
Defining CARE Properties through Temporal Input Models

Lucio Davide Spano
Department of Mathematics and Computer Science, University of Cagliari

Via Ospedale 72 Cagliari, Italy
davide.spano@unica.it

ABSTRACT
In this paper we show how it is possible to represent the
CARE properties (complementarity, assignment, redun-
dancy, equivalence) modelling the temporal relationships
among inputs provided through different modalities. For
this purpose we extended GestIT, which provides a declar-
ative and compositional model for gestures, in order to
support other modalities. The generic models for the
CARE properties can be used for the input model de-
sign, but also for an analysis of the relationships between
the different modalities included into an existing input
model.

Author Keywords
Gesture models, input models, multimodality, CARE
properties

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g.
HCI): Miscellaneous

INTRODUCTION
The characteristics of gestural input, such as its long
temporal extension, or the possibility to support parallel
interaction even for single-users, set different challenges
that are shared with multimodal interaction. In partic-
ular, different modelling techniques and formalisms are
shared between gestural and multimodal interaction re-
search. As we discuss better in the related work section,
the considered modalities in literature are usually graph-
ical and vocal. However, the wide availability of input
devices allowing gestural interaction and the progresses in
voice recognition technologies require a general approach
for combining modalities, focusing more on User Interface
(UI) design rather than technology integration.

In this paper, we enlarge the spectrum of GestIT [12, 13],
a declarative and compositional meta-model with an as-
sociated code library for describing gestures, generalizing
the modelling technique to modalities different from ges-
tural. We show that providing such temporal modelling

EGMI 2014, 1st International Workshop on Engineering Gestures for
Multimodal Interfaces, June 17 2014, Rome, Italy.
Copyright c© 2014 for the individual papers by the papers’ authors.
Copying permitted only for private and academic purposes. This
volume is published and copyrighted by its editors.
http://dx.doi.org/xxx.

for multimodal input allows to i) represent the CARE [4]
(Complementarity, Assignment, Redundancy and Equiv-
alence) properties in the UI code and ii) to identify the
CARE properties into existing UI code and/or models.
The provided definitions allow checking whether an in-
teraction model is compliant with the intended modality
allocation or not, providing the theoretical background
for an automatic tool support.

RELATED WORK
In this paper, we exploit a formal notation for defining
the input sequences that can be recognized by the UI. The
idea of describing different types of input through a formal
notation has been widely investigated in literature, using
different formalisms. For instance, Finite State Machines
(FSM) have been integrated into widely adopted window
toolkits, such as Java Swing, by Appert et al. [3]. The
authors integrate FSMs inside the definition of the UI
classes, in order to define in a single place the interaction
code. Different FSMs can work together at the same time,
in order to avoid the state explosion problem. One of the
motivating examples was the drag and drop interaction
technique, which cannot be modelled through a single
event.

The combination of different interaction modalities
needed a formalism able to integrate different concur-
rent information sources. In [2], Accot et al. used Petri
Nets for modelling low-level graphical interaction events.
In addition, they created multimodal models starting
from single-modalities, composing them into one Petri
Net. They exemplified the composition technique defining
a bimanual interaction model for a direct-manipulation
interface. A similar approach for modelling bimanual
interaction has been proposed in the same years in [6].

The research in multimodality has been focused mainly in
combining vocal and graphical inputs. Different environ-
ments and model based techniques have been proposed in
this regard. For instance, Damask [9] is an environment
allowing designers to create interfaces through different
layers associated to particular devices and modalities. It
is possible to specify which elements are common to all
devices and modalities and which UI parts are related
only to a particular interaction platform. MARIA [10]
describes user interfaces through different levels of ab-
stractions. It contains a multimodal platform, which
allows generating applications for exploiting web services
through both the graphical and the vocal modality. In
order to combine them, the language allows specifying

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54609283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CARE properties [4] for each interactor in the interface,
which has both a graphical and a vocal part in its defini-
tion.

This paper starts from a compositional and declarative
model for gestural interaction and extends it in order
to support input from different modalities. We consider
the GestIT model in [12, 13], but a similar approach has
been adopted in Proton++ [8, 7]. Both of them allow
reusing the same gesture models for different applications
or in different parts of the user interface, separating the
gesture definition from the application behaviour. A
comparison between the two approaches can be found
in [13], where the authors demonstrate that GestIT is
more expressive than Proton++. A library support for
the model is publicly available in [1]. Our research aims
at combining different modalities, extending the approach
for gesture modelling to a more general input model.

INPUT ABSTRACTION
In this section we extend the definition of the declarative
and compositional gesture model in [12, 13] for including
input modalities different from gestural. We show that
having an explicit dialog model in the application defi-
nition allows checking the CARE properties [4] on the
input temporal sequence.

Ground terms
GestIT models the input through an expression defining
the input temporal sequence. The ground term expres-
sions represent the basic building blocks for such descrip-
tion. Each of them describes an atomic event, that is
a notification that cannot be further decomposed. In
general, they are associated to a value change of a feature,
which is a single data tracked by an input device.

For instance, we can define a ground term representing
the current mouse pointer position, or a key press on a
keyboard. In the gestural modality, we associate a ground
term to each point tracked by the recognition device, such
as the skeleton joints for MS Kinect, or the touch points
for a multitouch screen. In the vocal modality, we can
associate a ground term to the recognition of a word (or
a phrase) pronounced by the user.

The notification can be optionally associated to a condi-
tion, which can be exploited receiving only a subset of all
possible state changes associated to a ground term. This
is useful in the gestural modality for receiving movements
that follow a specific trajectory (e.g. linear), or in or-
der to calculate differential characteristics of the gesture
performance (e.g. the speed). In the vocal modality,
we can associate a word or a grammar to an utterance
recognition.

In this paper, we associate a symbol to each considered
ground term. For instance, we indicate with Hr the
position of the right hand, with Sl the position of the
left shoulder etc.. We represent a generic ground term
with the symbol Gt. For the vocal modality, we use the
symbol V for indicating the recognition of a word.

A boolean predicate can be associated to a ground term
for filtering the notification. We represent it through its
name in square brackets, immediately after the ground
term name: Gt[p] represents a generic ground term Gt

associated to a predicate p. For instance V [quit] expresses
the recognition of the word “quit”, where V is the vocal
ground term and quit is the predicates that restrict the
recognition only to the considered word. A predicate p
can be associated to more than one ground term in both
the formal notation and in the library supporting the
GestIT model.

In GestIT [12], a generic ground term is represented by
an abstract class (SimpleExpr), which can be extended
for including different sources of input. A predicate
can be associated with a ground term providing the
implementation of the boolean method accept, through a
delegate pattern [5].

Composition operators
Starting from ground terms, it is possible to define the in-
put temporal sequence composing the different expression
through the following set of temporal operators:

• Iterative Operator, represented by the ∗ symbol,
repeats an input expression an indefinite number of
times.
• Sequence Operator, represented by the � symbol,

connects two (or more) expressions to be executed in
sequence, from left to right.
• Parallel Operator, represented by the symbol ‖, con-

nects two (or more) expressions that can be recognized
at the same time.
• Choice Operator, represented by the symbol [], al-

lows to select one among the connected components in
order to complete the entire expression.
• Disabling Operator, represented by the [> symbol,

defines that an expression stops the recognition of
another one, typically used for stopping iteration loops.
• Order Independence, represented by the |=| sym-

bol, defines that the connected sub-expression can be
performed in any order.

The choice, parallel and order independence operators
are commutative. The sequence, parallel, choice and
disabling operator are binary and associative. The order
independence operator is a n-ary operator, it can be
defined through a choice of sequences, as we detail better
while describing equation 7.

In GestIT, a composed expression is represented by the
class ComplexExpr, where it is possible to include the
operands (either simple or composite) and to specify the
temporal operator. This class is independent from the
modality and it can be used for connecting ground terms
from different input devices.

Auxiliary functions
We define two auxiliary functions for defining the CARE
properties on input expressions. The first function an-
swers the following question: which modalities are needed

for completing the considered input expression? Obvi-
ously, since it may be possible to provide the same in-
formation through different modalities, it is possible to
exploit different sets of modalities for completing the
same expression.

We formally model this association through the Mod
function, which maps an expression to a family of sets.
The family contains all the possible sets of modalities that
the user can exploit for completing the considered input
expression. We provide an inductive definition for this
function in equation 1, starting from a ground term and
showing how to build the family of sets for two generic
expressions connected through a composition operator.
M is the set of all possible input modalities.

Mod : Exp 7→ {S1...Sn}
where Si ⊆M, i ∈ [1, n]

Mod(Gt) = {m}, m ∈M

Mod(Exp∗) = Mod(Exp)

Mod(Exp1[]Exp2) = {Si|Si ∈Mod(Exp1) ∨
Si ∈Mod(Exp2)}

Mod(Exp1 op Exp2) = {Si,j |Si,j = Si ∪ Sj ,

Si ∈Mod(Exp1), Sj ∈Mod(Exp2)}
op ∈ {�, [>, |=| , ‖}

(1)

A ground term Gt is assigned to a single modality, there-
fore the function Mod maps it to a single set with a
single element. The iterative operator does not add any
element to the family of sets.

The choice operator allows selecting between one of the
sub-expressions. From the modality point of view, it is
possible to choose only one of the sets provided either
by the left or the right operand. Therefore, the resulting
family of sets for the composed expression is obtained
considering all sets from both operands.

For the other composition operators, the user needs to
complete both operands, which means that she can select
a set of modalities for completing the left operand and
another set for completing the right operand. Therefore,
in order to obtain the resulting family of sets, we first
calculate all possible pairs of sets, selecting one set from
left and one set from the right operand families. After
that, we calculate for each pair the union of the two
sets and we obtain the resulting family for the composed
expression.

The second function associates an input expression with
a semantic label identifying which input data provides
to the application. Considering two input expressions
Exp1 and Exp2, the value returned by Input function
is the same if they provide an equivalent input for the
application. The possible values for this function are
related to the specific application. The function is defined
in equation 2: Datain is a set of semantic labels associated
to all the possible user’s input needed by the considered
application, and d is a particular label.

Input : Exp 7→ d

d ∈ Datain (2)

This association between an expression and its semantic
label represents the abstraction of the “message” that
the system needs from the user for completing an opera-
tion. The same input can be provided through different
modalities. For instance, we can consider an application
allowing the user to enter a phone number either dialling
it through a virtual keyboard or to pronouncing it vocally,
as modelled in equation 3. In this case, we consider two
different input expressions: one defining the screen taps
(Tap) and one for the vocal interaction (Num). The
first one is simply a sequence of a touch start (Start1)
and a touch end (End1). The second expression allows
the user to dictate the number digit by digit. Such ex-
pressions provide the same data to the application logic
(represented by the phoneNumber label).

Tap [] Num∗

Tap = Start1 � End1

Num = V [zero] [] V [one] [] . . . [] V [nine]

Input(Tap) = Input(Num) = phoneNumber

(3)

In this paper, we assume that the Input function has
been defined for each expression in the input model. The
straightforward way for obtaining this mapping is to
require its specification from designers, but this may
limit the acceptance of the modelling technique.

We think that it is possible to provide an automated
labelling procedure based on the reverse engineering of
code. If we consider the Tap and Num expressions, the
behaviour associated to their completion should contain
a call to the same application logic, e.g. through a com-
mand pattern [5]. We aim to investigate the identification
of such patterns in future work.

MODELLING CARE PROPERTIES
The CARE properties [4] are a simple way for charac-
terizing how different modalities relate to each other for
supporting the interaction. In this section, we show how
it is possible to model such properties through the com-
position operators defined in GestIT, starting from their
definitions in [4]. The care properties are four (Comple-
mentarity, Assignment, Redundancy and Equivalence).
In the following discussion we include their definition
(reported from [4]) and their modelling through the pro-
posed notation.

In all definitions, we suppose that the UI is currently
in a state st and that the user wants to change this
state to st+1. Exp is the input expression defining
all the possible UI options for reaching st+1 from st.
In addition, we consider two modalities in the defini-
tions, but they can be easily extended to the general case.

Assignment
Definition. The modality m is assigned from state st to
reach st+1 if no other modality can be used for moving
from st to st+1.

Model. We can define this property on the expression
Exp simply checking that all ground terms belong to the
modality m, as defined in equation 4.

Assignment(Exp,m)⇔Mod(Exp) = {m} (4)

Equivalence
Definition. Two (or more) modalities m1 and m2 are
equivalent for changing the state of an application from
st to st+1 if it is necessary and sufficient to use any one
of the modalities for changing the state. This means that
the user is free to select exactly one modality among
the ones supported by the interface for completing one
action.

Model. We can define the equivalence between two dif-
ferent modalities connecting the expressions for m1 and
m2 with a choice operator as shown in equation 5 (Exp1
is assigned to m1 and Exp2 is assigned to m2). How-
ever, this is not sufficient for being compliant with the
definition. For ensuring that st+1 is the same indepen-
dently from which expression the user selects, we must
ensure also the same type of input is provided by the
user through both expressions. This is modelled by the
condition Input(Exp1) = Input(Exp2).

Equivalence(Exp, {m1,m2})
⇔ Exp = Exp1 [] Exp2

∧Mod(Exp1) = {m1}
∧Mod(Exp2) = {m2}
∧ Input(Exp1) = Input(Exp2)

(5)

Redundancy
Definition. Two (or more) modalities are used redun-
dantly to reach state st+1 from state st, if they have the
same expressive power (e.g. the user provides the same
information to the UI through different channels or vice
versa).

Model. As discussed in [4], the redundancy may occur
following two different temporal relationships: sequence
and parallelism. In the first case, before completing the
state transition, the user selects the first modality and
completes the correspondent actions, then she selects the
second modality and completes the interaction, providing
again the same input. In general, if the number of modali-
ties is more than two, it is possible to select the modalities
in any order, but the user has to complete the actions
for all of them. In the second case (parallelism), the user
can perform actions belonging to different modalities at
the same time. Therefore, we can define in equation 6
two variants for the redundancy property.

SeqRedundancy(Exp, {m1,m2})
⇔ Exp = Exp1 |=| Exp2

∧Mod(Exp1) = {m1}
∧Mod(Exp2) = {m2}
∧ Input(Exp1) = Input(Exp2)

ParRedundancy(Exp, {m1,m2})
⇔ Exp = Exp1 || Exp2

∧Mod(Exp1) = {m1}
∧Mod(Exp2) = {m2}
∧ Input(Exp1) = Input(Exp2)

(6)

The two versions model the property in a similar way.
The only difference is the temporal operator connecting
the two expressions Exp1 and Exp2, which are assigned
to only one modality (respectively m1 and m2).

The first definition, SeqRedundancy, connects the two
expressions through the order independence operator,
which guarantees that the two input sub-expression must
be both completed in order to reach the state st+1. The
user is free to select which modality she wants to use
first. Indeed the order independence is by definition a
choice between all possible sequences for executing the
input actions, as shown in equation 7.

Exp1|=|Exp2 = (Exp1 � Exp2)[](Exp2 � Exp1) (7)

In the second definition, Exp1 and Exp2 are connected
through the parallel operator, which allows the execution
of the input actions assigned to the different modalities
at the same time. It is worth pointing out that the se-
quences of actions recognized by expressions satisfying
SeqRedundancy can be also recognized by those that sat-
isfy ParRedundancy. However, as also remarked in [4],
when two modalities compete for the same human re-
sources (e.g. the same buffers in sensory memory) the
designer should avoid a parallel redundancy and restrict
it to the sequential version.

In both cases, the command for changing the UI state is
associated to the completion of Exp, which ensures that
the UI changes its state only when the input from both
modalities has been provided.

Complementarity
Definition. Two (or more) modalities are used for reach-
ing the state st+1 from st, all of them must be used for
changing the state, but no one is able to complete the
change individually.

Model. In this case, there is no need to enforce a par-
ticular temporal sequence for the input actions in Exp.
The only requirement is that Mod(Exp) contains a sin-
gle set, whose elements are all the considered modalities.
Considering the definition we provided for the function
Mod, this guarantees that the user completes the input
expression using all modalities at least once. The formal
definition is shown in 8.

Complementarity(Exp, {m1,m2})
⇔Mod(Exp) = {m1,m2}

(8)

SAMPLE APPLICATION
In this section we redesign the interaction applying the
CARE properties to the touchless recipe browser pre-
sented in [11]. We show that it is possible to check the
constraints on the input expression automatically, apply-
ing the definitions discussed in the previous sections.

The touchless recipe browser allows the user to select
among different recipes, groped in different categories
(e.g. starters, first courses, second courses, desserts etc.).
After selecting the dish, the application presents all the
steps for cooking, through textual descriptions enhanced
with a video. It is possible to watch the video entirely,
or step by step. In the latter mode, the video stops at
each intermediate action that the user has to complete
for cooking the dish, and the playback continues when
the application receives an explicit request by the user.

The application combines the gestural (g) and the vocal
modality (v), since it may be difficult for a person to
use a keyboard and/or a mouse while cooking (she may
have wet or dirty hands). It consists of three different
presentations: the first shows the recipe category, the
second allows to select a dish from a list of a specific
category and the last one shows the steps for preparing
the selected dish.

All presentations respond to the input only if the user
stands in front of the screen, in order to ignore movements
or speech when they are not intended for interacting with
the application (e.g. movements for chopping a carrot
or talking with other persons in the kitchen). We can
model this input filtering by recognizing the user pose in
front of the screen. It is sufficient that the user’s shoulder
joints are contained in a plane roughly parallel to the
screen. The interaction is modelled in equation 9.

AppIn = Front� Interact∗ [> NotFront

Front = (Sl[p] ‖ Sr[p])

NotFront = (Sl[p̄] ‖ Sr[p̄])

(9)

The definition of the expressions Front and NotFront
is similar, since they track the parallel movement of the
left and right shoulder joints (represented by the Sl and
Sr ground terms). They are complementary, since all
movements recognized by Front are not recognized by
NotFront and vice versa. This is modelled by the p
predicate, which tests whether the two joints are parallel
with respect to the screen plane. NotFront uses the
logical negation of the same predicate.

Interact contains the expression defining the interactions
supported by the application, which we refine later on.
The sequence operator between Front and Interact guar-
antees that no input is processed while the user is not
in front of the screen. The disabling operator between
Interact and NotFront ensures that the input tracking
finishes as soon as the user moves from the screen front
position.

Figure 1. The wave gesture

Such design of the interaction, assigns the expression of
the user’s will to interact to the gestural modality, as
demonstrated in equation 10.

Mod(Front) = Mod(NotFront) =

= Mod(Sl) ∪Mod(Sr) = g
(10)

While interacting with all presentations, it is possible
to quit the application or to go back to the previous
presentation. In order to avoid unintended terminations,
we ask a confirmation for the quit command, as usual
in many interfaces. In the vocal modality, the user says
the word “quit” for quitting the application, while in the
gesture modality we associate this command to a wave
gesture.

The wave gesture is depicted in figure 1. For convenience,
we set the origin of our coordinate system on the elbow
of the considered hand, obtained at each frame simply
defining a translation of the original coordinate system,
using the vector defined by the elbow position. The
gesture starts when the hand point reaches the second
quarter in our coordinate system, with a positive Y and a
negative X value, depicted in figure 1. Then, the user has
to move the hand in the first quarter of the coordinate
system, with both values of X and Y positive, as shown in
figure 1, part 2. At this point, there are two alternatives:
either the user repeats the wave, returning to the situation
in figure 1, part 1, or she can conclude the gesture moving
the hand in the third quarter, as depicted in figure 1,
part 3.

We model the gesture with the expression in equation 11.
The position of the right hand is represented by Hr; x
is true if the hand point has a positive value for the X
coordinate, x̄ is true otherwise; y is true if the hand
point has a positive value for the Y coordinate, ȳ is true
otherwise.

(H{1,∗}r [x̄ ∧ y] [> H{1,∗}r [x ∧ y]){1,∗} [>

H{1,∗}r [x̄ ∧ ȳ]
(11)

In order to support the exit confirmation using different
modalities, it is possible to follow different strategies.
We can ask the user to provide the input sequentially
or in parallel, since voice and gestures do not cause
conflicts. The two situations are modelled in equation 12,
respectively by the Seqquit and by the Parquit expressions.

Figure 2. Dish category selection

Seqquit = V [quit] |=|Wave

Parquit = V [quit] ‖ Wave

Mod(V [quit]) = {v}
Mod(Wave) = {g}
Input(V [quit]) = Input(Wave)

(12)

Since the equivalence between the inputs entered through
the expressions using the vocal and the gesture modal-
ity holds (considering the interaction semantics we
associated them in this specific case) we can con-
clude that both SeqRedundancy(Seqquit, {v, g}) and
ParRedundancy(Parquit, {v, g}) are true.

Another strategy is to allow only one modality for the
first request (e.g. vocal) and then a confirmation through
either the vocal or the gesture modality (the vice versa
is also possible, with a symmetric modelling technique).
In this case, the command received through the vocal
command “enables” a selection between a gesture and the
same vocal command for confirmation. The strategy is
modelled in equation 13 by the AssEquivquit expression.
We have an assignment property for the first request and
an equivalence property for the confirmation.

AssEquivquit = V [quit]� (Wave[]V [quit]) (13)

We assign the back command to the vocal modality
(V [back]). Therefore, the interaction with a generic
presentation (Interact, see equation 9) consists of a
presentation-specific (PresIn) expression in choice with
the back and the quit command, as defined in equation 14,
where Expquit is a place holder for either Seqquit, Parquit
or AssEquivquit.

Interact = PresIni [] V [back] [] Expquit (14)

In the first presentation, which is shown in figure 2, the
user points a target on the screen and selects it closing
the hand. The interaction is modelled in equation 15:
the user moves the dominant hand an indefinite num-
ber of times (H∗r), until she selects an item closing the
hand (we indicate the feature for the hand opening with
oHr, and we restrict the recognition only to the closed
state). In this case, we assigned the interaction to the
gestural modality. The interaction for the dish selection

Figure 3. Dish preparation

presentation exploits the same gesture set.

PresIn1 = H∗r [> oHr[closed]

Mod(PresIn) = g
(15)

The presentation for preparing the selected dish is shown
in figure 3. It allows reading the description of the steps
that are needed for cooking a dish, through a text and
a video. The video can be played continuously, in order
to have an overall idea on the whole preparation process.
Otherwise, the video can be played step-by-step, pausing
the playback at the end of each step. In this case, the user
requests to watch the next (or previous) step explicitly.
In addition, she can jump randomly from one step to
another, moving the video timeline knob. Finally it
is possible to change the volume setting for the video
description. The interface supports the interaction with
the expression in equation 16. The change between the
continuous and the step-by-step playback is supported
through the “continuous” and the “step” vocal commands
(respectively V [cont] and V [step].

In order to navigate the recipe steps, the user can select
among the gestural and the vocal modality. The next
step (Next) can be visualized through the “next” vocal
command (V [next]) or (choice operator) through a swipe
from left to right. The latter gesture can be modelled
through an iterative movement of the dominant hand with
a speed higher than a specific threshold (H∗r [spr]), dis-
abled by a movement slower than this threshold (Hr[s̄pr]).
We use a symmetric modelling approach for visualizing
the previous step.

The steps can be randomly navigated performing a grab
gesture and dragging the timeline knob (Random): it con-
sists of closing the dominant hand (oHr[closed]), followed
by its iterative movement (H∗r), disabled by opening the
hand (oHr[open]). The same gesture can be used for
changing the volume setting, after having pronounced
the “volume” vocal command.

The V olume expression in equation 16 satisfies the com-
plementary property, since Mod(V olume) includes only
one set containing both the vocal and the gesture modal-
ity. This means that the input expression cannot be

completed without using all the considered modalities.
Instead, in Next we have an equivalence between the
two sub-expressions since they provide the same in-
put through different modalities (the same holds for
Previous). The “continuous” and the “step” commands
are assigned to the vocal modality.

PresIn3 = V [cont] [] V [step] [] V olume []

Next [] Prev [] Random

V olume = V [vol]� Drag

Next = V [next] [] (H∗r [spr] [> Hr[s̄pr])

Prev = V [prev] [] (H∗r [spl] [> Hr[s̄pl])

Random = Drag

Drag = oHr[ōp] � H∗r [> oHr[op]

Mod(V olume) = {g, v}
Mod(V [step]) = Mod(V [cont]) = {v}

Mod(Random) = {g}
Input(V [next]) = Input(H∗r [spr] [> Hr[s̄pr])

(16)

CONCLUSIONS AND FUTURE WORK
In this paper we extended an existing declarative model
for gesture definition in order to support other modali-
ties. With this extension, we provided the definition of
the CARE properties for managing multimodality, rep-
resenting them through the temporal input modelling.
This is useful for providing automatic model checking
procedures, able to identify the properties inside existing
models. This can support designers in the UI creation
process or during the reverse engineering of existing appli-
cations. In future work, we aim to include the multimodal
support in the next release of the GestIT library, together
with tool support for the model creation and checking.

ACKNOWLEDGEMENTS
We gratefully acknowledge Sardinia Regional Government for the

financial support (P.O.R. Sardegna F.S.E. Operational Programme

of the Autonomous Region of Sardinia, European Social Fund 2007-

2013 - Axis IV Human Resources, Objective l.3, Line of Activity

l.3.1 “Avviso di chiamata per il finanziamento di Assegni di Ricerca”

REFERENCES
1. GestIT library http://gestit.codeplex.com/.

Accessed: 2014-05-13.

2. Accot, J., Chatty, S., and Palanque, P. A. A Formal
Description of Low Level Interaction and its
Application to Multimodal Interactive Systems. In
DSV-IS, F. Bodart and J. Vanderdonckt, Eds.,
Springer (1996), 92–104.

3. Appert, C., and Beaudouin-Lafon, M. SwingStates:
adding state machines to the swing toolkit. In
Proceedings of the 19th annual ACM symposium on
User interface software and technology, UIST ’06,
ACM (New York, NY, USA, 2006), 319–322.

4. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May,
J., and Young, R. M. Four easy pieces for assessing

the usability of multimodal interaction: the care
properties. In InterAct, vol. 95 (1995), 115–120.

5. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Pearson Education,
1994.

6. Hinckley, K., Czerwinski, M., and Sinclair, M.
Interaction and modeling techniques for desktop
two-handed input. In Proceedings of the 11th annual
ACM symposium on User interface software and
technology, UIST ’98, ACM (New York, NY, USA,
1998), 49–58.

7. Kin, K., Hartmann, B., DeRose, T., and Agrawala,
M. Proton++ : A Customizable Declarative
Multitouch Framework. In Proceedings of the 25th
annual ACM symposium on User interface software
and technology (UIST 2012), ACM Press (Berkeley,
California, USA, 2012), 477–486.

8. Kin, K., Hartmann, B., DeRose, T., and Agrawala,
M. Proton: multitouch gestures as regular
expressions. In Proceedings of the 2012 ACM annual
conference on Human Factors in Computing Systems
(CHI 2012), ACM Press (Austin, Texas, USA, 2012),
2885–2894.

9. Lin, J., and Landay, J. A. Employing patterns and
layers for early-stage design and prototyping of
cross-device user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in
Computing Systems, CHI ’08, ACM (New York, NY,
USA, 2008), 1313–1322.

10. Manca, M., and Paternò, F. Supporting
multimodality in service-oriented model-based
development environments. In Human-Centred
Software Engineering, R. Bernhaupt, P. Forbrig,
J. Gulliksen, and M. Lrusdttir, Eds., vol. 6409 of
Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010, 135–148.

11. Spano, L. D. Developing Touchless Interfaces with
GestIT. In Ambient Intelligence, F. Paternò,
B. de Ruyter, P. Markopoulos, C. Santoro, E. van
Loenen, and K. Luyten, Eds., vol. 7683 of Lecture
Notes in Computer Science. Springer Berlin /
Heidelberg, 2012, 433–438.

12. Spano, L. D., Cisternino, A., and Paternò, F. A
Compositional Model for Gesture Definition. In
Proceedings of the 4th International Conference in
Human-Centered Software Engineering (HCSE
2012), vol. 7623, LNCS, Springer (Tolouse, France,
2012), 34–52.

13. Spano, L. D., Cisternino, A., Paternò, F., and Fenu,
G. A Declarative and Compositional Framework for
Multiplatform Gesture Definition. In EICS 2013, 5th
Simposium on Engineering Interactive Computing
Systems, ACM Press (2013).

	Introduction
	Related work
	Input abstraction
	Ground terms
	Composition operators
	Auxiliary functions

	Modelling CARE properties
	Assignment
	Equivalence
	Redundancy
	Complementarity

	Sample application
	Conclusions and future work
	Acknowledgements
	REFERENCES

