

BIOENGINEERINGAND BIOTECHNOLOGY
ORIGINAL RESEARCH ARTICLE

published: 10 March 2015

doi: 10.3389/fbioe.2015.00028

G-CNV: a GPU-based tool for preparing data to detect
CNVs with read-depth methods
Andrea Manconi 1*, Emanuele Manca2, Marco Moscatelli 1, Matteo Gnocchi 1, Alessandro Orro1,
Giuliano Armano2 and Luciano Milanesi 1

1 Institute for Biomedical Technologies, National Research Council, Milan, Italy
2 Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy

Edited by:
Marco Pellegrini, Consiglio Nazionale
delle Ricerche, Italy

Reviewed by:
Jian Ren, Sun Yat-sen University,
China
Sandra Gesing, University of Notre
Dame, USA

*Correspondence:
Andrea Manconi , Institute for
Biomedical Technologies, National
Research Council, Via F.lli Cervi, 93,
Segrate, Milan 20090, Italy
e-mail: andrea.manconi@itb.cnr.it

Copy number variations (CNVs) are the most prevalent types of structural variations (SVs)

in the human genome and are involved in a wide range of common human diseases. Differ-

ent computational methods have been devised to detect this type of SVs and to study how

they are implicated in human diseases. Recently, computational methods based on high-

throughput sequencing (HTS) are increasingly used. The majority of these methods focus

on mapping short-read sequences generated from a donor against a reference genome

to detect signatures distinctive of CNVs. In particular, read-depth based methods detect

CNVs by analyzing genomic regions with significantly different read-depth from the other

ones.The pipeline analysis of these methods consists of four main stages: (i) data prepara-

tion, (ii) data normalization, (iii) CNV regions identification, and (iv) copy number estimation.

However, available tools do not support most of the operations required at the first two

stages of this pipeline. Typically, they start the analysis by building the read-depth signal

from pre-processed alignments.Therefore, third-party tools must be used to perform most

of the preliminary operations required to build the read-depth signal. These data-intensive

operations can be efficiently parallelized on graphics processing units (GPUs). In this article,

we present G-CNV, a GPU-based tool devised to perform the common operations required

at the first two stages of the analysis pipeline. G-CNV is able to filter low-quality read

sequences, to mask low-quality nucleotides, to remove adapter sequences, to remove

duplicated read sequences, to map the short-reads, to resolve multiple mapping ambigui-

ties, to build the read-depth signal, and to normalize it. G-CNV can be efficiently used as a

third-party tool able to prepare data for the subsequent read-depth signal generation and

analysis. Moreover, it can also be integrated in CNV detection tools to generate read-depth

signals.

Keywords: CNV, GPU, HTS, read-depth, parallel

1. INTRODUCTION
SVs in the human genome can influence phenotype and predis-
pose to or cause diseases (Feuk et al., 2006a,b). Single nucleotide
polymorphisms (SNPs) were initially thought to represent the
main source of human genomic variation (Sachidanandam et al.,
2001). However, following the advances in technologies to ana-
lyze genome, it is now acknowledged that different types of SVs
contribute to the genetic makeup of an individual. SV is a term
generally used to refer different types of genetic variants that alter
chromosomal structure as inversions, translocations, insertions,
and deletions (Hurles et al., 2008). SVs such as insertions and
deletions are also referred as CNVs. CNVs are the most prevalent
types of SVs in the human genome and are implicated in a wide
range of common human diseases including neurodevelopmen-
tal disorders (Merikangas et al., 2009), schizophrenia (Stefansson
et al., 2008), and obesity (Bochukova et al., 2009). Studies based
on microarray technology demonstrated that as much as 12% of
the human genome is variable in copy number (Perry et al., 2006),
and this genomic diversity is potentially related to phenotypic

variation and to the predisposition to common diseases. Hence, it
is essential to have effective tools able to detect CNVs and to study
how they are implicated in human diseases.

Hybridization-based microarray approaches as array-
comparative genomic hybridization (a-CGH) and SNP microar-
rays have been successfully used to identify CNVs (Carter, 2007).
The low cost of a-CGH and SNP platforms promoted the use of
microarray approaches. However, as pointed out in Alkan et al.
(2011), microarrays (i) have limitations in the task of detect-
ing copy number differences, (ii) provide no information on
the location of duplicated copies, and (iii) are generally unable
to resolve breakpoints at the single-base-pair level. Recently,
computational methods for discovering SVs with HTS (Kircher
and Kelso, 2010) have also been proposed (Medvedev et al.,
2009). These methods can be categorized into alignment-free
(i.e., de novo assembly) and alignment-based (i.e., paired-end
mapping, split read, and read-depth) approaches (Zhao et al.,
2013). The former (Iqbal et al., 2012; Nijkamp et al., 2012)
focus on reconstruct DNA fragments by assembling overlapping

www.frontiersin.org March 2015 | Volume 3 | Article 28 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54610835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/about
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00028/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00028/abstract
http://www.frontiersin.org/people/u/152567
http://loop.frontiersin.org/people/215441/overview
http://www.frontiersin.org/people/u/213687
http://loop.frontiersin.org/people/215357/overview
http://loop.frontiersin.org/people/215374/overview
http://loop.frontiersin.org/people/215595/overview
http://www.frontiersin.org/people/u/71639
mailto:andrea.manconi@itb.cnr.it
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

short-reads. CNVs are detected by comparing the assembled
contigs to the reference genome. The latter focus on mapping
short-read sequences generated from a donor against the ref-
erence genome with the aim of detecting signatures that are
distinctive of different classes of SVs. Mapping data hide useful
information that can be used to detect different SVs. Different
methods that analyze different mapping information have been
devised.

Paired-end mapping (PEM) methods (Chen et al., 2009; Kor-
bel et al., 2009; Sindi et al., 2009; Hormozdiari et al., 2010, 2011;
Mills et al., 2011) identify SVs/CNVs by detecting and analyzing
paired-end reads generated from a donor that are discordantly
mapped against the reference genome. These methods allow to
detect different types of SVs (i.e., insertions, deletions, mobile ele-
ment insertions, inversions, and tandem duplications), but they
do not allow to detect insertions larger than the average insert size
of the library preparations.

Split read (SR) methods (Ye et al., 2009; Abel et al., 2010; Abyzov
and Gerstein, 2011; Zhang et al., 2011) are also based on paired-
end reads. Unlike PEM methods that analyze discordant mappings,
SR methods analyze unmapped or partially mapped reads as they
potentially provide accurate breaking points at the single-base-pair
level for SVs/CNVs.

Read-depth (RD) methods (Chiang et al., 2008; Xie and Tammi,
2009; Yoon et al., 2009; Ivakhno et al., 2010; Xi et al., 2010; Abyzov
et al., 2011; Miller et al., 2011) are based on the assumption that
the RD in a genomic region depends on the copy number of that
region. In fact, as the sequencing process is uniform, the number
of reads aligning to a region follows a Poisson distribution with
mean directly proportional to the size of the region and to the copy
number [see Figure 1 and Chiang et al. (2008)]. These methods
analyze the RD of a genome sequence through non-overlapping
windows, with the aim of detecting those regions that exhibit a RD
significantly different from the other ones. A duplicated region will
differ from the other ones for a higher number of reads mapping
on it, and then for a higher RD. Conversely, a deleted region will
differ from the other ones for a lower number of reads mapping
on it, and then for a lower RD. Basically, the analysis pipeline
implemented in RD methods consists of four fundamental stages
(Magi et al., 2012): (i) data preparation; (ii) data normalization;
(iii) CNV regions identification; and (iv) copy number estimation
(see Figure 2).

FIGURE 1 |The RD in a genomic region depends on the copy number
of that region and follows a Poisson distribution. Duplicated and

deleted regions are characterized by a RD signal different from that of the

other ones.

Data preparation consists of different tasks aimed at assess-
ing the quality of the read sequences, mapping the reads against
the reference genome, removing low mapping quality sequences,
and sizing the observing window used to calculate the RD sig-
nal. Data normalization is aimed at correcting the effect of two
sources of bias that affect the detection of CNVs. In particular, it
has been proved that correlation exists between RD and the GC-
content (Dohm et al., 2008; Hillier et al., 2008; Harismendy et al.,
2009); the RD increases with the GC-content of the underlying
genomic region. Moreover, there exists a mappability bias due to

FIGURE 2 |The analysis pipeline of RD-based methods consists of four
main stages. The first two stages consist of preparatory operations aimed

at generating the RD signal. Sequencing produces artifacts that affect the

alignment and consequently the RD signal. Different filtering operators can

be applied to reduce these errors. Moreover, alignments must be

post-processed to remove those of low quality and to resolve ambiguities.

Finally, the RD signal is calculated taking into account the bias related with

the GC-content.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology March 2015 | Volume 3 | Article 28 | 2

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

the repetitive regions in a genome. A read can be mapped to dif-
ferent positions so that ambiguous mappings must be dealt with.
After normalization, RD data are analyzed to detect the boundaries
of regions characterized by changed copy number. Finally, DNA
copy number of each region within breakpoints is estimated.

The first two stages of the analysis pipeline consist of common
operations, whereas the last two consist of specific operations for
each method. However, it should be pointed out that available tools
do not implement most of the operations required at the first and
second stage. Typically, these tools start the analysis by building
the RD signal from the post-processed alignments. All preparatory
operations must be performed by the researchers using third-party
tools. Moreover, other tools as ReadDepth (Miller et al., 2011)
require annotation files with information about the GC-content
that are pre-computed only for some reference genome builds.
Only some tools provide limited functionalities to pre-process
alignments. For instance, RDXplorer (Yoon et al., 2009) and CNV-
seq (Xie and Tammi, 2009) use the samtools (Li et al., 2009a) to
remove low-quality mappings and to select the best hit location
for each mapped read sequence, respectively.

Most of these operations are data-intensive and can be par-
allelized to be efficiently run on GPUs to save computing time.
GPUs are hardware accelerators that are increasingly used to deal
with computationally intensive algorithms. Recently, GPU-based
solutions have been proposed to cope with different bioinformat-
ics problems (e.g., Manavski and Valle, 2008; Liu et al., 2010; Shi
et al., 2010; Yung et al., 2011; Manconi et al., 2014a,b; Zhao and
Chu, 2014).

In this work, we present GPU-copy number variation (G-
CNV), a GPU-based tool aimed at performing the preparatory
operations required at the first two stages of the analysis pipeline
for RD-based methods. G-CNV can be used to (i) filter low-quality
sequences, (ii) mask low-quality nucleotides, (iii) remove adapter
sequences, (iv) remove duplicated reads, (v) map read sequences,
(vi) remove ambiguous mappings, (vii) build the RD signal, and
(viii) normalize it. Apart the task of removing adapter sequences,
all the other tasks are implemented on GPU. G-CNV can be used
as a third-party tool to prepare the input for available RD-based
detection tools or can be integrated in other tools to efficiently
build the RD signal.

G-CNV is freely available for non-commercial use. The cur-
rent release can be downloaded at the following address http:
//www.itb.cnr.it/web/bioinformatics/gcnv

2. MATERIALS AND METHODS
Data preparation and data normalization are crucial operations
to properly detect CNVs. It is widely known that sequencing is a
process subject to errors. These errors can affect the alignments;
hence both the RD signal and the accuracy of the identified CNVs
can be affected as well. G-CNV implements filtering operators
aimed at correcting some errors related to the sequencing process.
In particular, G-CNV is able to analyze the read sequences to fil-
ter those read sequences that do not satisfy a quality constraint,
to mask low-quality nucleotides with an aN y symbol, to remove
adapter sequences, and to remove duplicated read sequences. G-
CNV uses cutadapt (Martin, 2011) to remove adapter sequences.
As for the alignment, G-CNV uses the GPU-based short-read

mapping tool SOAP3-dp (Luo et al., 2013). Low-quality align-
ments are filtered out, while ambiguous mappings can be treated
according to different strategies. To build the RD signal, G-CNV
builds a RD signal according to a fixed-size observing window.
Then, this raw RD signal is corrected according to the GC-content
of the observed windows.

In this section, we first give a short introduction to GPUs. Then,
we present the strategies adopted to cope with the tasks imple-
mented by G-CNV. Finally, we briefly recall the hardware and
software equipment required to use G-CNV.

2.1. GPU
GPUs are hardware accelerators that are increasingly used to deal
with computationally intensive algorithms. From an architec-
tural perspective, GPUs are very different from traditional CPUs.
Indeed, the latter are devices composed of few cores with lots of
cache memory able to handle a few software threads at a time.
Conversely, the former are devices equipped with hundreds of
cores able to handle thousands of threads simultaneously, so that a
very high level of parallelism can be reached (see Figure 3). Apart
from the high level of parallelism, there may be other advantages
to use the GPU technology. In particular, the low cost for accessing
to the GPUs (if compared with the cost to equip a laboratory with
a CPU-cluster) is promoting the technology. Moreover, GPUs are
inherently more energy efficient than other ways of computation
because they are optimized for throughput and performance per
watt and not absolute performance. The main disadvantage of
adopting the GPU technology is related with the effort required
to code algorithms. GPUs can run certain algorithms very faster
than CPUs. However, gaining this speed-up can require a notably
effort to properly code the algorithms for GPU. Algorithms must
be coded to reflect the GPU architecture. To do this can mean to
dive into the code and make significant changes to several parts of
the algorithm. For the sake of completeness, it should be pointed
out that depending on the algorithm may be more advantageous
to parallelize it on CPUs rather than on GPUs. Due to their sig-
nificantly different architectures, CPUs and GPUs can be suited to
address different tasks. Therefore, both CPU and GPU parallelism
offer particular advantages for particular problems.

The GPU computing model uses both a CPU and a GPU in a
heterogeneous co-processing computing model. As a CPU is more
effective than a GPU for serial processing, it is used to run the
sequential parts of an algorithm, whereas computationally inten-
sive parts are accelerated by the GPU (see Figure 4). It should
be pointed out that the task of the CPU is not limited to just
control the GPU execution. Hybrid CPU/GPU parallelization can
also be implemented depending on the algorithm. As for GPU pro-
graming, Compute Unified Device Architecture (CUDA) (Nvidia,
2007) and Open Computing Language (OpenCL) (Munshi et al.,
2009) offer two different interfaces for programing GPU. OpenCL
is an open standard that can be used to program CPUs, GPUs, and
other devices from different vendors. CUDA is specific to NVIDIA
GPUs.

In the NVIDIA GPU-based architecture, parallelization is
obtained through the execution of tasks in a number of stream
processors or CUDA cores. Cores are grouped in multiprocessors
that execute in parallel. A CUDA core executes a floating point or

www.frontiersin.org March 2015 | Volume 3 | Article 28 | 3

http://www.itb.cnr.it/web/bioinformatics/gcnv
http://www.itb.cnr.it/web/bioinformatics/gcnv
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

integer instruction per clock cycle for a thread and all cores in a
streaming multiprocessor execute in a Single Instruction Multiple
Thread (SIMT) fashion. All cores in the same group execute the
same instruction at the same time. SIMT can be considered an
extension of the Single Instruction Multiple Data (SIMD) para-
digm: basically, the SIMD paradigm describes how instructions are
executed whereas the SIMT paradigm also describes how threads
are executed. The code is executed in groups of threads called
warps. Device memory access takes a very long time due to the
very long memory latency. The parallel programing model of the
CUDA architecture provides a set of API that allows programmers
to access the underlying hardware infrastructure and to exploit
the fine-grained and coarse-grained parallelism of data and tasks.
Summarizing, the CUDA execution model (see Figure 5) can be
described as follow: the GPU creates an instance of the kernel
program that is made of a set of threads grouped in blocks in a
grid. Each thread has a unique ID within its block and a private
memory and registers, and runs in parallel with others threads of
the same block. All threads in a block execute concurrently and

FIGURE 3 |The main difference between CPUs and GPUs is related to
the number of available cores. A CPU is a multi-core processor that

consists of a few cores. Conversely, a GPU is a many-core processor that

consists of thousands of available cores.

cooperatively by sharing memory and exchanging data. A block,
identified by a unique ID within the block grid, can execute the
same kernel program with different data that are read/written from
a global shared memory. Each block in the grid is assigned to a
streaming multiprocessor in a cyclical manner.

2.2. QUALITY CONTROL
The sequencing technology has been notably improved. Modern
sequencers are able to generate hundreds of millions of reads in a
single run and the sequencing cost is rapidly decreasing. Despite
this improvement, sequencing data are affected by artifacts of dif-
ferent nature that may strongly influence the results of the research.
Hence, the ability to assess the quality of read sequences and to
properly filter them are major factors that determine the success
of a sequencing project. In particular, as for RD methods, both
low quality and duplicated read sequences affect the RD signal
and consequently the identification of CNV regions.

Different tools have been proposed for quality control of
sequencing data such as NGS QC Toolkit (Patel and Jain, 2012),

FIGURE 5 |Threads are grouped in blocks in a grid. Each thread has a

private memory and runs in parallel with the others in the same block

(Manconi et al., 2014a).

FIGURE 4 | CPUs are more effective than GPUs to run sequential code. Therefore, only the computationally intensive parts of the algorithms must be run on

the GPU, whereas sequential parts must be run on CPUs.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology March 2015 | Volume 3 | Article 28 | 4

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

HTQC (Yang et al., 2013), FASTX-Toolkit1, FASTQC2, and
Picard3. Most of these tools support both Illumina and 454 plat-
forms, while only some of them support CPU parallelization.
It should be pointed out that the artifacts generated during the
sequencing process and the massive amount of generated reads
make quality control tasks difficult and computationally intensive.
The massive parallelization that can be provided by GPUs can be
used to deal with these computational tasks. Starting from this
assumption, we integrated G-CNV with GPU-based operators to
filter low-quality sequences, to mask low-quality nucleotides, and
to detect and remove duplicated read sequences. Only the remov-
ing of adapter sequences has not yet been implemented on GPU.
Currently, these operators are specialized for short-read sequences
generated with Illumina platforms.

2.2.1. Filtering low-quality sequences
FASTQ files report quality values for each sequence. Basically,
G-CNV parses these files to identify low-quality nucleotides.
Nucleotides are classified as of low quality if their quality value is
lower than a user-defined threshold. FASTQ files represent qual-
ity values using an ASCII encoding. Different encodings are used
depending on the Illumina platform. Illumina 1.0 format encodes
quality scores from −5 to 62 using ASCII 59 to 126. From Illumina
1.3 and before Illumina 1.8, quality scores ranges from 0 to 62 and
are encoded using ASCII 64–126. Starting in Illumina 1.8, quality
scores range from 0 to 93 and are encoded using ASCII 33–126.

G-CNV performs filtering in three steps. The first step is per-
formed on CPU, whereas the last two steps are massively paral-
lelized on a single GPU. As for the first step, G-CNV analyses the
FASTQ files to detect the Illumina format. Then, the quality val-
ues of sequences are decoded according to the detected Illumina
format. Finally, G-CNV removes those read sequences that exhibit
a percentage of low-quality nucleotides that exceed a user-defined
threshold. As a final result, a new FASTQ file is created with the
filtered sequences so that the original FASTQ file is preserved.

2.2.2. Masking low-quality nucleotides
G-CNV can also be used to mask low-quality nucleotides. Similarly
that for the filtering of low-quality sequences, G-CNV performs
masking in three steps. The first step is performed on CPU and it
is aimed at detecting the Illumina format. Conversely, the last two
steps are massively parallelized on a single GPU and are aimed at
decoding the quality values sequences according to the Illumina
format, and at masking with an aN y symbol those nucleotides
with a quality score lower than a user-defined threshold. Then, a
new FASTQ file is created with the masked nucleotides.

2.2.3. Removing adapter sequences
In the current release, G-CNV uses cutadapt to remove adapter
sequences. Cutadapt can be used to look for adapter sequences
in reads generated with Illumina, 454, and SOLiD HTS machines.
Basically, cutadapt is able to look for multiple adapters in the 5�

and 3� ends according to different constraints (e.g., mismatches,
indels, minimum overlap between the read and adapter). It can be

1http://hannonlab.cshl.edu/fastx_toolkit/
2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3http://broadinstitute.github.io/picard/

used to trim or discard reads in which an adapter occurs. More-
over, it allows to automatically discard those reads that after the
trimming are shorter than a given user-defined length. All features
of cutadapt were wrapped in G-CNV.

It should be pointed out that the current release of cutadapt is
not parallelized. In order to speed up the removing of the adapters,
G-CNV splits the original FASTQ files in chunks and runs in par-
allel an instance of cutadapt on each of these chunks. Finally, the
output files provided by each instance of cutadapt are merged
together in a new FASTQ file.

2.2.4. Removing duplicated read sequences
Duplicate reads are one of the most problematic artifacts. These
artifacts are generated during the PCR amplification. Ideally,
duplicates should have identical nucleotide sequences. However,
due to the sequencing errors, they could be nearly identical
(Gomez-Alvarez et al., 2009). Alignment-based [e.g., NGS QC
Toolkit, SEAL (Pireddu et al., 2011), and Picard MarkDuplicates]
and alignment-free [e.g., FastUniq (Xu et al., 2012), Fulcrum (Bur-
riesci et al., 2012), CD-HIT (Li and Godzik, 2006; Fu et al., 2012)]
methods have been proposed in the literature to remove dupli-
cated read sequences. Basically, alignment-based methods start
from the assumption that duplicated reads will be mapped into a
reference genome in the same position. Therefore, in these meth-
ods, read sequences are aligned against a reference genome and
those reads with identical alignment positions are classified as
duplicates. It should be pointed out that the final result is affected
by both the alignment constraints and the accuracy of the aligner.
In alignment-free methods, read sequences are compared among
them according to a similarity measure. The reads with a similarity
score lower than a given threshold are classified as duplicated.

G-CNV implements an alignment-free method to remove
duplicated read sequences from single-end libraries. Like other
tools, it implements a prefix–suffix comparison approach. The
algorithm has been devised taking into account the per-base
error rates of Illumina platforms. Analysis of short-read datasets
obtained with Illumina highlighted a very low rate of indel
errors (<0.01%) while the number of occurrences of wrong bases
increases with the base position (Dohm et al., 2008). Therefore, G-
CNV does not take into account indels and considers as potentially
duplicated read sequences those with an identical prefix. Potential
duplicated sequences are clustered together (see Figure 6), and
for each cluster G-CNV compares the suffixes of its sequences.
The first sequence of a cluster is taken as a seed and its suffix is
compared with those of the other sequences in that cluster. Those
sequences identical or very similar to the seed are considered dupli-
cated. Duplicated sequences will be condensed in a new sequence
and will be removed from the cluster (see Figure 7). Then, the
process is iterated for the remaining sequences in the cluster (if
any), until the cluster is empty or contains only a read sequence.

In G-CNV, clustering is performed sorting the prefixes of the
read sequences. Sorting is performed on a GPU with our CUDA-
Quicksort4,5. Experimental results show that CUDA-Quicksort

4http://sourceforge.net/projects/cuda-quicksort/
5Submitted to Concurrency and Computation: Practice and Experience: manuscript
CPE-14-0292 entitled“CUDA-Quicksort: an improved GPU-based implementation
of Quicksort”

www.frontiersin.org March 2015 | Volume 3 | Article 28 | 5

http://hannonlab.cshl.edu/fastx_toolkit/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard/
http://sourceforge.net/projects/cuda-quicksort/
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

is faster than other available GPU-based implementations of the
quicksort. In particular, it results be up to 4 times faster than
GPU-Quicksort of Cederman and Tsigas (2008) and up to 3
times faster than the NVIDIA CDP-Quicksort (CUDA toolkit 6.0).
As CUDA-Quicksort sorts numerical values, the prefixes must
necessarily be subject to a numerical encoding. We devised the
encoding with the aim to maximize the length of the prefixes
that can be compared. In doing this, read sequence prefixes are
subject to a dual numerical encoding. Initially, we encoded the
prefixes using a base-5 encoding by replacing each nucleotide
with a numerical value ranging from 0 to 4 (i.e., A → 0, C → 1,

FIGURE 6 | Short-reads with an identical prefix (of fixed length k) are
clustered together as potential duplicated sequences. This approach

takes into account the error rates of Illumina platforms. Analysis performed

on short-reads generated with these sequencing platforms highlighted that

the number of wrong bases increases with the base position.

G → 2, T → 3, N → 4). Using CUDA-Quicksort to sort items rep-
resented with 64 bit unsigned long long int data type, prefixes of
up to 19 nucleotides can be sorted. A longer prefix will exceed
the limit for this type of data. However, it is possible to exceed
this constraint using a different numerical base to represent the
prefixes. In particular, using the base-10, it is possible to rep-
resent a number consisting of 27 digits with a 64 bit unsigned
long long int (see Figure 8). Therefore, G-CNV applies this sec-
ond encoding to maximize the length of the prefixes used for
clustering.

After that the reads have been clustered G-CNV compares their
suffixes. This step requires a base-per-base comparison of the
nucleotides of the seed read sequence with those of the other
reads in a cluster. This approach can require a very high num-
ber of base–base comparisons. Let N be the length of the suffixes,
and let m be the allowed number of mismatches. In the best case,
m comparisons must be performed to classify two sequences as
not duplicated. In the worst case, N –m comparisons must be
performed to classify two sequences as duplicated. Apart from
the high number of comparisons required, this approach is not
adapted to be efficiently implemented on GPUs. As GPUs adopt
the SIMT paradigm, each thread in a block must perform the
same operation on different data. Then, G-CNV implements a
different comparison method. Suffixes are split into fixed length
chunks. Subsequence of each chunk is subjected to the same
dual numerical encoding used to represent the prefixes for clus-
tering. Then for each cluster, the numerical difference between
the i-th chunk of the seed and the related chunk of the other
suffixes in a cluster is calculated (see Figure 9). The order of
magnitude of the difference provides information about the posi-
tion of the leftmost different nucleotides. Then, the subsequences
are cut corresponding to the mismatch position. The rightmost
parts of the mismatch position are maintained and the process is
re-iterated.

FIGURE 7 | Suffixes of sequences in a cluster are compared to
identify the duplicates. The first read is taken as a seed and its

suffix is compared with those of the other ones. Sequences with a

number of mismatches lower than a given threshold are considered

duplicates of the seed. These sequences are removed from the

cluster and are represented with a consensus sequences. Then the

process is repeated until the cluster is empty or consists of a single

sequence.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology March 2015 | Volume 3 | Article 28 | 6

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

FIGURE 8 | Prefixes are subject to a dual encoding. As for the first

encoding, each nucleotide in a prefix is represented with a numerical

value from 0 to 4 (A → 0, C → 1, G → 2, T → 3, N → 4). Then, these

numerical representations are encoded using base-10. Finally, sorting is

performed for clustering. In the figure, prefixes of length k = 8 are

represented.

FIGURE 9 | Suffixes (in orange in the figure) are analyzed in chunks. Each chunk is subject to the dual encoding used for prefixes (in red in the figure). The

overall number of mismatches if obtained summing the partial number of mismatches obtained for each chunk.

2.3. MAPPING
It is widely known that mapping of short-read sequences is com-
putationally onerous. Several tools have been devised to deal with
short-read mappings. Without claiming to be exhaustive, let us
cite some of the most popular solutions, i.e., MAQ (Li et al.,
2008), RMAP (Smith et al., 2008, 2009), Bowtie (Langmead et al.,
2009), BWA (Li and Durbin, 2009), CloudBurst (Schatz, 2009),
SOAP2 (Li et al., 2009b), and SHRiMP (Rumble et al., 2009;
David et al., 2011). A comparative study aimed at assessing the
accuracy and the runtime performance of different cutting-edge
next-generation sequencing read alignment tools highlighted that
among all, SOAP2 was the one that showed the higher accuracy
(Ruffalo et al., 2011). Exhaustive review of the tools cited above
can be found in Bao et al. (2011).

In general, the mentioned solutions exploit some heuristics to
find a good compromise between accuracy and running time.
Recently, the GPU-based short-read mapping tools Barracuda
(Klus et al., 2012), CUSHAW (Liu et al., 2012b), SOAP3 (Liu
et al., 2012a), and SOAP3-dp have been successfully proposed to

the scientific community. In particular, SOAP3-dp aligns the read
sequences in two steps. As for the first step, it looks for ungapped
alignments with up to four mismatches without using heuristics.
As for the second step, it uses the dynamic programing to look for
gapped alignments. Compared with BWA, Bowtie2 (Langmead
and Salzberg, 2012), SeqAlto (Mu et al., 2012), GEM (Marco-Sola
et al., 2012), and the previously mentioned GPU-based aligners,
SOAP3-dp is two to tens of times faster, while maintaining the
highest sensitivity and lowest false discovery rate on Illumina reads
with different lengths.

Starting from the previous analysis, we decided to use SOAP3-
dp to support read mapping in G-CNV. G-CNV allows to set
different parameters of SOAP3-dp that can be useful to properly
generate alignments for RD methods. Apart from the constraints
on the allowed mismatches, G-CNV allows to set SOAP3-dp para-
meters able to filter out alignments that are not of interest for the
specific RD method. In particular, as different methods presented
in the literature filter alignments using different quality mapping
scores, G-CNV allows to set a quality mapping threshold on the

www.frontiersin.org March 2015 | Volume 3 | Article 28 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

alignments that must be reported. To set these constraints, G-CNV
needs to be able to access the SOAP3-dp files to change the ini-
tialization file. Moreover, a short-read may be uniquely aligned
or can be aligned to multiple positions onto a genome. Multiple
mappings can be related to the alignment constraints or to the
nature of the sequenced read. A read sequence can be aligned to
multiple positions, as it has been sequenced from repetitive regions
or regions of segmental duplication (Abyzov et al., 2011). In the
former case, alignments are characterized by different alignment
scores, whereas in the latter case, they are expected to have equal
or very similar scores. A common approach to take into account
multiple mappings is to randomly select a best alignment. G-CNV
allows to report only unique best alignments or a random best
alignment.

2.4. RD SIGNAL
The RD signal depends on the size of the observing window. As
methods proposed in the literature suggest different approaches to
estimate the window size, G-CNV does not impose it. In G-CNV,
the window size is a parameter that must be set by the user.

G-CNV builds the RD signal in two steps. Initially, G-CNV
analyses the genome sequences to build a GC-content signal
according to the fixed window size. A GC-signal for each genome
sequence will be built. Then, G-CNV splits the mapping for each
chromosome sequences, identifies the window where the map-
pings fall, and calculates a raw RD signal. By default, the window
related to each alignment is identified considering the center of
the read. Finally, G-CNV corrects the RD signal with the same
approach proposed in Yoon et al. (2009) that adjust the RD by
using the observed deviation of RD for a given GC percentage
according to the following equation:

RD
�
wi

= RD

RDGCwi

· RDwi (1)

where RDwi is the RD for the i-th window to be corrected, RD is
the average RD signal, RDGCwi

is the average RD signal calculated
on the windows with the GC-content found in the i-th window,
and RD

�
wi

is the corrected RD for the i-th window.

2.5. HARDWARE AND SOFTWARE REQUIREMENTS
G-CNV has been designed to work with NVIDIA GPU cards based
on the most recent Kepler architecture. G-CNV works on Linux-
based systems equipped with CUDA (release ≥6.0). We tested
it on the NVIDIA Kepler architecture-based k20c card. Experi-
ments have been carried out using the last release of soap3-dp (rel.
2.3.177) and of cutadapt (rel. 1.7.1).

3. RESULTS
We performed different experiments aimed at assessing the per-
formance of G-CNV. In particular, we assessed its performance
when used to filter low-quality sequences, to mask low-quality
nucleotides, to remove adapter sequences, to remove duplicated
reads, and to calculate the RD signal. Since G-CNV performs
the alignments running SOAP3-dp, we deemed not relevant to
assess the performance of G-CNV in this task. We invite the read-
ers to refer the SOAP3-dp manuscript for an in-depth analysis

of the performance of the aligner. Similarly, as G-CNV uses
the well-known tool cutadapt to remove adapter sequences, we
did not perform tests aimed at assessing its reliability in this
task. However, we performed experiments aimed at assessing
the benefits of the parallelization of cutadapt provided with
G-CNV.

Experiments have been carried out on both synthetic and real-
life libraries. Synthetic reads have been used to assess and compare
with other tools the reliability of G-CNV, whereas real-life data to
assess and compare its performance in terms of both computing
time and memory consumption.

Synthetic reads have been generated from the build 37.3 of the
human genome using the Sherman simulator6. Sherman has been
devised to simulate HTS datasets for both bisulfite sequencing and
standard experiments. To mimic real data, it generates synthetic
data using an error rate curve that follows an exponential decay
model. We used Sherman to generate a single-end synthetic library
consisting of 1 millions of 100 bp reads. Library has been gener-
ated simulating a sequencing error of 2% and contaminating the
reads with the Illumina single-end adapter 1 (i.e., ACACTCTTTC
CCTACACGACGCTGTTCCATCT). The contamination has been
simulated with a normal distribution of fragment sizes. More-
over, since Sherman generates identical quality scores for all reads,
we modified them to generate a 3% of low-quality nucleotides
(PHRED value ≤20) and a 9% of low-quality sequences. In the
following of the manuscript, we will refer to this dataset as the S1
library.

Since Sherman does not permit to control the percentage of
duplicates, we modified the simulated reads in S1 to generate a new
synthetic library (S2) consisting of 30% of duplicated sequences.
Read sequences have been duplicated simulating a sequencing
error of 2%. The library S1 has been used to assess the reliabil-
ity of G-CNV in the task of filtering low-quality sequences and
masking low-quality nucleotides, whereas S2 has been used to
assess the reliability of G-CNV in the task of removing duplicated
sequences.

As for real-life data, experiments have been performed on dif-
ferent libraries generated with Illumina platforms: (i) SRR001220
consisting of 3.3 millions of 94 bp reads; (ii) SRR001205 consist-
ing of 9.7 millions of 47 bp reads; (iii) SRR005720 consisting of
26.2 millions of 36 bp reads; and (iv) SRR921889 consisting of
50 millions of 100 bp reads (see Table 1).

Moreover, with the aim to simulate a CNV pre-processing
detection analysis, we simulated two high coverage (30x) whole
genome sequencing experiments. The first experiment have been
simulated generating 37 synthetic libraries consisting of 25
millions of 100 bp reads, and the second generating 9 synthetic
libraries consisting of 100 millions of 100 bp reads. All libraries
have been generated according to the same constraints used to
generate S1. In the following of the manuscript, we will refer to
these datasets as HCS1 and HCS2.

In the following of this section, we describe the different exper-
iments and present results. Finally, we briefly resume the hardware
and software configuration used for experiments.

6http://www.bioinformatics.babraham.ac.uk/projects/sherman/

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology March 2015 | Volume 3 | Article 28 | 8

http://www.bioinformatics.babraham.ac.uk/projects/sherman/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

Table 1 | Real-life datasets.

Dataset Library
layout

Reads
(M)

Read
size (bp)

Organism Instrument

SRR001220 Single 3.3 94 Homo
sapiens

Illumina Genome

Analyzer II

SRR001205 Single 9.7 47 Homo
sapiens

Illumina Genome

Analyzer II

SRR005720 Paired 26.2 36 Homo
sapiens

Illumina Genome

Analyzer

SRR921889 Single 50.0 100 Mus
musculus

Illumina HiSeq

2000

The first column reports the name of the dataset.The second column reports the
library layout. The third and fourth columns report the size of the dataset and
the length of the reads, respectively. Organism and sequencing instrument are
reported in column fifth and sixth.

3.1. FILTERING LOW-QUALITY SEQUENCES
To assess G-CNV in the task of filtering low-quality read sequences,
we compared its performance with those of FASTX-Toolkit and
NGS QC Toolkit. Experiments have been performed setting
parameters with the aim to filter those sequences with a per-
centage of low-quality (PHRED score <20) bases >10% (see
Table 2).

A first experiment has been performed on the S1 synthetic
library aimed at assessing and comparing the reliability of G-
CNV with the other tools. As expected, all tools have been able
to filter all low-quality sequences. The same experiment has been
performed on the real-life libraries aimed at assessing the perfor-
mance of G-CNV in terms of both computing time and memory
consumption. It should be pointed out that FASTX-Toolkit does
not support parallelization whereas in NGS QC Toolkit paralleliza-
tion has been implemented in multiprocessing and multithreaded
ways. Multiprocessing parallelization was implemented to process
multiple files in parallel whereas multithreading parallelization to
process in parallel a single file. The FASTQ file is split into chunks,
processed in parallel, and results are merged at the end. With the
aim to provide an in-depth comparison among all tools and to
assess as NGS QC Toolkit can scale increasing the CPU cores, we
initially run the experiments without using parallelization, then
experiments have been performed parallelizing the computation
on 12 CPU cores.

It should be pointed out that FASTX-Toolkit does not provide
support for paired-end libraries. Therefore, it has not been possible
to test it with the SRR005720 dataset. Experimental results show
that G-CNV is most effective than the other tools in terms of com-
puting time. Table 3 reports computing time and peak of memory
required by G-CNV, FASTX-Toolkit, and NGS QC Toolkit to ana-
lyze the different datasets. G-CNV has been 12.4x/7.8x/NA/21.4x
faster than FASTX-Toolkit and 24x/21x/26.5x/28.3x faster than
NGS QC Toolkit parallelized on 12 CPU cores to filter the read
sequences of the SRR001220/SRR001205/SRR005720/SRR921889
dataset. Obviously, the performance of G-CNV improves notably
when compared with those of NGS QC Toolkit executed with-
out parallelization. In this case, G-CNV has been 154x/120x/125x/

Table 2 |Tools settings used to filter low-quality sequences.

Tool

G-CNV −mf 20 −pf 90

FASTX-Toolkit -Q33 -q 20 -p 90

NGS QC Toolkit
a

N A -l 90 -s 20

NGS QC Toolkit
b

N A -l 90 -s 20 -c 12

Both FASTX-Toolkit and NGS QC Toolkit consist of different commands. As for
FASTX-Toolkit, experiments have been performed using the fastq_quality_filter
command, whereas the IlluQC_PRLL has been used for NGS QCToolkit.The table
reports the settings used to run NGS QC Toolkit without exploiting parallelization
(NGS QC Toolkit a) and parallelized on 12 CPU cores (NGS QC Toolkit b).

175x faster than NGS QC Toolkit to analyze the SRR001220/SRR001
205/SRR005720/SRR921889 dataset.

For the sake of completeness, it should be pointed out that
NGS QC Toolkit automatically also generates statistics for qual-
ity check. Therefore, the computing time reported from NGS QC
Toolkit takes into account also the time required to perform these
operations.

As for the memory consumption, FASTX-Toolkit is undoubt-
edly the most effective tool. Conversely, G-CNV requires more
memory than the other tools. Its performance is only compara-
ble with those of NGS QC Toolkit executed in parallel for the
SRR001220 and SRR001205 datasets. Experimental results show
that the memory required by G-CNV increases with the size of
the analyzed library. This is mainly due to the fact that to mas-
sively parallelize the computation G-CNV loads into the memory
as many as possible read sequences to maximize the occupancy of
the grid of the GPU.

Finally, we used G-CNV to filter the low-quality sequences of
the HCS1 and HCS2 datasets. Filtering has been performed in
~20 min for the HCS1 and in ~34 min for HCS2. As for the mem-
ory consumption, G-CNV required 5.7 GB to analyze HCS1 and
20.5 GB for HCS2.

3.2. MASKING LOW-QUALITY NUCLEOTIDES
The performance of G-CNV in the task of masking low-quality
nucleotides have only been compared with those of FASTX-
Toolkit. NGS QC Toolkit does not provide support for this oper-
ator. G-CNV and FASTX-Toolkit have been run to mask with a
aN y symbol the nucleotides with a PHRED quality score <20
(see Table 4). Experiments performed on the S1 synthetic library
shown that both tools have been able to mask all low-quality
sequences. Experiments performed on real-life libraries show that
G-CNV outperforms notably FASTX-Toolkit in terms of com-
puting time. Results reported in Table 5 show that G-CNV has
been 12x/6.8x/5x/13.8x faster than FASTX-Toolkit to analyze the
SRR001220/SRR001205/SRR005720/SRR921889 dataset. As pre-
viously highlighted, FASTX-Toolkit does not support paired-end
reads. However, as for the task of masking low-quality nucleotides,
it can be separately used on both the forward and the reverse read
sequences. Then, as for the SRR005720 dataset Table 5 reports
the overall computing time required by FASTX-Toolkit to analyze
both files.

www.frontiersin.org March 2015 | Volume 3 | Article 28 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

Table 3 | Performance evaluation to filter low-quality sequences.

Tool Dataset Filtered
seq. (%)

Time Memory

G-CNV SRR001220 95.3 5 s 0.9 GB

SRR001205 98.3 11 s 1.4 GB

SRR005720 74.7 48 s 4.5 GB

SRR921889 7.9 1 min 10 s 10.5 GB

FASTX-Toolkit SRR001220 95.3 1 min 2 s 256 KB

SRR001205 98.3 1 min 19 s 256 KB

SRR005720 – – –

SRR921889 7.9 17 min 10 s 256 KB

NGS QC Toolkit
a

SRR001220 95.3 12 min 52 s 0.21 GB

SRR001205 98.3 22 min 0.18 GB

SRR005720 74.7 1 h 40 min 0.26 GB

SRR921889 7.9 3 h 25 min 0.22 GB

NGS QC Toolkit
b

SRR001220 95.3 2 min 1.4 GB

SRR001205 98.3 3 min 52 s 1.4 GB

SRR005720 74.7 21 min 1.3 GB

SRR921889 7.9 33 min 1.9 GB

The first and the second column of the table report the tool and the analyzed
library, respectively. The third column the percentage of filtered reads. Column
fourth reports the computing time required to analyze the different libraries. The
fifth column the peak of memory required to perform the analysis.

Table 4 |Tools settings used to mask low-quality nucleotides.

Tool

G-CNV -m 20

FASTX-Toolkit -Q33 -q 20 -r N

As for FASTX-Toolkit experiments have been performed using the
fastq_quality_masker command.

As for the high coverage-simulated sequencing experiments,
G-CNV masked the low-quality nucleotides of HCS1 in ~23 min
using 7 GB of memory, whereas required ~39 min and 21.9 GB of
memory for HCS2.

3.3. REMOVING ADAPTER SEQUENCES
As for the task of removing adapter sequences, G-CNV has
been compared with both FASTX-Toolkit and NGS QC Toolkit.
To assess the advantages of the implemented parallelization of
cutadapt, we initially performed experiments running G-CNV
without exploiting the parallelization, subsequently parallelizing
the computation on 12 CPU cores. Tool settings used to perform
these experiments are reported in Table 6.

Table 7 reports results obtained analyzing the real-life libraries.
Results show that the performance of G-CNV improves notably
with parallelization. With parallelization G-CNV has been 6.7x/
6.4x/23.4x/2.8x faster to remove the adapter sequences from the
SRR001220/SRR001205/SRR005720/SRR921889 dataset. More-
over, G-CNV parallelized on 12 CPU cores resulted to be 18.2x/
11x/–/9.4x faster than FASTX-Toolkit and 11.8x/7.3x/58.3x/6.3x
NGS QC Toolkit used exploiting the parallelization to remove the

Table 5 | Performance evaluation to mask low-quality nucleotides.

Tool Dataset Masked
nucl. (%)

Time Memory

G-CNV SRR001220 24.2 5 s 0.94 GB

SRR001205 43.6 10 s 1.38 GB

SRR005720 21.8 52 s 3.88 GB

SRR921889 3 1 min 15 s 12 GB

FASTX-Toolkit SRR001220 24.2 1 min 256 KB

SRR001205 43.6 1 min 8 s 256 KB

SRR005720 21.8 4 min 22 s 256 KB

SRR921889 3 17 min 20 s 256 KB

The first and the second column of the table report the tool and the analyzed
library, respectively.The third column the percentage of masked nucleotides. Col-
umn fourth reports the computing time required to analyze the different libraries.
The fifth column the peak of memory required to perform the analysis.

Table 6 |Tools settings used to remove adapter sequences.

Tool

G-CNV
a

–ca-a ACACTCTTTCCCTACACGACGCTGTTCCATCT

G-CNV
b

–ca-a ACACTCTTTCCCTACACGACGCTGTTCCATCT

–ca-t 12

FASTX-Toolkit –Q33 -a ACACTCTTTCCCTACACGACGCTGTTCCATCT

NGS QC Toolkit
a � ADAPTER FILE� A

NGS QCToolkit
b � ADAPTER FILE� A -c 12

As for FASTX-Toolkit experiments have been performed using the fastx_clipper
command, whereas the IlluQC_PRLL has been used for NGS QC Toolkit. In the
table have been reported the settings used to run G-CNVa and NGS QC Toolkita

without exploiting the parallelization and in multithreading way (G-CNVb and NGS
QCToolkitb).The table shows the settings used to remove the Illumina Single-End
Adapter 1. As for the SRR005720 dataset, settings have been modified to remove
the Illumina paired-end adapters.

adapters from the SRR001220/SRR001205/SRR005720/SRR921
889 dataset. Obviously, also for this task the performance
of G-CNV improves when compared with NGS QC Toolkit
used without parallelization. In this case, G-CNV resulted be
48x/40x/173x/38x faster than NGS QC Toolkit to analyze the
SRR001220/SRR001205/SRR005720/SRR921889 dataset. As for
the memory consumption, FASTX-Toolkit provides better per-
formance than the other tools. However, G-CNV outperforms
NGS QC Toolkit. As FASTX-Toolkit does not support paired-end
libraries, it has not been used to analyze the SRR005720 dataset.

Finally, when used to remove adapters from the HCS1, G-CNV
required ~50 min and 250 MB of memory, whereas it required
~3 h 20 min and 920 MB for HCS2.

3.4. REMOVING DUPLICATED READ SEQUENCES
To assess the performance of G-CNV in the task of removing
duplicated sequences, we compared its performance with those of
Fulcrum. G-CNV implements a very similar algorithm to that
implemented in Fulcrum. In particular, similarly to our tool,
Fulcrum clusters together the reads with a similar prefix and looks
for duplicates in the same cluster.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology March 2015 | Volume 3 | Article 28 | 10

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

Table 7 | Performance evaluation to remove adapter sequences.

Tool Dataset Time Memory

G-CNV
a

SRR001220 1 min 14 s 17 MB

SRR001205 2 min 46 s 21 MB

SRR005720 8 min 12 s 26 MB

SRR921889 17 min 11 s 20 MB

G-CNV
b

SRR001220 11 s 0.4 GB

SRR001205 26 s 0.46 GB

SRR005720 21 s 0.33 GB

SRR921889 6 min 10 s 0.84 GB

FASTX-Toolkit SRR001220 3 min 21 s 516 KB

SRR001205 4 min 47 s 516 KB

SRR005720 – –

SRR921889 57 min 40 s 516 KB

NGS QC Toolkit
a

SRR001220 8 min 52 s 217 MB

SRR001205 17 min 30 s 189 MB

SRR005720 1 h 48 min 269 MB

SRR921889 3 h 55 min 226 MB

NGS QC Toolkit
b

SRR001220 2 min 10 s 1.6 GB

SRR001205 3 min 10 s 1.3 GB

SRR005720 20 min 24 s 1.13 GB

SRR921889 39 min 1.6 GB

The first and the second column of the table report the tool and the analyzed
library, respectively. Column third reports the computing time required to analyze
the different libraries.The fourth column the peak of memory required to perform
the analysis.

Table 8 reports the main parameters that have been used for
the experiments. Experiments on the synthetic S2 library have
been performed clustering reads according to a prefix length of
25 bp and looking for identical sequences (i.e., 0 mismatches) and
nearly identical sequences with up to 1 mismatch. Results reported
in Table 9 show that both tools have been able to identify the syn-
thetic duplicate sequences. It should be pointed out that S2 has
been built avoiding to generate mismatches among the duplicated
sequences in their first 25 bp. As for tests on real-life data, we
performed experiments on the larger SRR921889 dataset. Exper-
iments have been aimed at assessing the performance of G-CNV
to remove duplicated sequences according to different constraints.
In particular, we performed the experiments on both G-CNV and
Fulcrum to cluster sequences according to a prefix size of 10 and
25 bp and to look for duplicated sequences with up to 1 and up
to 3 mismatches. Experimental results are reported in Table 10.
For each experiment were reported the percentage of removed
sequences, the computing time and the peak of memory required
for the analysis. Results show that both tools remove a similar per-
centage of duplicated sequences. However, as for the computing
time, G-CNV outperforms Fulcrum in all experiments. It should
be pointed out that Fulcrum automatically parallelize the com-
putation on all available CPU cores. Therefore, the computing
times reported in the table have been obtained running Fulcrum
parallelized on 12 CPU cores. Results show that the computing
time required by G-CNV depends on both the number of allowed
mismatches and the prefix size. The number of sequences that will

Table 8 |Tools settings used to remove duplicated sequences.

Tool

G-CNV -D �mis� -p �pref �
Fulcrum -b �pref � -s -t s -c �mis�

We performed different experiments with different values for both the prefix
length and the allowed mismatches. Specific values for the prefixes �pref� and
the allowed mismatches �mis� are reported in the tables of the results.

Table 9 | Performance evaluation to remove duplicated sequences
from the synthetic S2 library.

Tool Dataset Mismatches Percentage
removed

G-CNV S2 0 0

S2 1 30.1

Fulcrum S2 0 0

S2 1 30.6

The first column reports the tool.The second column reports the dataset. Columns
third and forth report the allowed mismatches and the percentage of removed
duplicated sequences.

Table 10 | Performance evaluation to remove duplicated sequences
from the real life dataset SRR921889.

Tool Prefix Mismatches Percentage
removed

Time Memory

G-CNV 10 1 11.2 2 h 17.3 GB

10 3 11.5 1 h 50 min 17.3 GB

25 1 11.9 16 min 17.3 GB

25 3 12.1 8 min 17.3 GB

Fulcrum 10 1 11.3 4 h 01 min 1.6 GB

10 3 11.4 3 h 23 min 1.6 GB

25 1 11.6 1 h 24 min 1.6 GB

25 3 11.9 1 h 33 min 1.6 GB

The first column reports the tool. The second column reports the length of the
prefixes used for clustering. Column third reports the allowed mismatches. The
fourth column reports percentage of removed sequences. Columns fifth and sixth
report the computing time and the memory consumption, respectively.

be classified as duplicated increases with the number of allowed
mismatches. Therefore, increasing this value may involve a lower
number of sequences comparison. Moreover, the size of a clus-
ter depends on the prefix length. Typically, the size of the clusters
increases as the prefix length decreases involving more sequences
comparison.

For the sake of completeness, G-CNV performed the cluster-
ing step in ~2 s for both length of the prefixes, whereas Fulcrum
required 13 min to cluster the reads according to a prefix of 10 bp
and 56 min to cluster the reads according to prefix length of 25 bp.
However, it should be pointed out that G-CNV can not be used
to cluster reads with a prefix longer than 27 bp. Moreover, the
clustering phase implemented by G-CNV requires that all prefixes

www.frontiersin.org March 2015 | Volume 3 | Article 28 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

will be loaded into the memory of the GPU device. This implies
a constraint on the size of the analyzed library, which depends
on the memory of the GPU. As for the memory consumption,
G-CNV undoubtedly requires more memory than Fulcrum. Also
in this case, the high memory consumption is due to the need of
maximize the occupancy of the grid of the GPU.

Finally, we performed different experiments on the HCS1
dataset. Experiments have been performed to cluster the reads
according to a prefix length of 15 and 27 bp and to look for dupli-
cated with up to 1 and to 3 mismatches. Results are reported in
Table 11.

3.5. GENERATING THE RD SIGNAL
As there are no other specialized tools to generate the RD signal,
we cannot assess and compare the performance of G-CNV with
other tools. However, we used the FastQC tool7 to assess the reli-
ability of G-CNV in the task of calculating the GC-content that
is used to normalize the RD signal. FastQC is a tool that provides
some quality control checks on HTS data. In particular, it is able to
calculate the distribution of the per-sequence GC-content of the
analyzed read sequences.

As G-CNV calculates the GC-content of each observed window
in the genome sequences, we generated a synthetic library using as
reads the subsequences observed with a window of 100 bp along
the MT chromosome of the human genome (build 37.3). Then,
we used FastQC to analyze the GC-content of these sequences
and compared the results with those generated by G-CNV. Both
tools provided the same distribution of the GC-content. It should
be pointed out that it was not possible to compare the results
with those of FASTX-Toolkit and NGS QC Toolkit as both deter-
mine only the per-base GC-content. We did not compare the
time required by G-CNV with that required by FastQC as it
automatically performs several quality checks.

Moreover, to assess the performance of G-CNV to generate
a RD signal, we simulated an alignment SAM file on the human
genome (build 37.3). The alignment has been simulated by assum-
ing a sequencing experiment on the genome with coverage 30x.
We did not simulate sequencing and alignment errors. The SAM
file was generated by assuming an ideal aligner able to map the
reads uniquely and without errors. In fact, these errors do not
affect the computing time to generate the RD signal; they affect
the detection of CNVs. However, as for this experiment, we have
been mainly interested to assess the computing time of G-CNV
in the task of generating the RD signal. G-CNV generated the RD
signal with an observing window of length 100 in less than 1 h
56 min and required 10.4 GB of memory. As for the memory used
by G-CNV, it depends on the number of alignments in the ana-
lyzed genome sequence. G-CNV generates the RD signal analyzing
separately the genome sequences. To maximize the parallelization,
as many as possible alignments on the analyzed genome sequence
are loaded into the GPU.

3.6. HARDWARE AND SOFTWARE CONFIGURATION
Experiments described hereinafter have been carried out on a
12 cores Intel Xeon CPU E5-2667 2.90 GHz with 128 GB of

7http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Table 11 | Performance evaluation to remove duplicated sequences
from the synthetic HCS1 dataset.

Mismatches Prefix Time Memory

1 15 12 h 7 min 8.8 GB

27 5 h 33 min 6.6 GB

3 15 3 h 20 min 8.7 GB

27 1 h 30 min 5.7 GB

The first column reports the allowed mismatches.The second column reports the
length of the prefix used to cluster the reads. Columns third and fourth report the
computing time and memory consumption, respectively.

RAM and an NVIDIA Kepler architecture-based Tesla k20c card
with 0.71 GHz clock rate and equipped with 4.8 GB of global
memory.

4. DISCUSSION
Different RD-based methods and tools have been proposed in the
literature to identify CNVs. Typically, these tools do not support
most of the preparatory operations for RD analysis. Therefore, a
specific analysis pipeline must be built with different third-party
tools. G-CNV allows to build the analysis pipeline required to
process short-read libraries for RD analysis according to different
constraints. However, in our opinion, the added value of G-CNV
is the fact that almost all operations are performed on GPUs.
In fact, these are data-intensive operations that may require an
enormous computing power. GPUs are increasingly used to deal
with computational intensive problems. The low cost for accessing
the technology and their very high computing power is facili-
tating the GPUs success. Experimental results show that G-CNV
is able to efficiently run the supported operations. However, it
should be pointed out that the current release of G-CNV still has
some limitations and/or constraints. In particular, as for remov-
ing duplicates, there are two main limitations of our algorithm.
As for the former, the current release of G-CNV supports removal
of duplicates only for single-end reads. As for the latter, there
exists a constraint on the clustering phase. Sorting requires that
all prefixes will be loaded into the memory of the GPU device.
This implies a constraint on the size of the analyzed library, which
depends on the memory of the GPU. With a GPU card equipped
with 4.8 GB of global memory, libraries of up to 220 M reads can
be analyzed. A solution to overcome this constraint is to par-
allelize the sorting on multiple GPU devices. We are currently
working to adapt CUDA-Quicksort to run on multiple GPUs.
Although CUDA-Quicksort resulted be the fastest GPU-based
implementation of the quicksort algorithm, the Thrust Radix Sort
is currently the fastest GPU-based sorting algorithm. However,
as for clustering, we adapted and used our CUDA-Quicksort as
it has been designed to be easily modified to scale on multiple
GPUs. Moreover, we deem that the overall performance of G-CNV
can be improved by implementing the trimming of the adapters
on GPUs.

AUTHOR CONTRIBUTIONS
Conceived the tool: AM. Conceived and designed the experi-
ments: AM, LM. Performed the experiments: AM, MG, EM, GA.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology March 2015 | Volume 3 | Article 28 | 12

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

Analyzed the data: AM, AO, EM, GA, MM, MG, LM. Wrote the
manuscript: AM. Revised the manuscript: AM, GA, LM. Wrote
the program: AM. Generated the synthetic data: AM. Coordinated
the project: LM.

ACKNOWLEDGMENTS
We thank Dario Deledda for his advice and comments on the
manuscript. In addition, we thank the reviewers for their very
useful and constructive comments and suggestions. Funding : The
work has been supported by the Italian Ministry of Education and
Research through the Flagship InterOmics (PB05) and HIRMA
(RBAP11YS7K) projects, and the European MIMOmics (305280)
project.

REFERENCES
Abel, H. J., Duncavage, E. J., Becker, N., Armstrong, J. R., Magrini, V. J., and Pfeifer,

J. D. (2010). Slope: a quick and accurate method for locating non-snp struc-
tural variation from targeted next-generation sequence data. Bioinformatics 26,
2684–2688. doi:10.1093/bioinformatics/btq528

Abyzov, A., and Gerstein, M. (2011). Age: defining breakpoints of genomic
structural variants at single-nucleotide resolution, through optimal alignments
with gap excision. Bioinformatics 27, 595–603. doi:10.1093/bioinformatics/
btq713

Abyzov, A., Urban, A. E., Snyder, M., and Gerstein, M. (2011). Cnvnator: an
approach to discover, genotype, and characterize typical and atypical CNVs
from family and population genome sequencing. Genome Res. 21, 974–984.
doi:10.1101/gr.114876.110

Alkan, C., Coe, B. P., and Eichler, E. E. (2011). Genome structural variation discovery
and genotyping. Nat. Rev. Genet. 12, 363–376. doi:10.1038/nrg2958

Bao, S., Jiang, R., Kwan, W., Wang, B., Ma, X., and Song, Y.-Q. (2011). Evaluation of
next-generation sequencing software in mapping and assembly. J. Hum. Genet.
56, 406–414. doi:10.1038/jhg.2011.43

Bochukova, E. G., Huang, N., Keogh, J., Henning, E., Purmann, C., Blaszczyk, K.,
et al. (2009). Large, rare chromosomal deletions associated with severe early-
onset obesity. Nature 463, 666–670. doi:10.1038/nature08689

Burriesci, M. S., Lehnert, E. M., and Pringle, J. R. (2012). Fulcrum: condensing
redundant reads from high-throughput sequencing studies. Bioinformatics 28,
1324–1327. doi:10.1093/bioinformatics/bts123

Carter, N. P. (2007). Methods and strategies for analyzing copy number variation
using DNA microarrays. Nat. Genet. 39, S16–S21. doi:10.1038/ng2028

Cederman, D., and Tsigas, P. (2008). “A practical quicksort algorithm for graphics
processors,” in Algorithms-ESA 2008 (Berlin: Springer), 246–258.

Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S.,
et al. (2009). Breakdancer: an algorithm for high-resolution mapping of genomic
structural variation. Nat. Methods 6, 677–681. doi:10.1038/nmeth.1363

Chiang, D. Y., Getz, G., Jaffe, D. B., O’Kelly, M. J., Zhao, X., Carter, S. L., et al. (2008).
High-resolution mapping of copy-number alterations with massively parallel
sequencing. Nat. Methods 6, 99–103. doi:10.1038/nmeth.1276

David, M., Dzamba, M., Lister, D., Ilie, L., and Brudno, M. (2011). Shrimp2:
sensitive yet practical short read mapping. Bioinformatics 27, 1011–1012.
doi:10.1093/bioinformatics/btr046

Dohm, J. C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2008). Substantial biases
in ultra-short read data sets from high-throughput DNA sequencing. Nucleic
Acids Res. 36, e105–e105. doi:10.1093/nar/gkn425

Feuk, L., Andrew, R. C., and Stephen, W. S. (2006a). Structural variation in the
human genome. Nat. Rev. Genet. 7, 85–97. doi:10.1038/nrg1767

Feuk, L., Marshall, C. R., Wintle, R. F., and Scherer, S. W. (2006b). Structural vari-
ants: changing the landscape of chromosomes and design of disease studies.
Hum. Mol. Genet. 15(Suppl. 1), R57–R66. doi:10.1093/hmg/ddl057

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). Cd-hit: accelerated for clus-
tering the next-generation sequencing data. Bioinformatics 28, 3150–3152.
doi:10.1093/bioinformatics/bts565

Gomez-Alvarez, V., Teal, T. K., and Schmidt, T. M. (2009). Systematic artifacts in
metagenomes from complex microbial communities. ISME J. 3, 1314–1317.
doi:10.1038/ismej.2009.72

Harismendy, O., Ng, P. C., Strausberg, R. L., Wang, X., Stockwell, T. B., Beeson,
K. Y., et al. (2009). Evaluation of next generation sequencing platforms for
population targeted sequencing studies. Genome Biol. 10, R32. doi:10.1186/gb-
2009-10-3-r32

Hillier, L. W., Marth, G. T., Quinlan, A. R., Dooling, D., Fewell, G., Barnett, D.,
et al. (2008). Whole-genome sequencing and variant discovery in C. elegans.
Nat. Methods 5, 183–188. doi:10.1038/nmeth.1179

Hormozdiari, F., Hajirasouliha, I., Dao, P., Hach, F., Yorukoglu, D., Alkan, C.,
et al. (2010). Next-generation variationhunter: combinatorial algorithms for
transposon insertion discovery. Bioinformatics 26, i350–i357. doi:10.1093/
bioinformatics/btq216

Hormozdiari, F., Hajirasouliha, I., McPherson, A., Eichler, E. E., and Sahinalp, S. C.
(2011). Simultaneous structural variation discovery among multiple paired-end
sequenced genomes. Genome Res. 21, 2203–2212. doi:10.1101/gr.120501.111

Hurles, M. E., Dermitzakis, E. T., and Tyler-Smith, C. (2008). The functional impact
of structural variation in humans. Trends Genet. 24, 238–245. doi:10.1016/j.tig.
2008.03.001

Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean, G. (2012). De novo assem-
bly and genotyping of variants using colored De Bruijn graphs. Nat. Genet. 44,
226–232. doi:10.1038/ng.1028

Ivakhno, S., Royce, T., Cox, A. J., Evers, D. J., Cheetham, R. K., and Tavaré, S. (2010).
CNAseg—a novel framework for identification of copy number changes in
cancer from second-generation sequencing data. Bioinformatics 26, 3051–3058.
doi:10.1093/bioinformatics/btq587

Kircher, M., and Kelso, J. (2010). High-throughput DNA sequencing – concepts and
limitations. Bioessays 32, 524–536. doi:10.1002/bies.200900181

Klus, P., Lam, S., Lyberg, D., Cheung, M. S., Pullan, G., McFarlane, I., et al. (2012).
Barracuda-a fast short read sequence aligner using graphics processing units.
BMC Res. Notes 5:27. doi:10.1186/1756-0500-5-27

Korbel, J. O., Abyzov, A., Mu, X. J., Carriero, N., Cayting, P., Zhang, Z., et al. (2009).
PEMer: a computational framework with simulation-based error models for
inferring genomic structural variants from massive paired-end sequencing data.
Genome Biol. 10, R23. doi:10.1186/gb-2009-10-2-r23

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie
2. Nat. Methods 9, 357–359. doi:10.1038/nmeth.1923

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 10, R25. doi:10.1186/gb-2009-10-3-r25

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with burrows –
wheeler transform. Bioinformatics 25, 1754–1760. doi:10.1093/bioinformatics/
btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009a). The
sequence alignment/map format and samtools. Bioinformatics 25, 2078–2079.
doi:10.1093/bioinformatics/btp352

Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., et al. (2009b). Soap2: an
improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967.
doi:10.1093/bioinformatics/btp336

Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads
and calling variants using mapping quality scores. Genome Res. 18, 1851–1858.
doi:10.1101/gr.078212.108

Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.
doi:10.1093/bioinformatics/btl158

Liu, C.-M.,Wong, T.,Wu, E., Luo, R.,Yiu, S.-M., Li,Y., et al. (2012a). Soap3: ultra-fast
GPU-based parallel alignment tool for short reads. Bioinformatics 28, 878–879.
doi:10.1093/bioinformatics/bts061

Liu, Y., Schmidt, B., and Maskell, D. L. (2012b). CUSHAW: a CUDA compatible
short read aligner to large genomes based on the burrows–wheeler transform.
Bioinformatics 28, 1830–1837. doi:10.1093/bioinformatics/bts276

Liu, Y., Schmidt, B., and Maskell, D. L. (2010). Cudasw++ 2.0: enhanced smith-
waterman protein database search on CUDA-enabled GPUs based on SIMT
and virtualized SIMD abstractions. BMC Res. Notes 3:93. doi:10.1186/1756-
0500-3-93

Luo, R., Wong, T., Zhu, J., Liu, C.-M., Zhu, X., Wu, E., et al. (2013). Soap3-dp:
fast, accurate and sensitive GPU-based short read aligner. PLoS ONE 8:e65632.
doi:10.1371/journal.pone.0065632

Magi, A., Tattini, L., Pippucci, T., Torricelli, F., and Benelli, M. (2012). Read count
approach for DNA copy number variants detection. Bioinformatics 28, 470–478.
doi:10.1093/bioinformatics/btr707

www.frontiersin.org March 2015 | Volume 3 | Article 28 | 13

http://dx.doi.org/10.1093/bioinformatics/btq528
http://dx.doi.org/10.1093/bioinformatics/btq713
http://dx.doi.org/10.1093/bioinformatics/btq713
http://dx.doi.org/10.1101/gr.114876.110
http://dx.doi.org/10.1038/nrg2958
http://dx.doi.org/10.1038/jhg.2011.43
http://dx.doi.org/10.1038/nature08689
http://dx.doi.org/10.1093/bioinformatics/bts123
http://dx.doi.org/10.1038/ng2028
http://dx.doi.org/10.1038/nmeth.1363
http://dx.doi.org/10.1038/nmeth.1276
http://dx.doi.org/10.1093/bioinformatics/btr046
http://dx.doi.org/10.1093/nar/gkn425
http://dx.doi.org/10.1038/nrg1767
http://dx.doi.org/10.1093/hmg/ddl057
http://dx.doi.org/10.1093/bioinformatics/bts565
http://dx.doi.org/10.1038/ismej.2009.72
http://dx.doi.org/10.1186/gb-2009-10-3-r32
http://dx.doi.org/10.1186/gb-2009-10-3-r32
http://dx.doi.org/10.1038/nmeth.1179
http://dx.doi.org/10.1093/bioinformatics/btq216
http://dx.doi.org/10.1093/bioinformatics/btq216
http://dx.doi.org/10.1101/gr.120501.111
http://dx.doi.org/10.1016/j.tig.2008.03.001
http://dx.doi.org/10.1016/j.tig.2008.03.001
http://dx.doi.org/10.1038/ng.1028
http://dx.doi.org/10.1093/bioinformatics/btq587
http://dx.doi.org/10.1002/bies.200900181
http://dx.doi.org/10.1186/1756-0500-5-27
http://dx.doi.org/10.1186/gb-2009-10-2-r23
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1093/bioinformatics/btp336
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1093/bioinformatics/btl158
http://dx.doi.org/10.1093/bioinformatics/bts061
http://dx.doi.org/10.1093/bioinformatics/bts276
http://dx.doi.org/10.1186/1756-0500-3-93
http://dx.doi.org/10.1186/1756-0500-3-93
http://dx.doi.org/10.1371/journal.pone.0065632
http://dx.doi.org/10.1093/bioinformatics/btr707
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Manconi et al. G-CNV

Manavski, S. A., and Valle, G. (2008). CUDA compatible GPU cards as efficient hard-
ware accelerators for smith-waterman sequence alignment. BMC Bioinformatics
9(Suppl. 2):S10. doi:10.1186/1471-2105-9-S2-S10

Manconi, A., Orro, A., Manca, E., Armano, G., and Milanesi, L. (2014a). GPU-
bsm: a GPU-based tool to map bisulfite-treated reads. PLoS ONE 9:e97277.
doi:10.1371/journal.pone.0097277

Manconi, A., Orro, A., Manca, E., Armano, G., and Milanesi, L. (2014b). A tool
for mapping single nucleotide polymorphisms using graphics processing units.
BMC Bioinformatics 15:1–13. doi:10.1186/1471-2105-15-S1-S10

Marco-Sola, S., Sammeth, M., Guigó, R., and Ribeca, P. (2012). The gem mapper:
fast, accurate and versatile alignment by filtration. Nat. Methods 9, 1185–1188.
doi:10.1038/nmeth.2221

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 17, 10. doi:10.14806/ej.17.1.200

Medvedev, P., Stanciu, M., and Brudno, M. (2009). Computational methods for dis-
covering structural variation with next-generation sequencing. Nat. Methods 6,
S13–S20. doi:10.1038/nmeth.1374

Merikangas, A. K., Corvin, A. P., and Gallagher, L. (2009). Copy-number variants
in neurodevelopmental disorders: promises and challenges. Trends Genet. 25,
536–544. doi:10.1016/j.tig.2009.10.006

Miller, C. A., Hampton, O., Coarfa, C., and Milosavljevic, A. (2011). Readdepth: a
parallel r package for detecting copy number alterations from short sequencing
reads. PLoS ONE 6:e16327. doi:10.1371/journal.pone.0016327

Mills, R. E., Walter, K., Stewart, C., Handsaker, R. E., Chen, K., Alkan, C., et al.
(2011). Mapping copy number variation by population-scale genome sequenc-
ing. Nature 470, 59–65. doi:10.1038/nature09708

Mu, J. C., Jiang, H., Kiani, A., Mohiyuddin, M., Asadi, N. B., and Wong, W. H.
(2012). Fast and accurate read alignment for resequencing. Bioinformatics 28,
2366–2373. doi:10.1093/bioinformatics/bts450

Munshi, A. (2009). The Opencl Specification, Vol. 1. Khronos OpenCL Working
Group, l1–l15.

Nijkamp, J. F., van den Broek, M. A., Geertman, J.-M. A., Reinders, M. J., Daran,
J.-M. G., and de Ridder, D. (2012). De novo detection of copy number varia-
tion by co-assembly. Bioinformatics 28, 3195–3202. doi:10.1093/bioinformatics/
bts601

NVIDIA Corporation. (2007). Compute Unified Device Architecture Programming
Guide.

Patel, R. K., and Jain, M. (2012). Ngs qc toolkit: a toolkit for quality control of
next generation sequencing data. PLoS ONE 7:e30619. doi:10.1371/journal.pone.
0030619

Perry, G. H., Tchinda, J., McGrath, S. D., Zhang, J., Picker, S. R., Cáceres, A. M.,
et al. (2006). Hotspots for copy number variation in chimpanzees and
humans. Proc. Natl. Acad. Sci. U.S.A. 103, 8006–8011. doi:10.1073/pnas.
0602318103

Pireddu, L., Leo, S., and Zanetti, G. (2011). Seal: a distributed short read map-
ping and duplicate removal tool. Bioinformatics 27, 2159–2160. doi:10.1093/
bioinformatics/btr325

Ruffalo, M., LaFramboise, T., and Koyutürk, M. (2011). Comparative analysis of
algorithms for next-generation sequencing read alignment. Bioinformatics 27,
2790–2796. doi:10.1093/bioinformatics/btr477

Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., and Brudno, M.
(2009). Shrimp: accurate mapping of short color-space reads. PLoS Comput.
Biol. 5:e1000386. doi:10.1371/journal.pcbi.1000386

Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D.,
Marth, G., et al. (2001). A map of human genome sequence variation con-
taining 1.42 million single nucleotide polymorphisms. Nature 409, 928–933.
doi:10.1038/35057149

Schatz, M. C. (2009). Cloudburst: highly sensitive read mapping with mapreduce.
Bioinformatics 25, 1363–1369. doi:10.1093/bioinformatics/btp236

Shi, H., Schmidt, B., Liu, W., and Müller-Wittig, W. (2010). Quality-score guided
error correction for short-read sequencing data using CUDA. Procedia Comput
Sci 1, 1129–1138. doi:10.1016/j.procs.2010.04.125

Sindi, S., Helman, E., Bashir, A., and Raphael, B. J. (2009). A geometric approach
for classification and comparison of structural variants. Bioinformatics 25,
i222–i230. doi:10.1093/bioinformatics/btp208

Smith, A. D., Chung, W.-Y., Hodges, E., Kendall, J., Hannon, G., Hicks, J., et al.
(2009). Updates to the rmap short-read mapping software. Bioinformatics 25,
2841–2842. doi:10.1093/bioinformatics/btp533

Smith, A. D., Xuan, Z., and Zhang, M. Q. (2008). Using quality scores and longer
reads improves accuracy of solexa read mapping. BMC Bioinformatics 9:128.
doi:10.1186/1471-2105-9-128

Stefansson, H., Rujescu, D., Cichon, S., Pietiläinen, O. P., Ingason, A., Steinberg,
S., et al. (2008). Large recurrent microdeletions associated with schizophrenia.
Nature 455, 232–236. doi:10.1038/nature07229

Xi, R., Luquette, J., Hadjipanayis, A., Kim, T.-M., and Park, P. J. (2010). Bic-seq: a fast
algorithm for detection of copy number alterations based on high-throughput
sequencing data. Genome Biol. 11(Suppl. 1), O10. doi:10.1186/1465-6906-11-
S1-O10

Xie, C., and Tammi, M. T. (2009). Cnv-seq, a new method to detect copy num-
ber variation using high-throughput sequencing. BMC Bioinformatics 10:80.
doi:10.1186/1471-2105-10-80

Xu, H., Luo, X., Qian, J., Pang, X., Song, J., Qian, G., et al. (2012). Fastuniq: a fast
de novo duplicates removal tool for paired short reads. PLoS ONE 7:e52249.
doi:10.1371/journal.pone.0052249

Yang, X., Liu, D., Liu, F., Wu, J., Zou, J., Xiao, X., et al. (2013). Htqc: a fast qual-
ity control toolkit for illumina sequencing data. BMC Bioinformatics 14:33.
doi:10.1186/1471-2105-14-33

Ye, K., Schulz, M. H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: a pat-
tern growth approach to detect break points of large deletions and medium
sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871.
doi:10.1093/bioinformatics/btp394

Yoon, S., Xuan, Z., Makarov, V., Ye, K., and Sebat, J. (2009). Sensitive and accurate
detection of copy number variants using read depth of coverage. Genome Res.
19, 1586–1592. doi:10.1101/gr.092981.109

Yung, L. S., Yang, C., Wan, X., and Yu, W. (2011). Gboost: a GPU-based tool for
detecting gene–gene interactions in genome–wide case control studies. Bioinfor-
matics 27, 1309–1310. doi:10.1093/bioinformatics/btr114

Zhang, Z. D., Du, J., Lam, H., Abyzov, A., Urban, A. E., Snyder, M., et al. (2011).
Identification of genomic indels and structural variations using split reads. BMC
Genomics 12:375. doi:10.1186/1471-2164-12-375

Zhao, K., and Chu, X. (2014). G-blastn: accelerating nucleotide alignment by graph-
ics processors. Bioinformatics 30,1384–1391. doi:10.1093/bioinformatics/btu047

Zhao, M., Wang, Q., Wang, Q., Jia, P., and Zhao, Z. (2013). Computational tools
for copy number variation (cnv) detection using next-generation sequenc-
ing data: features and perspectives. BMC Bioinformatics 14(Suppl. 11):S1.
doi:10.1186/1471-2105-14-S11-S1

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 10 December 2014; accepted: 19 February 2015; published online: 10 March
2015.
Citation: Manconi A, Manca E, Moscatelli M, Gnocchi M, Orro A, Armano G and
Milanesi L (2015) G-CNV: a GPU-based tool for preparing data to detect CNVs with
read-depth methods. Front. Bioeng. Biotechnol. 3:28. doi: 10.3389/fbioe.2015.00028
This article was submitted to Bioinformatics and Computational Biology, a section of
the journal Frontiers in Bioengineering and Biotechnology.
Copyright © 2015 Manconi, Manca, Moscatelli, Gnocchi, Orro, Armano and Milanesi.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology March 2015 | Volume 3 | Article 28 | 14

http://dx.doi.org/10.1186/1471-2105-9-S2-S10
http://dx.doi.org/10.1371/journal.pone.0097277
http://dx.doi.org/10.1186/1471-2105-15-S1-S10
http://dx.doi.org/10.1038/nmeth.2221
http://dx.doi.org/10.14806/ej.17.1.200
http://dx.doi.org/10.1038/nmeth.1374
http://dx.doi.org/10.1016/j.tig.2009.10.006
http://dx.doi.org/10.1371/journal.pone.0016327
http://dx.doi.org/10.1038/nature09708
http://dx.doi.org/10.1093/bioinformatics/bts450
http://dx.doi.org/10.1093/bioinformatics/bts601
http://dx.doi.org/10.1093/bioinformatics/bts601
http://dx.doi.org/10.1371/journal.pone.0030619
http://dx.doi.org/10.1371/journal.pone.0030619
http://dx.doi.org/10.1073/pnas.0602318103
http://dx.doi.org/10.1073/pnas.0602318103
http://dx.doi.org/10.1093/bioinformatics/btr325
http://dx.doi.org/10.1093/bioinformatics/btr325
http://dx.doi.org/10.1093/bioinformatics/btr477
http://dx.doi.org/10.1371/journal.pcbi.1000386
http://dx.doi.org/10.1038/35057149
http://dx.doi.org/10.1093/bioinformatics/btp236
http://dx.doi.org/10.1016/j.procs.2010.04.125
http://dx.doi.org/10.1093/bioinformatics/btp208
http://dx.doi.org/10.1093/bioinformatics/btp533
http://dx.doi.org/10.1186/1471-2105-9-128
http://dx.doi.org/10.1038/nature07229
http://dx.doi.org/10.1186/1465-6906-11-S1-O10
http://dx.doi.org/10.1186/1465-6906-11-S1-O10
http://dx.doi.org/10.1186/1471-2105-10-80
http://dx.doi.org/10.1371/journal.pone.0052249
http://dx.doi.org/10.1186/1471-2105-14-33
http://dx.doi.org/10.1093/bioinformatics/btp394
http://dx.doi.org/10.1101/gr.092981.109
http://dx.doi.org/10.1093/bioinformatics/btr114
http://dx.doi.org/10.1186/1471-2164-12-375
http://dx.doi.org/10.1093/bioinformatics/btu047
http://dx.doi.org/10.1186/1471-2105-14-S11-S1
http://dx.doi.org/10.3389/fbioe.2015.00028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

	G-CNV: a GPU-based tool for preparing data to detect CNVs with read-depth methods
	Introduction
	Materials and methods
	GPU
	Quality control
	Filtering low-quality sequences
	Masking low-quality nucleotides
	Removing adapter sequences
	Removing duplicated read sequences

	Mapping
	RD signal
	Hardware and software requirements

	Results
	Filtering low-quality sequences
	Masking low-quality nucleotides
	Removing adapter sequences
	Removing duplicated read sequences
	Generating the RD signal
	Hardware and software configuration

	Discussion
	Author contribution
	Acknowledgments
	References

