
k ) where all the q1(λ

(j1)
1 ), . . . , qn(λ

(jn)
n ), jk = 1, 2 are considered as independent variables. A linear

function defined on the convex set [−1, 1] takes its maximum on a boundary point, ±1 in this case, and so,

the left hand side of (33) is maximal if qk(λ
(j1)
k ) = ±1, jk = 1, 2, k = 1, . . . , n. In such a case the vector e

of correlation functions is a column of either H2n or −H2n . Just note that due to (43) the vector e reads

e =

 q1(1)

q1(2)

⊗ . . .⊗
 qn(1)

qn(2)

 ,

where qk(jk) = qk(λ
(jk)
k ). That is to say, e = ci is the i-th column of H2n or −H2n , then

(e, H2nc) = ±(ci, H2nc) = ±(H2nci, c) = ±(2nei, c) = ±2n 6 2n. (44)

Here we used the orthogonality of the columns of H2n : H2nci = 2nei, where all the coordinates of ei are

zero except the i-th which is one. Hence, we have proved that all factorized states satisfy (33).

Let us now consider a general separable state (16). Since the correlation function E(λ1, . . . , λn) is a

linear function of the state, the vector e is a linear combination of the vectors e(i) corresponding to the

states %̂(i) = %̂
(i)
1 ⊗ . . .⊗ %̂

(i)
n , i.e.

e =

+∞∑
n=0

aie
(i).

As we have already shown each vector e(i) satisfies all the Bell inequalities (33) or lies in the convex set

Ωn. Once all the vectors e(i) are in Ωn so is their convex combination e. This means that any separable

state satisfies all the inequalities (33).
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IV. QUANTUM VIOLATIONS

The Bell inequalities are of interest not because they are always valid but because they can be violated.

One can ask if there was a mistake in the proof of theorem 1. The problem relies on the underlying hypoth-

esis of locality when relating e with p in (31). In doing so we have implicitly assumed (21) as a classical

joint probability, which is not generally true at quantum level.

We follow Mermin [19] to derive the only Bell inequality whose maximal quantum violation is the

largest among all others.

For an odd number n of systems let us consider the following random variable

Mn = Im

[
n∏
k=1

(Ak(1) + iAk(2))

]
. (45)

Since each Ak can take only values±1, each term in this product is equal to
√

2 by absolute value. Further-

more, since n is odd the whole product has the phase that is an integer multiplier of π/4. As a consequence

we have

|〈Mn〉| 6 2(n−1)/2. (46)

Explicitly this inequality reads∣∣∣∣∣∣
∑

(j1,...,jn)∈J

(−1)δ(j1,...,jn)E(j1, . . . , jn)

∣∣∣∣∣∣ 6 2(n−1)/2, (47)

where the sum here runs over the set of multi-indices (j1, . . . , jn) which contain an odd number of 2

J =
{

(j1, . . . , jn)
∣∣∣ |{k|jk = 2}| = 2l + 1

}
and

δ(j1, . . . , jn) = l, |{k|jk = 2}| = 2l + 1.

Multiplied by 2(n+1)/2 the inequality (47) takes the form (41) and it is easy to show that it is a Bell inequality,

i.e. there is a vector c that gives the coefficients of (47) (multiplied by 2(n+1)/2) according to (42).

We now consider an even number n. Let us denote the expression (45) as Mn(1, 2) and the similar

expression with the variables Ak(1) and Ak(2) swapped as Mn(2, 1). Consider the following combination

M̃n = Mn−1(1, 2)(An(1) +An(2)) +Mn−1(2, 1)(An(1)−An(2)). (48)

Since Mn−1(1, 2) is equal to ±2n/2−1 and An(j) = ±1, we will have

|〈M̃n〉| 6 2n/2. (49)
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Using the explicit form (47) for the odd number n− 1 one can write (49) as∣∣∣∣∣∣
2∑

j1,...,jn=1

(−1)δ̃(j1,...,jn)E(j1, . . . , jn)

∣∣∣∣∣∣ 6 2n/2, (50)

where

δ̃(j1, . . . , jn) =

 1 if jn = 2 and |{k|jk = 2}| is nonzero and even

0 otherwise
.

One can see that it is a Bell inequality and multiplied by 2n/2 it takes the form (41). Furthermore, for n = 2

Eq.(50) exactly reduces to the CHSH inequality [18].

Let us now see how the inequalities (47) or (50) can be violated in different tomographic realizations

starting from the following entangled state

|Ψ〉 = 1√
2

(
|0〉+ |1〉

)
, (51)

where 0 = (0, . . . , 0) and 1 = (1, . . . , 1). Below, for the sake of simplicity, the focus will mainly be to

n = 2, 3.

A. Spin tomography

Using the notation |0〉 ≡ |−1
2〉, |1〉 ≡ |+

1
2〉 for the spin projection along z, the state (51) becomes

|Ψ〉 =
1√
2

(
|−1

2 , . . . ,−
1
2〉+ |+1

2 , . . . ,+
1
2〉
)
,

whose tomogram, referring to Eq.(7), reads as

p(s1, . . . , sn,Ω1, . . . ,Ωn) =
1

2

∣∣∣∣∣∣
n∏
j=1

〈sj |K̂(Ωj)|−1
2〉+

n∏
j=1

〈sj |K̂(Ωj)|+1
2〉

∣∣∣∣∣∣
2

.

(52)

For n = 2 we immediately get

p(+1
2 ,+

1
2 ,Ω1,Ω2) = p(−1

2 ,−
1
2 ,Ω1,Ω2)

=
1

4
(1 + cosψ1 cosψ2 + sinψ1 sinψ2 cos(ϕ1 + ϕ2)),

p(+1
2 ,−

1
2 ,Ω1,Ω2) = p(−1

2 ,+
1
2 ,Ω1,Ω2)

=
1

4
(1− cosψ1 cosψ2 − sinψ1 sinψ2 cos(ϕ1 + ϕ2)),
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and the correlation function (21) becomes

E(Ω1,Ω2) = cosψ1 cosψ2 + sinψ1 sinψ2 cos(ϕ1 + ϕ2). (53)

The Bell inequality (50) reads in this case∣∣∣E(Ω
(1)
1 ,Ω

(1)
2 ) +E(Ω

(1)
1 ,Ω

(2)
2 ) + E(Ω

(2)
1 ,Ω

(1)
2 )− E(Ω

(2)
1 ,Ω

(2)
2 )
∣∣∣ 6 2, (54)

for all Ω
(j)
k = (ϕ

(j)
k , ψ

(j)
k , θ

(j)
k ), j, k = 1, 2. The maximum of the l.h.s. of (54) with (53) is 2

√
2 and is

attained by taking e.g. (the angles θ do not matter here)

Ω
(1)
1 = (ϕ1,−π/8, 0), Ω

(1)
2 = (−ϕ1, π/8, 0),

Ω
(2)
1 = (ϕ1, 3π/8, 0), Ω

(2)
2 = (−ϕ1,−3π/8, 0).

In the case of n = 3, from (52), we have (not to overload the notation we omit the Ω’s)

p(+1
2 ,+

1
2 ,+

1
2) = 1

8 [1 + cosψ1 cosψ2 + cosψ1 cosψ3 + cosψ2 cosψ3

− sinψ1 sinψ2 sinψ3 cos(ϕ1 + ϕ2 + ϕ3)],

p(+1
2 ,+

1
2 ,−

1
2) = 1

8 [1 + cosψ1 cosψ2 − cosψ1 cosψ3 − cosψ2 cosψ3

+ sinψ1 sinψ2 sinψ3 cos(ϕ1 + ϕ2 + ϕ3)],

p(+1
2 ,−

1
2 ,+

1
2) = 1

8 [1− cosψ1 cosψ2 + cosψ1 cosψ3 − cosψ2 cosψ3

+ sinψ1 sinψ2 sinψ3 cos(ϕ1 + ϕ2 + ϕ3)],

p(+1
2 ,−

1
2 ,−

1
2) = 1

8 [1− cosψ1 cosψ2 − cosψ1 cosψ3 + cosψ2 cosψ3

− sinψ1 sinψ2 sinψ3 cos(ϕ1 + ϕ2 + ϕ3)],

p(−1
2 ,+

1
2 ,+

1
2) = 1

8 [1− cosψ1 cosψ2 − cosψ1 cosψ3 + cosψ2 cosψ3

+ sinψ1 sinψ2 sinψ3 cos(ϕ1 + ϕ2 + ϕ3)],

p(−1
2 ,+

1
2 ,−

1
2) = 1

8 [1− cosψ1 cosψ2 + cosψ1 cosψ3 − cosψ2 cosψ3

− sinψ1 sinψ2 sinψ3 cos(ϕ1 + ϕ2 + ϕ3)],

p(−1
2 ,−

1
2 ,+

1
2) = 1

8 [1 + cosψ1 cosψ2 − cosψ1 cosψ3 − cosψ2 cosψ3

− sinψ1 sinψ2 sinψ3 cos(ϕ1 + ϕ2 + ϕ3)],

p(−1
2 ,−

1
2 ,−

1
2) = 1

8 [1 + cosψ1 cosψ2 + cosψ1 cosψ3 + cosψ2 cosψ3

+ sinψ1 sinψ2 sinψ3 cos(ϕ1 + ϕ2 + ϕ3)].

Thanks to these tomograms the correlation function (21) results

E(Ω1,Ω2,Ω3) = − sinψ1 sinψ2 sinψ3 cos(ϕ1 + ϕ2 + ϕ3). (55)
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Finally, the Bell inequality (47) in this case reads∣∣∣E(Ω
(2)
1 ,Ω

(1)
2 ,Ω

(1)
3 ) + E(Ω

(1)
1 ,Ω

(2)
2 ,Ω

(1)
3 ) + E(Ω

(1)
1 ,Ω

(1)
2 ,Ω

(2)
3 )− E(Ω

(2)
1 ,Ω

(2)
2 ,Ω

(2)
3 )
∣∣∣ ≤ 2. (56)

Using (55) the maximum violation occurs when the l.h.s equals 4. This value can be attained by taking e.g.

(again the angles θ do not matter here)

ψ
(1)
1 = ψ

(1)
2 = ψ

(1)
3 = π/2, ϕ

(1)
1 = ϕ

(1)
2 = ϕ

(1)
3 = 5π/6,

ψ
(2)
1 = ψ

(2)
2 = ψ

(2)
3 = π/2, ϕ

(2)
1 = ϕ

(2)
2 = ϕ

(2)
3 = π/3.

B. Optical tomography

The tomogram of the state (51) accordingly to (9) is given by

p(X,θ) =
1

2
√
πn

[
1 + 2n

n∏
i=1

(X2
i ) + 2(n+2)/2

n∏
i=1

(Xi) cos(θ1 + . . .+ θn)

]
exp

[
−

n∑
i=1

X2
i

]
, (57)

whereX = (X1, . . . , Xn) and θ = (θ1, . . . , θn).

We take the sets Yk and Zk of Definition 3 to be

Yk = [x,+∞), Zk = (−∞, x).

For such sets and tomogram (57), the correlation function (21) results

E(θ) = 2n−1 [an0 (x) + an1 (x)] + 2nbn0 (x) cos(θ1 + . . .+ θn), (58)

where

a0(x) = −1

2
erf(x), a1(x) = −1

2
erf(x) +

1√
π
xe−x

2
, b0(x) =

1√
2π
e−x

2
.

We have now to insert (58) into (47) or (50) to get an explicit version fo the Bell inequality. In doing so

we use a Lemma, reported in A, showing that the maximal value of

2∑
j1,...,jn=1

aj1,...,jn cos(θ
(j1)
1 + . . .+ θ(jn)

n )

does not exceed 2n+(n−1)/2 and this value is attained with coefficients of (47) or (50). It then follows that

the maximal value fn(x) of the l.h.s. of (47) and of (50) is

fn(x) =

 2n|an0 (x) + an1 (x)|+ 2n+(n+1)/2|bn0 (x)|, n odd

2n|an0 (x) + an1 (x)|+ 2n+n/2 |bn0 (x)|, n even
. (59)

Figure 1 illustrates the function fn(x) for n = 2, 3. A tiny violation of Bell inequality only occurs for

n = 3.
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FIG. 1: Function fn of Eq. (59) versus x for n = 2 (dashed line) and n = 3 (solid line).

C. Photon-Number tomography

Considering the state (51) its number tomogram (11) can be computed as

p(m1, . . .mn, α1, . . . αn) =
∏n
i=1

|αi|2mi−2

mi!
e−|αi|2

∣∣∏n
i=1 αi +

∏n
i=1(mi − |αi|2)

∣∣2 . (60)

We further choose the sets of Definition 3 as Z1 = . . . = Zn = {0}, Y1 = . . . = Yn = {1, 2, 3, . . .}.

The corresponding correlation function (21) for n = 2 is

E(α1, α2) = e−|α1|2−|α2|2 [
2 + 4<(α1α2) + 2|α1|2|α2|2

−
(
1 + |α2|2

)
e|α1|2 −

(
1 + |α1|2

)
e|α2|2 + e|α1|2+|α2|2

]
. (61)

Furthermore, the Bell inequality for the number tomogram with n = 2 is from (50)∣∣∣E(α
(1)
1 , α

(1)
2 ) + E(α

(1)
1 , α

(2)
2 ) + E(α

(2)
1 , α

(1)
2 )− E(α

(2)
1 , α

(2)
2 )
∣∣∣ 6 2, (62)

for all α(j)
1 , α

(j)
2 ∈ C, j = 1, 2. Figure 2 illustrates that this inequality can be violated using (61).

Analogously, from (60) it follows that the correlation function (21) for n = 3 is

E(α1, α2, α3) = e−|α1|2−|α2|2−|α3|2 [
−4 + 8<(α1α2α3)− 4|α1|2|α2|2|α3|2

+2
(
e|α1|2 + e|α2|2 + e|α3|2

)
+ 2|α2|2|α3|2e|α1|2

+2|α1|2|α2|2e|α3|2 + 2|α1|2|α3|2e|α2|2

−
(
1 + |α1|2

)
e|α2|2+|α3|2 −

(
1 + |α2|2

)
e|α1|2+|α3|2

−
(
1 + |α3|2

)
e|α1|2+|α2|2 + e|α1|2+|α2|2+|α3|2

]
. (63)
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FIG. 2: The left hand side of (62) as a function of α(2)
2 (dashed line); the other parameters are given by α(1)

1 = 0.165,

α
(1)
2 = −0.165, α(2)

1 = −0.559. The left hand side of (64) as a function of α(2)
2 (dashed line); the other parameters

are given by α(1)
1 = α

(1)
2 = 0, α(1)

3 = 5.936, α(2)
1 4.767, α(2)

3 = 4.

This time the Bell inequality for the number tomogram reads from (47)∣∣∣E(α
(1)
1 , α

(1)
2 , α

(2)
3 ) + E(α

(1)
1 , α

(2)
2 , α

(1)
2 ) + E(α

(2)
1 , α

(1)
2 , α

(1)
2 )− E(α

(2)
1 , α

(2)
2 , α

(2)
2 )
∣∣∣ 6 2. (64)

This inequality, by numerical checking, results never violated with (63) and an example of the behavior of

the l.h.s. is shown in figure 2.

By also choosing Z1 = . . . = Zn = {0, . . . ,m}, Y1 = . . . = Yn = {m + 1,m + 2, . . .}, with m > 0,

neither (62) nor (64) will result (by numerical checking) ever violated by using (61) and (63) respectively.

V. CONCLUDING REMARKS

As we have seen from the previous examples the use of finite (namely 2n) number of tomograms within

a tomographic realization may lead to the evidence of nonlocality. Actually, it results that finite dimensional

systems by means of spin tomograms allow for the best evidence of nonlocality. In contrast, violations of

Bell inequalities seem much harder to uncover in infinite dimensional systems where H = L2(R). Given

that we have considered in both cases the same (entangled) state (51), this difference, according to Ref. [20],

must be ascribed to the diversity of observables employed (from which the tomograms stem). However, we

argue that also the way the spectrum of an observable is binned could play a role. As matter of fact the

choices made in Sections IV B and IV C for Yk and Zk do not exhaust all possibilities of these measurable

sets. Unfortunately looking at Bell inequalities violations using optical tomograms (resp. photon number

tomograms) by scanning the possible sets Yk and Zk appears a daunting task.
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All in all the advantage of the tomographic approach is to allow to to find the large violations of Bell

inequalities typical of spin systems also in infinite dimensional systems. In fact, introducing in L2(R)⊗n

the following local pseudo-spin operators [21]

Ŝ(k)
x =

+∞∑
nk=0

(
|2nk〉〈2nk + 1|+ |2nk + 1〉〈2nk|

)
,

Ŝ(k)
y = −i

+∞∑
nk=0

(
|2nk〉〈2nk + 1| − |2nk + 1〉〈2nk|

)
,

Ŝ(k)
z =

+∞∑
nk=0

(−1)nk |nk〉〈nk|,

where |nk〉 are Fock states of the kth subsystem, we can derive the tomograms of the spin tomography

realized with the above operators from those of any other tomographic scheme (see e.g. [22]). The price

one ought to pay in such a case is the completeness of the set of starting tomograms, (i.e. a number of

tomograms much greater than 2n).

Acknowledgments

This work was planned some years ago after an interesting discussion with V. I. Man’ko. We affection-

ately dedicate its completion to him in occasion of his 75th birthday.

Appendix A

Lemma 1 For any coefficients aj = aj1,...,jn (j = (j1, . . . , jn)) of (42) and for any angles θ(1)
k , θ(2)

k

(k = 1, . . . , n) we have

1

2n

∣∣∣∣∣∣
2∑

j=1

aj cos
(
θ

(j1)
1 + . . .+ θ(jn)

n

)∣∣∣∣∣∣ 6 2(n−1)/2. (A1)

The equality is attained with coefficients from (47), (50).

Proof. To estimate the l.h.s. of (A1) note that∣∣∣∣∣∣
2∑

j=1

aj cos
(
θ

(j1)
1 + . . .+ θ(jn)

n

)∣∣∣∣∣∣ 6
∣∣∣∣∣∣

2∑
j=1

aje
i
(
θ
(j1)
1 +...+θ

(jn)
n

)∣∣∣∣∣∣ , (A2)

so we need to estimate the last sum. To this end we use (42) obtaining∣∣∣∣∣∣
2∑

j=1

aje
i
(
θ
(j1)
1 +...+θ

(jn)
n

)∣∣∣∣∣∣ =
∑

ε1,...,εn=±1

c(ε1, . . . , εn)

n∏
k=1

(
eiθ

(1)
k + εke

iθ
(2)
k

)
. (A3)
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Next we define

θk =
θ

(1)
k − θ

(2)
k

2
, ϕk =

θ
(1)
k + θ

(2)
k

2
. (A4)

so that the r.h.s. of (A3) simplifies to

2nei(ϕ1+...+ϕn)
∑

ε1,...,εn=±1

c(ε1, . . . , εn)
n∏
k=1

ak(εk),

where ak(+1) = cos θk and ak(−1) = i sin θk. Taking into account that we use absolute value in (A2) and

divide by 2n in (A1) we have to prove the following inequality∣∣∣∣∣∣
∑

ε1,...,εn=±1

c(ε1, . . . , εn)
n∏
k=1

ak(εk)

∣∣∣∣∣∣ 6 2(n−1)/2, (A5)

for any ±1-valued function c(ε1, . . . , εn). We employ the induction method. For n = 1 we simply have∣∣∣c(+1) cos θ1 + c(−1)i sin θ1

∣∣∣ = 1 = 2(1−1)/2.

Then, we can write the sum in (A5) as

∑
ε1,...,εn=±1

c(ε1, . . . , εn)
n∏
k=1

ak(εk) ≡ An−1 cos θn + iBn−1 sin θn,

=
∑

ε1,...,εn−1=±1

c(ε1, . . . , εn−1,+1)
n−1∏
k=1

ak(εk) cos θn

+i
∑

ε1,...,εn−1=±1

c(ε1, . . . , εn−1,−1)
n−1∏
k=1

ak(εk) sin θn

where, according to the induction assumption, we have

|An−1|, |Bn−1| 6 2(n−2)/2. (A6)

The sum in (A5) can be estimated in the following way∣∣∣∣∣∣
∑

ε1,...,εn=±1

c(ε1, . . . , εn)

n∏
k=1

ak(εk)

∣∣∣∣∣∣ =
∣∣∣An−1 cos θn + iBn−1 sin θn

∣∣∣
6
√
|An−1|2 + |Bn−1|2 6 2(n−1)/2.

Now we show that with the coefficients of (47) or (50) the maximal value 2(n−1)/2 is attained. Due to

(A2) we need to estimate the sum

Sn =
1

2n+(n−1)/2

2∑
j1,...,jn=1

aj1,...,jne
i
(
θ
(j1)
1 +...+θ

(jn)
n

)
(A7)
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and show that it can be equal to one by absolute value. First, let us consider the case of an odd n. From (50)

we have

aj1,...,jn = 2(n+1)/2(−1)δ(j1,...,jn), (j1, . . . , jn) ∈ J.

Furthermore, from (45) it is

Sn =
1

2ni

[
n∏
k=1

(
eiθ

(1)

k + ieiθ
(2)

k

)
−

n∏
k=1

(
eiθ

(1)

k − ieiθ(2)k

)]
.

Taking into account that each term in these products can be written as

eiθ
(1)

k ± eiθ̃(2)k , θ̃
(2)
k = θ

(2)
k + π/2,

and using the relations (A4), Sn can be simplified to

Sn =
1

i

(
n∏
k=1

cos θ′k ± i
n∏
k=1

sin θ′k

)
ei(ϕ

′
1+...+ϕ′n),

where θ′k = θk − π/4, ϕ′k = ϕk + π/4. It is clear that the imaginary part of the sum Sn takes its maximal

absolute value 1 when, for example, θk = ϕk = 0 for k = 1, . . . , n.

Now we consider the case of an even n. The coefficients aj1,...,jn in this case come from (47)

aj1,...,jn = 2n/2(−1)δ̃(j1,...,jn),

and the sum Sn (A7) becomes

Sn = 1
i2n
√

2
(eiθ

(1)

n + eiθ
(2)

n )
[∏n−1

k=1

(
eiθ

(1)

k + eiθ̃
(2)

k

)
−
∏n−1
k=1

(
eiθ

(1)

k − eiθ̃(2)k

)]
+ 1
i2n
√

2
(eiθ

(1)

n eiθ
(2)

n )
[∏n−1

k=1

(
eiθ̃

(1)

k + eiθ
(2)

k

)
−
∏n−1
k=1

(
eiθ̃

(1)

k − eiθ(2)k

)]
.

According to (A4) Sn can be simplified to

Sn = eiϕ√
2

[(
i
∏n−1
k=1 cos θ′k ∓

∏n−1
k=1 sin θ′k

)
cos θn +

(∏n−1
k=1 cos θ′′k ± i

∏n−1
k=1 sin θ′′k

)
sin θn

]
,

where θ′k = θk − π/4, θ′′k = θk + π/4 and ϕ = ϕ1 + . . . ϕn + (n − 1)π/4. The imaginary part of Sn is

(when ϕ = 0)

|Im(Sn)| = 1√
2

∣∣∣cos θn
∏n−1
k=1 cos(θk − π/4)± sin θn

∏n−1
k=1 sin(θk + π/4)

∣∣∣ .
It is clear that this expression takes its maximal value 1 when θk = π/4, k = 1, . . . , n−1, and θn = ±π/4.

This completes the proof.
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