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Abstract: We present an on-line database of all-atom force-field parameters and
molecular properties of compounds with antimicrobial activity (mostly antibiotics and some
beta-lactamase inhibitors). For each compound, we provide the General Amber Force
Field parameters for the major species at physiological pH, together with an analysis
of properties of interest as extracted from µs-long molecular dynamics simulations in
explicit water solution. The properties include number and population of structural clusters,
molecular flexibility, hydrophobic and hydrophilic molecular surfaces, the statistics of intra-
and inter-molecular H-bonds, as well as structural and dynamical properties of solvent
molecules within first and second solvation shells. In addition, the database contains several
key molecular parameters, such as energy of the frontier molecular orbitals, vibrational
properties, rotational constants, atomic partial charges and electric dipole moment, computed
by Density Functional Theory. The present database (to our knowledge the first extensive
one including dynamical properties) is part of a wider project aiming to build-up a database
containing structural, physico-chemical and dynamical properties of medicinal compounds
using different force-field parameters with increasing level of complexity and reliability. The
database is freely accessible at http://www.dsf.unica.it/translocation/db/.
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1. Introduction

The study of dynamical interactions between drugs and their biological targets (such as nucleic acids
and proteins) is of paramount importance in medicinal chemistry and related fields (see e.g., [1,2]).
Among the many tools, numerical computations including molecular dynamics (MD) simulations have
gained an ever increasing role in addressing key structural, dynamical, thermodynamic and kinetic
features at a molecular level of detail [3–11]. Furthermore, thanks also to the steep increase in
computational power (e.g., the recent porting on GPUs allowed the all-atom simulations of porins
embedded and solvated in membrane beyond the µs timescale [12]), MD simulations are no longer a
mere complement to experiments, but truly inspire new research lines and experimental work [5,6,13–16].

Dynamical interactions can be described in MD simulations by means of different models (see
e.g., [17]): from full-quantum descriptions further approximations lead to mixed classical-quantum
(QM/MM), all-atom, mixed molecular mechanics/coarse-grained (MM/CG) and coarse-grained (CG)
models to represent “atomic” interactions.

In particular, MD simulations based on all-atom empirical “force-fields”, nowadays routinely
performed in the microsecond timescale, have been proven to yield structural, dynamical,
thermodynamical, and kinetic information with good accuracy [5,14,15]. Irrespective of the physical
model used to describe interatomic forces, the key ingredient of empirical MD simulations are the
parameters entering terms of the force-field, which are usually fitted to reference experimental or
theoretical data [18]. The use of the latter scheme, facilitated by the introduction of the Amber
95 force field [19], allowed to improve considerably the range of application/accuracy of empirical
simulations. The possibility to perform high quality ab-initio calculations has indeed allowed the
fitting to any property, including those not or partly accessible through experiments. An example in
this direction was the use of DFT to calculate all vibrational frequencies and related eigenvectors
of a chromophore [20], that once reproduced by the empirical parameters has opened the way to
investigate more precisely the elecronic-vibrational coupling in photosynthesis [21]. The force-fields
widely used today in biomolecular simulations have reached a very good level of description of structural
and dynamical properties of common macromolecules such as proteins [22], nucleic acids [23], and
membranes [24], although corrections and improvements have been recently proposed [25]. However,
the parametrization of generic molecules (drugs, dyes, etc.) remains often a non-trivial task [26],
despite the efforts in developing (semi-)automatic parametrization tools. Among the widely used public
databases and tools are the R.E.DD.B. [27,28] and the AMBER parameter [29] databases. Obtaining
reliable force-fields for general molecules requires the combination of several tools and expertise, from
chemical characterization [30] to classical [31] and/or quantum calculations [32] at different levels, as
well as chemical, physical, and biological intuition.
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Recently, as part of the activity of the TRANSLOCATION consortium within the Innovative
Medicines Initiative antimicrobial resistance programme, New Drugs for Bad Bugs [33], we
have undertaken a long-term project with the goal of building a large database of antimicrobial
compounds (and medicinal compounds in general) containing, for each molecule, all-atom parameters
compatible with different existing biological force fields, as well as microsecond-long dynamics and
physico-chemical descriptors in different physiological conditions. Thus, using several established
computational tools we have started a systematic investigation on antimicrobial compounds of different
classes. Besides the specific application to the study of bacterial resistance mediated by the membrane
barrier [34,35], our database contains molecular information possibly useful in different contexts such
as, for example, receptor-ligand molecular docking and indirect assessment of role of flexibility in the
interpretation of experimental results (see Section 4).

This work constitutes the first step of the aforementioned wider project: we report a homogenous
database of the computed molecular properties for a sample of 40 different antimicrobial compounds
ranging in size from ∼20 to ∼80 atoms (see Table A1 in the Appendix). For each compound, we
provide the General Amber Force Field parameters [36] for the major species at physiological pH,
together with an analysis of properties of general interest, including number and population of relevant
structural clusters, molecular flexibility, hydrophobic and hydrophilic molecular surfaces, as well as
the statistics of intra- and inter-molecular H-bonds, hydration shells structure and dynamics, etc., as
extracted from µs-long molecular dynamics simulations in explicit water solution. In addition, the
database includes several key molecular parameters, such as energy of the frontier molecular orbitals,
normal modes of vibration, rotational constants, atomic partial charges and electric dipole moment,
computed by Density Functional Theory. This database is freely accessible on-line at the address
http://www.dsf.unica.it/translocation/db/ and is suitable for further inclusion of new data.

2. Computational Methods

For each compound we obtained the 3D structure data file (SDF format) from the Pubchem
database [37]. We then used the ChemAxon’s Marvin suite of programs [30] to calculate the dominant
tautomer distribution and thus find the protonation/charge state most populated at physiological pH = 7.4.
We used the same package to obtain other general properties of interest, such as the net charge
dependence on pH, the isoelectric point pI, the Van der Waals volume, the number of rotatable bonds,
and the number of H-bond donors/acceptors.

2.1. QM Calculations

The structure of the major species determined in the above step has been subsequently used as an
input to quantum-chemical calculations at the Density Functional Theory level [38]. For this part of the
work we used the Gaussian09 package [32]. In particular, we employed the widely used hybrid B3LYP
functional, a combination of exact (Hartree-Fock) exchange with local and gradient-corrected exchange
and correlation terms [39,40], in conjunction with the split-valence 6-31G?? Gaussian basis-set [41].
The combination B3LYP/6-31G?? represents a good compromise between accuracy and computational
cost [42,43]. In all cases considered we disabled the use of molecular symmetry (Symmetry=None),
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adopted very restrictive convergence criteria for both self-consistent-field iterations (10−8 Ha,
SCF(Conver=8)) and geometry optimizations (Opt(VeryTight)), and used a pruned (99,590)
grid (Int=UltraFine) for numerical integration. For each compound we optimized the ground-state
structure employing the Polarizable Continuum Model [44] as to mimic the effect of water solvent
(SCRF=(PCM,Solvent=Water)) particularly to avoid formation of strong intra-molecular H-bonds.
To confirm the geometry obtained to be a global minimum on the potential energy surface we performed
full vibrational analyses obtaining real frequencies in all cases. We processed the output of Gaussian09
with GaussSum [45] and Gabedit [46] to extract orbital data, and vibrational spectra, respectively.

On the optimized geometry we then performed B3LYP/6-31G?? single-point energy calculations
in vacuum to generate the atomic partial charges fitting the molecular electrostatic potential. Under
the constraint of reproducing the overall electric dipole moment of the molecule, we used both
Merz-Kollman [47] (Pop=MK) and CHELPG [48] (Pop=CHelpG) schemes to construct a grid of
points around the molecule. Atomic partial charges were then generated through the two-step restrained
electrostatic potential (RESP) method [49] implemented in the Antechamber package [50]. Following
the same procedure we additionally extracted the standard HF/6-31G* point charges, which are fully
compatible with the charge derivation protocol within AMBER [49]. The derivation of consistent charges
is hardly a straightforward task for which specifically devoted tools and databases have been developed,
such as the R.E.DD.B. database to give an example [27,28]. Finally, for the B3LYP/6-31G?? optimized
geometry, we computed logP values using the XLOGP3 program [51], and polar/non-polar molecular
surfaces with the PLATINUM web interface [52].

2.2. MD Simulations

We performed all-atom molecular dynamics simulations in the presence of explicit water solution
(0.1 M KCl) using the Amber14 package [31]. Model systems were prepared with the program tleap
of AmberTools14 [31] adopting the TIP3P model of water [53] and the monovalent ion parameters
appropriate for this choice [54]. For the antibiotics we used the General AMBER Force Field (GAFF)
parameters [36]. For all systems under investigation we used the following procedure. First, geometry
optimization was conducted with a two-step protocol: (i) 10,000 cycles (1000 of steepest descent plus
9000 of conjugate gradient) with harmonic restraint k = 10 kcal · mol−1 · Å−2 on each heavy atom of the
solute and (ii) 10,000 conjugate gradient cycles without restraints. Next, an heating to 400 K followed
by a cooling to 310 K were accomplished via NVT MD runs for 2 ns and 10 ns, respectively. As a last
step preceding the productive dynamics, NPT MD was conducted for 1 ns to relax the simulation box.
Finally, 1 µs-long MD simulations were performed under the NPT ensemble. Pressure and temperature
were regulated at 1 Atm and 310 K using the isotropic Berendsen barostat [55] and the Langevin
thermostat [56], respectively. Electrostatic interactions were evaluated using the particle mesh Ewald
scheme with a cutoff of 9.0 Å for the short-range evaluation in direct space. The same cutoff was used
for Lennard-Jones interactions (with a continuum model correction for energy and pressure) [31].
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2.3. Post-Processing of the MD Trajectories

From the all-atom MD simulations we obtained structural and dynamical features of the compounds
investigated by means of the PTRAJ and CPPTRAJ programs [57]. In detail, we extracted first
and second water shells using a lower (upper) cutoff of 3.4 (5.0) Å. For the analysis of intra- and
inter-molecular H-bonds we adopted angle and distance cutoffs of 135◦ (donor-hydrogen-acceptor angle)
and 3.5 Å (donor-acceptor), respectively [58–62]. The number and population of structural clusters were
determined using a hierarchical agglomerative algorithm [63]. To evaluate atomic root mean square
fluctuations we used the utility g_rmsf of GROMACS [64]. During the MD runs we also monitored
three morphology descriptors related to the gyration tensor, i.e., asphericity, acylindricity, and kappa2,
as implemented in the PLUMED plugin [65]. Asphericity and acylindricity give a measure of the
deviation of the mass distribution from spherical and cylindrical symmetry, respectively; the relative
shape anisotropy kappa2 is limited between 0 and 1 and reflects both symmetry and dimensionality [66].
The dynamical evolution of the minimal projection area has been determined with the combined use
of Open Babel [67] and ChemAxon’s Calculator Plugin [30]. Molecular graphics have been generated
by using the PYMOL [68] and VMD [69] packages. The overall computational protocol adopted is
schematically depicted in Figure 1.

Figure 1. Computational protocol adopted (See Section 2 for a description).

3. Results

3.1. General Structure of the Database

The total of 40 species presently included in the database, ranging in size from clavulanic acid
(22 atoms, molecular weight = 198.1528 Da) to tigecycline (82 atoms, molecular weight = 586.6566 Da),
covers eight different classes of antibiotics and related compounds, namely: carbapenems, cephalosporins,
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monocyclic beta-lactams, oxazolidinones, penicillines, quinolones, tetracyclines, and beta-lactamase
inhibitors. Antimicrobial compounds of these classes are the most widely used against infections caused
by Gram-negative bacteria, such as Escherichia coli, Pseudomonas aeruginosa, Salmonella aenterica
and Klebsiella pneumoniae. The complete set of compounds included in the current version of the
database, together with some of their general properties are listed in Table A1 of the Appendix. Most
of the parameters we provide play a key role in determining the translocation of small molecules, such
as antibacterials, through bacterial porins [70–72], as well as their extrusion by efflux pumps [73–75],
which are among the key topics of the New Drugs for Bad Bugs programme [33].

The main-page http://www.dsf.unica.it/translocation/db/ contains the full list of compounds ordered,
within each class, by increasing molecular weight (see Figure 2A). As shown in the left side of the
picture, a direct link to the official web-page of all of the computer packages and tools employed is also
given. A separate page can then be accessed for each given molecule (Figure 2B). The latter includes
a 2D representation of the selected molecule as well as the corresponding QM-optimized 3D structure
that can be interactively manipulated by activating a JSmol script [76]. The General AMBER Force
Field (GAFF) parameters files (.prep and .frcmod formats [36]) generated with the AmberTools
package [31] can be downloaded within each compound’s page (Figure 2C). We provide three sets of
atomic point-charges computed in vacuum: the standard HF/6-31G(d) (molecule_mk_hf.prep)
and the B3LYP/6-31G(d,p) charges fitting the molecular electrostatic potential using the CHELPG
(molecule_chelpg.prep) and Merz-Kollman (molecule_mk.prep) schemes (see Section 2).

Figure 2. Snapshots of the main page of the database (A); an individual page (B); and the
General Amber Force Field parameters files downloadable for each compound (C).

A separate table reports general properties as well as molecular descriptors extracted from both
quantum-mechanics and molecular-dynamics simulations. As shown in Figure 3, among general
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properties we report molecular formula, molecular weight, number of atoms and rotatable bonds,
number of H-bond donors/acceptors, physiological charge, Van der Waals volume, isoelectric point
pI and pH-dependent net charge of the molecule. For the quantum-optimized structure we provide
also logP values [51], and polar/non-polar molecular surfaces [52]. In the quantum-mechanical section
(Figure 4) the ground-state optimized geometry is available in both plain .xyz and MDL .sdf

formats. For the above molecular structure we report: energy of the highest-occupied molecular orbital
(HOMO) and lowest-unoccupied molecular orbital (LUMO), HOMO-LUMO gap, rotational constants,
and electric dipole moment computed in vacuum and implicit water. The whole set of orbital data
and the corresponding plots (density of electronic states, virtual and occupied levels) extracted with
GaussSum [45] (Figure 4B), as well as the list of harmonic vibrational frequencies and integrated
absorption coefficients with the corresponding IR absorption spectrum obtained with gabedit [46]
are also provided (Figure 4C). A graphical representation of the spatial orientation of the electric dipole
is additionally given (Figure 4D).

Figure 5 offers a visual representation of some of the molecular descriptors extracted from the MD
simulations. The complete set includes: number of solvent molecules within first and second solvation
shells, the statistics of intra- and inter-molecular H-bonds, number and population of structural clusters,
molecular flexibility expressed in terms of root mean square fluctuations, as well as dynamical behavior
of asphericity, acylindricity, and kappa2.

Figure 3. Snapshots of the general properties available for each compound (A); the
molecular net charge dependence on pH computed with MarvinSketch [30] (B); and
the polar/non-polar (red-white-blue color scale) molecular surfaces evaluated with the
PLATINUM server [52] (C).
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Figure 4. Snapshots of the list of molecular properties exctracted from QM calculations (A);
the electronic (B); and vibrational spectra (C); and the visual representation of the electric
dipole moment (D).

Figure 5. Snapshots of the some of the molecular properties exctracted from MD trajectories
(A); as an example we report first and second water shells and statistics of solute-solvent
H-bonds (B), and the dynamical behaviour of the relative shape anisotropy (C).
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4. Discussion

Among the antimicrobial compounds included in this release of the database, those for which all of
the above data are simultaneously available from experiments is relatively small. Thanks to the ever
increasing computational power available, the use of modeling tools represents the best alternative
to obtain homogenously-derived physico-chemical descriptor of molecules, and can be furthermore
useful as a guide for future experimental work. There are many Internet resources reporting relevant
data for a large number of compounds of medicinal interest (PubChem, ChemSpider, DrugBank,
Chemicalize, etc.). However, to the best of our knowledge, the present database is the first extensive
one reporting structural, physico-chemical, and especially dynamical properties obtained combining
different computational tools (in particular µs-long long MD simulations). There are basically three
different levels of active use of our data. First of all the obvious stand-alone use of the tabulated static
and dynamical properties of selected compounds. Second, the availability of the (at the moment only)
GAFF parameters for the major microspecies at physiological pH, makes possible to straightforwardly
perform MD simulations with ready-to-use input files. Finally, the knowledge of the dynamical behavior
of a large number of molecular descriptors extracted from µs-long MD runs allows performing statistical
analyses that go beyond the availability of one static value. This piece of information can find a plethora
of possible applications, for example in the field of molecular docking, just to mention one. Most of the
available docking programs take into account ligand flexibility only in terms of rotatable bonds of one
given input structure (see e.g., rDock [77] and AutoDock Vina [78]) or in terms of small deformations
around an equilibrium conformation, derived e.g., by applying normal modes or related analyses [79].
However, as largely demonstrated particularly in the case of protein-protein interactions [80–87], the
availability of different conformations sampled by the ligand during MD simulations can be crucial
also (perhaps mostly) in protein-ligand docking [73,86,88–90], considerably improving the protocol
and making possible to find otherwise unaccessible binding conformations. This is particularly true
in the context of conformational selection theory [7], where conformations having low probability in the
absence of receptor are populated by the onset of ligand-protein interactions.

The knowledge of the values distribution for specific molecular descriptors can be also useful in
the study of structure-dynamics-activity relationships by means of specific molecular descriptors. For
instance, the minimal projection area (MPA) has been recently used [91] in the context of bacterial
resistance mediated by Resistance-Nodulation Division (RND) multidrug efflux transporters [92–97], to
identify a correlation between reduced efflux activity by mutants of the transporter AcrB and the size of
substrates. Table 1 reports the MPAs computed for the smallest and largest compound within each of
the eight classes considered in the present work. The table reports the dynamical values extracted from
the MD trajectories and compares them with the static ones publicly available from Chemicalize [98].
As shown in Table 1 the value reported in Chemicalize fall in the Mean ± Stdev range in almost all
cases considered; a relevant exception is represented by ertapenem for which Chemicalize predicts the
corresponding MPA to be larger than about 26% with respect to our mean value. Taking into account
the minimum and maximum values and the corresponding range of variability, the distribution of the
computed MPAs displays large deviations (from ∼10% up to ∼40%) around the mean value. Thus, our
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data can be used to take into account the dynamical nature of interacting partners when studying ligand
transport processes, as well as any interaction dynamics between antibiotics and their targets.

Table 1. Comparison between minimal projection areas taken from Chemicalize [98] and
the average values and range of variability extracted from MD runs for selected compounds.

Compound
Minimal Projection Area (Å2)

Chemicalize Mean ± Stdev Min, Max (Delta)

Carbapenems

Imipenem n.a. 44.7 ± 3.2 35.4, 56.6 (21.2)
Ertapenem 72.6 57.4 ± 6.3 43.3, 82.5 (39.2)

Cephalosporins

Cefoxitin 59.8 57.8 ± 5.2 41.9, 70.1 (28.2)
Ceftazidime 66.0 68.3 ± 5.7 52.8, 88.1 (35.3)

Monocyclic beta-lactams

Aztreonam 59.6 58.4 ± 2.7 48.3, 69.3 (21.0)
BAL30072 n.a. 64.7 ± 4.7 50.2, 81.4 (31.2)

Oxazolidinones

Linezolid 47.6 43.4 ± 4.0 32.5, 53.5 (21.0)
Sutezolid n.a. 44.0 ± 3.9 32.6, 56.8 (24.2)

Penicillines

Aminopenicillanic acid 39.9 38.1 ± 0.7 35.0, 41.5 (6.5)
Piperacillin 86.6 77.5 ± 3.6 56.1, 90.0 (33.9)

Quinolones

Nalidixic acid 34.3 36.5 ± 1.4 32.6, 42.7 (10.1)
Fleroxacin 46.6 46.1 ± 1.9 39.8, 55.5 (15.7)

Tetracyclines

Minocycline 66.2 67.5 ± 1.4 61.4, 72.9 (11.5)
Tigecycline 76.2 76.6 ± 3.5 65.5, 86.7 (21.2)

Beta-lactamase inhibitors

Clavulanic acid 38.6 37.5 ± 1.1 32.1, 40.4 (8.3)
Tazobactam 47.0 44.2 ± 3.0 39.3, 52.5 (13.2)

5. Perspectives

In the near future we plan to extend the amount of information present in the database. For instance, in
order to guarantee reproducibility, we plan to make available the input and output files of our simulations.
Furthermore, the database will be extended towards two main directions. From one side we will include
more compounds, covering additional antimicrobial classes. At the same time, for each compound, we
will setup parameters at different pHs including at least two more cases (low and high-pH) in addition
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to the physiological pH already considered. We plan to include in the individual page of each compound
the relevant literature reporting on molecular properties from both experimental and computational
studies. From the technical point of view we plan to improve the key parameters reported, in particular
dihedral angles, by comparison with quantum-mechanical dynamics in presence of implicit and explicit
solvent molecules, using biased molecular dynamics techniques [99–102]. Future refinements of the
database will include the possibility to use a better water model to perform classical MD simulations.
Finally, future directions include also performing MD simulations in solvents different than water (e.g.,
non polar solvents and “organic broths”) in order to further improve conformational sampling while
(possibly) mimicking interactions with functional groups in biomolecules such as proteins, nucleic acids,
and membranes.
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Appendix A

Table A1. List of antimicrobial compounds included in the current version of the database.

Compound
Molecular Number Molecular Physiological
Formula of Atoms Weight Charge

Carbapenems

Imipenem C12H17N3O4S 37 299.3461 0
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Table A1. Cont.

Compound
Molecular Number Molecular Physiological
Formula of Atoms Weight Charge

Carbapenems

Panipenem C15H21N3O4S 44 339.4099 0

Biapenem C15H18N4O4S 42 350.3928 0

Meropenem C17H25N3O5S 51 383.4625 0

Meropenem 2 C17H25N3O5S 51 383.4625 0

Doripenem C15H24N4O6S 51 420.5043 0

Ertapenem C22H24N3O7S 57 474.5069 −1
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Table A1. Cont.

Compound
Molecular Number Molecular Physiological
Formula of Atoms Weight Charge

Cephalosporins

Cefoxitin C16H16N3O7S2 44 426.4441 −1

Cefotaxime C16H16N5O7S2 46 454.4575 −1

Cefepime C19H24N6O5S2 56 480.5611 0

Cefpirome
C22H22N6O5S2 57 515.5773 0

Ceftobiprole C20H22N8O6S2 58 534.5687 0

Ceftazidime C22H21N6O7S2 58 545.5681 −1

Monocyclic beta-lactams

Aztreonam C13H15N5O8S2 43 433.41690 −2
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Table A1. Cont.

Compound
Molecular Number Molecular Physiological
Formula of Atoms Weight Charge

Monocyclic beta-lactams

Tigemonam C12H13N5O9S2 41 435.3897 −2

Carumonam
C12H12N6O10S2 42 464.3879 −2

BAL19764 C14H13N6O9S2 44 473.4178 −1

Nocardicin C23H22N4O9 58 498.4422 −2

BAL300072 C16H17N6O10S2 51 517.47038 −1

Oxazolidinones

Linezolid C16H20FN3O4 44 337.3461 0
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Table A1. Cont.

Compound
Molecular Number Molecular Physiological
Formula of Atoms Weight Charge

Oxazolidinones

Sutezolid C16H20FN3O3S 44 353.41170 0

Penicillines

Aminipenicillanic acid C8H11N2O3S 25 215.2495 −1

Benzylpenicillin C16H17N2O4S 40 333.3822 −1

Ampicillin C16H19N3O4S 43 349.4048 0

Carbenicillin C17H16N2O6S 42 376.3837 −2

Ticarcillin C15H14N2O6S2 39 382.4115 −2

Oxacillin C19H18N3O5S 46 400.4283 −1
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Table A1. Cont.

Compound
Molecular Number Molecular Physiological
Formula of Atoms Weight Charge

Penicillines

Piperacillin C23H26N5O7S 62 516.5468 −1

Quinolones

Nalidixic acid C12H11N2O3 28 231.2273 −1

Norfloxacin C16H18FN3O3 41 319.3308 0

Ciprofloxacin C17H18FN3N3O3 42 331.3415 0

Enrofloxacin C19H21FN3N3O3 47 358.3867 −1

Levofloxacin C18H19FN3N3O4 45 360.3596 −1

Fleroxacin C17H17F3N3O3 43 368.3304 −1
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Table A1. Cont.

Compound
Molecular Number Molecular Physiological
Formula of Atoms Weight Charge

Tetracyclines

Minocycline C23H27N3O7 60 457.4764 0

Tigecycline C29H40N5O8 82 586.6566 1

Beta-lactamase inhibitors

Clavulanic acid C8H8NO5 22 198.1528 −1

Sulbactam C8H10NO5S 25 232.2337 −1

Avibactam C7H10N3O6S 27 264.2358 −1

Tazobactam C10H11N4O5S 31 299.2831 −1
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Table A2. Root-mean-square displacement between the B3LYP/6-31G?? optimized
geometry and the minimum-energy structure obtained with the GAFF parameters of
the database.

Class Compound RMSD (Å)

Carbapenems

Imipenem 1.59
Panipenem 1.70
Biapenem 1.69

Meropenem 1.66
Meropenem-2 1.65

Doripenem 1.66
Ertapenem 1.71

Cephalosporins

Cefoxitin 1.63
Cefotaxime 1.63
Cefepime 1.62

Ceftobiprole 1.64
Ceftazidime 1.60

Monocyclic beta-lactams

Aztreonam 1.60
Tigemonam 1.69
Carumonam 1.64
BAL19764 1.65
Nocardicin 1.66
BAL30072 1.76

Oxazolidinones
Linezolid 1.68
Sutezolid 1.67

Penicillines

Aminopenicillanic Acid 1.73
Benzylpenicillin 1.64

Ampicillin 1.65
Carbenicillin 1.68

Ticarcillin 1.68
Oxacillin 1.64

Piperacillin 1.74

Quinolones

Nalidixic Acid 1.62
Norfloxacin 1.58

Ciprofloxacin 1.58
Enrofloxacin 1.58
Levofloxacin 1.56
Fleroxacin 1.59

Tetracyclines
Minocycline 1.62
Tigecycline 1.65

Beta-lactamase inhibitors

Clavulanic Acid 1.66
Sulbactam 1.63
Avibactam 1.62
Tazobactam 1.66
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