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Abstract

Let Ω ⊂ RN be an open bounded connected set. We consider the eigenvalue
problem −∆pu = λρ|u|p−2u in Ω with homogeneous Dirichlet boundary condition,
where ∆p is the p-Laplacian operator, ρ is an arbitrary function that takes only
two given values 0 < α < β and that is subject to the constraint

∫
Ω ρ dx =

αγ + β(|Ω| − γ) for a fixed 0 < γ < |Ω|. In [9] the optimization of the map
ρ 7→ λ1(ρ), where λ1 is the first eigenvalue, has been studied. In this paper we
consider a Steiner symmetric domain Ω and we show that the minimizers inherit
the same symmetry.
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1 Introduction

In this paper we consider the eigenvalue problem{
−∆pu = λρ|u|p−2u in Ω

u = 0 on ∂Ω,
(1.1)

where ∆p denotes the p-Laplace operator, ∆pu = div(|∇u|p−2∇u), p > 1, Ω ⊂ RN

(N ≥ 2) is a bounded domain with C2,σ boundary ∂Ω, ρ ∈ L∞(Ω) is positive and λ ∈ R;
u ∈ W 1,p

0 (Ω) is a weak solution of (1.1) if∫
Ω

|∇u|p−2∇u · ∇ξ dx = λ

∫
Ω

ρ|u|p−2uξ dx ∀ξ ∈ C∞0 (Ω).
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A nontrivial solution of (1.1) is called an eigenfunction associated to the eigenvalue λ;
the least real number λ with the previous property is said the first eigenvalue and every
associated eigenfunction is called a first eigenfunction.
The case ρ ≡ 1 has been studied by various authors. As observed in [20], the existence
of a nontrivial solution of (1.1) follows from direct methods of calculus of variations. In
1986, de Thélin [11] proved that the first eigenvalue is simple when Ω is the unit ball. In
1987, Sakaguchi [20] proved the simplicity when ∂Ω is smooth and connected. In 1988,
Barles [2] extend the last result when ∂Ω is of class C2,σ. In 1990, Lindqvist [16] showed
the simplicity of the first eigenvalue in any bounded domain.
In 1987, under the assumption ∂Ω ∈ C2,σ, Anane [1] proved that the first eigenvalue is
simple and isolated for an arbitrary ρ ∈ L∞(Ω) such that the set {x ∈ Ω : ρ(x) > 0} has
positive Lebesgue measure.
Physically, in case of p = 2, problem (1.1) models a vibrating membrane Ω with clamped
boundary ∂Ω and density ρ. The physical meaning of the first eigenvalue λ1 is the
principal natural frequency of vibration of the membrane.
Note that densities that differ each other by a subset of Lebesgue null measure give the
same eigenvalue problem.
Fixed the positive constants α, β, γ with α < β, we restrict our attention to eigenvalue
problems where the weight is of the form ρ = αχE + β(1 − χE), where χE is the char-
acteristic function of an arbitrary measurable set E ⊂ Ω such that |E| = γ, where |E|
denotes the measure of E. As E varies it describes the set we call adγ. We denote by
λ1(ρ) the dependence of the first eigenvalue on the weight ρ.
The problem of minimization of λ1(ρ) when ρ varies in adγ has been studied in [9] (in the
case of an arbitrary positive function ρ ∈ L∞(Ω)). The authors proved the existence and
a characterization of minimizers. Call ρ̌ such a minimizer. In this paper we investigate
the geometric properties of minimizers when Ω is a Steiner symmetric domain. A similar
problem in the case p = 2 has been already studied in [4] by Chanillo and others; in that
paper the authors proved the Steiner symmetry of every minimizer when Ω has such a
symmetry. In [19] Pielichowski has considered the optimization problem in [4] for an
arbitrary p > 1.
To our knowledge until now for arbitrary p has been only showed a weaker symmetry
result, i.e. if Ω is a ball then every minimizer is radially symmetric and decreasing (see
[9] and [19]). In this paper we prove the Steiner symmetry of minimizers provided Ω is
Steiner symmetric.
Similar problems for p = 2 are considered in [5], [6], [8], [13] and [14].
This article is organized in this way: in Section 2 we give some notations and preliminary
tools that will be used in the sequel; Section 3 contains the symmetry result.
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2 Preliminaries and notations

First, we list some regularity properties of the eigenfunctions. Let u be an eigenfunction
of (1.1). By Propositions 2.1 and Remark 2.3 in [10] we know that

u ∈ W 1,p
0 (Ω) ∩ C1,τ

loc (Ω) ∩ L∞(Ω).

Moreover by results of Tolksdorf in [22] u has weak second derivatives; more precisely:

u ∈ W 2,2
loc (Ω) ∩W 1,∞

loc (Ω) if p ≥ 2,

u ∈ W 2,p
loc (Ω) ∩W 1,p+2

loc (Ω) if p ≤ 2.

Furthermore it has been shown in [1] that λ1(ρ) is simple and every first eigenfunction
u is either positive or negative in Ω.

We will use the following variational characterization of the first eigenvalue λ1(ρ) of
(1.1):

λ1(ρ) = min
u∈W1,p

0 (Ω)

u6=0

∫
Ω
|∇u|p dx∫

Ω
ρup dx

; (2.1)

the expression

∫
Ω
|∇u|p dx∫

Ω
ρup dx

is the well known Rayleigh’s quotient.

Let adγ = {ρ ∈ L∞(Ω) : ρ = αχE + β(1 − χE)}, where 0 < α < β and χE is the
characteristic function of a set E ⊂ Ω such that |E| = γ. We denote by ρ̌ ∈ adγ a
minimizer of the map ρ 7→ λ1(ρ), that is

λ1

(
ρ̌
)

= inf
ρ∈adγ

λ1(ρ). (2.2)

From results in [9] such a minimizer exists; in the sequel we will write λ̌1 = λ1

(
ρ̌
)
.

Moreover (see [9]), if u is a positive eigenfunction corresponding to λ1(ρ), then there
exists an increasing function ϕ such that

ρ̌ = ϕ(u) (2.3)

almost everywhere in Ω.
Since in our particular case ϕ takes only the values α and β, characterization (2.3) can
be stated more precisely as the following

Proposition 2.1. Let u be a positive first eigenfunction of problem (1.1) with ρ(x) =
ρ̌(x); then there exists a constant l > 0 such that

ρ̌(x) =

{
β if u(x) > l

α if u(x) ≤ l

for every x ∈ Ω.
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Now we introduce some notations and recall the notion of Steiner symmetric set and
function. Throughout the paper, a point x ∈ RN is labeled by x = (x1, . . . , xN) = (x′, y)
where x′ ∈ RN−1 and y = xN ∈ R (we also use the symbol Ry in place of R). Let Ω ⊂ RN

be a measurable set; we denote by πN−1(Ω) the orthogonal projection of Ω onto RN−1;
for all x′ ∈ πN−1(Ω), we define

Ω(x′) = {y ∈ R : (x′, y) ∈ Ω}.

The Steiner symmetrization of Ω with respect to the hyperplane y = 0 is

Ω] =

{
(x′, y) ∈ RN : −

1

2
|Ω(x′)|1 < y <

1

2
|Ω(x′)|1, x′ ∈ πN−1(Ω)

}
,

where |Ω(x′)|1 stands for the Lebesgue measure in Ry.
The set Ω is said Steiner symmetric if Ω] = Ω.
Let u be a nonnegative measurable function defined in Ω; for every c ∈ R we denote by
Ωc = {x ∈ Ω : u(x) ≥ c} the level sets of u; the Steiner symmetrization u] of u is the
function

u](x) = sup{c : x ∈ Ω]
c}

defined in the symmetrized set Ω]. We remind some well known properties of the Steiner
symmetrization:
i) |Ω| = |Ω]|;
ii) for every measurable function ψ we have∫

Ω

ψ(u(x)) dx =

∫
Ω]
ψ(u](x)) dx; (2.4)

iii) for all u, v ∈ L2(Ω) the Hardy-Littlewood’s inequality holds:∫
Ω

u(x)v(x) dx ≤
∫

Ω]
u](x)v](x) dx; (2.5)

iv) if u ∈ W 1,p
0 (Ω), then u] ∈ W 1,p

0 (Ω]) and the Pòlya-Szegö’s inequality holds:∫
Ω

|∇u(x)|p dx ≥
∫

Ω]
|∇u](x)|p dx. (2.6)

In [3] Brothers and Ziemer have considered the equality case in (2.6), where Ω = RN

and the Steiner symmetrization is replaced by the decreasing spherical (i.e. Schwarz)
symmetrization. They have found sufficient conditions that ensure u is a translate of its
symmetrization.
In [7] Cianchi and Fusco have found an analogous result for the Steiner symmetrization.
We will use the following result (Theorem 2.6 in [7]) of Cianchi and Fusco:
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Theorem 2.2. Let f : RN → [0,∞) be a strictly convex function vanishing at 0 and
satisfying

f(x1, . . . , xN−1, xN) = f(x1, . . . , xN−1,−xN) ∀ (x1, . . . , xN) ∈ RN .

Let Ω be an open subset of RN such that Ω = Ω] (up to translations along the y-axis).
Let

W 1,1
0,y (Ω) = {u : Ω→ R : u0 ∈ W 1,1(ω × Ry) for every open ω ⊂⊂ πN−1(Ω)},

where u0 denotes the continuation of u to RN which vanishes outside Ω. Let u be a
nonnegative function from W 1,1

0,y (Ω) satisfying∣∣∣∣∣
{

(x′, y) ∈ Ω :
∂u

∂y
(x′, y) = 0

}
∩
{

(x′, y) ∈ Ω : u(x′, y) < M(x′)
}∣∣∣∣∣ = 0, (2.7)

where M(x′) = esssup
{
u(x′, y) : y ∈ Ω(x′)

}
. If∫

Ω

f(∇u]) dx =

∫
Ω

f(∇u) dx <∞,

then u] is equivalent to u (up to translations along the y-axis).

Remark 2.1. We will use the last theorem with f(x) = |x|p and u ∈ W 1,p
0 (Ω) ⊂ W 1,1

0,y (Ω).
We observe that, by Proposition 2.3 in [7], condition (2.7) is equivalent to∣∣∣∣∣

{
(x′, y) ∈ Ω :

∂u]

∂y
(x′, y) = 0

}
∩
{

(x′, y) ∈ Ω : u](x′, y) < M(x′)
}∣∣∣∣∣ = 0, (2.8)

which is exactly the counterpart of the hypothesis for Schwarz symmetrization in [3].

3 Steiner Symmetry

In [9] the minimization problem (2.2) in a more general case is considered. The set adγ
is replaced by a rearrengement class of an arbitrary nonnegative function in L∞(Ω). The
authors proved a result of existence and characterization of minimizers. Moreover, they
have shown uniqueness of the minimizers when Ω is a ball; more precisely (see Theorem
3.3 in [9]), every minimizer is radially symmetric and decreasing. The first part of their
proof relies on the Rayleigh’s quotient (2.1) and on the Schwarz rearrengement with
some related inequalities (analogous to (2.5) and (2.6)). The second part goes through
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the eigenvalue equation in radial form, uses the remarkable result of Brothers and Ziemer
in [3] and the characterization (analogous to (2.3)) of minimizers.
Our main result, which is stated in Theorem 3.1, extends the symmetry result of [9]
to the case of Steiner symmetry provided the class of rearrengements is adγ. Here, we
follow the same line of [9] for the first part of the proof. The argument used in [9] in
the last part cannot be exploited here because the lack of the radial symmetry prevents
both the reduction of the equation to the one-dimensional form and the use of [3].
To overcome these obstructions we use Theorem 2.6 in [7] in place of Theorem 1.1 in [3]
and then we proceed with the well known geometric argument of Serrin (see [21]).

We need the following notations. For a negative real number a we define the horizontal
hyperplane

Ta = {x ∈ RN : y = a}

and the part of Ω under Ta
Ωa = {x ∈ Ω : y < a}.

For every x = (x′, y) ∈ Ω we define its symmetric relative to Ta

xa = (x′, 2a− y)

and, for every x ∈ Ω such that xa ∈ Ω and every function v defined in Ω, let

va(x) = v(xa).

Theorem 3.1. Let Ω ⊂ RN be a bounded domain of class C2,σ. Assume Ω is Steiner
symmetric with respect to the hyperplane T0 = {x ∈ RN : y = 0}. Then every minimizer
ρ̌ of the problem (2.2) is Steiner symmetric relative to T0.

Proof. Recall that by result in [9] there exists a minimizer ρ̌ of problem (2.2).
We put λ̌1 = λ1(ρ̌) and we denote by uρ̌ the corresponding positive first eigenfunction
normalized by

∫
Ω
ρ̌upρ̌ dx = 1.

By Proposition 2.1, the Steiner symmetry of ρ̌ is a consequence of the Steiner symmetry
of uρ̌. Hence we need to show that u]ρ̌ = uρ̌.
By (2.1)

λ̌1 =

∫
Ω
|∇uρ̌|p dx∫
Ω
ρ̌upρ̌ dx

.

The inequalities (2.5) and (2.6) yield∫
Ω

ρ̌upρ̌ dx ≤
∫

Ω

ρ̌](u]ρ̌)
p dx
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and ∫
Ω

|∇uρ̌|p dx ≥
∫

Ω

|∇u]ρ̌|p dx.

Consequently we find

λ̌1 =

∫
Ω
|∇uρ̌|p dx∫
Ω
ρ̌upρ̌ dx

≥
∫

Ω
|∇u]ρ̌|p dx∫

Ω
ρ̌](u]ρ̌)

p dx
.

Denoting by uρ̌] the normalized positive first eigenfunction corresponding to ρ̌], we have

λ̌1 ≥
∫

Ω
|∇u]ρ̌|p dx∫

Ω
ρ̌](u]ρ̌)

p dx
≥
∫

Ω
|∇uρ̌]|p dx∫

Ω
ρ̌](uρ̌])p dx

= λ1(ρ̌]) ≥ λ̌1. (3.1)

Therefore all the previous inequalities become equalities and yield∫
Ω

|∇uρ̌|p dx =

∫
Ω

|∇u]ρ̌|p dx (3.2)

and ∫
Ω

ρ̌upρ̌ dx =

∫
Ω

ρ̌](u]ρ̌)
p dx;

furthermore, by the simplicity of the first eigenvalue and by (2.4), we conclude that

u]ρ̌ = uρ̌] .

We set uρ̌] = v. By (3.1), v satisfies the eigenvalue problem{
−∆pv = λ̌1v

p−1ρ̌] in Ω,

v = 0 on ∂Ω
(3.3)

and ρ̌] is a minimizer of (2.2). Then, by Proposition 2.1, there exists an increasing
function

ϕ(t) =

{
β if t > l

α if t ≤ l,

where l is a positive constant, such that ρ̌] = ϕ(v). Therefore{
−∆pv = λ̌1v

p−1ϕ(v) in Ω

v = 0 on ∂Ω.
(3.4)

Note that the set {x ∈ Ω : ρ̌] = β} = {x ∈ Ω : v > l} is open. Now we apply Theorem
2.2 with f(x) = |x|p and u = uρ̌. In order to accomplish this step we verify (2.7) that, by
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Remark 2.1, is equivalent to (2.8). In the rest of the proof we will deal with the function
v = uρ̌] = u]ρ̌. Actually we will show a stronger condition, i.e.∣∣∣∣∣

{
x ∈ Ω :

∂v(x)

∂y
= 0

}∣∣∣∣∣ = 0.

We introduce the closed sets Z = {x ∈ Ω : ∇v = 0} and H = {x ∈ Ω : v = l}. Note
that the closeness of Z follows by Hopf’s Lemma for the p-Laplacian operator (see [23]).
By Corollary 1.1 in [17] (recall that v is bounded) it follows that Z and H have null

measure; therefore, it is enough to show that
∂v(x)

∂y
6= 0 for every x ∈ Ω r (Z ∪ H).

Moreover, since v is Steiner symmetric, it suffices consider the part of Ωr (Z ∪H) with
negative y component.
Fix a point x0 = (x′0, b) in the open set Ω r (Z ∪ H) with b < 0; then there exists a
ball B = B(x0, R) centered at x0 with radius R < −b such that B ⊂ Ω r (Z ∪H) and
|∇v|, |∇vb| ≥ ε > 0 in B for some positive ε. Moreover, by the connectedness of B, v
takes only values either greater than l or less then l. Therefore the right-hand side of
the equation in (3.4) is of class C1(B). By standard regularity theory (see for instance
[12] and [15]) v and then vb is of class C2(B).
The functions v and vb satisfy, respectively, the equations

|∇v|p−2∆v + (p− 2)|∇v|p−4

N∑
i,j=1

vxivxjvxixj + λ̌1v
p−1δ = 0 in B (3.5)

and (by a reflection through the hyperplane Tb)

|∇vb|p−2∆vb + (p− 2)|∇vb|p−4

N∑
i,j=1

(vb)xi(vb)xj(vb)xixj + λ̌1v
p−1
b δ = 0 in B,

for the same constant δ such that either δ = α or δ = β. Following [21] and since
λ̌1δ(v

p−1
b − vp−1) ≥ 0 in Ωb ∩B, the function vb − v satisfies

N∑
i,j=1

aij(x)(vb − v)xixj +
N∑
i=1

bi(x)(vb − v)xi ≤ 0 in Ωb ∩B, (3.6)

where

aij(x) =
{
|∇vb|p−2 + |∇v|p−2

}
δij + (p− 2)

{
|∇vb|p−4(vb)xi(vb)xj + |∇v|p−4vxivxj

}
8



is uniformly positive definite because |∇v| and |∇vb| are both greater then ε in B and
bi(x) are bounded functions.
Therefore we have

N∑
i,j=1

aij(x)(vb − v)xixj +
N∑
i=1

bi(x)(vb − v)xi ≤ 0 in Ωb ∩B,

vb − v ≥ 0 in Ωb ∩B, (3.7)

vb − v = 0 in Ωb ∩ Tb. (3.8)

By the strong maximum principle (see for instance Theorem 3.5 in [12]) the function
vb − v is either identically zero or positive in Ωb ∩ B. Let us show that the first case
is impossible. Suppose vb(x) = v(x) for every x = (x′, y) in Ωb ∩ B. Since v is Steiner
symmetric we have (recall that R < −b)

v(x′, b) ≤ v(x′, 2b− y) = v(x′, y) ≤ v(x′, b)

for all points (x′, y) in Ωb ∩B. Thus

v(x′, y) = v(x′, b) (3.9)

for all points (x′, y) in Ωb ∩B and as a consequence

∇v(x′, y) = ∇v(x′, b) (3.10)

for all points (x′, y) in Ωb ∩B. Now define

ym = inf
{
s ∈ R : {x′0} × [s, b) ∈ Ω r (Z ∪H)

and equations (3.9) and (3.10) hold for every (x′, y) ∈ {x′0} × [s, b)
}
.

It is clear that ym is well defined and since v ∈ C1,τ
loc (Ω) we have

v(x′0, ym) = v(x′0, b) 6= l

and
∇v(x′0, ym) = ∇v(x′0, b) 6= 0;

therefore (x′0, ym) ∈ Ω r (Z ∪H). Moreover note that

∂v

∂y
(x′0, ym) = 0. (3.11)
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Now we repeat the previous reasoning with (x′0, ym) in place of (x′0, b). Therefore there
exists a ball B′ = B((x′0, ym), R′) such that the function vym − v is either identically zero
or positive in Ωym ∩B′. In both cases we find a contradiction. In the first case equations
(3.9) and (3.10) hold with b and B replaced respectively by ym and B′ and thus the
definition of ym is contradicted.
In the second case vym − v is a positive function in Ωym ∩ B′ and vanishes at the point
(x′0, ym). By Hopf’s Lemma (see Lemma 3.4 in [12]) applied to the analogous of equation
(3.6) for vym − v we conclude that

−2
∂v

∂y
(x′0, ym) =

∂(vym − v)

∂y
(x′0, ym) < 0.

which gives a contradiction with (3.11).
Therefore vb − v is a positive function in Ωb ∩ B and vanishes at the point (x′0, b). By
Hopf’s Lemma applied to equation (3.6) we conclude that

−2
∂v

∂y
(x0) =

∂(vb − v)

∂y
(x0) < 0.

This completes the proof.

We conclude the paper with some remarks.

Remark 3.1. From the proof of this theorem it follows that its conclusion still holds
when the weight function ρ takes an arbitrary finite number n of positive values. More
precisely fix positive constants α1 < . . . < αn and γ1 < . . . < γn such that γ1 + · · ·+γn =
|Ω|. Then adγ can be replaced by the collection of all functions of the form

ρ(x) =
n∑
i=1

αiχDi(x),

where and Di ⊂ Ω, i = 1, . . . , n, are arbitrary disjoint measurable sets such that |Di| = γi
and Ω = ∪ni=1Di.

Remark 3.2. The problem (2.2) is closely related to the optimization problem consid-
ered by Chanillo and others in [4] for p = 2 and by Pielichowski in [19] for arbitrary p.
Eigenvalue problem (1.1) is replaced by1{

−∆pũ+ α̃χD|ũ|p−2ũ = λ̃(α̃, D)|ũ|p−2ũ in Ω

ũ = 0 on ∂Ω,
(3.12)

1In order to avoid any confusion with our notations we use ũ, α̃ and λ̃ instead of u, α and λ.
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where α̃ ≥ 0 is given and D is a measurable subset of Ω; the measure |D| = A ∈ [0, |Ω|]
of D is fixed and the first eigenvalue is minimized when D varies in Ω preserving its
measure. A minimizer D is called optimal configuration. In [19] the author shows that
an optimal configuration exists for any choice of the parameters α̃ and A; moreover
further properties of optimal configurations are proved. An important part of papers [4],
[19] and [18] is addressed to questions about the symmetry of the optimal configurations.
In [4] and [18] the Steiner symmetry of the complement of the optimal configurations
is shown provided p = 2 and Ω is Steiner symmetric. For arbitrary p Pielichowski (see
[19]) proved a radial symmetry result. When Ω is a ball the complement of any optimal
configuration is still a ball. Of course for p = 2 this claim follows from the stronger
Steiner symmetry result. By Theorem 3.1 it can be proved a Steiner symmetry result for
Pielichowski’s problem. Let D be an optimal configuration with associated parameters
α̃ and A such that α̃ < α(A) (the quantity α(A) is defined in Theorem 2 of [19]) and
Λ(α̃, A) the optimal eigenvalue. Then, as consequence of Theorem 5 in [19], the weight

ρ̌ = hχD +H(1− χD) with the constraints
h

H
= 1−

α̃

Λ(α̃, A)
and γ = A is a minimizer

of problem (2.2). Therefore if hypothesis on Ω in Theorem 3.1 are satisfied then ρ̌ is
Steiner symmetric. This imply the Steiner symmetry of the complement of D i.e. we
obtain a Steiner symmetry preservation result when α̃ < α(A) and p is arbitrary.
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