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Abstract
The DNA polymerase and ribonuclease H (RNase H) activities of human immunodeficiency

virus type 1 (HIV-1) are needed for the replication of the viral genome and are validated

drug targets. However, there are no approved drugs inhibiting RNase H and the efficiency

of DNA polymerase inhibitors can be diminished by the presence of drug resistance muta-

tions. In this context, drugs inhibiting both activities could represent a significant advance

towards better anti-HIV therapies. We report on the mechanisms of allosteric inhibition of a

newly synthesized isatin-based compound designated as RMNC6 that showed IC50 values

of 1.4 and 9.8 μM on HIV-1 RT-associated RNase H and polymerase activities, respectively.

Blind docking studies predict that RMNC6 could bind two different pockets in the RT: one in

the DNA polymerase domain (partially overlapping the non-nucleoside RT inhibitor [NNRTI]

binding pocket), and a second one close to the RNase H active site. Enzymatic studies

showed that RMNC6 interferes with efavirenz (an approved NNRTI) in its binding to the RT

polymerase domain, although NNRTI resistance-associated mutations such as K103N,

Y181C and Y188L had a minor impact on RT susceptibility to RMNC6. In addition, despite

being naturally resistant to NNRTIs, the polymerase activity of HIV-1 group O RT was effi-

ciently inhibited by RMNC6. The compound was also an inhibitor of the RNase H activity of

wild-type HIV-1 group O RT, although we observed a 6.5-fold increase in the IC50 in com-

parison with the prototypic HIV-1 group M subtype B enzyme. Mutagenesis studies showed

that RT RNase H domain residues Asn474 and Tyr501, and in a lesser extent Ala502 and

Ala508, are critical for RMNC6 inhibition of the endonuclease activity of the RT, without

affecting its DNA polymerization activity. Our results show that RMNC6 acts as a dual inhibi-

tor with allosteric sites in the DNA polymerase and the RNase H domains of HIV-1 RT.
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Introduction
Since the identification of the human immunodeficiency virus (HIV) as a retrovirus causing
AIDS [1, 2], it was clear that the viral reverse transcriptase (RT) was an excellent target for
drug intervention. During reverse transcription the (+) single-stranded viral genomic RNA is
converted to a particular integration-competent double-stranded viral DNA, in a process that
is entirely catalyzed by the RT. HIV type 1 (HIV-1) RT is a multifunctional heterodimeric
enzyme composed of subunits of 66 and 51 kDa (p66/p51), with DNA polymerase and ribonu-
clease H (RNase H) activities. For DNA polymerization, RTs can use as templates either RNA
(RNA-dependent DNA polymerase (RDDP)) or DNA (DNA-dependent DNA polymerase
(DDDP)). DNA polymerase and RNase H activities are both essential for viral replication [3],
and are located in two separated domains of the p66 RT subunit. The DNA polymerase domain
is located at the N-terminus and exhibits the classical “right hand” conformation, while the
RNase H domain is located at the C-terminus, 60 Å away from the polymerase active site. The
distance between the active sites of the polymerase and the RNase H is estimated at around 17–
18 base pairs, and both domains are linked by a so-called connection subdomain. Long-range
effects and functional interdependence between active domains are been suggested [4, 5], based
on mutational studies showing that residues such as Pro226, Phe227, Gly231, Tyr232, Glu233,
and His235 at the polymerase domain of the HIV-1 RT could affect RNase H activity [6],
whereas deletions at the C-terminus can decrease the efficiency of DNA polymerization [7].
Such structural and functional interdependence is also supported by evidence showing that
mutations in the RNase H domain could affect resistance to nucleoside RT inhibitors (NRTIs)
[6, 8–10], while NNRTIs such as nevirapine and efavirenz (EFV) increase RNase H activity
upong binding HIV-1 RT [11, 12].

Because of their pivotal role in viral replication, RDDP and RNase H activities are both vali-
dated targets for the identification of new RT inhibitors, needed to combat the emergence of
multi-drug resistant strains, whose spreading in newly infected patients is an issue of increasing
concern, causing a number of associated antiviral therapy failures [13]. In this scenario, the
identification of a compound with the ability to inhibit both activities could represent a signifi-
cant advance in the fight against drug resistance and could reduce the number of pills and the
dose of administered drugs [14]. Drugs targeting the DNA polymerase activity (i.e. RDDP
inhibitors, and DDDP inhibitors) acting on nucleotide incorporation (i.e. NRTIs) or allosteric
drugs (i.e. NNRTIs), are commonly used in current therapies. On the contrary, RNase H activ-
ity is a more challenging target with no drugs available for clinical use, although three classes of
molecules have shown inhibitory activity in preclinical studies [15–17]: i) metal-chelating
active site inhibitors, ii) allosteric p66/p51 interface inhibitors, and iii) allosteric RDDP RNase
H dual inhibitors. Several compounds of the last group have been identified as inhibitors of
both RT functions in vitro [18]. In particular, hydrazones have been reported to inhibit RNase
H function by accessing through an allosteric pocket located in the vicinity of the NNRTI bind-
ing site [19]. More recently, a second hydrazone binding site, located at the RNase H domain,
has been proposed [20–22].

With the aim of identifying new HIV-1 RNase H inhibitors, we previously performed a suc-
cessful ligand-based virtual screening identifying hydrazoindolin-2-one derivatives, active
against RNase H and DNA polymerase functions of the RT, in the low micromolar range [23].
This scaffold, after further optimization, showed a consistent inhibition of both enzymatic
activities in presence of diffent substituents [24]. Therefore, in the current study, we synthe-
tised a new derivative (Z)-4-(2-(2-(2-oxoindolin-3-ylidene)hydrazinyl)thiazol-4-yl)benzoni-
trile (RMNC6) (Fig 1) that inhibits both RNase H and RDDP RT activities in the low
micromolar range and used it to characterize the mechanism of action of this new class of dual
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inhibitors, combining biochemical and molecular modeling studies, supporting the hypothesis
that isatin derivatives may access two different RT binding pockets involving highly conserved
residues.

Material and Methods

Synthesis and characterization of RMNC6
Compound RMNC6 was synthesized and characterized as reported in S1 Appendix. Com-
pound was solved in DMSO at 10 mM concentration and further diluted in water.

Expression and purification of recombinant HIV-1 RT
HIV-1 RT group M subtype B. Heterodimeric RT was expressed essentially as described

[25]. Briefly, E. coli strain M15 containing the p6HRT-prot vector was grown to an optical den-
sity at 600 nm of 0.7 and induced with 1.7 mM isopropyl β-D-1-thiogalactopyranoside (IPTG)
for 4 h. Protein purification was carried out with a BioLogic LP system (Biorad), using a combi-
nation of immobilized metal affinity and ion exchange chromatography. Cell pellets were
resuspended in lysis buffer (50 mM sodiumphosphate buffer pH 7.8, containing 0.5 mg/mL
lysozyme), incubated on ice for 20 min, and after adding NaCl to a final concentration of 0.3
M, were sonicated and centrifuged at 30,000×g for 1 h. The supernatant was loaded onto a
Ni2+-NTA-Sepharose column pre-equilibrated with loading buffer (50 mM sodium phosphate
buffer pH 7.8, containing 0.3 M NaCl, 10% glycerol, and 10 mM imidazole) and washed thor-
oughly with wash buffer (50 mM sodium phosphate buffer pH 6.0, containing 0.3 M NaCl,
10% glycerol, and 80 mM imidazole). RT was eluted with an imidazole gradient in wash buffer
(0–0.5 M). Fractions were collected, protein purity was checked by SDS-PAGE and found to be
higher than 90%. The 1:1 ration between the p66/p51 subunits was also verified. Enzyme-con-
taining fractions were pooled and diluted 1:1 with 50 mM sodium phosphate buffer pH 7.0,
containing 10% glycerol; and then loaded into a Hi-trap heparin HP GE (Healthcare Life-
science) pre-equilibrated with 10 column volumes of loading buffer (50 mM sodium phosphate
buffer pH 7.0, containing 10% glycerol and 150 mMNaCl). The column was then washed with
loading buffer and the RT was eluted with Elute Buffer 2 (50 mM Sodium Phosphate pH 7.0,

Fig 1. Chemical structure of the isatin derivative RMNC6.

doi:10.1371/journal.pone.0147225.g001

HIV-1 RT Dual Inhibitor: Mechanistic Studies

PLOS ONE | DOI:10.1371/journal.pone.0147225 January 22, 2016 3 / 18



10% glycerol, 1 M NaCl). Fractions were collected, protein was dialyzed and stored in buffer
containing 50 mM Tris HCl pH 7.0, 25 mMNaCl, 1 mM EDTA, and 50% glycerol. Catalytic
activities and protein concentrations were determined. Enzyme-containing fractions were
pooled and aliquots were stored at −80°C.

HIV-1 RT group O. Recombinant HIV-1 group O RT was expressed and purified as pre-
viously described [26, 27]. It was obtained as a heterodimer composed of subunits of 66 and 51
kDa, with a polyhistidine tag at the C-terminus of p66. For this purpose, the RT p66 subunit
encoded within a p66RTB expression vector was co-expressed with the HIV-1 protease in E.
coli XL-1 Blue, and the obtained heterodimers were then purified by ionic exchange followed
by chromatography on Ni2+-nitriloacetic acid agarose. The enzyme was quantified by active
site titration before biochemical studies.

Site-directed mutagenesis
Amino acid substitutions were introduced into the p66 HIV-1 RT subunit coded in a p6HRT-
prot plasmid using the QuikChange mutagenesis kit by following the manufacturer’s instruc-
tions (Agilent Technologies Inc., Santa Clara, CA).

HIV-1 DNA polymerase-independent RNase H activity determination
HIV RT-associated RNase H activity was measured as described [28] in 100 μL reaction vol-
ume containing 50 mM Tris-HCl buffer pH 7.8, 6 mMMgCl2, 1 mM dithiothreitol (DTT), 80
mM KCl, 0.25 μM hybrid RNA/DNA 5'-GAUCUGAGCCUGGGAGCU-Fluorescin-3' (HPLC,
dry, QC: Mass Check) (available fromMetabion) 5'-Dabcyl-AGCTCCCAGGCTCAGATC-
3'(HPLC, dry, QC: Mass Check), increasing concentrations of inhibitors, whose dilution were
made in water, and different amount of enzymes according to a linear range of dose-response
curve: 20 ng of WT RT; 60 ng K103N RT; 37.5 ng V106A RT; 75 ng V108A RT; 5 ng Y181C
RT; 50 ng Y188A RT; 30 ng Y188L RT; 100 ng E224A RT; 37.5 ng P225A RT; 20 ng P226A RT;
18 ng F227A RT; 30 ng L228A RT; 30 ng W229A RT; 10 ng M230A RT; 30 ng G231A RT; 62.5
ng N474A RT; 1 μg Y501A RT; 100 ng A502F RT; 37.5 ng A508V RT; 38 ng HIV-1 group O
RT. The reaction mixture was incubated for 1 h at 37°C, stopped by addition of EDTA and
products were measured with a multilabel counter plate reader Victor 3 (Perkin Elmer model
1420–051) equipped with filters for 490/528 nm (excitation/emission wavelength)

HIV-1 RNA-dependent DNA polymerase activity determination
RNA-dependent DNA polymerase (RDDP) activity was measured as described [29] in 25 μL
volume containing 60 mM Tris-HCl buffer pH 8.1, 8 mMMgCl2, 60 mM KCl, 13 mM DTT,
2.5 μM poly(A)-oligo(dT), 100 μM dTTP, increasing concentrations of inhibitors, whose dilu-
tion were made in water, and different amounts of enzymes according to a linear range of
dose-response curve: 6 ng wt RT; 30 ng K103N RT; 12 ng V106ART; 19 ng V108A RT; 1.51.5
ng Y181C RT; 45 ng Y188A RT; 15 ng Y188L RT; 30 ng E224A RT; 15 ng P225A RT; 18 ng
P226A RT; 23 ng F227A RT; 15 ng L228A RT; 30 ng W229A RT; 30 ng M230A RT; 15 ng
G231A RT; 15 ng N474A RT; 15 ng Y501A RT; 15 ng A502F RT; 19 ng A508V RT; 38 ng HIV-
1 group O RT. After enzyme addition, the reaction mixture was incubated for 30 min at 37°C
and the stopped by addition of EDTA. Reaction products were detected by picogreen addition
and measured with a multilabel counter plate reader Victor 3 (Perkin Elmer model 1420–051)
equipped with filters for 502/523 nm (excitation/emission wavelength). The Yonetani-Theorell
analysis was performed as described previously [30, 31].
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Determination of kinetic parameters of RNase H cleavage
Kinetic analysis of the DNA-polymerase independent RNase H activity was performed as
already reported [32]. Briefly, in 100 μL reaction volume containing 50 mM Tris-HCl buffer
pH 7.8, 6 mMMgCl2, 1 mMDTT, 80 mM KCl, fix amount of enzymes according to a linear
range of dose-response curve: 20 ng of WT RT; 37.5 ng V106A RT; 75 ng V108A RT; 100 ng
E224A RT; 100 RT ng A502F RT; 37.5 ng A508V RT, and increasing concentrations (from 0 to
500 nM) of hybrid RNA/DNA 5'-GAUCUGAGCCUGGGAGCU-Fluorescin-3'/ 5'-Dabcyl-
AGCTCCCAGGCTCAGATC-3'. The reaction mixture was incubated for 1 h at 37°C, stopped
by addition of EDTA and products were measured with a multilabel counter plate reader Vic-
tor 3 (Perkin Elmer model 1420–051) equipped with filters for 490/528 nm (excitation/emis-
sion wavelength). Results were represented according to Lineaweaver—Burke plot with the
Sigmaplot10 software. Velocity (ν) was expressed as fmoles/min.

Detection of protein inhibitor interactions by differential scanning
fluorimetry
Thermal stability assays were performed according to Nettleship et al. [33]. In a LightCycler
480 96-well plate (Roche) we incubated 10 μM inhibitor, in 50 μl of reaction buffer containing
20 mMHEPES, pH 7.5, 10 mMMgCl2, 100 mM NaCl, 300 nM of HIV-1 RT and a 1:1000 dilu-
tion of Sypro Orange dye (Invitrogen). The mixture was heated from 30 to 90°C in increments
of 0.2°C. Fluorescence intensity was measured using excitation and emission wavelengths of
483 and 568 nm, respectively. Changes in protein thermal stability (ΔTm) upon inhibitor bind-
ing were analyzed by using the LightCycler 480 software. All assays were performed in
triplicate.

Molecular modeling
Ligand preparation. Theoretical 3D model of RMNC6 was built with the Maestro soft-

ware (Schrödinger LLC., Maestro GUI, New York, NY, USA, 2012). The inhibitor structure
was optimized by energy minimization carried out using the MMFFs force field [34], the GB/
SA [35] water implicit solvation model and the Polak-Ribier Coniugate Gradient (PRCG)
method, converging on gradient with a threshold of 0.05 kJ (mol�Å)-1.

Protein preparation. The coordinates for RTs were taken from the RCSB Protein Data
Bank [36] (PDB codes 1vrt [37], 2zd1 [38], 1ep4 [39], 3qo9 [40], 1rti [37], 1tv6 [41], 3lp2 [42].
The proteins were prepared by using the Maestro Protein Preparation Wizard. Original water
molecules were removed and termini were capped. The bond orders and formal charges were
added for hetero groups, and all the hydrogen atoms were added in the structure. Missing
atoms and residues were included. After preparation, the structures were refined in order to
optimize the hydrogen bond network using OPLS_2005 [43] force field. The minimization was
terminated when the energy converged or the RMSD reached a maximum cut-off of 0.30 Å.

Docking protocol. Molecular docking studies were performed using QMPL workflow
protocol [44] (Schroedinger Suite 2014, Schrodinger Inc, Portland, USA). Grids were defined
around the refined structure by centering on the residue W229 (located in the NNRTI binding
pocket) and Q500 (located in the RNase H domain) and fixing the box volume at 97,336 Å3,
covering the whole p66 and most of p51 subunit. The extra precision (XP) docking algorithm
was applied for scoring theoretical poses. The other settings were left as default. The same pro-
tocol was applied for all the simulations.

Post docking protocol. Ten thousand steps of the Polak-Ribier conjugate gradient
(PRCG) minimization method were conducted on the top ranked theoretical complexes using
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OPLS_2005 force field. The optimization process was performed up to the derivative conver-
gence criterion equal to 0.01 kJ/(mol�Å)1. The binding free energies (ΔG(Bind)) were com-
puted applying molecular mechanics and continuum solvation models with the molecular
mechanics generalized Born/surface area (MM-GBSA) method [45].

Results and Discussion

Characterization of RMNC6 as a dual inhibitor acting on the RDDP and
RNase H activities of HIV-1 RT
We synthetized a new derivative (Z)-4-(2-(2-(2-oxoindolin-3-ylidene)hydrazinyl)thiazol-4-yl)
benzonitrile (RMNC6) (Fig 1) that, when tested on RT from the HIV-1 group M inhibited
both RNase H and RDDP activities with IC50 values of 1.4 and 9.8 μM, respectively.

Since the mode of action of previously identified dual RT inhibitors was not determined, we
decided to investigate the mechanism of RT inhibition by RMNC6 in comparison with avail-
able RNase H inhibitors and NNRTIs. Since many RNase H inhibitors act as chelators of cat-
ions needed in the active site (e.g. diketo acid derivatives [46]), we firstly analyzed chelating
potential of RMNC6 by measuring its UV spectra in the absence and in the presence of magne-
sium. Results showed that RMNC6 maximum of absorbance did not shift in the presence of 6
mMMgCl2, excluding the involvement of chelation in the mechanism of action (data not
shown). RNase H inhibitors such as vynologous ureas (VUs) are known to destabilize the RT
heterodimer by binding to an allosteric pocket in the RNase H domain at the interface between
p66 and p51 subunits [47]. Therefore, we examined alterations in HIV-1 RT thermal stability
by differential scanning fluorimetry [48] in the presence of increasing concentrations of
RMNC6 as well as known inhibitors such as the NNRTI Efavirenz (EFV), the RNase H active-
site inhibitor hydroxytropolone β-thujaplicinol (BTP) and the allosteric RNase H inhibitor 2-
(3, 4-dihydroxyphenyl)-5, 6-dimethylthieno[2, 3-d]pyrimidin-4(3H)-one (VU) [49]. In agree-
ment with previous studies [47, 50], the RNase H active-site inhibitor BTP, that has been
shown to stabilize the RT against thermal denaturation [50], caused a Tm increase of< 2.0°C
in the presence of Mg2+, while the interface inhibitor VU, that has been shown to destabilize
the HIV-1 RT [47] decreased the Tm by 0.5−5.5°C (Fig 2). In contrast, RMNC6 did not affect
significantly RT thermal stability, showing a similar behavior to EFV and suggesting that
RMNC6 may have an allosteric binding mode different from VU but possibly similar to the
one shown by EFV (Fig 2).

Effects of RMNC6 on efavirenz inhibition and susceptibility of NNRTI-
resistant RTs
To investigate the RMNC6 mode of action with respect to EFV, we performed a Yonetani-The-
orell analysis [30] on the combined effects of RMNC6 and EFV on RDDP function. Such an
analysis reveals whether simultaneous binding (or inhibition) of two compounds is possible or
not. Results (Fig 3) showed that RMNC6 and EFV inhibition are not mutually exclusive. How-
ever, it is worth to note that the calculated interaction constant α had the value of 1.2, suggest-
ing a negative interference between the two compounds (i.e. EFV binding has a negative
influence on RMNC6 binding, and vice versa). Furthermore, we tested RMNC6 against several
mutants conferring resistance to NNRTIs such as K103N, Y181C and Y188L, and against the
HIV-1 group O RT which shows natural resistance to NNRTIs [51] due to the presence of the
amino acid substitutions A98G, V179E and Y181C (S2 Appendix). The DNA polymerase
activity of HIV-1 group O RT as well as the one of wild-type and mutant of HIV-1 group M
subtype B RTs were all susceptible to RMNC6 in RDDP assays (IC50 values in the range 5.4–
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20.1 μM). In contrast, HIV-1 group O RT and mutants K103N and Y188L showed decreased
susceptibility to EFV (7.7- to 9.2-fold increases in the IC50 values relative to the wild type HIV-
1 group M subtype B RT) (Table 1). These observations suggest different modes of action for
RMNC6 and EFV.

Interestingly, the HIV-1 group O RT was also inhibited by BTP and RMNC6 in RNase H
activity assays, although IC50 values were 5 to 6.5 times higher than those obtained with the
prototypic wild-type HIV-1 group M subtype B RT. These effects could be attributed to differ-
ences that affect the overall structure of the RNase H domain in both enzymes. Previous studies
showed that HIV-2 RT was about 3.7 times less susceptible to BTP than the HIV-1 enzyme
[52], while the crystal structure of BTP bound to HIV-1 group M subtype B RT revealed that
major interactions involved in inhibitor binding affected RNase H active site residues [42].
However, RNase H active site residues are conserved in all HIV-1 and HIV-2 clades. Outside
the active site, the most significant differences between group M subtype B and group O HIV-1
RTs are found around positions 460–471, 482–492, and 502–508 (S2 Appendix).

Blind docking analysis
To achieve further insights into the RMNC6 binding mode, we performed blind docking stud-
ies on the wt HIV-1 group M subtype B RT heterodimer and RMNC6, by using the QM-polar-
ized ligand docking protocol [44] and using Glide version 6.2, Qsiteversion6.2, Jaguar 8.3 and
Maestro 9.7 (Schroedinger Suite 2014, Schrodinger Inc, Portland, USA).

Due to the flexibility of the target and different shapes of known inhibitors [18], we decided
to carry out ensemble docking experiments. The major conformational changes in the NNRTI
binding pocket were taken into account to cluster the available RT complexes. In particular,
the orientation of amino acid residues Y181, Y188, Y183 and primer grip β12-β13 hairpin were

Fig 2. Effect of RT inhibitors on the thermal stability of p66/p51 HIV-1 RT. (A). The melting temperature of HIV-1 RT was measured by differential
scanning fluorimetry in the presence of increasing concentrations of different inhibitors: (▼) Efavirenz (EFV), (�) β-thujaplicinol (BTP), (Δ) 2-(3,
4-dihydroxyphenyl)-5, 6-dimethylthieno[2, 3-d]pyrimidin-4(3H)-one (VU) and (●) RMNC6. (B). MaximumHIV-1 RT thermal shift (ΔTm) observed in the
presence of 50 μM concentration of compounds. ΔTm values are the average of triplicate analysis, standard deviations are indicated as bars.

doi:10.1371/journal.pone.0147225.g002
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considered [53]. A representative of each different cluster was picked and the three-dimen-
sional structure of HIV RT was retrieved from the Protein Data Bank. The obtained
[RMNC6•RT] complexes were then subjected to a post-docking procedure, based on energy
minimization, and successive binding free energies calculation. The binding free energies (ΔG
(Bind)) were obtained by applying molecular mechanics and continuum solvation models
using the molecular mechanics generalized Born/surface area (MM-GBSA) method [45]. By
comparing the ΔG-MMGBSA values, we could assert that blind docking calculations indicated
the presence of two energetically favored binding pocket sites for isatin derivative (Table 2)
(Fig 4).

The first and most energetically favored binding site (pocket 1) (Table 2) is located close to
the DNA polymerase catalytic center and is contiguous to the NNRTI binding pocket, having
an “L shape”. The most stable pose (Fig 5) involves amino acids L100, K103, V106, V108,
Y183, Y188, L234, W229 and Y318. Furthermore, according to the model, different residues of

Fig 3. Yonetani-Theorell plot of the combination of RMNC6 and EFV on the HIV-1 RT RNA- dependent DNA polymerase activity.HIV-1 RT was
incubated in the presence of RMNC6 alone (●) or in presence of different concentrations of EFV: 4 nM (Δ), 8 nM (&) and 16 nM (☐).

doi:10.1371/journal.pone.0147225.g003
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the hairpin constituted by the β12 and β13 sheet [54] could be involved with RMNC6 binding
in the hypothesized orientation.

The second putative binding pocket (pocket 2) is located in the RNase H domain, between
the RNase H active site and the primer grip region, close to the p66/p51 interface. Docking
modeling suggests that, in this site, RMNC6 could be partially sandwiched between different
secondary structural units, such as namely β21 strand and the αH helix in p51, and the αB
helix in p66 (residues 500–508) (Fig 6).

Overall, such in silico analysis supports alternative modes of action for RMNC6, since the
drug could bind (i) preferentially only to one of the two pockets and have both short- and
long-range effects; or (ii) to both sites and act by short-range effects on the two functions.
According to the first mode of action, RMNC6 would inhibit RDDP and RNase H activities
through binding into the sole pocket 1, by having a short-range inhibitory effect on RDDP
activity and a long-range inhibitory effect on RNase H activity. Hence, it would act differently
from classical NNRTIs such as nevirapine and EFV that were shown to destabilize the 3’-end

Table 1. Susceptibility to RMNC6 of wt and NNRTI-resistant HIV-1 RTsmeasured in RNase H and RDDP activity assays.

RMNC6 BTP EFV

RT RNase H RDDP RNase H RDDP
IC50 (μM)a IC50 (μM)b IC50 (μM)a IC50 (nM)b

Wt 1.3 ± 0.3 9.8 ± 1.4 0.19 ± 0.03 23 ± 2.7

K103N 2.3 ± 0.1 13.6 ± 1.0 0.22 ± 0.08 176 ± 25

Y181C 2.1 ± 0.6 5.4 ± 0.3 0.23 ± 0.05 49.7 ± 9.1

Y188L 1.6 ± 0.5 16.5 ± 3.7 0.08 ± 0.05 198 ± 60

Group O 8.5 ± 2.6 20.1 ± 7.4 0.91 ± 0.01 212 ± 46

aConcentration required to inhibit HIV-1 RT-associated RNase H activity by 50%. Data were obtained by three independent experiments (reported as

average ± standard deviation).
bConcentration required to inhibit HIV-1 RT-associated RDDP activity by 50%. Data were obtained by three independent experiments (reported as

average ± standard deviation).

doi:10.1371/journal.pone.0147225.t001

Table 2. Ensemble docking results: binding free energies of [RMNC•RT] complexes. The most likely
binding poses are indicated in bold.

RT structure (pdb code) Pocket ΔG_MMGBSA (Kcal/mol)

1ep4 1 -41.23

1ep4 2 -36.22

3lp2 1 -44.85

3lp2 2 -42.58

1rti 1 -33.26

1rti 2 -40.49

1tv6 1 -51

1tv6 2 -48.74

1vrt 1 -35.9

1vrt 2 -32.44

2zd1 1 -41.96

2zd1 2 -32.06

3q09 1 -39.25

3q09 2 -38.48

doi:10.1371/journal.pone.0147225.t002
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of the DNA primer in the DNA polymerase active site and promote RT-mediated polymerase-
independent RNase H cleavages [11]. Alternatively, according to the first mode of action,
RMNC6 could bind to the sole pocket 2 and it would have a short-range inhibitory effect on
RNase H activity and a long-range effect on the RDDP activity. Differently, according to the
second mode of action RMNC6 would bind to both individual pockets and its activity would
be due to short-range inhibition effects, so that its binding to each site would be responsible for
the inhibition of one function. To dissect this diverse scenario of possibilities we performed
kinetic and site-directed mutagenesis studies.

Influence of the amino acid residues in pocket 1 on HIV-1 RT inhibition
by RMNC6
Considering the size of pocket 1, its surface was explored in detail by site-directed mutagenesis.
Since the hairpin comprising strands β12 and β13 was identified as potentially involved in
RMNC6 binding alanine-scanning mutagenesis was performed for amino acids 224–231.

Fig 4. Binding sites of RMNC6 individuated after blind docking experiments on the whole wt HIV-1 RT structure.

doi:10.1371/journal.pone.0147225.g004

HIV-1 RT Dual Inhibitor: Mechanistic Studies

PLOS ONE | DOI:10.1371/journal.pone.0147225 January 22, 2016 10 / 18



Mutants V108A and V106A were also obtained since Val108 and Val106 were identified as
potentially important for inhibitor binding. The susceptibility of mutant RTs to RMNC6 was
also tested in RNase H and RDDP activity assays, using BTP and EFV as positive controls
(Table 3). Interestingly, the E224A RT showed a 6-fold reduced susceptibility to RMNC6 in
RNase H assays, while mutant enzymes such as V108A and V106A showed IC50 values 4 and
10 times higher, respectively, in comparison with the wt RT. In contrast, we did not observed
major differences in the IC50 values obtained with other mutant RTs (Table 3).

Fig 5. Putative binding mode of RMC6 and critical residues individuated for RMNC6 binding in the pocket 1. (A) binding mode; (B) 2D depiction of
RMNC6 and its respective interactions with RT residues: pale yellow sphere indicates hydrophobic interactions with lipophilic residues. Red arrow indicates
an hydrogen bond (HB) acceptor interaction, green HB donor, while the violet sphere represents the aromatic π-π stacking interaction.

doi:10.1371/journal.pone.0147225.g005

Fig 6. (A) Putative binding mode of RMNC6 and critical residues individuated for RMNC6 binding in the pocket 2. (B) 2D depiction of RMNC6 and its
respective interactions with RT residues.

doi:10.1371/journal.pone.0147225.g006
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When the RDDP function of mutant RTs was assayed, a similar pattern emerged, even
though the extent of the reduction in the IC50 values was lower (1.4, 3.3 and 2.5 μM for
E224A, V106A and V108A RTs, respectively). Hence, the results of the assays with the
mutant RTs did not provide incontrovertible evidence of RMNC6 binding. However, the
results could not exclude the RMNC6 binding to pocket 1. In fact, given the amplitude of
the pocket and the high RT flexibility, the very limited IC50 reduction towards RDDP func-
tion observed could be determined by a different orientation of RMNC6 while accommodat-
ing in pocket 1, as a response to the introduced amino acid changes. It is worth noting that
the kinetic analysis of the interaction between RMNC6 and EFV, showed a negative interfer-
ence between the two compounds, even if they are not kinetically mutually exclusive, sup-
porting the possibility that RMNC6 could accommodate in the large pocket 1 even in the
presence of EFV.

Influence of the amino acid residues in pocket 2 on HIV-1 RT inhibition
by RMNC6
Pocket 2, located in the RNase H domain, was already predicted [20] and investigated in the
context of hydrazone derivatives binding studies [21, 22]. According to our model, when
bound to this site, RMNC6 might nudge the RNase H domain to a position in which the
active site might no longer be able to catalyze hydrolysis cleavage of the RNA strand in the of
RNA:DNA duplex. To investigate possible RMNC6 binding into this pocket, we mutated res-
idues Ala502 to Phe and Ala508 to Val in an attempt to reduce the space available for
RMNC6 accommodation. In addition, we also mutated residues Asn474 and Tyr501 to Ala,
since they were previously shown to be involved in the interactions between diketo acids and
the RNase H domain [32] and, even if not predicted to be directly having contacts with this
isatin inhibitor, these two residues are known to play an important structural role in the func-
tional geometry of the region, as part of the RNase H primer grip motif. Mutated residues are

Table 3. Effects of selected amino acid substitutions in pocket 1 of HIV-1 RT in the susceptibility to RMNC6 in RNase H and RDDP activity assays.

RMNC6 BTP EFV

RT RNase H RDDP RNase H RDDP
IC50 (μM)a IC50 (μM)b IC50 (μM)a IC50 (nM)b

V106A 5.3 ± 0.6 (4.1)c 25.1 ± 2.3 (2.5) 0.16 ± 0.03 (0.8) 35.4 ± 2.2 (1.5)

V108A 13.1 ± 2.5 (10) 33.0 ± 5.2 (3.4) 0.18 ± 0.04 (0.9) 21.3 ± 3.6 (0.9)

Y188A 3.3 ± 1.5 (2.5) 20.9 ± 4.0 (2.1) 0.19 ± 0.08 (1.0) 28.3 ± 7.4 (1.2)

E224A 7.9 ± 1.1 (6.1) 13.8 ± 4.2 (1.4) 0.15 ± 0.03 (0.8) 24.9 ± 0.7 (1.1)

P225A 1.7 ± 0.2 (1.3) 3.1 ± 0.3 (0.3) 0.13± 0.06 (0.7) 19.5 ± 2.9 (0.8)

P226A 1.9 ± 0.1 (1.5) 18.9± 0.7 (1.9) 0.29 ± 0.08 (1.5) 18.9 ± 2.4 (0.9)

F227A 0.7 ± 0.1 (0.5) 15.2 ± 0.9 (1.5) 0.22 ± 0.04 (1.2) 61.5 ± 1.4 (2.7)

L228A 1.5 ± 0.1 (1.1) 13.1 ±1.9 (1.3) 0.10 ± 0.06 (0.5) 21.8 ± 3.8 (1.0)

W229A 1.9 ± 0.5 (1.5) 15.4 ± 2.8 (1.6) 0.15 ± 0.08 (0.8) 22.9 ± 5.2 (1.1)

M230A 0.5 ± 0.1 (0.4) 15.0 ± 3.5 (1.5) 0.14 ± 0.04 (0.7) 29.1 ± 2.2 (1.3)

G231A 1.7 ± 0.4 (1.3) 10.8 ± 2.4 (1.1) 0.25 ± 0.03 (1.3) 67.7 ±3.5 (2.9)

aConcentration required to inhibit HIV-1 RT-associated RNase H activity by 50% obtained by three independent experiments (reported as

average ± standard deviation).
bConcentration required to inhibit HIV-1 RT-associated RDDP activity by 50% obtained by three independent experiments (reported as

average ± standard deviation).
cFold of increase with respect to wt RT.

doi:10.1371/journal.pone.0147225.t003
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also highly conserved, as indicated by the drastic reduction in viral infectivity of mutant
viruses [55]. Hence, we tested RMNC6 effects on both RNase H and RDDP functions of
mutant RTs, using BTP and EFV as positive controls (Table 4). The RNase H function of
mutant RTs A502F and A508V showed 4- to 10-fold reduced susceptibility to RMNC6 in
RNase H assays, while individual mutations of N474A and Y501A caused full resistance to
the isatin derivative. Interestingly, BTP showed a different profile and was an efficient inhibi-
tor of all mutants except N474A that had an IC50 value 4.5 times higher than the one obtained
with the wt RT.

Noteworthy, these amino acidic substitutions did not affect RMNC6 susceptibility in
RDDP assays. These results strongly support the hypothesis that RMNC6 interacts with
pocket 2 and that this binding is responsible for short-range inhibition of the RNase H func-
tion. The data are also consistent with the possibility of RMNC6 binding to both pockets 1
and 2 and acting by two different short-range effects. In fact, in these mutant RTs, RMNC6
binding to pocket 1 could be responsible for the inhibition of the RDDP activity, while
RMNC6 binding to pocket 2 could be impeded. The amino acid sequence alignment of HIV-
1 RTs of group O and group M subtype B [55, 56] reveals differences at residues forming
pocket 2. Thus, at position 404, 502, 508 and 511, the HIV-1 group O RT contains Asp, Val,
Ser and Thr, respectively, while the prototypic group M subtype B enzyme has Glu404,
Ala502, Ala508 and Asp511. The 6.5 folds reduction in RMNC6 susceptibility obtained with
HIV-1 group O RT in RNase H activity assays (Table 1) is consistent with the effects observed
with single-mutants A502F or A508V (Table 4), since amino acid substitutions found in the
HIV-1 group O RT would also contribute to reducing the size of the putative RMNC6 bind-
ing pocket in the RNase H domain. In addition, the NNRTI binding pocket of the HIV-1
group M subtype B RT differs from that of the group O enzyme mainly at the 181 position
(Cys in HIV-1 group O RT and Tyr in HIV-1 group M subtype B RT), but this does not affect
the inhibitory efficiency of RMNC6. Taken together, our data reveal a relevant role for pocket
2 in RMNC6 binding.

RNase H cleavage kinetics
With respect to RMNC6 binding to pocket 1, the observed partial loss in potency of RNase H
inhibition observed for V106A, V108A and E224A RTs (Table 3) supported two different
hypotheses. According to the first one, reduced potency could be due to an impairment of a
long-range effect of RMNC6 bound into pocket 1. According to the second one, the single

Table 4. Effects of selected amino acid substitutions in pocket 2 of HIV-1 RT in the susceptibility to RMNC6 in RNase H and RDDP activity assays.

RMNC6 BTP EFV

RT RNase H RDDP RNase H RDDP
IC50 (μM)a IC50 (μM)b IC50 (μM)a IC50 (nM)b

N474A > 100 (> 77)c 12.7 ± 1.7 (1.3) 0.92 ± 0.01 (4.8) 20.1 ± 5.1 (1.4)

Y501A > 100 (> 77) 6.6 ± 0.1 (0.7) 0.07 ± 0.002 (0.4) 24.1 ± 3.5 (1.7)

A502F 13.0 ± 0.7 (10.0) 17.1± 2.1 (1.8) 0.17 ± 0.03 (0.9) 22.3 ± 1.5 (1.6)

A508V 6.5 ± 0.7 (5.0) 19.3 ± 2.8 (2.0) 0.16 ± 0.05 (0.8) 24.7 ± 2.4 (1.8)

aConcentration required to inhibit HIV-1 RT-associated RNase H activity by 50% obtained by three independent experiments (reported as

average ± standard deviation).
bConcentration required to inhibit HIV-1 RT-associated RDDP activity by 50% obtained by three independent experiments (reported as

average ± standard deviation).
cFold of increase with respect to wt RT.

doi:10.1371/journal.pone.0147225.t004
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mutations can lead to a long-range modification of the pocket 2 or the template-primer accom-
modation that alters the compounds binding into pocket 2. To examine the latter hypothesis,
we asked if these mutations could influence the RNase H function and hence evaluated the
RNase H catalytic efficiency of all DNA polymerase domain mutants that exhibited a reduced
RNase H inhibition by RMNC6. It is worth to note in this context that residue Glu224 is highly
conserved since it is involved in the DNA polymerase primer grip motif [6]. In addition,
among the mutated residues in the RNase H domain, Asn474 and Tyr501 are also highly con-
served, since they are also part of the RNase H primer grip, and whose mutation has non con-
servative substitutions at those positions have been shown to decrease the RT RNase H activity
[37, 41]. Therefore, we tested whether mutant A502F and A508V RTs had altered RNase H
kinetics cleavage efficiency. Results showed a consistent reduction in the kcat values with
respect to wt RT for all mutant RTs, and a slight reduction in template-primer Km values for
A508V, V106A, V108A and E224A RTs, resulting in a reduced efficiency (kcat/Km) for V108A,
E224A and A502F RTs (2-, 3 and 12-fold, respectively) (Table 5). Overall, these results support
the hypothesis of long-range effects of mutations in the RT polymerase domain on the RNase
H activity that can extend to RMNC6 binding pocket 2.

Conclusions
Our study demonstrates that RMNC6 is a novel dual function RT inhibitor that has an alloste-
ric binding mode, different from that shown by known NNRTIs. Our results support the
hypothesis that RMNC6 binds two different sites in HIV-1 RT. This double-site binding mode
seems to confirm that it could be possible to target both RT-associated functions by a single
molecule, retaining full potency of inhibition on drug-resistant mutant RTs such as K103N,
Y181C and Y188L. RNase H inhibition by RMNC6 seems to be mainly due to its interaction
with pocket 2, close to the RNase H active site. The long-range effects on RNase H inhibition
produced by RMNC6, and observed when amino acids in the polymerase domain were
mutated, are probably due to an alteration of the substrate binding pocket in the RNase H
domain that, in turn, alters RMNC6 binding or efficacy. On the contrary, HIV-1 RT-associated
RDDP inhibition by RMNC6 seems to be related to its binding in the polymerase domain.
However, the size of the pocket and the plasticity of the enzyme may be responsible for the
compound retained RDDP inhibition on mutant RTs. Overall, dual RT-associated functions
inhibition by compounds binding to two sites is an appealing possibility to strongly reduce
drug resistance occurrence. Furthermore, since pocket 2 is particular for HIV RT, compounds
that target this site will not interfere with human RNase H1. These results prompt us to
undergo further studies to better define the drug interactions within these two pockets in order
to perform a rational drug design of dual inhibitors acting on both binding sites.

Table 5. Kinetic parameters of RNase H cleavage for wt andmutant HIV-1 RTs.

RT akcat (min-1) aKm (nM) kcat/Km

Wt 113 ± 1.4 127 ± 5.0 0.89

V106A 52.6 ± 5.6 69.0 ± 11.0 0.76

V108A 19.4 ± 3.3 48.8 ± 3.9 0.40

E224A 21.2±4.3 78.6 ± 14.0 0.27

A502F 20.8 ± 1.0 273 ± 18 0.076

A508V 51.7 ± 4.9 74.9 ± 6.8 0.68

aData were obtained from three independent experiments (reported as average ± standard deviation)

doi:10.1371/journal.pone.0147225.t005
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