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Abstract: The present work focuses on the development of a theoretical model aimed at 

relating the mechanical properties of nanoporous metals to the bending response of thick 

ligaments. The model describes the structure of nanoporous metal foams in terms of an 

idealized regular lattice of massive cubic nodes and thick ligaments with square  

cross-sections. Following a general introduction to the subject, model predictions are 

compared with Young’s modulus and the yield strength of nanoporous Au foams determined 

experimentally and available in literature. It is shown that the model provides a quantitative 

description of the elastic and plastic deformation behavior of nanoporous metals, 

reproducing to a satisfactory extent the experimental Young’s modulus and yield strength 

values of nanoporous Au. 

Keywords: porous material; nanostructured material; metals and alloys; elastic modulus; 

yield strength; modeling 

 

1. Introduction 

The present study concerns the modeling description of the mechanical behavior and properties of 

nanoporous (NP) metal foams. In particular, it aims to provide a state-of-the-art of the fundamental 

research activity in this specific area of investigation and show the potential of an analytical  

modeling approach recently developed. To this aim, general remarks introductory to the field of porous 
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materials are given. Then, the class of NP metal foams is identified based on its unique set of  

structural, physical, and chemical properties. NP Au is used as a case study. The lack of satisfactory 

understanding of structure-property relationships is suitably pointed out to put emphasis on the difficulty 

arising in the rationalization of the mechanical properties of NP metals. This represents one of the most 

active areas of investigation in view of its importance for enabling the utilization of NP metal foams as 

structural materials. The significant amount of experimental data, though fragmentary and contradictory, 

is described in detail to provide the necessary reference framework in terms of methodology, 

experimental set-up, and measured quantities. The preliminary discussion of experimental findings 

introduces a rapid survey of the various attempts of modeling the response of NP metals to mechanical 

deformation which have been performed in connection with the progressive improvement of 

experimental investigation. Finally, a recently developed analytical model for predicting Young’s 

modulus and yield strength is discussed. 

In this respect, it is worth noting that the modeling of the mechanical properties of NP metal foams 

for a long time has been influenced by the seminal work of Gibson and Ashby from the 1980s [1]. 

Originally aimed at rationalizing the general mechanical behavior exhibited by mesoscopic foams 

constituted by different materials, Gibson and Ashby’s model provides a qualitative interpretation of 

elastic and plastic deformation based on the flexural response of a regular arrangement of connected thin 

beams [1,2]. 

The same conceptual framework has been subsequently used to explain deformation processes 

involving nanometer-sized ligaments and ligament junctions in NP metals [3–6]. In this case, the model 

exhibited clear limitations, which gave rise to various attempts of modifying the functional dependence 

of model equations on experimental variables without changing fundamental assumptions [3–6]. 

However, recent experimental and theoretical work has definitely shown that limitations arise exactly in 

connection with the fundamental assumptions of Gibson and Ashby’s model, namely the negligible 

aggregation of mass at ligament junctions and the identification of ligaments with thin beams [7].  

NP metals indeed exhibit a structure in which mass agglomerates at ligament junctions and ligaments 

have small length-to-thickness ratios [7]. 

Most recent modeling approaches take the above-mentioned structural features into account.  

In particular, they provide a more realistic description of the NP metal structure based on a regular 

network of massive nodes connected to each other by thick ligaments [7,8]. In addition, cross-sectional 

stress profiles are considered within Timoshenko’s beam elasticity theory to correctly describe the 

ligament flexural behavior [7,8]. Results suggest that the incorporation of the two aspects is greatly 

beneficial, model predictions being in satisfactory agreement with experimental findings [7,8]. 

In this work, the analytical model based on massive nodes and thick ligaments is refined further,  

and the mathematical apparatus is discussed in detail. Furthermore, the influence of the ligament  

cross-section geometry on Young’s modulus and yield strength is studied. Model predictions obtained 

for the analytically solvable cases of square and circular cross-sections are suitably compared with 

experimental results available in literature. 
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2. From Porous to Nanoporous Materials 

Porous materials contain pores that partially replace solid matter [9–19]. They form one of the 

broadest classes in materials science [9–19]. In principle, any material can be fabricated in porous form. 

Ranging from carbon and silicon to ceramics and polymers, porous materials exhibit physical and 

chemical properties that show significant promise for applications in various fields of science and 

technology. Among them, it is the high surface area-to-volume ratio which represents the general feature 

common to the entire class and, often, it is the main source of interest [9–19]. 

The surface area-to-volume ratio increases as porosity increases and characteristic lengths decrease. 

For this reason, interest has increasingly shifted on porous materials with pores in the nanometer range. 

Although the International Union of Pure and Applied Chemistry officially identifies pores with 

characteristic length between 2 and 50 nm as mesopores and larger ones as macropores [20], materials 

with porosity on the nanometer scale are usually referred to as nanoporous (NP). 

Porous materials can be fabricated by different methods depending on their chemical nature and the 

desired structural arrangement. Synthetic routes typically rely upon the use of forced gas bubbling in 

molten metals [21], the use of suitable templates such as porous alumina [22], and the use of the 

electrochemical deposition from a liquid crystalline plating mixture [23]. Other methodologies take 

advantage of self-assembled structures of polymeric frameworks [24] and inorganic-block copolymer 

micelles [25], and of the chemical and electrochemical etching of binary and multinary alloys [26]. 

Etching methods, also termed de-alloying, are particularly suited to the fabrication of NP metals. 

Presently, NP metal foams represent one of the most rapidly growing research subjects in materials 

science. These materials exhibit a bi-continuous three-dimensional open-cell structure formed by pores 

that percolate through a solid network including ligaments and nodes [27,28]. These structural elements 

have irregular morphology and characteristic lengths distributed on the nanometer scale, which give rise 

to a disordered structure characterized by an unusually high surface area-to-volume ratio [27,28].  

Unique physical and chemical properties arise due to the peculiar combination of structural features, 

which allow NP metal foams to show promise for a broad spectrum of applications including structural  

engineering [27–29], catalysis [30], sensing [28,31,32], and energy [33–35]. 

Although interest in NP metals has a primary focus on their technological potential, the challenging 

questions they pose concerning the structure-property relationships also represent an intriguing subject 

for fundamental research. This lays considerable emphasis on the structure itself, and, then, on the 

fabrication methods enabling its obtainment. 

Whereas macroporous metal foams can be fabricated by various methods [36], including physical 

vapor deposition, chemical and electrochemical deposition, powder metallurgy, casting and gas-eutectic 

transformation, NP metals have been mostly synthesized by chemical and electrochemical de-alloying. 

De-alloying allows the preferential, selective dissolution in aqueous medium of one or more elements 

from a parent alloy [26,37–39]. Involving individual atoms or small clusters, dissolution is accompanied 

by reconstruction at solid-liquid interfaces mediated by surface mass transport phenomena [27]. 

Connected porosity grows gradually inside residual alloy, which finally consists of a disordered network 

of ligaments [39]. Thermal treatments are commonly used subsequent to dissolution to relax internal 

stresses that arise because of the volume shrinkage [40] or to coarsen the structure [41]. 
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Attractive due to its apparent simplicity, de-alloying also exhibits various limitations. First, it can 

hardly be utilized for alloys containing non-noble metals, which significantly restricts the range of NP 

metals that can be effectively synthesized [27]. Second, it is typically performed in aqueous solution, 

which excludes the use of metals prone to oxidation [27,35]. Third, it depends on experimental variables 

that can be determined only partially, which ultimately results in a scarce control of atomic-scale 

mechanisms [42]. 

Nevertheless, numerous binary alloys can form NP metals by de-alloying, including, among others,  

Cd–Mg [43,44], Cu–Au [45,46], Cu–Mn [47,48], Cu–Pd [49], Cu–Zn [50,51], and Ag–Au [52–55].  

The latter, in particular, is the typical starting material to fabricate NP Au, a material with unexpected 

physical and mechanical properties. 

3. NP Au as the Typical Case Study 

Although interest in NP Au foams arose recently after a pioneering work from the 1960s and  

1970s [51,55–57], the fabrication method and material are remarkably ancient. In the twelfth century, 

layers of nearly pure Au were manufactured by pre-Columbian civilizations by depletion gilding,  

a special case of de-alloying based on the removal of other metals from the surface of Au alloys via 

surface enrichment processes [58,59]. Variants of depletion gilding were developed by European artisans 

during the Middle Ages [53,60,61]. 

Nowadays, chemical and electrochemical de-alloying routinely produce NP Au structures consisting 

of bi-continuous disordered frameworks of pores and ligaments connecting at ligament junctions, or 

nodes. The typical structure can be seen in Figure 1, where scanning electron microscopy (SEM) 

micrographs of two NP Au samples with different characteristic lengths are shown. Experimental 

findings indicate that pore size can vary in the range between 3 and 30 nm [62,63], resulting in a specific 

surface area of 10 to 150 m2 g−1 [28,64]. 

 

Figure 1. SEM micrograph of NP Au. 

The high surface area as well as excellent chemical stability and flexible manufacturing conditions 

make NP Au potentially suited to a broad range of applications in miniaturized actuation, sensing, 

catalysis, fuel cells, and biocompatible implants. 

Actuation is enabled by the capability of NP Au surfaces to convert capillary forces due to electric 

charging to macroscopic displacements [64–67]. This allows fabricating layered structures with length 

variations similar to those shown by ceramic thermal actuators. It follows that electric charging can be 
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utilized to tailor the NP Au properties on demand for limited time intervals [68]. For example, it has 

been shown that composite beams formed by Au and NP Au layers can undergo considerable tip 

displacement [69]. In this respect, the existence of a direct link between average mechanical stresses and 

expansion is still an open question [70,71]. 

Interestingly, the cause-effect relationship between the electric charging of surfaces and the deflection 

of a composite layered beam can be reversed. Therefore, elastic strain accumulation can be used to 

generate electric potential differences in electrochemical circuits [72]. NP Au electrodes could enable, 

then, a new generation of energy harvesting devices. 

In combination with the above-mentioned properties, NP Au surfaces also exhibit an electrochemical 

double layer with high capacitance, which allows amplifying the electrical response of sensors up to  

30 times [73]. Overall, this gives rise to unusually high mechanical responses to the adsorption of 

chemical species [66,67,74]. 

A refined description of these phenomena takes into consideration that during a fluid adsorption in a 

mesopore, a pressure on the pore walls is exerted. This pressure, the value of which is in the order of  

107 Pa, causes deformation of the pore, and as a result, deformation of the porous material as a whole. 

This effect has been experimentally observed for several mesoporous materials. The small strains, in the 

order of 10−3 ÷ 10−4, on the pore walls are in the linear elastic range and it is reasonable to assume a 

linear relation between the pressure in the pore and the experimentally observed strain with a 

proportionality which is constant called the pore-load modulus [75–77]. In this regard, the pore-load 

modulus is influenced by the morphology and geometry of pores and their distribution. For materials 

with a chaotic pore structure (wide pore size distribution, different geometry, and orientation of pores) 

the calculation of the pore-load modulus can be very complex [75–77]. 

For example, NP Au-coated cantilevers undergo relevant chemo-mechanical deformation  

consequent to the adsorption of biomolecules [78]. NP Au-based sensors have shown remarkable 

selectivity towards specific prostate antigens [79] and probe DNA [80]. In addition, NP Au has been 

shown to allow effective electrochemical sensing of p-nitrophenol molecules [81], as well as the rapid 

measurement of Escherichia coli bacteria concentration in food and water [82]. Similarly, NP Au-based 

detectors for neural activity provided a superior signal-to-noise ratio due to low electrode-electrolyte 

impedance [83]. 

Surface topology and, in particular, the high density of atomic step edges make NP Au a good catalyst 

for methanol oxidation in gaseous environments [84] and for oxygen reduction in fuel cells [85].  

In these cases, catalytic properties are sensitive to the concentration of residual Ag in NP Au [66],  

as well as to surface coatings [28]. 

A significant surface plasmon resonance results in optical properties of NP Au that are quite different 

from those of bulk Au [86]. For this reason, NP Au also represents a candidate material for tunable 

surface-enhanced Raman spectroscopy [87,88]. Moreover, the residual Ag content affects and tunes the 

functionality of NP Au substrates in surface-enhanced Raman scattering [89]. 

All the above-mentioned properties and behaviors depend strongly on both the NP Au morphology 

and the surface area-to-volume ratio [69]. Even more pronounced are the effects of NP Au structural 

features on its mechanical properties. 
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4. Mechanical Behavior 

NP metal foams with open cell structures exhibit a complex response to mechanical deformation.  

In this respect, not only do they differ from their bulk counterparts, but also from other NP materials.  

For example, NP Au foams undergo brittle fracture upon tensile deformation despite the ductility of bulk 

Au. At the same time, the mechanical properties of NP metals do not find correspondence in the tensile 

or compressive behavior of NP ceramics and polymers. 

The typical stress-strain curve resulting from the compression of NP metal foams is shown in  

Figure 2. Three different deformation stages can be identified. The first one consists of a linear elastic 

region governed by the bending of structural elements, mostly corresponding to ligaments. In the second 

deformation stage, the stress-strain curve exhibits a definite plateau resulting from the progressive 

collapse of open cells. The final sudden increase of stress in the third stage is due to the impingement of 

structural elements against each other and the consequent foam densification. The slope of the linear 

portions of the stress-strain curve provides a measure of the effective Young’s modulus of the NP metal 

foam at different degrees of compaction. Though in the first deformation stage this quantity is 

significantly lower than the Young’s modulus of the bulk material, it tends to coincide with the latter in 

the third deformation stage. 

 

Figure 2. A typical stress-strain curve for NP Au under compressive deformation conditions. 

Strongly depending on the NP metal foam history, Young’s modulus and yield strength typically 

range from about 3 to 40 GPa and from about 10 to 240 MPa, respectively [47,90–96]. The breadth of 

these ranges stems from the diversity of approaches utilized to measure the mechanical quantities, as 

well as from the influence of experimental conditions and sample fabrication methods on measurements. 

Deformation in NP metals was first investigated by Li and Sieradzki in 1992 [97]. Focusing on the 

fracture behavior of NP Au foams, they did not find evidence of any inherent relationship between 

ligament brittleness and ligament size [97]. Different from bulk solids [98], NP metals exhibit, upon 

nanoindentation, a yield strength approximately coincident with hardness [90]. When the indenter 

compresses the foam, plastic collapse occurs beneath it. No lateral expansion is observed, which points 

out that the effective Poisson’s ratio is approximately equal to zero. 
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Performing uniaxial compression tests on cylindrical micropillars of different radii, Volkert et al. 

investigated the elastic behavior of NP Au foams, finding a Young’s modulus of about 7 GPa [95]. 

Similar values were measured by Biener et al. under depth-sensing nanoindentation conditions [91].  

No smooth size effect was detected. 

In contrast, working on NP Au foams with relative densities between 25% and 41%, Hodge et al. 

obtained Young’s modulus values that were unexpectedly large, and explained the result with 

contributions arising from the tensile and compressive deformation of ligaments [99]. Along the same 

line, Mathur and Erlebacher showed that Young’s modulus of NP Au becomes four times larger when 

the ligament diameter decreases from 12 to 3 nm [100]. Similarly, stress-free NP Au films with a 

ligament size below 10 nm exhibited a definite Young’s modulus enhancement [101]. Surface stresses 

and the moment of inertia of the NP Au foam were invoked to rationalize the observed stiffening. 

Experimental findings suggest that NP Au foams with ligament sizes smaller than 30 nm tend to have 

higher residual Ag contents [99]. Being equal to other morphological factors, this implies a higher 

relative density of the NP Au foam, which in turn enhances the Young’s modulus [99]. 

Concerning the plastic deformation behavior, Hodge et al. showed that the hardness of NP Au 

measured by nanoindentation decreases with the indenter size and the characteristic length of the foam 

structure [3]. For NP Au foams with relative density around 42% and ligament size of about 100 nm, 

Biener et al. found remarkably high hardness and deformation mechanisms governed by ductile 

densification [90]. Along the same line, Volkert et al. showed that the yield strength of NP Au foams 

with 15 nm ligaments approaches the intrinsic strength of bulk Au [95]. More specifically, individual 

ligaments of NP Au foams with relative density of about 36% were estimated to have yield stress of  

1.5 GPa, a value close to the theoretical shear strength of bulk Au when deformation is not mediated  

by dislocations [95]. 

Nanoindentation measurements on NP Au foams with relative densities ranging from 20% to 42% 

allowed Hodge et al. to relate the decrease in ligament size with the decrease in yield strength [3]. 

Hakamada and Mabuchi also observed a simple power-law dependence of the yield stress on the 

ligament diameter [102]. This seems to suggest that NP Au undergoes deformation mechanisms similar 

to those of Au nanowires [102], dominated by the reduction of defect concentration and the suppression 

of dislocation activity due to size effects [103,104]. 

Experimental evidence indicates that fabrication methods affect the yield strength [93]. Following a 

modified de-alloying method, Jin et al. obtained NP Au free of cracks by reducing the volume  

shrinkage [93]. The consequent elimination of undesirable material failures, mostly related to stress 

corrosion cracking and brittle cracks [105], allowed NP Au to exhibit considerable ductility, fracture 

being substantially absent up to full density [93]. In contrast with previous and subsequent findings,  

very low yield strength values were measured [93]. 

Various experimental studies on NP Au foams suggest that the deformation of individual ligaments 

is similar to the one of Au micropillars and nanowires [92,95,98,106]. In all cases, scale-dependent yield 

strength values are observed [92,95,98,106]. Furthermore, as in the case of NP Au foams, the yield 

strength of Au micropillars and nanowires can approach theoretical values when the characteristic length 

of structures is below 200 nm [92,95,98,106]. The observed behavior has been related to the presence of 

free surfaces, which limit the concentration of dislocation sources [91,95]. 
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TEM micrographs of deformed NP Au demonstrate the formation of surface steps, which suggests 

that local plastic collapse can take place because of bending processes due to localized plastic 

deformation at nodes [92]. Although no perfect dislocation was found in ligaments, high densities of 

Shockley partial dislocations and twins were observed at ligament junctions [92], consistent with 

deformation mechanisms based on strain gradient hardening [107]. 

A more complicated deformation behavior was observed by Sun et al. in 150 nm thick NP Au films 

with ligament diameters between 10 and 20 nm [108]. TEM analyses performed during indentation 

showed that only the outermost layers were compacted initially [108]. Only after their plastic  

collapse, other layers became involved in compaction, the rest of the underlying foam structure 

remaining unaffected [108]. Dislocations were also shown to involve the entire ligament, and to glide 

easily to nodes [108]. 

The true stress-strain relationship obtained by Volkert et al. by uniaxial compression pointed out 

remarkable strain hardening for NP Au [95]. A similar behavior was observed by Dou and Derby [92], 

explained with the contact between ligaments due to low strain densification. However, Biener et al. did 

not find evidence of strain hardening in compressed NP Au micropillars [91]. 

5. Phenomenological Modeling of Mechanical Properties 

Experimental findings clearly indicate that achieving the capability of fine-tuning the structural 

features of NP Au foams is one of the crucial steps on the way to their practical exploitation. To this 

aim, gaining a deeper understanding of the relationship between structure and mechanical properties is 

also necessary, as it would enable a rational design of NP metals for structural application. 

Rationalizing the mechanical response of NP metal foams is a challenging issue. Difficulties mostly 

stem from the inextricable combination of mechanical deformations on different length scales. On the 

microscopic level, individual ligaments exhibit deformation modes depending on various factors, 

including material properties, characteristic lengths, aspect ratio, and configuration of local mechanical 

stresses [37–40,90]. On the macroscopic level, morphological details increasingly affect local responses, 

finally producing an overall mechanical response that is a complex function of the arrangement of 

ligaments and pores, relative density, and distribution of characteristic lengths [37–40,90,99].  

Inherent structural disorder prevents relating global deformation to local deformation mechanisms, 

which makes a comprehensive model of mechanical properties particularly difficult to develop. 

In this respect, important achievements have been obtained by using structural models based  

on regular, repetitive unit cells. These have been given different geometries, such as cubic [1,2],  

tetrahedral [109], tetrakaidecahedral [110], and those derived by bubble aggregates [111]. Using such 

models provides a reasonable line of approach to the overall NP metal foam behavior, although the 

oversimplification of structural features restricts the model validity to the initial stages of mechanical 

deformation. It follows that the proposed models can only roughly estimate the effective Young’s 

modulus, shear modulus, and Poisson’s ratio of metal foams. 

In the 1980s, Ashby and Gibson chose the cubic unit cell to model the relationship between structural 

and mechanical properties of mesoscopic and macroscopic foams [1,2]. Years later, their model also 

provided the first conceptual framework to connect the mechanical properties of NP metals with their 

morphological features [1,2]. It describes the porous structure as a regular and periodic three-dimensional 



Metals 2015, 5 1673 

 

 

arrangement of connected beams with a square cross-section and large aspect ratios [1,2]. The typical 

structural unit used in the model is shown in Figure 3 together with SEM micrographs of macroscopic 

and NP metal foams for comparison. Since length l is much longer than thickness t, beams respond to 

mechanical stresses as thin flexural components for which three-point bending is the dominant 

deformation mode, as shown in Figure 3 [1,2]. 

 

Figure 3. The structural unit cell used in the Ashby and Gibson model. 

The relative density φ of the NP metal foam is proportional to the ligament characteristic  

lengths [1,2]. In particular [1,2], 

2 2φ t l  (1) 

Fundamental physics allows writing for the relative Young’s modulus Erel and yield strength σrel of 

NP metal foams with the following scaling equations [1,2]: 

2eff
rel 1φ

E
E C

E
   (2) 

3 2eff
rel 2

σ
σ = φ

σ
C  (3) 

Here, Eeff and σeff are the effective Young’s modulus and yield strength of the metal foam, E and σ 

are the Young’s modulus and yield strength of the bulk material, and C1 and C2 are proportionality 

constants. Based on the fitting to experimental data, these constants have been determined to 

approximately equal 1.0 and 0.3, respectively [1,2]. 

Despite the approximations involved, Equations (2) and (3) clearly suggest that relative density  

is the most influential factor on the mechanical behavior of metal foams. In general, a reduction of 

relative density results in the depression of mechanical properties, including stiffness, strength, and 

ductility [97,112]. However, the model holds only at low relative densities, when open-cell metal foams 

mainly deform by ligament bending [109,113]. At higher relative densities, i.e., in the presence of thicker 

ligaments, tensile and compressive stress contributions must be taken into due account. To this aim,  

a refined version of the Ashby and Gibson model was developed to improve the description of the yield 

process [99,100]. The result is an expression alternative to Equation (3), 
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 3 2 1 2

rel 2σ φ 1 φC   (4) 

which includes an additional term depending on φ. 

Overall, the model predicts relatively simple power-law relationships between mechanical quantities 

and relative density [1,2]. Though this prediction is widely supported by experimental evidence in 

mesoscopic and macroscopic foams [1,2], its validity for NP metal foams is still debated. 

At least three broad sets of experimental observations suggest that Ashby and Gibson’s model 

provides an oversimplified description of the mechanical behavior of NP metal foams. On the one hand, 

transmission electron microscopy (TEM) and SEM micrographs show that NP metals exhibit a structure 

quite far from an ordered arrangement of beams due to the periodic repetition of a regular unit cell [114]. 

On the other, a detailed analysis of TEM and SEM micrographs points out that mass significantly 

agglomerates at ligament junctions, transforming these into massive nodes. In addition, ligaments exhibit 

relatively low aspect ratios, with length comparable with thickness [7,8,115]. Both these features are 

predicted to significantly affect the bending behavior of individual ligaments [7,8,115]. Finally, accurate 

mechanical measurements on NP Au foams reveal that the degree of mechanical deformation does not 

depend exclusively on relative density, but also on ligament length and thickness [4,7,95]. Therefore, 

more refined modeling approaches are needed to progress in the field. 

Various attempts have been made to rationalize the observed differences between experimental data 

and Ashby and Gibson’s model predictions by slightly modifying the original equations. Focusing on 

the plastic behavior of NP Au foams, Hodge et al. pointed out a Hall-Petch-like dependence of the yield 

strength σlig of individual ligaments on the ligament thickness, t [99]. Accordingly, 

1 2

ligσ σ k t   (5a) 

where k is a material constant describing the size dependence of yield strength [99]. Aimed at taking into 

account the Hall-Petch-like behavior of individual ligaments, Hodge et al. proposed incorporating 

Equation (4) into Ashby and Gibson’s model expression for the relative yield strength dependence on 

the relative density, which finally led to this equation [99]: 

 3 2 1 2

relσ φ σC k t   (5b) 

where C is a constant determined by best-fitting. 

Fan and Fang extended Hodge et al.’s approach to NP metal foams of higher relative density [5]. To 

this aim, Ashby and Gibson’s term related to the contribution of cell corners to relative density was 

included in Equation (5b), which was re-written as [5]: 

  3 2 1 2 1 2

relσ φ 1 φ σC k t    (6) 

Starting from numerical simulation results, Sun et al. found instead that Ashby and Gibson’s model 

equation hypothesized the axial yielding of ligaments: 

relσ φC  (7) 

satisfactorily fits the estimated relative yield strength [6]. 

Following a different approach, Huber et al. developed a refined structural model of NP metal foams 

by using a tetrahedral unit cell with a central spherical node connected to four similar nodes by four 

beams [4]. The resulting diamond-like lattice structure exhibits a relative yield strength: 
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rel σ Rσ 1 6
r r

c c
l l



   
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   
 (8) 

where cσ is a proportionality constant, cR is a scaling factor between node and ligament radii, r is the 

ligament radius, and l the node spacing [4]. Equation (8) is able to fit the σrel values obtained by numerical 

simulations based on the finite element method [4]. Huber et al. also show that disorder can significantly 

affect the σrel estimates, and that a correction factor should be taken into account [4]. 

The elastic deformation behavior of NP metal foams was also modeled following the same 

approaches. In this regard, Sun et al. show that the relative Young’s modulus of NP Au foams with fine 

ligaments is fitted satisfactorily by the expression: 

 2

rel 2 3φ φE C C   (9) 

where C2 and C3 are proportionality constants [6]. 

Along a different line, Liu and Antoniou demonstrated that mass agglomeration at ligament junctions 

can remarkably affect elastic behavior, inducing a stiffening of the NP metal foam [7]. Using a unit cell 

formed by a cubic node with six ligaments, the relative Young modulus was written as: 

1
4 1 4 4 3

rel

1 1

8 8

t t d t t t d
E

l l l l l l l


             

              
           

 (10) 

where d is a measure of the mass agglomerated at the nodes [7]. Scaling predictions generally agree quite 

well with experimental data [7]. 

The tetrahedral structure studied by Huber et al. results in a relative Young’s modulus [4]: 

4

rel E

r
E c

l

 
  

 
 (11) 

which is in substantial agreement with Ashby and Gibson’s model [1,2]. The exponent of the  

power law is, indeed, the same, and the value of the proportionality constant cE is similar to the one 

estimated by Ashby and Gibson [4]. Interestingly, nodal mass and disorder have smaller effects on the 

Erel value [4]. 

Overall, it can be concluded that the discrepancy between experimental behavior and model 

predictions progressively led to the development of a research line aimed at rationalizing the relationship 

between mechanical properties and structural features. Nevertheless, despite evident advances in the 

understanding of the complex scenario, there is still considerable room to improve modeling by 

integrating the conceptual framework with novel ideas and methods. One of these concerns is the 

response of individual ligaments to mechanical forces. A modeling approach to this issue is formulated 

in the following. 

6. Ligament Deformation and Mechanical Properties in NP Au 

The proposed model describes the NP Au structure as a regular, periodic arrangement of the structural 

unit schematically shown in Figure 4a,b. The unit consists of a cubic node with sides t + 2d long 
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connecting six semi-ligaments of length h/2. Whereas t is the ligament thickness, d roughly measures 

mass agglomeration at nodes. The unit is enclosed in a cubic unit cell of side: 

hdtl  2  (12) 

Two variants of the base unit have been taken into account. One has ligaments with a square  

cross-section and cross-sectional area Asq = t2. The other has ligaments with a circular cross-section and 

cross-sectional area Acir = πt2/4. 

 

Figure 4. (a) Unit cells with ligaments having square and circular cross sections;  

(b) Characteristic lengths associated with ligaments and nodes; (c) Idealized bending 

behavior of a ligament. 

For a bulk metal, the unit cell volume l3 is fully occupied by the mass mb = ρl3, where ρ is the bulk 

density. For a NP Au sample that nominally occupies the same macroscopic volume of the bulk solid, 

only a fraction of the volume is really occupied by mass. Such mass is equal to msq = [(t + 2d)3 + 3t2h]ρ 

and  
3 2

cir

3
2 π ρ

4
m t d t h

 
   
 

, respectively, for NP Au structures with square and circular ligaments. 

Therefore, the relative density ϕ of the NP Au structures considered can be simply calculated by  

the expressions: 
3 2

sq 2 3
t d t h

l l l l


   
     
   

 (13a) 
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   
     
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 (13b) 
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The mechanical response of unit cells can be evaluated by considering ligaments as thick beams 

simply supported at both ends and with a concentrated load P at the middle point. The load induces the 

ligament elastic deflection, as schematically shown in Figure 4c. According to Timoshenko’s elasticity 

theory for beams [116,117], beam deflection w and so-called bending rotation ψ are related to each other 

as described by the following equation: 

lig

d d d
0

d d d

w
E I k G A

x x x

   
     

   
 (14) 

Here, E and G are, respectively, the Young’s modulus and the shear modulus of the bulk material,  

I is the moment of inertia of the ligament plane cross-sectional area, and k is an empirical correction 

factor related to the stress distribution within the ligament cross-section [117]. Equation (14) can be 

solved by taking into account the usual condition [117]: 

2

2

d 1

d 2
E I P

x


  (15) 

and the boundary conditions: 

0  for x = h/2 (16) 

d
0

d x


  for x = 0; h (17) 

Equation (15) expresses the fact that the second derivative of the bending rotation ψ is directly 

proportional to the mechanical load P. Instead, Equations (16) and (17) relate to the assumption that the 

bending rotation ψ and bending deflection dψ/dx are equal to zero, respectively, at the middle point and 

at the ends. 

It can be shown that the maximum deflection at the ligament middle point is equal to: 

3

2

s

1
( / 2) 1 24

48

Ph
w h I

E I k Ah

 
  

 
 (18) 

where the second term in the square brackets represents a mathematical expression accounting for the 

distribution of shear stresses across the ligament cross-sectional area. In this expression, ν is Poisson’s 

ratio and A is the cross-sectional area of ligaments at the middle point. 

In the elastic deformation regime, stress and strain are related through Young’s modulus E according 

to the equation [117]: 

σ εE  (19) 

where σ and ε are, respectively, the elastic stress and strain. For the elastically deformed ligament,  

strain can be calculated by the expression: 

ligε
w

h
  (20) 

whereas the corresponding stress is: 

lig 2

2
σ

P

l
  (21) 
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In agreement with Ashby and Gibson’s approach [2], the effective Young’s modulus of the NP 

structure can then be defined as: 

lig

eff

lig

σ

ε
E   (22) 

It follows that the effective elastic modulus can be expressed as: 

1

2 2 2

s

96 1
1 24

E I
I

E l h k Ah




 
  

 
 (23) 

The moment of inertia I and shear deformation coefficient k depend on the geometry of the  

cross-section. For a square cross-section, they are equal to: 

 (24) 

sq

10(1 )

12 11
k









 (25) 

For a circular cross-section, the expressions change to: 

4
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π

64

t
I   (26) 
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
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 (27) 

Simple algebra shows that the effective elastic modulus for ligaments with a square cross-section is: 

1
24
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2 2

s

8 12 11
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E t t
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
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 (28) 

whereas for ligaments with a circular cross-section it becomes equal to: 

1
24

cir
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3π (7 6 )
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 (29) 

Equations (28) and (29) express the relative Young’s modulus for NP Au structures with ligaments 

of square or circular cross-sections, and can be utilized to make predictions to be compared with 

experimental findings. 

A similar modeling approach can be followed to express the yield strength of NP Au, which provides 

information on the plastic behavior of the NP Au foams. To this aim, it is worth noting that based on 

Equation (18), the load P can be expressed as: 

1
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Correspondingly, the movement acting along the beam is equal to: 

1

22

1
241

24
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


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According to Timoshenko’s deformation theory [116], the energy stored in the deformed beam is: 

2

0

1
d

2

h M
U s

E I
   (32) 

where s is the integration variable along the ligament length. Once Equation (31) for M is substituted in 

Equation (32), taking into account that a single unit cell includes two deforming ligaments, the total 

potential energy of deformation is equal to: 
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Following Timoshenko [116], the work Q can be expressed as: 

2σQ l w  (34) 

According to Love’s theorem [118], 

VQ 2  (35) 

where V is the deformation energy. Under the condition that U is numerically equal to V, the latter can 

be written as: 

UQV   (36) 

The condition imposed by Love’s theorem is that: 

0
)(






w

UQ
 (37) 

Substituting Equations (33) and (34) in (37) results in the equation: 

2
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 (38) 

which allows expressing the deflection w as a function of the stress σ as follows: 

2
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1
1 24 σ
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h l
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E I k Ah
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 (39) 

In turn, substituting Equation (39) in (31) allows us to express the moment M as: 
2

2

1
1 24 σ

48

hl
M I

k Ah

 
  

 
 (40) 

which makes the dependence of M on the mechanical stress σ and on the ligament characteristic lengths 

t, h, and l explicit. Since the plastic moment is equal to [2]: 
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3

pl ys

1
σ

4
M t  (41) 

where σys is the yield strength of the material, the relative yield strength of a NP Au foam can be 

expressed as: 
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 (42) 

Different from the case of elastic deformation behavior, the ligament cross-section geometry affects 

yield strength through the shear deformation coefficient k only. 

For NP Au foams with ligaments having square cross-sections, the yield strength can be  

expressed as: 

1
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 (43) 

whereas it is equal to: 
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 (44) 

in the case of ligaments with circular cross-sections. 

7. Model Predictions 

Equations (12) and (13) describe the variation of relative density ϕ with the characteristic lengths t, 

d, h, and l. For illustration purposes, the parametric variation of ϕ with the ratios t/l and d/l, with the ratio 

h/l kept constant, is shown in Figure 5a,b for both cases of ligaments with square and circular  

cross-sections. It can be seen that ϕ increases as t/l increases, and decreases as d/l increases. This is in 

line with general expectations, since the thickening of ligaments and the mass agglomeration, due to the 

mutual constraints on characteristic lengths, determine an increase of the fraction of nominal volume 

occupied by the mass. 

The parametric variation of ϕ with the ratios h/l and d/l, with the ratio t/l kept constant, is shown, 

instead, in Figure 6a,b. In this case, ϕ increases as h/l decreases, and increases as d/l increases. These 

results are again in agreement with general expectations. Relative density increases as ligaments get 

shorter or mass agglomerates at nodes. 

Overall, Figure 5,6 indicate that ϕ can reach maximum and minimum values of about 0.5 and 0.1, 

respectively, as the characteristic lengths t, h, d, and l are allowed to vary in realistic ranges of values, 

i.e., they are comparable with those obtained from experimental measurements. 
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Figure 5. Relative density ϕ as a function of the ratios t/l (a) and d/l (b). The ratio h/l is kept 

constant at 0.5. Dotted (• • •) and dashed (‒ ‒ ‒) lines refer to the cases of ligaments with 

square and circular cross-sections, respectively. 

 

Figure 6. Relative density ϕ as a function of the ratios h/l (a) and d/l (b). The ratio t/l is kept 

constant at 0.245. Dotted (• • •) and dashed (‒ ‒ ‒) lines refer to the cases of ligaments with 

square and circular cross-sections, respectively. 

Concerning the variation of the relative Young’s modulus E/Es and yield strength σ/σys with relative 

density ϕ and characteristic lengths, results are shown in Figure 7. Model predictions have been obtained 

by keeping the ratio h/l constant at the value of 0.5. 

Model curves reveal that both E/Es and σ/σys increase with ϕ. This is exactly what can be expected 

based on simple intuition when ligaments get thicker and nodes less massive. Analogously, E/Es and 

σ/σys increase with the ratio d/l. In this case, mass agglomeration at nodes depresses the NP Au foam 

elasticity, increasing the tendency to yield at the same time. Finally, E/Es and σ/σys increase with the 

ratio t/l. The reason is simply related to the bending behavior of individual ligaments, which get 

increasingly stiffer as their thickness increases. 

Another set of model curves concerning the relative Young’s modulus E/Es and yield strength σ/σys 

is shown in Figure 8. In this case, the ratio t/l has been kept constant at 0.245. 

The relative Young’s modulus E/Es increases as relative density ϕ and the ratio d/l increase, whereas 

it decreases as the ligament length increases. In contrast, the relative yield strength σ/σys is predicted to 

decrease with the relative density ϕ and d/l ratio. As the ligament length increases, σ/σys increases. 
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Apart from providing a general map of the variation of E/Es and σ/σys with relative density and 

characteristic lengths, the sets of model curves also point out that the thickness of ligaments is more 

influential than their length on the elastic and plastic behaviors. Furthermore, having the same relative 

density ϕ, NP Au structures with ligaments with square cross-sections exhibit E/Es and σ/σys values 

larger than NP Au structures with ligaments with circular cross-sections. 

 

 

Figure 7. The relative Young’s modulus E/Es and the relative yield strength σ/σys as a 

function of relative density ϕ, respectively (a) and (b); of the ratio d/l, respectively (c) and 

(d); and of the ratio t/l, respectively (e) and (f). Results were obtained keeping h/l constant 

at the value of 0.5. Dashed (‒ ‒ ‒) and dotted (• • •) lines refer to the cases of ligaments with 

square and circular cross-sections, respectively. The dash dot line (− · − ·) indicates the 

values obtained with Gibson and Ashby’s model. 
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Figure 8. The relative Young’s modulus E/Es and the relative yield strength σ/σys as a 

function of relative density ϕ, respectively (a) and (b); of the ratio d/l, respectively (c) and 

(d); and of the ratio t/l, respectively (e) and (f). Results were obtained keeping t/l constant at 

the value of 0.245. Dashed (‒ ‒ ‒) and dotted (• • •) lines refer to the cases of ligaments with 

square and circular cross-sections, respectively. Dash-dot line (− · − ·) indicates the values 

obtained with Gibson and Ashby’s model. 

8. Comparison with Experimental Findings 

The comparison between experimental findings and modeling predictions can be used to  

validate the modeling approach and test its capabilities and limitations. In particular,  

Equations (28), (29), (43) and (44) can be used to predict the relative Young’s modulus and yield 

strength. To this aim, it is necessary to evaluate characteristic lengths in real NP Au structures. 
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The unit cell depicted in Figure 4 univocally defines the characteristic lengths involved in modeling. 

These include the distance l between two adjacent nodes connected by a ligament, the effective ligament 

length h, the ligament thickness t, and the characteristic length d of nodes. Characteristic lengths are not 

independent from each other. Two links exist between them, defined by Equations (12) and (13).  

These equations define clear conditions on the possible values that characteristic lengths can assume. 

Therefore, they also provide a way to indirectly estimate the effective ligament length h affected by 

bending and the characteristic length d associated with mass agglomeration at ligament junctions. 

In this respect, it is worth noting that this is particularly useful in light of the difficulties in the direct 

determination of h and d from SEM micrographs. The irregular morphology of NP Au indeed does not 

allow any simple method to distinguish between node and ligament, particularly for massive nodes and 

thick ligaments. On the contrary, the distance l between two adjacent nodes connected by a ligament and 

the ligament thickness t are lengths much easier to measure. 

A simple method was followed to this aim. The distance l between two adjacent nodes was measured 

by identifying the intersections between the axis of the ligament connecting the two nodes and the axes 

of two other ligaments, one per node. The distance between the two intersection points was set equal to 

l. The ligament thickness t was measured along the direction perpendicular to the ligament axis at half 

distance between the adjacent nodes. Measurements were performed on restricted areas of SEM 

micrographs. An example is shown in Figure 9, where l and t are estimated for a representative ligament. 

 

Figure 9. The average distance between two adjacent nodes connected by a ligament, l, and 

the average ligament thickness, t. 

To estimate reliable average values for the two characteristic lengths, the largest possible number of 

independent measurements on a corresponding number of ligaments was carried out. Reliable values for 

the effective ligament length h and for the characteristic length of nodes d can be calculated by imposing 

the simultaneous verification of Equations (12) and (13) using the average l and t estimates. 

The above-mentioned method was applied to the analysis of data available in the literature. SEM 

micrographs were analyzed to construct the statistical distributions p of the characteristic lengths. For 

illustration purposes, Figure 10 shows the data obtained from the analysis of SEM micrographs reported 

in the work of Volkert et al. [95]. 
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Figure 10. Statistical distributions of (a) effective ligament length h; (b) ligament thickness t; 

and (c) characteristic length of nodes d. These distributions are obtained from image analysis 

applied to previous work by Volkert et al. [95]. 

It can be seen that the ligament thickness t ranges approximately between 5 and 17 nm. The calculated 

effective ligament length h varies, instead, between 10 and 25 nm, and the calculated characteristic node 

length d between 4 and 19 nm. Most probable values for t, h, and d are equal to 9, 13, and  

10 nm, respectively. 

Measured and calculated values of the different characteristic lengths can be utilized to predict the 

relative Young’s modulus and relative yield strength of the NP Au foams studied by Volkert et al. [95]. 

Model predictions are shown in Figure 11a,b as a function of relative density ϕ. The cases of NP Au 

foams with ligaments having square and circular cross-sections are shown separately. For ligaments with 

square cross-sections, the relative Young’s modulus E/Es ranges between 0.03 and 0.21. For ligaments 
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with circular cross-sections, E/Es ranges, instead, between 0.01 and 0.97. Regarding relative yield 

strength σ/σys, it ranges between 0.07 and 0.38 for ligaments with square cross-sections, and between 

0.06 and 0.29 for ligaments with circular cross-sections. For both E/Es and σ/σys, modeling predictions 

almost overlap with experimental estimates. 

 

Figure 11. The relative Young’s modulus E/Es and the relative yield strength σ/σys as a 

function of relative density . Data refer to the cases of ligaments with square, (a) and (b), 

and circular, (c) and (d), cross-sections, respectively. Model predictions (open symbols) are 

derived from the calculation of the relative elastic modulus and relative yield strength for 

different ligaments with their characteristic lengths measured by image analysis. The full 

symbol is the experimental value of the considered nanoporous metal [95]. 

Similar calculations were performed to predict the relative Young’s modulus E/Es of NP Au foams 

starting from the experimental information reported in Liu and Antoniou’s work [7]. As in the previous 

case, model predictions and experimental findings are shown in Figure 12. 

Once again, it can be seen that predicted and measured values exhibit an acceptable agreement, 

particularly in the light of the fragmentary information available. 

Predictions on the yield strength behavior of NP Au foams were made starting from experimental 

data discussed in works by Volkert et al., Biener et al., and Hodge et al. [3,90,95]. Model predictions 

and experimental findings are compared in Figure 13a,b, where modeling estimates are plotted as  

a function of experimental data. 

It can be seen that points mostly arrange along the 45° line shown in the figure, demonstrating that 

modeling predictions and experimental values almost overlap. 
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Figure 12. Relative Young’s modulus E/Es of NP Au foams as a function of relative density . 

Experimental data (•) are taken from Table 2 of Reference [7]. Model predictions: part (a) 

shows the case of ligaments with square (□) cross-section and part (b) shows the case of 

ligaments with circular (○) cross-section. 

 

Figure 13. Relative yield strength σ/σys values predicted by model equations as a function 

of experimental estimates. Experimental data are taken from References [3,90,95]. Model 

predictions: part (a) shows the case of ligaments with square (□) cross-section and part (b) 

shows the case of ligaments with circular (○) cross-section. 
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Overall, the proposed model satisfactorily accounts for the elastic and plastic deformation of NP Au, 

reproducing its relative Young’s modulus and relative yield strength values to a remarkable extent.  

The satisfactory agreement between experimental data and modeling predictions clearly suggests that 

taking into account the flexural behavior of thick ligaments significantly improves the conceptual 

framework and the capability of the theoretical framework to correctly describe the mechanical 

properties of NP metals. 

9. Conclusions 

The present work demonstrates that a theoretical model based on a simplified description of NP metal 

structures, able to connect the mechanical properties of NP metals with the bending response of thick 

ligaments, gives rise to predictions in good agreement with experimental findings. In particular,  

the model satisfactorily accounts for the elastic and plastic deformation behavior of NP Au foams, 

reproducing Young’s modulus and yield strength values to a remarkable extent. This strongly suggests 

that the correct description of the flexural behavior of thick ligaments is a necessary element to 

incorporate in future models of the mechanical properties of NP metals. 
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