
Vicious circles in contracts and in logicI

Massimo Bartoletti∗, Tiziana Cimoli, Paolo Di Giamberardino

Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy

Roberto Zunino

Dipartimento di Matematica, Università degli Studi di Trento, Italy

Abstract

Contracts are formal promises on the future interactions of participants, which describe the causal depen-
dencies among their actions. An inherent feature of contracts is that such dependencies may be circular: for
instance, a buyer promises to pay for an item if the seller promises to ship it, and vice versa. We establish
a bridge between two formal models for contracts, one based on games over event structures, and the other
one on Propositional Contract Logic. In particular, we show that winning strategies in the game-theoretic
model correspond to proofs in the logic.

Keywords: contracts, propositional contract logic, event structures

1. Introduction

Contracts are formal descriptions of the behaviour of programs or services, used in the software devel-
opment process to maintain consistency between specification and implementation. Contracts have recently
gained an increasing relevance in the design and implementation of concurrent and distributed systems, as
advocated e.g. by the OASIS reference model for service-oriented architectures [1]. This interest is wit-
nessed by the proliferation of formal systems for contracts that appeared in the literature in the last few
years. Such formalisms have been devised by adapting and extending models of concurrent systems, such
as Petri nets [2, 3], event structures [4, 5], process algebras [6, 7, 8, 9, 10], timed automata [11, 12], and
by extending various logics, such as modal [13], intuitionistic [14, 15], linear [14], and deontic [16, 17] logics
(just to cite a few recent approaches). On a more applied side, tools have been developed to put some
of such formalisms in practice. For instance, Scribble [18] can be used to specify the overall interaction
protocol (named choreography) of a distributed application formed by a set of communicating services. By
projecting such a choreography on each of these services [10], we obtain the specification of the interaction
behaviour expected from each single service involved in the application. These projections have the form of
session types [19, 20], i.e. contracts which regulate the inputs/outputs each service is expected to perform.
Scribble allows the designer of a distributed application to verify properties of the choreography (e.g. the
absence of deadlocks), and to automatically construct monitors ensuring that each service participating in
the application respects its contract [21].

A main motivation for using contracts lies in that large distributed applications are typically constructed
by composing services published by different organizations. The larger an application is, the greater the
probability that some of its components deviates from the expected behaviour (either because of uninten-
tional bugs, or maliciousness of a competing organisation). Hence, it becomes crucial to protect oneself

IWork partially supported by Aut. Region of Sardinia under grants L.R.7/2007 CRP-17285 (TRICS), P.I.A. 2010 Project
“Social Glue”, by MIUR PRIN 2010-11 project “Security Horizons”, and by EU COST Action IC1201 (BETTY).
∗Corresponding author. Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, via Ospedale 72,

09124 Cagliari (Italy), e-mail: bart@unica.it

Preprint submitted to Elsevier December 5, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54608808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

from other services’ misbehaviour. Standard enforcement mechanisms (e.g., execution monitoring, static
analysis, and model checking techniques) do not apply because of the total lack of control on code run
by mutually untrusted, distributed services. Contracts may offer protection by legally binding services to
behave as prescribed, or otherwise be blamed for a contract breach [22].

When contracts are used to support the reliability of distributed applications, the choice of the contract
model (i.e. the formalism used to express and reason about contracts) is critical; just to give an example,
assuming or not the trustworthiness of service brokers [23] (i.e. the entities which compose services) affects
the kind of properties enforceable in different contract models [24]. To drive software architects in the choice
of the most suitable contract model for novel applications, it would be desirable to clearly establish the actual
properties and the relations among different models. This is not an easy task, because the constellation of
formalisms proposed in the literature is wide and heterogeneous, and most works focus on studying a single
formalism, rather than developing comparisons between different ones.

1.1. Vicious circles in contracts and in logic
In this paper, we relate two recent models for contracts — one based on game-theoretic notions and the

other one on logic.
The game-theoretic model we consider was originally introduced in [24], and it is based on event structures

(ES) [25]. The model assumes a set of participants (abstractions of services), who promise through their
contracts to perform some events. These promises can be formalised as enablings of the form X ` e, meaning
that an event e must be performed once all the events in the set X have been performed. For instance,
consider a system composed by two participants, Alice (A) and Bob (B), associated with two events a and b,
respectively, and assume that A is promising to fire a, while B is promising to fire b only after a has happened.
Such promises are formalised by two ES with the following enablings:

∅ ` a {a} ` b (1)

Contracts also define the goals of participants, in terms of a payoff function which associates each sequence
of events with one of three outcomes: positive, negative, or neutral. In our Alice-Bob example, the payoff
of A is positive in the sequences where she obtains b (i.e. b, ab, ba), negative in those where a is done while
b is not, and neutral in the empty sequence. The payoffs of B are similar, with the role of a and b inverted.

The interaction among participants is modelled as a concurrent game [26], where participants “play” by
performing events, trying to reach their goals. Each participant plays according to some strategy; roughly,
a strategy is winning for a participant A if it allows A to fulfil her goals (i.e. reach a positive payoff) in all
possible plays conforming to such strategy, and such that the other participants have no obligations (i.e.
enabled events not yet performed). In our Alice-Bob example (1), a possible strategy for A would be just to
fire a, and one for B would be to fire b once a has happened. These strategies are winning for both A and
B: roughly, the only play conforming to such strategies where no one has pending obligations is ab, and in
such play both participants have reached their goals.

Two key notions in this model are agreement and protection. Intuitively, a set of contracts has the
agreement property whenever each participant has a winning strategy. Instead, protection is the property of
the contract of a single participant A ensuring that, whenever she interacts with others (possibly adversaries),
she has at least one strategy guaranteeing non-negative payoffs in plays without pending promises. The
contracts in (1) admit an agreement, but A is not protected by her contract. Indeed, when the contract of
A interacts with a contract which promises nothing, in all the plays where A has no pending promises (i.e.
where she has performed a) her payoff is negative, regardless of her strategy.

When promises are modelled as Winskel’s ES [25], it is shown in [24] that agreement and protection
cannot hold at the same time. To give an intuition of why they are mutually exclusive, consider the
following variation of the Alice-Bob contracts: A, which was not protected in (1), now requires b to happen
before a.

{b} ` a {a} ` b (2)

The contracts in (2) protect both A and B, but they do not enjoy the agreement. Indeed, the only admissible
play in (2) is the empty one, because of the vicious circle determined by the mutual dependency between
the two events a and b.

2

The other model of contracts [15] we consider in this paper is based on intuitionistic propositional logic
(IPC): promises are represented by logical formulae, and obligations are derived through the entailment
relation of the logic. The kind of vicious circles described in (2) can also happen in the logic-based model.
For instance, consider the following formula of intuitionistic propositional logic (IPC):

(a→ b) ∧ (b→ a) (3)

which says that b is provable provided that one has a proof of a, and vice versa, a is provable through a
proof of b. Because of the mutual dependency between a and b, it turns out that from (3) neither a nor b
can be deduced in the proof system of IPC.

1.2. From vicious to virtuous circles

To reconcile agreements with protection, an extension of ES called event structures with circular causality
(CES for short) has been proposed in [5]. CES extend ES with a further enabling relation
, which allows
to decouple conditional promises (e.g., doing e in exchange of X) from the temporal order in which events
are performed. Having the Alice-Bob example in mind, {b}
 a means that “Alice will do a if Bob will
eventually do b”. This contract protects A, and it turns the vicious circle into a virtuous circle: indeed,
when the contract of A interacts with the contract {a} ` b of B, a winning strategy for A allows her to fire a
at the first step, which causes an obligation for B to do b. Therefore, the composition of the contracts of A
and B admits an agreement. In general, in [24] a technique is proposed which synthesises a set of contracts
from the participants payoffs enjoying both agreement and protection.

In the logic-based contract model, virtuous circles are obtained by extending IPC with a “contractual”
form of implication (denoted by �); this extension is called propositional contract logic (PCL [15]). The
intuition is that a formula p� q entails q not only when p is provable, but also in the case that a “compatible”
formula is assumed. This compatible formula can take different forms, but the archetypal example is the
(somewhat dual) q � p. While:

(p→ q) ∧ (q → p) → p ∧ q

is not a theorem of IPC (because of the vicious circle), we have that

(p� q) ∧ (q � p) → p ∧ q

is a theorem of PCL, because, similarly to
 in CES, � turns vicious into virtuous circles.
The meaning of contractual implication is clarified by comparing the natural deduction rule of elimination

of → in IPC with the rule of elimination of � in PCL:

∆ ` p→ q ∆ ` p
(→E)

∆ ` q
∆ ` p� q ∆, q ` p

(�E)

∆ ` q

The two rules only differ in the context used to deduce the antecedent p: rule (�E) also allows for using
as hypothesis the consequence q. Intuitively, adding q to the hypotheses ∆ allows to break vicious circles,
making it easier to deduce p, and in turn to eliminate �. This is exemplified in the proof (4) below.

We can observe that both these models allow for a form of “circular” assume-guarantee reasoning. In our
Alice-Bob example, assume that A promises to do a provided that she receives b in exchange, and B promises
to do b in exchange of a. If we model these promises by a CES with enablings {b}
 a and {a}
 b, then
this contract enjoys agreement. The winning strategies of A and B consist in doing their events, without
waiting for the other to take the first step; these strategies lead to a play where both a and b are performed
(in any order). In PCL, the same scenario is represented by the theory ∆ = b � a, a � b, which entails
both a and b. For instance, a proof of ∆ ` a is the following (that of ∆ ` b is symmetrical):

∆ ` b� a

∆, a ` a� b ∆, a, b ` a
∆, a ` b

(�E)

∆ ` a
(�E)

(4)

3

Note that the provable atoms (in the PCL theory ∆) are exactly the events occurring in a play where both
participants win. This connection is not incidental: indeed, in Theorem 4.2 we will show that, for a certain
class of contracts, agreement can be characterised in terms of provability in a PCL theory corresponding to
the contract. In particular, in the presence of an agreement, all winning plays conforming to the winning
strategy will contain all the provable atoms in the PCL theory.

The correspondence between contracts and PCL theories can be further refined. The insight is that each
proof in a Horn PCL theory naturally induces a set of sequences (called proof traces) among the atoms.
For instance, consider the theory ∆ = a, a → b, which entails both a and b. In a proof of ∆ ` a, the only
induced trace is a, since b is not needed. In a proof of ∆ ` b, to use the elimination rule of → one must first
construct a proof of a, hence the only trace induced is ab. Summing up, the traces induced by ∆ are all the
sequences over a and b where, if b occurs, then a precedes it. Instead, the theory ∆ = b� a, a� b induces
both traces ab and ba. Proof traces correspond, in the realm of contracts, to the prudent plays where all
participants perform all and only those events which are guaranteed to have a causal justification (possibly
in the future). For instance, in the CES with enablings {b}
 a and {a}
 b, we have that both plays ab
and ba (corresponding to the proof traces of ∆) are prudent.

1.3. Contribution

Our main contributions can be summarised as follows:

• Theorem 4.2 shows that agreement in a class of game-theoretic contracts can be characterised in terms
of provability in Horn PCL theories, and vice versa.

• Theorem 4.8 shows that proof traces in PCL correspond to prudent plays in contracts.

• Theorem 4.11 establishes that, whenever a contract admits an agreement, proof traces can be trans-
formed into winning strategies for all participants.

The proofs of all our statements are contained either in the main body of the paper, or in Appendices A,B.

2. Game-theoretic contracts

We briefly review the theory of contracts introduced in [24]. Intuitively, a contract is a concurrent system
featuring obligations (what a participant must do in a given state) and objectives (what a participant wishes
to obtain in a given state). Obligations are modelled as event structures with circular causality (CES). A
comprehensive account of CES is in [27]; here we shall only recall the necessary definitions. Assume given
a denumerable universe of atomic actions a, b, e, . . . ∈ E, called events, uniquely associated to participants
A,B, . . . ∈ A by a function π : E → A.

Definition 2.1 (CES). A CES E is a triple 〈#,`,
〉, where

• # ⊆ E × E is an irreflexive and symmetric conflict relation;

• ` ⊆ Con × E is the enabling relation;

•
 ⊆ Con × E is the circular enabling relation.

where:

• for a set X ⊆ E, the predicate CF (X) is true iff X is conflict-free, i.e. ∀e, e′ ∈ X : ¬(e#e′);

• Con is the set {X ⊆fin E | CF (X)};

• the relations ` and
 are saturated: ∀X ⊆ Y ⊆fin E. X . e ∧ CF (Y) =⇒ Y . e, for .∈ {`,
}.

4

a b

E1

a b

E2

a b

E3

a b

E4

a

c

b

E5

a ba′

E6

Figure 1: Graphical representation of CES. An edge from node a to node b denotes an enabling {a} . b, where . is ` if the
edge has a single arrow, and . is
 if it has a double arrow. A conflict a#b is represented by a wavy line between a and b. We
will use hyperedges to represent enablings of the form X . e, when X is not a singleton.

A CES is finite when E is finite; it is conflict-free when the relation # is empty. We write a ` b for
{a} ` b, and ` e for ∅ ` e (similar shorthands apply for
).

Intuitively, an enabling X ` e models the fact that, if all the events in X have happened, then e is an
obligation for participant π(e); such obligation may be discharged only by performing e, or any event in
conflict with e. For instance, an internal choice between a and b is modelled by a CES with enablings ` a, ` b
and conflict a#b. After the choice (say, of a), the obligation b is discharged. The case of circular enablings
X
 e is more complex, and it requires further notions; so we defer its precise treatment after Definition 2.12.
Roughly, X
 e means that e is an event which can be done “on credit”. Such credit will then be honoured
when all the events in X are performed.

Besides the obligations, the other component of a contract is a function Φ which specifies the objectives
of each participant. More precisely, Φ associates each participant A with a set of sequences in E∞ (the set
of finite or infinite sequences on E), which represent those executions where A has a positive payoff.

Definition 2.2 (Contract). A contract C is a pair 〈E,Φ〉, where E is a CES, and Φ : A→ ℘(E∞).

We interpret a contract as a nonzero-sum concurrent multi-player game [26]. The game involves the
players in concurrently performing actions in order to reach their objectives.

Definition 2.3 (Play). A play of a contract C is a conflict-free sequence σ ∈ E∞ without repetitions.

Notation 2.4. For a sequence σ = 〈e0 e1 · · ·〉 ∈ E∞, we write σ for the set of events in σ; for all i ≤ |σ|,
we write σi for the subsequence 〈e0 · · · ei−1〉. If σ = 〈e0 · · · en〉, we write σ e for 〈e0 · · · en e〉. We denote the
empty sequence by ε (hence we have σ0 = ε for all σ).

Each play σ = 〈e0 · · · ei · · ·〉 uniquely determines a computation:

(∅, ∅) e0−→ (σ1,Γ(σ1)) · · · ei−→ (σi+1,Γ(σi+1)) · · ·

in the CES E. The first element of each pair is the set of events occurred so far; the second element is the
least set of events done “on credit”, i.e. performed in the absence of a causal justification. Formally, for all
sequences η = 〈e0 e1 · · ·〉, we define Γ(η) = {ei ∈ η | ηi 6` ei ∧ η 6
 ei}. Notice that e 6∈ Γ(η) iff either e is
`-enabled by the past events ηi, or it is
-enabled by the whole play.

Example 2.5. Consider the five CES in Figure 1. The maximal plays of E1–E4 are 〈ab〉, 〈ba〉, for which
we have the following computations:

E1 : (∅, ∅) a−→ ({a}, ∅) b−→ ({a, b}, ∅) (∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, {b}).

E2 : (∅, ∅) a−→ ({a}, {a}) b−→ ({a, b}, {a}) (∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, {b}).

E3 : (∅, ∅) a−→ ({a}, {a}) b−→ ({a, b}, ∅) (∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, {b}).

E4 : (∅, ∅) a−→ ({a}, {a}) b−→ ({a, b}, ∅) (∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, ∅).

The maximal plays of E5 are 〈ab〉, 〈ba〉, 〈ac〉, 〈ca〉. For 〈ab〉, 〈ba〉, the computations are as those of E3, while
for 〈ac〉, 〈ca〉 the computations are as those of E2 (with c in place of b).

5

For all participants A, a strategy Σ for A is a function which associates to each finite play σ a set of
events of A such that if e ∈ Σ(σ) then σe is still a play. A play σ = 〈e0 e1 · · ·〉 conforms to a strategy Σ for
A if, for all i ≥ 0, if ei ∈ π−1(A), then ei ∈ Σ(σi); a strategy Σ has past η whenever η conforms to Σ.

Note that conformance to a strategy does not guarantee that all the events selected by such strategy are
actually performed. For instance, consider the contract with enablings ` a, ` b0 and bi ` bi+1 for all i ∈ N,
where a is an event of A and bi are events of B. Here, the play η = 〈b0b1 · · ·〉 conforms to the strategy of A
defined by ΣA(σ) = {a} when a 6∈ σ, and ΣA(σ) = ∅ otherwise. Concretely, conformance only checks that
all the events of A in the play (potentially none) agree with her strategy. As a further example, any (finite)
prefix of η also conforms to ΣA.

To define when a strategy ΣA is winning, we will consider all and only those plays (conforming to ΣA) in
which the events chosen by ΣA are eventually performed. As usual, this amounts to observing to fair plays.
A play is fair w.r.t. a strategy Σ when there are no events in σ which are perpetually enabled by Σ.

Definition 2.6 (Fair play). A play σ = 〈e0 e1 · · ·〉 is fair w.r.t. strategy Σ iff:

∀i ≤ |σ|.
(
∀j : i ≤ j ≤ |σ|. e ∈ Σ(σj)

)
=⇒ ∃h ≥ i. eh = e

We introduce below the crucial notion of prudent events, by slightly adapting the one in [24]. Since the
formal definition is somehow elaborate, we start by providing the intuition underlying it, by first examining
simpler definitions, which will turn out to be unsatisfactory. The idea is that an event e of a participant A is
prudent in a certain play σ if, assuming the other participants fulfil their obligations, A can safely perform e.
Here, “safely” concerns the possibility of doing e while being guaranteed that the events taken on credit
after σ will be eventually honoured. If e is enabled by the events in σ (either via ` or
), then it is prudent:
indeed, credits will not increase by doing e. The non-trivial case is when e is instead
-enabled by some X
not included in σ, since we do not know whether all the events in X will be eventually performed.

A first attempt at defining prudence could be the following:

Definition 2.7 (Prudence, tentative 1). An event e of A is prudent in σ whenever:

∃η : (σ,Γ(σ))
eη−→ (σeη,Γ(σeη)) ∧ Γ(σeη) ∩ π−1(A) ⊆ Γ(σ)

Note that such definition implicitly considers non-deterministic choices as angelic, modelling a situation
where all the participants cooperate to reach a common goal. Indeed, Definition 2.7 guarantees the existence
of a play leading to a diminished credit set, and such behaviour intuitively is the one that will be followed
in a cooperative setting. In other words, angelic non-determinism assumes that only the choices which lead
to the goal are taken, so it does not capture the adversarial setting inherent to contracts, as the following
example shows.

Example 2.8. Assume the obligations of two participants A and B are modelled by the following event
structure, where a0, a1, a2 are the events of A, and b0, b1, b2 are those of B:

b2
 a0 b0 ` a1 b0 ` a2 b1 ` a2 a1#a2

a0 ` b0 a0 ` b1 a1 ` b2 b0#b1

Here, a0 is the only potential candidate for being a prudent event in the empty play, because all the other
events have only `-enablings. Assume that A fires a0: then, B can internally choose between b0 and b1.
If B fires b1, then A must fire a2. At this point, B is not obliged to fire b2, because this would require the
premise a1, which is in conflict with the event a2 done by A. Therefore, the credit a0 will never be honoured
in this play, and so a0 has not to be considered prudent in the empty play. However, a0 would be incorrectly
classified prudent by Definition 2.7, because for η = 〈b0 a1 b2〉 we have that Γ(a0η)∩π−1(A) = ∅ ⊆ Γ(ε) = ∅.

To address the issue raised by the previous example, we need to model demonic non-determinism,
considering participants which compete to reach their goals. A näıve alternative definition could be the
following:

6

Definition 2.9 (Prudence, tentative 2). An event e of A is prudent in σ whenever:

∀η maximal : (σ,Γ(σ))
eη−→ (σeη,Γ(σeη)) =⇒ Γ(σeη) ∩ π−1(A) ⊆ Γ(σ)

Unfortunately, this definition of prudence is still wrong, as witnessed by the following example:

Example 2.10. Assume the obligations of two participants A and B are modelled by the following event
structure, where a0, a1, a2 are the events of A, and b0, b1, b2 are those of B (notice that the only difference
w.r.t. Example 2.8 is the last enabling of A, i.e. b1 ` a1):

b2
 a0 b0 ` a1 b0 ` a2 b1 ` a1 a1#a2

a0 ` b0 a0 ` b1 a1 ` b2 b0#b1

As in Example 2.8, a0 is the only potential candidate for being prudent in the empty play. After A has
fired a0, B can internally choose between b0 and b1. If B fires b0, then A can choose between a1 and a2; by
choosing a1, A can make B fire b2, so obtaining Γ(〈a0b0a1b2〉) = ∅. If B fires b1, then A can still fire a1, after
which B fires b2. Also in this case, we obtain Γ(〈a0b1a1b2〉) = ∅. Therefore, A can always drive her choices
in order to make the credit a0 honoured, and so a0 can be considered prudent in the empty play. However, a0

is incorrectly classified non-prudent by Definition 2.9, because for η = 〈b0a2〉, which is a maximal extension
of 〈a0〉, we have that Γ(a0η) ∩ π−1(A) = {a0} 6⊆ Γ(ε) = ∅.

Here the problem is that, besides the choices of B, also those of A are considered demonic: indeed, even
though it would be prudent for A to do a0, the universal quantification over all plays η must consider also the
play η = 〈b0a2〉, where A has chosen a2. A correct definition of prudence must then consider an alternating
form of determinism, where A tries to make credits honoured, while other participants play against.

As a further attempt towards a definition of prudence, consider the following one. To model angelic
choices for A and demonic choices for the context, we allow A to choose her strategy Σ. Then, we restrict
to fair plays, where A is always allowed to fire the events she has chosen through Σ.

Definition 2.11 (Prudence, tentative 3). A strategy Σ for A with past σ is prudent if, for all fair plays σ′

extending σ and conforming to Σ:

∃k > |σ|. Γ(σ′k) ∩ π−1(A) ⊆ Γ(σ)

An event e is prudent in σ if there exists a prudent strategy Σ with past σ such that e ∈ Σ(σ).

As for the previous attempts, also this tentative definition is unsatisfactory: indeed in Example 2.10 the
event a0 is intuitively prudent in the empty play σ, while it is not according to Definition 2.11. To see why,
assume that a0 ∈ Σ(σ), for some prudent strategy Σ for A. If we consider the extension σ′ = 〈a0〉 of σ, we
obtain (for k = 1, which is the only index we need to consider):

Γ(σ′) ∩ π−1(A) = {a0} 6⊆ Γ(σ) = ∅

and so we have that Σ is not prudent. Since this holds for all strategies Σ, Definition 2.11 would classify a0

as non-prudent in σ = ε — contradicting our intuition.
Here, the issue is that participant B did not perform any event in σ′. Intuitively, after a0 is fired, either

b0 or b1 are obligations for B, yet Definition 2.11 considers also those σ′ where neither of these two events
have been fired. This would model a strong form of demonic non-determinism, wherein B can chooses the
worst option for A, including stopping himself. However, this would lead to an unsatisfactory notion of
prudence, since no events of A
-enabled by events of the context (e.g. a0 from the previous example) could
ever be prudent. The desired notion of prudence would instead model demonic choices for the context where
B can choose between different events, but he cannot stop doing obligations. For instance, in the previous
example, since in σ′ participant B does not respect his obligations, we should not consider σ′ when checking
whether a0 is prudent. Because of this, we shall restrict the universal quantification of σ′ to those plays in

7

which all other participants performed their obligations, and so are deemed innocent. The issue now involves
properly defining the obligations of participants.

A first attempt at this would be requiring innocent participants to perform any event they can (also
those “on credit”). However, this would require such participants to perform events “on credit” with no
guarantee about whether they will be honoured. Such a requirement would be unrealistically asymmetric:
after A makes a prudent move “on credit”, she would expect others to honour such credit by performing
their imprudent events, which may not ever be honoured. The correct definition would instead require other
participants to perform their prudent events, only: this requires prudence and innocence to be mutually
defined.

We finally arrive at the desired definition of prudence.

Definition 2.12 (Prudence). A strategy Σ for A with past σ is prudent if, for all fair plays σ′ extending
σ, conforming to Σ, and where all B 6= A are innocent,

∃k > |σ|. Γ(σ′k) ∩ π−1(A) ⊆ Γ(σ)

An event e is prudent in σ if there exists a prudent strategy Σ with past σ such that e ∈ Σ(σ).

A participant A is innocent in σ = 〈e0 e1 · · ·〉 iff:

∀e ∈ π−1(A). ∀i ≥ 0. ∃j ≥ i. e is not prudent in σj

If A is not innocent in σ, then she is culpable.

The definition of prudent strategies and of innocent participants is mutually coinductive (since we want
to deal also with infinite plays). A participant A is considered innocent in a play σ when she has done
all her prudent events in σ (hence, if a strategy tells A to do all her prudent events, then A is innocent in
all conforming fair plays). Given a finite play σ of past events, an event e is prudent in σ whenever there
exists a prudent strategy Σ which prescribes to do e in σ. A strategy for A with past σ (namely, conforming
to σ) is prudent whenever, in all fair extensions of σ where all other participants are innocent, the events
performed on credit by A are eventually honoured; at most, the credits coming from the past σ will be left.
We neglect those unfair plays where an action permanently enabled is not eventually performed, since an
unfair scheduler could perpetually prevent an honest participant from performing a promised action. Notice
that the empty strategy is trivially prudent according to the definition above.

The definition of prudence involves mutually (co-)recursively defined entities. Further, it involves nega-
tions: e.g., innocence is defined in terms of non-prudent events. To ensure that the definition is indeed
well-formed, it suffices to explicitly formalise prudence and innocence as the greatest fixed point of a mono-
tonic function F : L → L for some complete lattice L, and apply Tarski’s fixed point theorem. Our c.l.
L is the product of the c.l. (℘(E × E∗),⊆) (comprising relations such as “e is prudent in σ”) and the
c.l. (℘(A × E∞),⊇) (comprising relations such as “A is innocent in σ”). Hence, in our c.l. L we have
(P, I) vL (P ′, I ′) iff P ⊆ P ′ and I ⊇ I ′. Then, the function F underlying the definition of prudence is:

F (P, I) = (P ′, I ′) where

P ′ = {(e, σ) | ∃Σ. σe conform to Σ ∧
∀σ′ = σ e η fair conform to Σ.(

∀B 6= π(e). (B, σ′) ∈ I
)

=⇒ φ(σ, σ′,A)}
with φ(σ, σ′,A) , ∃k > |σ|. Γ(σ′k) ∩ π−1(A) ⊆ Γ(σ)

I ′ = {(A, σ) | ∀e ∈ π−1(A). ∀i ∈ 0..|σ|. ∃j ≥ i. (e, σj) 6∈ P}

It is straightforward to check that F is monotonic: roughly, increasing P makes I ′ smaller (while P ′ is
unaffected), while decreasing I makes P ′ larger (while I ′ is unaffected).

8

Example 2.13. Consider the obligations modelled by the five CES in Figure 1, where π(a) = π(a′) = A
and π(b) = π(c) = B:

• in E1, the only prudent event in the empty play is a, which is enabled by ∅, and the only culpable
participant is A. In 〈a〉, b becomes prudent, and B becomes culpable. In 〈ab〉 no event is prudent and
no participant is culpable.

• in E2, there are no prudent events in ε. Instead, event a is prudent in 〈b〉, while b is prudent in 〈a〉:
this is coherent with the fact that the prudence of an event does not depend on the assumption that all
the events done in the past were prudent. In 〈ab〉 and 〈ba〉 no events are prudent.

• in E3, event a is prudent in ε: indeed, the only fair play aη where B is innocent is 〈ab〉, where Γ(ab) = ∅.
Instead, b is not prudent in ε, because b ∈ Γ(bη) for all η. Event b is prudent in 〈a〉.

• in E4, both a and b are prudent in ε.

• in E5, a is not prudent in ε, because if B chooses to do c, then the credit a can no longer be honoured.
Actually, no events are prudent in ε, while both b and c are prudent in 〈a〉, and a is prudent in both
〈b〉 and 〈c〉.

• in E6, a is prudent in ε, because after a has been fired, B must honour the credit by doing b. This
example shows that prudent events are, in general, not persistent: an event which is prudent right now
can become imprudent later on. In particular, if A chooses to fire a′ in the empty play, then a is no
longer prudent in the play 〈a′〉.

We now provide the intuition about the obligations derived by an enabling X
 e, by exploiting the
notion of prudent events. Roughly, e is an obligation iff it is prudent, i.e. one can perform e “on credit”, and
nevertheless be guaranteed that in all possible executions of the contract, either the credit will be honoured
(by doing the events in X), or the debtor will be culpable of a contract violation. For instance, in the
contract with enablings a ` b and b
 a, the first enabling prescribes that b can be done after a, while the
second enabling models the fact that a can be done on credit, on the guarantee that the other participant
will be obliged to do b. The event a is prudent in the initial state, because after doing it the other participant
has the obligation to perform b (not doing b will result in a violation).

We now define when a participant wins in a play. If A is culpable, then she loses. If A is innocent, but
some other participant is culpable, then A wins. Otherwise, if all participants are innocent, then A wins if
she has a positive payoff in the play, and the play is “credit-free”.

Definition 2.14 (Winning play). Define the function W : A→ ℘(E∞) as follows:

WA = {σ ∈ ΦA | A is credit-free in σ, and all participants are innocent in σ} ∪
{σ | A innocent in σ, and some B 6= A is culpable in σ}

where A is credit-free in σ iff: Γ(σ) ∩ π−1(A) = ∅

Example 2.15. Notice that innocence and credit-freeness are distinct notions. For instance, for the contract
induced by the CES E3 in Figure 1, assuming π(a) = A and π(b) = B, we have that in σ = ε, A is credit-
free, but not innocent (because a is prudent in ε), in σ = 〈a〉, A is innocent, but not credit-free (because
Γ(〈a〉) = {a}), and in σ = 〈ab〉, A is innocent and credit-free.

A key property of contracts is that of agreement. Intuitively, when A agrees on a contract C, then she
can safely initiate an interaction with the other participants, and be guaranteed that the interaction will
not “go wrong” — even in the presence of attackers. This does not mean that A will always succeed in all
interactions: in case B is dishonest, we do not assume that an external authority will dispossess B of b and
give it to A. Participant A will agree on a contract where she reaches her goals, or she can blame another

9

participant for a contract violation. In real-world applications, a judge may provide compensations to A, or
impose a punishment to the culpable participant.

We now define when a participant agrees on a contract. We say that Σ is winning for A iff A wins in
every fair play which conforms to Σ. Intuitively, A is happy to participate in an interaction regulated by
contract C when she has a strategy Σ which allows her to win in all fair plays conforming to Σ.

Definition 2.16 (Agreement). A participant A agrees on a contract C whenever A has a winning strategy
in C. A contract C admits an agreement whenever all the involved participants agree on C.

Example 2.17. Consider the contracts Ci where the obligations are specified by Ei in Figure 1, and let the
goals of A and B be as follows: A is happy when she obtains b (i.e. ΦA = {σ | b ∈ σ}), while B is happy
when he obtains a (ΦB = {σ | a ∈ σ}).

• C1 admits an agreement. The winning strategies for A and B are, respectively,

ΣA(σ) =

{
{a} if a 6∈ σ
∅ otherwise

ΣB(σ) =

{
{b} if a ∈ σ and b 6∈ σ
∅ otherwise

Roughly, the only fair play conforming to ΣA and ΣB where both A and B are innocent is σ = 〈ab〉.
We have that A and B win in σ, because both participants are credit-free in σ (see Example 2.5), and
σ ∈ ΦA ∩ ΦB.

• C2 does not admit an agreement. Indeed, there are no prudent events in ε, hence both A and B are
innocent in ε. If no participant takes the first step, then nobody reaches her goals. If a participant
takes the first step, then the resulting trace is not credit-free. Thus, no winning strategy exists.

• C3 admits an agreement. The winning strategies are as for C1 above: A first does a, then B does b.
While C1 and C3 are identical from the point of view of agreements, they differ in that C3 protects A,
while C1 does not. Intuitively, the enabling ` a in C1 models an obligation for A also in those contexts
where no agreement exists, while b
 a only forces A to do a when b is guaranteed.

• C4 admits an agreement. In this case the winning strategies for A and B are:

ΣA(σ) =

{
{a} if a 6∈ σ
∅ otherwise

ΣB(σ) =

{
{b} if b 6∈ σ
∅ otherwise

That is, a participant must be ready to do her action without waiting for the other participant to make
the first step.

• C5 does not admit an agreement. Since no events are prudent in ε, both participants are innocent in
ε, but they cannot reach their goals by doing nothing. If A does a, then B can choose to do c. This
makes B innocent (and winning), but then A loses, because A is not credit-free in 〈ac〉.

• C6 does not admit an agreement. In particular, A agrees on C6, because she can choose to fire a, which
is prudent and guarantees that B must do b. However, B does not agree on C6, because if A chooses to
fire a′, then she will no longer be obliged to do a.

The kind of payoff functions used in the previous example is quite common: the payoff is positive when
some set of events have been done, neglecting the order in which events are actually fired. Informally,
reachability payoffs are the functions Φ for which the order of events in a play σ is immaterial.

Definition 2.18. Let ϕ : A → ℘(℘(E)). We say that Φ : A → ℘(E∞) is induced by ϕ whenever σ ∈ ΦA
iff σ ∈ ϕ(A). A function Φ is a reachability payoff if it is induced by some ϕ.

10

∆ ` q
∆ ` p� q

(Zero)

∆, p� q, p′ ` p
∆, p� q, q ` p′ � q′

∆, p� q ` p′ � q′
(Lax)

∆, p� q, r ` p
∆, p� q, q ` r

∆, p� q ` r
(Fix)

Figure 2: Sequent calculus for PCL (rules for �; the full set of rules is in Figure 8).

(Id)

∆, p ` p
∆ ` p ∆ ` q

(∧I)

∆ ` p ∧ q
∆ ` p ∧ q

(∧E1)

∆ ` p
∆ ` p ∧ q

(∧E2)

∆ ` q

∆ ` p
(∨I1)

∆ ` p ∨ q
∆ ` q

(∨I2)

∆ ` p ∨ q
∆ ` p ∨ q ∆, p ` r ∆, q ` r

(∨E)

∆ ` r

∆, p ` q
(→I)

∆ ` p→ q

∆ ` p→ q ∆ ` p
(→E)

∆ ` q

∆ ` q
(�I1)

∆ ` p� q

∆ ` p� q ∆, p′ ` p ∆, q ` p′ � q′
(�I2)

∆ ` p′ � q′
∆ ` p� q ∆, q ` p

(�E)

∆ ` q

Figure 3: Natural deduction system for PCL.

3. Proof traces in Propositional Contract Logic

Propositional Contract Logic (PCL [15]) extends intuitionistic propositional logic (IPC) with the con-
nective �, called contractual implication. A proof system for PCL was introduced in [15] in terms of a
Gentzen-style sequent calculus (Figure 2), which extends that of IPC. Decidability of PCL has been es-
tablished in [15] following the lines of the proof of decidability of intuitionistic propositional logic given by
Kleene in [28]. The result relies on a formulation of the PCL sequent calculus with implicit structural rules
(to limit the proof search space of a given sequent, as in Kleene’s G3 calculus) and the subformula property,
obtained as consequence of the cut-elimination theorem.

The formulae p, q, . . . of PCL are defined as follows, where we assume that the set of atoms a, b, . . .
coincides with the set of events E used in Section 2.

p, q ::= ⊥ | > | a | ¬p | p ∨ q | p ∧ q | p→ q | p� q

A notable difference between contractual and intuitionistic implication is that the former allows for a
form of circular reasoning, witnessed by the theorem of PCL:

(p� q) ∧ (q � p) → p ∧ q (THEOREM)

whereas the following is not a theorem (neither of PCL nor of IPC):

(p→ q) ∧ (q → p) → p ∧ q (NOT A THEOREM)

3.1. Natural deduction for PCL

We introduce a natural deduction system for PCL, which we shall show equivalent to the sequent calculus
of [15]. The natural deduction system for PCL extends that for IPC with the last three rules in Figure 3
(wherein, in all the rules, ∆ is a set of PCL formulae). Provable formulae are contractually implied, according
to rule (�I1). Rule (�I2) provides � with the same weakening properties of →. The paradigmatic rule is
(�E), which allows for the elimination of �. Compared to the rule (→E) for elimination of → in IPC, the
only difference is that in the context used to deduce the antecedent p, rule (�E) also allows for using as
hypothesis the consequence q.

11

Example 3.1. Let ∆ = a→ b, b� a. A proof of ∆ ` a in natural deduction is the following:

∆ ` b� a

∆, a ` a→ b ∆, a ` a
(Id)

∆, a ` b
(→E)

∆ ` a
(�E)

The natural deduction system of Figure 3 is equivalent to the Gentzen calculus of [15].

Theorem 3.2. ∆ ` p is provable in natural deduction iff ∆ ` p is provable in the sequent calculus of [15].

The proof of Theorem 3.2 follows the lines of the proof of equivalence of natural deduction and sequent
calculus given in [29]. The intuition is that right (resp. left) rules of the sequent calculus are represented in
natural deduction by using introduction (resp. elimination) rules.

3.2. Horn fragment of PCL

In this paper we shall focus on the Horn fragment of PCL, which comprises atoms, conjunctions, and non-
nested implications (both intuitionistic and contractual). This fragment is particularly insightful, because
it has strong relations with the theory of contracts studied in Section 2, as we will show.

The Horn PCL fragment is defined below. It is the natural extension of its IPC counterpart, obtained
by allowing both → and � arrows in clauses.

Definition 3.3 (Horn PCL theory). Let α, β range over n-ary conjunction of atoms
∧
{a1, . . . , an} with

n ≥ 0, and let > denote
∧
∅. A Horn PCL theory is a set of clauses of the form α → a or α � a. We

identify the atomic formula a with the clause > → a.

For proving atoms (or their conjunctions) in Horn PCL theories, a strict subset of the natural deduction
rules suffices.

Lemma 3.4. Let ∆ be a Horn PCL theory. If ∆ ` α in natural deduction, then a proof of ∆ ` α exists
which uses only the rules (Id), (∧I), (∧E1), (∧E2), (→E), and (�E).

3.3. Proof traces

Each Horn PCL theory ∆ induces a set of atom orderings which are somehow “compatible” with the
proofs having ∆ as hypothesis. For instance, if ∆ contains the clause α→ a, then the elimination rule for→
allows for the following proof:

∆ ` α→ a ∆ ` α
∆ ` a

(→E)

The rule says that, to construct from ∆ a proof of a, one first needs a proof of all the atoms in α. Therefore,
if — as a gedankenexperiment — we collect in J∆K the set of all sequences of atoms “compatible” with the
proofs in ∆, and if σ is a sequence in J∆K contaning all the atoms in α, then to be coherent with rule (→E)

we must also include σa in J∆K. Hereafter, we shall refer to the sequences of atoms in J∆K as proof traces.
Consider now the elimination rule for �:

∆ ` α� a ∆, a ` α
∆ ` a

(�E)

Here, the intuition is that α needs not necessarily be proved before a: it suffices to prove α by taking a as
hypothesis. Assuming that σ is a proof trace of ∆, a (i.e. ∆ plus the hypothesis a), the proof traces of ∆
must then include all the interleavings between σ and a.

In the rest of this section we formally define proof traces, and we study their properties. We begin by
providing the needed notation.

Notation 3.5. We denote with α the set of atoms in α. For σ, η ∈ E∗, we denote with ση the concatenation
of σ and η, and with σ | η the set of interleavings of σ and η. We assume that both concatenation and
interleaving operators remove duplicates from the right. For instance, aba | ca = ab | ca = {abc, acb, cab}.

12

ε ∈ J∆K
(ε)

α→ a ∈ ∆ σ ∈ J∆K α ⊆ σ
σ a ∈ J∆K

(→)
α� a ∈ ∆ σ ∈ J∆, aK α ⊆ σ

σ | a ⊆ J∆K
(�)

Figure 4: Proof traces of Horn PCL.

To justify the removal of duplicates in a proof trace, remember that a proof trace in J∆K is an (ordered)
sequence of atoms appearing in a derivation having ∆ as hypothesis. Since PCL is a non-linear logic (where
proving an atom once is the same as proving it several times) we just need to record the first occurence of
it along a derivation.

Definition 3.6 (Proof traces). For a Horn PCL theory ∆, we define the set of sequences of atoms J∆K by
the rules in Figure 4. We call each σ ∈ J∆K a proof trace of ∆.

Note that the � rule carries a set inclusion in its consequence σ | a ⊆ J∆K. This is just a convenient
shorthand for adding a side condition b ∈ (σ | a) and changing the conclusion to b ∈ J∆K.

Also, note that a proof trace may be obtained through different derivations, and that a derivation can
give rise to multiple proof traces (because of the interleaving operator).

Example 3.7. Consider the following Horn PCL theories (recall that a , > → a):

∆1 = {a→ b, a} ∆2 = {a→ b, b→ a}
∆3 = {a→ b, b� a} ∆4 = {a� b, b� a}

(notice the resemblance with the CES E1–E4 in Figure 1). By Definition 3.6, we have:

J∆1K = {ε, a, ab} J∆2K = {ε}
J∆3K = {ε, ab} J∆4K = {ε, ab, ba}

For instance, we deduce ab ∈ J∆3K through the following derivation:

b� a ∈ ∆3

a→ b ∈ ∆3, a

> → a ∈ ∆3, a ε ∈ J∆3, aK
(ε)

> ⊆ ε
a ∈ J∆3, aK

(→)
a ⊆ a

ab ∈ J∆3, aK
(→)

b ⊆ ab
ab ∈ ab | a ⊆ J∆3K

(�)

Notice that ba 6∈ J∆3K: indeed, to derive any non-empty α from ∆3 one needs to use both a → b and
b� a, hence all non-empty proof traces must contain both a and b; since b does not occur at the right of a
contractual implication, it cannot be interleaved; thus, ba is not derivable.

Note that the derivation in Example 3.7 follows the same steps of the one in Example 3.1. The use of
rule (→E) is replaced by (→), while (�E) is replaced by (�). The (Id) rule is handled slightly differently, since
we identify a = > → a when dealing with Horn clauses, causing the use of (→) in the proof trace derivation,
followed by (ε) on top. However, note that in general there is no direct correspondence between natural
deduction proofs and derivations of proof traces, because rules (∧E1), (∧E2) and (∧I) have no counterparts in
the inference rules for proof traces. Still, there does exist a correspondence between provability and proof
traces, as stated in Lemma 3.11.

We now prove some basic properties of proof traces, which will be exploited later on in Section 3.4 and
in Section 4, to relate proof traces with contracts. In all the statements below, ∆, ∆′ are Horn PCL theories,
while σ, η, ν are sequences of atoms (not necessarily proof traces).

The following lemma states that the operator J·K is monotonic with respect to the inclusion relation
between theories. This is straightforward by Definition 3.6.

13

Lemma 3.8. ∆ ⊆ ∆′ =⇒ J∆K ⊆ J∆′K

Proof traces are closed under concatenation. Actually, the following lemma provides us with a stronger
result: if σ is a proof trace of ∆, then we can append to σ any proof trace η which may also use (in addition
to ∆) the atoms in σ as hypotheses.

Lemma 3.9. σ ∈ J∆K ∧ η ∈ J∆, σK =⇒ ση ∈ J∆K.

Proof. By induction on the depth of the proof of η ∈ J∆, σK.

The following lemma states that proof traces are also closed under interleaving. Differently from Lemma 3.9
above, in this case we cannot use the additional hypotheses σ when deducing η ∈ J∆K.

Lemma 3.10. σ ∈ J∆K ∧ η ∈ J∆K =⇒ σ | η ⊆ J∆K

Proof. Let Π be a proof of σ ∈ J∆K (of depth n), and let Ψ be a proof of η ∈ J∆K (of depth m). The proof
proceeds by well-founded induction on the relation ≺ ⊆ N2 × N2 defined as follows:

(n′,m′) ≺ (n,m) ⇐⇒ (n′ < n ∧ m′ ≤ m) ∨ (n′ ≤ n ∧ m′ < m)

For the base case (0, 0), both Π and Ψ consist only of the axiom (ε), hence the thesis follows trivially. The
proof proceeds by considering the last rule used in Π and in Ψ. Full details are in Appendix A.

The following lemma establishes two basic relations between proof traces and natural deduction proofs
in Horn PCL. First, all the atoms in a proof trace of ∆ can be deduced from ∆. Second, if some set of
atoms is deducible from ∆, then there must exist a proof trace of ∆ which contains them all.

Lemma 3.11. For all Horn PCL theories ∆:

(a) σ ∈ J∆K =⇒ ∀a ∈ σ. ∆ ` a

(b) ∀a ∈ σ. ∆ ` a =⇒ ∃η ∈ J∆K. σ ⊆ η

A consequence of Lemma 3.11 is that provability in natural deduction can be characterized using proof
traces: given a Horn PCL theory ∆, a conjunction of atoms α can be derived from ∆ in natural deduction
if and only if there exists a proof trace σ of ∆ such that all atoms in α belong to σ.

Corollary 3.12. ∆ ` α ⇐⇒ ∃σ ∈ J∆K. α ⊆ σ

The following lemma is a generalisation of Lemma 3.9 and Lemma 3.10. If σν is a proof trace of ∆, we
can obtain other proof traces of ∆ by appending to σ any interleaving of ν and η, where η is a proof trace
η of ∆ possibly using σ as additional hypotheses.

Lemma 3.13. σν ∈ J∆K ∧ η ∈ J∆, σK =⇒ σ(ν | η) ⊆ J∆K

3.4. Urgent atoms

We now define, starting from a Horn PCL theory ∆ and a set X of atoms, which atoms may be proved
immediately after those in X, following some proof trace. We call these atoms urgent after X (in ∆), and
we denote then with UX∆ .

Definition 3.14. For a set X ⊆ E and a Horn PCL theory ∆, we define the set of atoms UX∆ as:

UX∆ = {a 6∈ X | ∃σ, σ′. σ = X ∧ σ aσ′ ∈ J∆, XK}

Example 3.15. Consider the theory ∆3 = {a→ b, b� a} from Example 3.7. We have that:

• U∅∆3
= {a}, because a ∈ J∆3K = {ε, ab}, and there are no proof traces in J∆3K starting with b.

14

• U
{a}
∆3

= {b}, because in the proof trace ab ∈ J∆3, aK = {ε, a, ab}, b is the first atom after those in {a}
(formally, in Definition 3.14 we choose σ = a and σ′ = ε).

• U
{b}
∆3

= {a}, because in the proof trace ba ∈ J∆3, bK = {ε, b, ab, ba}, we have that a is the first atom
after those in {b} (formally, in Definition 3.14 we choose σ = b and σ′ = ε).

• U
{a,b}
∆3

= ∅, because there no atoms but a, b can occur in the proof traces in J∆3, a, bK.

Theorem 3.21 below characterizes urgent atoms in terms of provability. Intuitively, to test if an atom
a is urgent after X in ∆, we first decorate with ! the atoms in X (to mean that they have already been
proved), and then we encode the clauses in ∆ with the mapping [·]U in Definition 3.16. Then, Theorem 3.21
guarantees that the atom Ua (where the decoration U stands for “urgent”) is provable in the Horn PCL
theory [∆]U , !X if and only if a is urgent after X.

Technically, Definition 3.16 introduces an endomorphism [·]U of Horn PCL theories. Let ? ∈ {!, R, U}.
We assume three injections ? : E → E , such that !E , RE and UE are pairwise disjoint. For a set of atoms
X ⊆ E , we denote with ?X the theory {?e | e ∈ X}. Intuitively, the atoms of the form !a correspond to
actions already happened in the past, the atoms Ua correspond to urgent actions, while the atoms Ra are
those actions which can be eventually reached by performing the urgent ones.

Below, we denote with atoms(∆) the set of all atoms in ∆. We assume that atoms(∆)∩ ?E = ∅, and that
a stands for an atom not in ?E. For a set X ⊆ !E∪RE∪UE, we define the projectionX? = {e ∈ E | ?e ∈ X}.
When α = a1 ∧ · · · ∧ an, we write ?α for the conjunction ?a1 ∧ · · · ∧ ?an. When n = 0, ?α = >.

Definition 3.16. The endomorphism [·]U of Horn PCL theories is defined as follows:

[∆, α . a]U = [∆]U ∪ [α . a]U ∪ Ω(atoms(α . a)) for .∈ {→,�}

ΩX = {!a→ Ua | a ∈ X} ∪ {Ua→ Ra | a ∈ X}

[α→ a]U = {!α→ Ua, Rα→ Ra}

[α� a]U = {Rα� Ua}

The ΩX part of the encoding ensures that, intuitively, ! is stronger than U , and that U is stronger
than R. In a sense, this is used to assign to each atom a “state” which can be “reachable”, “urgent”, or
“performed”. The encoding of an implication α→ a contains !α→ Ua, meaning that a becomes urgent when
its preconditions α have been done, and Rα→ Ra, meaning that a is reachable whenever its preconditions
are such. The encoding of a contractual implication α � a contains Rα � Ua, meaning that a is urgent
when its preconditions are guaranteed to be reachable.

Example 3.17. For the PCL theory ∆3 = {a→ b, b� a} in Example 3.7, we have:

[∆3]U = {!a→ Ub, Ra→ Rb, (encoding of a→ b)

Rb� Ua, (encoding of b� a)

!a→ Ua, !b→ Ub, Ua→ Ra, Ub→ Rb} (Ω{a, b})

We have that [∆3]U ` Ua (see Figure 5 for a proof) and [∆3]U 6` Ub; also, [∆3]U , !a ` Ub. Note that
our encoding in Definition 3.16 maps contractual implications to contractual implications. This is needed,
because if we instead mapped the clause b� a to Rb→ Ua (i.e. using intuitionistic rather than contractual
implication), then no atoms would have been provable in [∆3]U .

The following lemma is the fundamental technical tool we shall use below to prove our main results
about PCL, proof traces, and urgent atoms. It relates the atoms provable in encoded theories [∆]U with
the proof traces (item 5a), and with the urgent atoms (item 5b).

15

(Id)

[∆3]U ` Rb� Ua

(Id)

[∆3]U , Ua ` Ra → Rb

(Id)

[∆3]U , Ua ` Ua → Ra
(Id)

[∆3]U , Ua ` Ua
(→E)

[∆3]U , Ua ` Ra
(→E)

[∆3]U , Ua ` Rb
(�E)

[∆3]U ` Ua

Figure 5: Natural deduction proof of [∆3]U ` Ua.

Lemma 3.18. For all Horn PCL theories ∆, for all Γ ⊆ !E ∪ UE, and for all α:

[∆]U ,Γ ` α =⇒


αR ⊆

⋃
J∆,Γ

!U
K (5a)

αU ⊆ UΓ
!

∆,Γ
U ∪ Γ

!U
(5b)

Roughly, item (5a) of Lemma 3.18 states that if one proves in [∆]U some atom of the form Ra, then
the atom a belongs to some proof trace of ∆. Similarly, item (5b) states that if Ua is provable in [∆]U ,
then the atom a is urgent in ∆. The proof of Lemma 3.18 is by induction of the derivation of [∆]U ` α
(see Appendix A for details). Note that the two items only provide one direction of the correspondence
between the theories [∆]U and ∆. Lemma 3.19 and Lemma 3.20 refine this result, by also providing the
other direction.

The following lemma states that the atoms a for which Ra is derivable from [∆]U are exactly those atoms
which occur in some proof trace of ∆.

Lemma 3.19. a ∈
⋃

J∆K ⇐⇒ [∆]U ` Ra

The following lemma relates proof traces with the U -atoms, i.e. the atoms a for which Ua is derivable
from [∆]U . The (⇐) direction states that (any prefix of) a proof trace is made by U -atoms in sequence.
The (⇒) direction states that a finite sequence of U -atoms can be extended to a proof trace.

Lemma 3.20. Let σ = 〈e0 · · · en〉. Then,

∀i ∈ 0..n. [∆]U , !σi ` Uei ⇐⇒ ∃η. ση ∈ J∆K

The main result about the endomorphism [·]U follows. Given a Horn PCL theory ∆ and a set of atoms X,
an atom a is urgent from X in ∆ iff Ua is provable in [∆]U , !X.

Theorem 3.21. For all Horn PCL theories ∆, and for all a 6∈ X ⊆ atoms(∆):

a ∈ UX∆ ⇐⇒ [∆]U , !X ` Ua

Proof. (⇒) Assume that a ∈ UX∆ . By Definition 3.14, there exist σ, σ′ such that σ = X and σ aσ′ ∈ J∆, XK.
By Lemma 3.20, we have [∆, X]U , !X ` Ua. The thesis [∆]U , !X ` Ua follows because [X]U is entailed by
!> → UX, and !X → UX is obtained by Definition 3.16.

(⇐) Assume that [∆]U , !X ` Ua. Since [X]U entails !> → UX, then [∆, X]U ` Ue for all e ∈ X.
Furthermore, by Lemma 3.8, [∆, X]U , !X ` Ua. Take any σ such that σ = X. By Lemma 3.20 it follows
that there exists some η such that σ a η ∈ J∆, XK. By Definition 3.14, we conclude that a ∈ UX∆ .

4. A logical view of contracts

In this section we establish a correspondence between contracts and PCL. In particular, for conflict-free
contracts and Horn PCL theories, we shall show that:

16

bA cA cB

aB aC bC

eA

eC

Figure 6: A CES E? for the 3-party escrow scenario.

• agreements can be characterised in terms of provability in PCL (for reachability payoffs, Theorem 4.2);

• sequences of prudent events correspond to (prefixes of) proof traces (Theorem 4.8);

• prudent strategies are those which prescribe to fire urgent atoms in PCL (Theorem 4.11).

For a conflict-free CES E and a Horn PCL theory ∆, we write ∆ ∼ E when there exists a bijection which
maps an enabling X ` e in E to a clause (

∧
X)→ e in ∆, and a circular enabling X
 e to (

∧
X)� e.

Definition 4.1. We write ∆ ∼ E when E is finite conflict-free, and

∆ = {(
∧
X)→ e | X ` e ∈ E} ∪ {(

∧
X)� e | X
 e ∈ E}

To relate agreement with provability, we consider the class of reachability payoffs, which neglect the
order in which events are performed (Definition 2.18). This class is quite broad. For instance, it includes the
offer-request payoffs [24], used by participants which want something in exchange for each provided service.

The following theorem provides us with a logical characterisation of agreements. If Φ is a reachability
payoff induced by ϕ, and ∆ ∼ E, then the participant A agrees on the contract 〈E,Φ〉 whenever all the
atoms provable in ∆ are in the payoff of A.

Theorem 4.2. Let ∆ ∼ E, and let Φ be a reachability payoff induced by ϕ. Then, A agrees on C = 〈E,Φ〉
iff {a | ∆ ` a} ∈ ϕ(A).

Example 4.3 (3-party escrow). Assume three (mutually distrusting) participants want to exchange some
items, with the following policy (sketched in Figure 6):

• A gives its items to B and C only after having the acknowledgment from an escrow service E;

• B gives its item to A (resp. to C) only after having received the item from A (resp. from C);

• C gives its items to A and B only after having the acknowledgment from an escrow service E;

• The escrow service E gives the acknowledgment to A only under the guarantee that B and C will
eventually give their items to A. Similarly for the acknowledgment to C.

We model the participants contracts as follows. Event aB means that A gives an item to B, event bC means
that B gives an item to C, etc. Event eA is fired when the escrow service gives its acknowledgment to A
(similarly for eC). The obligations are represented by the CES E? in Figure 6. The composed contract is
C = 〈E?,Φ〉, where Φ is the reachability payoff induced by ϕ = {E}, with E = {aB, aC, bA, bC, cA, cB, eA, eC}.

The contract C admits an agreement. To see that, consider the following strategies (explained informally):

• ΣA: wait eA and then fire aB and aC;

• ΣB: wait aB and then fire bA; also, wait cB and then fire bC;

17

• ΣC: wait eC and then fire cA and cB;

• ΣE: fire eA and eC.

It is easy to check that all the strategies above are winning in C. Indeed, eA and eC are prudent in ε; bA
becomes prudent after aB is fired; bC after cB; events aB, aC after eA; events cA, cB after eC.

The correspondence between provability in PCL and agreement in contracts (Theorem 4.2) allows us to
transfer this result to PCL, by establishing that all the atoms in E are provable in the Horn PCL theory:

∆? = {(bA ∧ cA)� eA, eA → aB, eA → aC, aB → bA,

(aC ∧ bC)� eC, eC → cA, eC → cB, cB → bC}

for which, clearly, E? ∼ ∆?. Note that, while of course it is possible to prove that ∆? `
∧
e∈E e through the

proof system of PCL, this is not straightforward to see. For instance, it is not obvious that, were any one
of the � in ∆? replaced with a →, then no atoms would have been provable.

To study the relations between contracts and proof traces, it is convenient to first devise an alternative
characterisation of prudent events for conflict-free contracts. We denote with RX the set reachable events
with past X. Intuitively, in a set X of past events, we consider an event e 6∈ X reachable when e occurs in
some play ση where the prefix σ is a linearization of X, and the credits made in η are honoured. The set
PX contains the events which can be done in X without eventually augmenting the credits.

Definition 4.4. For a CES E and a set X ⊆ E, let:

RXE = {e 6∈ X | ∃σ, η : σ = X, e ∈ η, and Γ(ση) ⊆ X}
PXE = {e 6∈ X |X ` e or X ∪ RX
 e}

We omit the index E when clear from the context.

Lemma 4.5. In finite conflict-free contracts, an event e is prudent in σ iff e ∈ Pσ.

The criterion given by Lemma 4.5 is much simpler than the mutually coinductive definition of prudence
in Definition 2.12. Indeed, whereas computing prudent events by applying directly Definition 2.12 would
give an exponential algorithm, a polynomial-time algorithm for computing PX can be obtained as follows.
First we compute the set RX : this can be done by slightly adapting the algorithm described by Theorem 4.8
in [27], which computes the reachable events in a CES. To obtain RXE , it suffices to extend the CES E to
E′ = E ∪ {` e | e ∈ X}, then compute the reachable events of E′ as in [27], and finally remove the events
in X. The correctness of this algorithm follows by Lemma 7.60 in [30]. Then, PX can be easily computed
as in Definition 4.4.

The following example shows that the conflict-free assumption of Lemma 4.5 can not be removed. Indeed,
in the presence of conflicts, the set P can be larger than the set of prudent events.

Example 4.6. Assume the obligations of two participants A and B are modelled by the following event
structure, where a is the event of A, and b0, b1 are those of B:

` b0 ` b1 b0
 a

The event a is prudent in the empty play, as correctly stated by Lemma 4.5:

R∅ = {a, b0, b1} = P∅

However, if we extend the event structure with the conflict b0#b1, then we still have a ∈ P∅ (since Defini-
tion 4.4 neglects conflicts), while a is not prudent in the empty play. Indeed, if B chooses b1, then he will
not have the obligation to do b0 (because of the conflict), hence the credit a will not be honoured.

18

The following lemma establishes that prudent events in a contract 〈E, ·〉 correspond to urgent atoms in a
PCL theory ∆ ∼ E. The idea of the proof is to exploit the endomorphism [·]U in Definition 3.16 as a bridge
between CES and PCL. To do that, we first map E to the PCL theory [∆]U , and we relate the prudent events
in 〈E, ·〉 to the provable atoms in [∆]U , which in turn are related to urgent atoms in ∆ by Theorem 3.21.
Summing up, the prudent events in E are the urgent atoms in ∆.

Lemma 4.7. Let ∆ ∼ E. Then, for all X ⊆ E, PXE = UX∆ .

We can now relate prudence in contracts with proofs in PCL. Theorem 4.8 states that the plays of
prudent events correspond to prefixes of proof traces.

Theorem 4.8. Say σ = 〈e0 · · · en〉 is a prudent play of E when ei is prudent for σi in E, for all i ≤ n. If
∆ ∼ E, then σ is a prudent play of E iff ∃η. ση ∈ J∆K.

Proof. (⇒) Let σ = 〈e0 · · · en〉 be a prudent play of E. We proceed by induction on the length of σ. The
base case σ = ε is trivial, because ε ∈ J∆K holds by rule (ε). For the inductive case, the induction hypothesis
gives that σn = 〈e0 · · · en−1〉 is the prefix of a proof trace. By Lemma 3.20, [∆]U , !σi ` Uei for all i < n.
Since σ is a prudent play, then en is prudent in σn. By Lemma 4.5, en ∈ Pσn

E . By Lemma 4.7, en ∈ Uσn

∆ .
By Theorem 3.21, [∆]U , !σn ` Uen. By Lemma 3.20, there exists η such that ση ∈ J∆K.
(⇐) Symmetrical to the other direction.

Example 4.9. The prudent plays of the CES E3 in Figure 1 are ε, a, and ab (see Example 2.13). By The-
orem 4.8, these can be extended to proof traces in the corresponding Horn PCL theory ∆3 ∼ E3. Indeed, ab
is a proof trace of ∆3 (see Example 3.7).

Example 4.10. Recall the escrow scenario of Example 4.3. The correspondence between contracts and
PCL allows for easily constructing the proof traces of ∆? — which is not as straightforward by applying
directly Definition 3.6. The maximal prudent plays σ are those where only prudent events are fired, i.e.:

σ ∈
(
eA (aC | aBbA)

)
|
(
eC (cA | cBbC)

)
By Theorem 4.8, these plays exactly correspond to the proof traces of the PCL theory ∆?.

Our last main result relates the winning strategies of a contract C = 〈E,Φ〉 with the proof traces of a
PCL theory ∆ ∼ E. In particular, for all participants A we construct a strategy that, in a play σ, enables
exactly the events of A which are urgent in σ. This strategy is prudent for A, and leads A to a winning play
whenever A agrees on C.

Theorem 4.11. Let ∆ ∼ E, and let the strategy ΣA be defined as:

ΣA(σ) = Uσ∆ ∩ π−1(A)

Then, ΣA is a prudent strategy for A in C = 〈E,Φ〉. Moreover, if Φ is a reachability payoff and C admits an
agreement, then ΣA is winning for A.

Example 4.12 (Shy dancers). There are n2 guests at a wedding party, arranged in a grid of size n×n. The
music starts, the guests would like to dance, but they are too timid to start. Each guest will dance provided
that at least other two guests in its 8-cells neighborhood will do the same.

We model this scenario as follows. For all i, j ∈ 1..n, Ai,j is the guest at cell (i, j), and ei,j is the event
which models Ai,j dancing. The neighborhood of (i, j) is Ii,j = {(p, q) 6= (i, j) | |p− i| ≤ 1 ∧ |q − j| ≤ 1},
and we define Ei,j = {ep,q | (p, q) ∈ Ii,j}.

Let F be the set of functions from {1..n} × {1..n} to {`,
}. Intuitively, each function • ∈ F establishes
which guests use ` and which use
. For all • ∈ F and for all i, j ∈ 1..n, guest Ai,j promises to dance
if at least two neighbours have already started (in case •(i, j) = `), or under the guarantee that they will
eventually dance (when •(i, j) =
). Formally, for all • ∈ F, let E• be the CES:

E• =
⋃
i,j∈1..n E

•
i,j where E•i,j = {X • (i, j) ei,j | X ⊆ Ei,j ∧ |X| = 2}

19

The objective of a participant Ai,j is to reach a play where at least two participants in its neighborhood Ei,j
are dancing. This is modelled by the function Φ such that Φ(Ai,j) = {σ | σ ∩ Ei,j ≥ 2}, for all i, j ∈ 1..n.
For all • ∈ F, we ask whether the contract C• = 〈E•,Φ〉 admits an agreement, i.e. if all guests will eventually
dance. We can prove that C• admits an agreement iff there exist two guests in the same neighborhood which
use
. Formally:

∃i, j ∈ 1..n. ∃(p, q), (p′, q′) ∈ Ii,j . (p, q) 6= (p′, q′) ∧ •(p, q) =
 = •(p′, q′)

Indeed, when the above holds, the strategy:

Σ•i,j(σ) =

{
{ei,j} if ei,j 6∈ σ, and •(i, j) =
 or σ ` ei,j
∅ otherwise

is winning, for all guests Ai,j. As noted in the previous example, the correspondence established by Theo-
rem 4.2 allows us to transfer the above observations to PCL. In particular, the above provides a simple proof
that, in the Horn PCL theory:

∆• = {α • (i, j) ei,j | α ⊆ Ei,j ∧ |α| ≥ 2 ∧ i, j ∈ 1..n}

some atom is provable iff there exist at least two distinct clauses which use �. Again, this result would not
be easy to prove directly, without exploiting the correspondence between agreements and provability.

5. Related work and Conclusions

We have studied the relations between a foundational models for contracts and the logic PCL. The main
result is that the notions of agreement, prudent plays and winning strategies in the game-theoretic model
of [24] have been related, respectively, to that of provability, proof traces and urgent atoms in the logical
model of [15] (Theorem 4.2, Theorem 4.8, and Theorem 4.11).

The motivations underlying PCL and CES are related to those introduced in [14] to compose assume-
guarantee specifications [31]. Circularity in assume-guarantee reasoning is created whenever a system will
give some guarantee M1 about its behaviour, provided that the environment it operates within will behave
according to some assumption M2, and vice versa. In the model of [14], circular reasoning is represented by
the judgment (M1 →M2) ∧ (M2 →M1) `M1∧M2. However, since→ is the usual intuitionistic implication,
such judgment is not generally valid (as in IPC) but is subject to a side condition on the interpretation of
M1,M2 in the model. In PCL, instead, circularity is handled using a specific implication connective �,
whose axiomatization does not affect the IPC fragment of PCL — PCL being a conservative extension of
IPC. A similar idea was followed in CES: instead of trying to suitably change the role of the enabling relation
` to address circularity, a new relation
 is added to such purpose. Further, unlike [14], PCL reasoning is
not tailored upon any specific model. Still, we were able to relate CES and PCL, making it possible to think
about CES as a model of the Horn fragment of PCL. Actually, finding a class of models on which general
circular reasoning is sound and complete appears to be hard: e.g. [32] shows the impossibility of devising, in
some lattice-based models, a sound and complete set of compositional rules for circular assume-guarantee.

The contract model used in this paper has been borrowed from [24]. Besides agreement, the other crucial
notion introduced in [24] is that of protection: intuitively, a participant is protected by a contract when
she has a strategy to defend herself in all possible contexts, even in those where she has not reached an
agreement. A first result of [24] is that, using standard ES (without circular causality), agreements and
protection mutually exclude each other. Then, it is shown that circular enablings allow for constructing
contracts which guarantee both agreements and protection. While [24] is not concerned with relating
contracts with PCL, putting together these results with the correspondences obtained in this paper may
give insights about the computational meaning of the contractual implication connective of PCL.

Some preliminary work on relating event structures with the logic PCL has been reported in [5]. The
model of [5] is a simplified version of that considered in the current paper: it does not exploit game-theoretic

20

notions, conflicts are not considered, events are finite, payoffs are just sets of events, and agreement is defined
as the existence of a configuration in the CES which contains such set. In this simple model, it is shown
that an event is reachable in a CES whenever it is provable in the corresponding PCL theory. Hence, an
agreement exists whenever all the events in the payoff of each participant are provable. Theorem 4.2 extends
this result to a more general (game-theoretic) notion of agreement and of payoff.

Event structures with circular causality are thoroughly investigated in [27]. There, CES are considered
in their full generality: they allow for infinite sets of events, and can model non-determinism through the
conflict relation. A relation between CES and PCL is then established: roughly, the problem of deciding
if some set of events is a configuration of a CES is reduced to that of proving a certain formula in PCL.
Also, [27] introduces the notion of urgent events, i.e. those events which always allow to eventually reach
a state with empty credits. While [27] does not feature a correspondence between urgent events and PCL,
this is provided by Theorem 3.21 in this paper, which relates urgent events to provability in PCL. Note
that the definition of urgent events in [27] implicitly assumes that non-deterministic choices are angelic, so
representing a situation where participants cooperate to reach a common goal. To model participants which
compete to reach their individual goals requires instead the game-theoretic machinery (demonic choices,
strategies, innocence, prudence, winning plays, etc.) introduced in [24].

An encoding of Horn PCL formulae into a variant of CCS has been presented in [33]. Very roughly,
the encoding maps a clause α → a in a process which inputs all the channels in α and then outputs on a,
while a clause α � a the input of α and the output of a is done in parallel. The actual encoding is more
sophisticated than the above intuition, mostly because it has to take into account multiple participants
which share the same channels, and it has to agree with the notion of culpability defined in the logical
model. In particular, in the CCS model a participant is considered culpable only when omitting to produce
a promised output, or omitting to input an available message. The correspondence result (Theorem 2.7
in [33]) states that provable atoms in PCL are exactly those atoms that are communicated by participants
in those CCS traces which lead to a state in which each no culpable participant is present.

In [34] an extension of linear logic, called cancellative linear logic, is defined, out of an analysis of some
categorical models of linear logic, where the ⊗ and O operators are identified. As a consequence, linear
implication a (b can be used in two ways: either one feeds it with the resource a to get the resource b,
or one gets the resource b while introducing at the same time a debt a⊥, which can be settled later in the
presence of an occurence of the resource a. Cancellative linear logic presents some similarities with PCL,
as both approaches allow to logically represent obligations. The main difference between these logics is the
way debts are dealt with: while in cancellative linear logic debts can be used without restraints, in PCL
obligations are introduced in a controlled way, guaranteeing that all debts will eventually be settled.

In [3] the idea of performing events “on credit” has been explored in the domain of Petri nets. In the
variant of Petri nets presented in [3] (called Lending Petri nets, LPNs), certain places may be tagged as
“lending”, with the meaning that their marking can become negative, but must be eventually brought back
to a nonnegative value (i.e. the marking is “honoured”). A technique is presented to transform Horn PCL
theories into LPNs, and it is shown that provability in a PCL theory corresponds to weak termination in
the LPN obtained by the transformation. A similar approach is that of financial games in Petri nets [34],
where moves allow for creating debts, and for annihilating debts with credits. A difference between LPNs
and financial games is that in the latter debits (modelled as negative tokens) can be always created, whereas
in LPNs they can only be created by lending places. Also, the annihilation of positive and negative tokens
in financial games is not present in LPNs, which instead use honoured markings to detect successful compu-
tations. Models of contracts based on Petri nets, like those mentioned above, seem less expressive than the
contracts considered of this paper, as they implicitly assume that non-deterministic choices are angelic, so
representing a situation where participants cooperate to reach a common goal. Modelling the more general
case where participants may compete to reach their goals requires the game-theoretic machinery used here.

Studying contracts and circular causality in a resource-aware logic is a future object of study of ours.
In particular, it seems that there is connection between intuitionistic linear logic with mix [35] and Petri
Nets with debit arcs [36], similarly to the connection between PCL and CES-based contracts studied in this
paper. Establishing such correspondence could lead to algorithms for provability in (the Horn fragment of)
the logic, exploiting the decision procedures on Petri nets.

21

References

[1] OASIS, Reference architecture foundation for service oriented architecture, comm. Spec. 01, v.1.0. Available at http:

//docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html (December 2012).
[2] W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, K. Wolf, Multiparty contracts: Agreeing and implementing

interorganizational processes, Comput. J. 53 (1) (2010) 90–106. doi:10.1093/comjnl/bxn064.
[3] M. Bartoletti, T. Cimoli, G. M. Pinna, Lending Petri nets and contracts, in: Proc. FSEN, Vol. 8161 of LNCS, Springer,

2013, pp. 66–82. doi:10.1007/978-3-642-40213-5_5.
[4] T. T. Hildebrandt, R. R. Mukkamala, Declarative event-based workflow as distributed dynamic condition response graphs,

in: Proc. PLACES, Vol. 69 of EPTCS, 2010, pp. 59–73. doi:10.4204/EPTCS.69.5.
[5] M. Bartoletti, T. Cimoli, G. M. Pinna, R. Zunino, An event-based model for contracts, in: Proc. PLACES, Vol. 109 of

EPTCS, 2012, pp. 13–20. doi:10.4204/EPTCS.109.3.
[6] L. Bocchi, K. Honda, E. Tuosto, N. Yoshida, A theory of design-by-contract for distributed multiparty interactions, in:

Proc. CONCUR, Vol. 6269 of LNCS, 2010, pp. 162–176. doi:10.1007/978-3-642-15375-4_12.
[7] M. Bravetti, I. Lanese, G. Zavattaro, Contract-driven implementation of choreographies, in: Proc. TGC, Vol. 5474 of

LNCS, 2008, pp. 1–18. doi:10.1007/978-3-642-00945-7_1.
[8] M. Bravetti, G. Zavattaro, Contract based multi-party service composition, in: Proc. FSEN, Vol. 4767 of LNCS, 2007,

pp. 207–222. doi:10.1007/978-3-540-75698-9_14.
[9] G. Castagna, N. Gesbert, L. Padovani, A theory of contracts for web services, ACM TOPLAS 31 (5) (2009) 19:1–19:61.

doi:10.1145/1538917.1538920.
[10] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, in: Proc. POPL, 2008, pp. 273–284. doi:

10.1145/1328438.1328472.
[11] A. Lomuscio, W. Penczek, M. Solanki, M. Szreter, Runtime monitoring of contract regulated web services, Fundamenta

Informaticae 111 (3) (2011) 339–355. doi:10.3233/FI-2011-566.
[12] F. Raimondi, J. Skene, W. Emmerich, Efficient online monitoring of web-service SLAs, in: SIGSOFT FSE, 2008, pp.

170–180. doi:10.1145/1453101.1453125.
[13] M. Abadi, M. Burrows, B. Lampson, G. Plotkin, A calculus for access control in distributed systems, ACM TOPLAS

4 (15) (1993) 706–734. doi:10.1145/155183.155225.
[14] M. Abadi, G. D. Plotkin, A logical view of composition, Theoretical Computer Science 114 (1) (1993) 3–30. doi:

10.1016/0304-3975(93)90151-I.
[15] M. Bartoletti, R. Zunino, A calculus of contracting processes, in: Proc. LICS, 2010, pp. 332–341. doi:10.1109/LICS.

2010.25.
[16] C. Prisacariu, G. Schneider, A dynamic deontic logic for complex contracts, The Journal of Logic and Algebraic Program-

ming (JLAP) 81 (4) (2012) 458–490. doi:10.1016/j.jlap.2012.03.003.
[17] J. Gelati, A. Rotolo, G. Sartor, G. Governatori, Normative autonomy and normative co-ordination: Declarative power,

representation, and mandate, Artificial Intelligence and Law 12 (1-2) (2004) 53–81. doi:10.1007/s10506-004-1922-2.
[18] K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, N. Yoshida, Scribbling interactions with a formal foundation, in:

Distributed Computing and Internet Technology, 2011, pp. 55–75. doi:10.1007/978-3-642-19056-8_4.
[19] K. Honda, Types for dyadic interaction, in: CONCUR, 1993, pp. 509–523.
[20] K. Honda, V. T. Vasconcelos, M. Kubo, Language primitives and type disciplines for structured communication-based

programming, in: Proc. ESOP, 1998. doi:10.1007/BFb0053567.
[21] T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, N. Yoshida, Asynchronous distributed monitoring for multiparty session

enforcement, in: Proc. TGC, 2011, pp. 25–45.
[22] M. Armbrust, et al., A view of cloud computing, Comm. ACM 53 (4) (2010) 50–58. doi:10.1145/1721654.1721672.
[23] H. Haas, Designing the architecture for web services — W3C (2003).
[24] M. Bartoletti, T. Cimoli, R. Zunino, A theory of agreements and protection, in: Proc. POST, Vol. 7796 of LNCS, Springer,

2013, pp. 186–205. doi:10.1007/978-3-642-36830-1_10.
[25] G. Winskel, Event structures, in: Advances in Petri Nets, 1986, pp. 325–392. doi:10.1007/3-540-17906-2_31.
[26] S. Abramsky, P.-A. Mellies, Concurrent games and full completeness, in: Proc. LICS, 1999, pp. 431–431.
[27] M. Bartoletti, T. Cimoli, G. M. Pinna, R. Zunino, Circular causality in event structures, Fundamenta Informaticae

134 (3-4). doi:10.3233/FI-2014-1101.
[28] S. Kleene, Introduction to metamathematics, North-Holland Publishing Company, 1952.
[29] J.-Y. Girard, P. Taylor, Y. Lafont, Proofs and types, Cambridge University Press, New York, NY, USA, 1989.
[30] T. Cimoli, A theory of agreements and protection, Ph.D. thesis, University of Cagliari (2013).
[31] M. Abadi, L. Lamport, Composing specifications, ACM Transactions on Programming Languages and Systems 15 (1)

(1993) 73–132.
[32] P. Maier, Compositional circular assume-guarantee rules cannot be sound and complete, in: FoSSaCS, Vol. 2620 of Lecture

Notes in Computer Science, Springer, 2003, pp. 343–357.
[33] M. Bartoletti, E. Tuosto, R. Zunino, Contract-oriented computing in CO2, Scientific Annals in Computer Science 22 (1)

(2012) 5–60. doi:10.7561/SACS.2012.1.5.
[34] N. Mart́ı-Oliet, J. Meseguer, From Petri nets to linear logic, Mathematical Structures in Computer Science 1 (1) (1991)

69–101.
[35] A. Fleury, C. Retoré, The mix rule, Mathematical Structures in Computer Science 4 (2) (1994) 273–285.
[36] P. D. Stotts, P. Godfrey, Place/transition nets with debit arcs, Inf. Process. Lett. 41 (1) (1992) 25–33. doi:10.1016/

0020-0190(92)90076-8.

22

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://dx.doi.org/10.1093/comjnl/bxn064
http://dx.doi.org/10.1007/978-3-642-40213-5_5
http://dx.doi.org/10.4204/EPTCS.69.5
http://dx.doi.org/10.4204/EPTCS.109.3
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-642-00945-7_1
http://dx.doi.org/10.1007/978-3-540-75698-9_14
http://dx.doi.org/10.1145/1538917.1538920
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.3233/FI-2011-566
http://dx.doi.org/10.1145/1453101.1453125
http://dx.doi.org/10.1145/155183.155225
http://dx.doi.org/10.1016/0304-3975(93)90151-I
http://dx.doi.org/10.1016/0304-3975(93)90151-I
http://dx.doi.org/10.1109/LICS.2010.25
http://dx.doi.org/10.1109/LICS.2010.25
http://dx.doi.org/10.1016/j.jlap.2012.03.003
http://dx.doi.org/10.1007/s10506-004-1922-2
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1007/978-3-642-36830-1_10
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.3233/FI-2014-1101
http://dx.doi.org/10.7561/SACS.2012.1.5
http://dx.doi.org/10.1016/0020-0190(92)90076-8
http://dx.doi.org/10.1016/0020-0190(92)90076-8

3.21

3.20

3.11

3.18

3.93.10A.13.4

A.3

3.19

3.8

3.13

Figure 7: Dependencies among the proofs.

A. Proofs for Section 3

The diagram in Figure 7 illustrates the dependencies among the proofs.

Lemma A.1 (Cut). In the natural deduction system for PCL, if ∆ ` p and ∆, p ` q then ∆ ` q.

Proof. We have the following proof in the natural deduction system of PCL:

∆, p ` q
∆ ` p→ q

(→I)
∆ ` p

∆ ` q
(→E)

Theorem 3.2. ∆ ` p is provable in natural deduction iff ∆ ` p is provable in the sequent calculus of [15].

Proof. For the “if” part, assume that there exists a sequent calculus proof π̃ of ∆ ` r. We proceed by
induction on the height of π̃. We only have to consider the cases when the last rule of π̃ uses a � formula,

23

∆, p ` p
(Id)

∆ ` p ∆, p ` q

∆ ` q
(Cut)

∆, p→ q ` p ∆, p→ q, q ` r

∆, p→ q ` r
(→L)

∆, p ` q

∆ ` p→ q
(→R)

∆ ` q

∆ ` p� q
(Zero)

∆, p� q, p′ ` p
∆, p� q, q ` p′ � q′

∆, p� q ` p′ � q′
(Lax)

∆, p� q, r ` p ∆, p� q, q ` r

∆, p� q ` r
(Fix)

∆, p ∧ q, p ` r

∆, p ∧ q ` r
(∧L1)

∆, p ∧ q, q ` r

∆, p ∧ q ` r
(∧L2)

∆ ` p ∆ ` q

∆ ` p ∧ q
(∧R)

∆, p ∨ q, p ` r ∆, p ∨ q, q ` r

∆, p ∨ q ` r
(∨L)

∆ ` p

∆ ` p ∨ q
(∨R1)

∆ ` q

∆ ` p ∨ q
(∨R2)

∆,¬p ` p

∆,¬p ` r
(¬L)

∆, p ` ⊥
∆ ` ¬p

(¬R)

∆,⊥ ` p
(⊥L)

∆ ` >
(>R)

∆ ` ⊥
∆ ` p

(WeakR)

Figure 8: Genzten-style proof system for PCL.

since all other cases follows from the equivalence between provability in sequent calculus and provability in
natural deduction for intuitionistic logic [29].

• (Zero). Straightforward from the induction hypothesis, by applying the (�I1) introduction rule of
natural deduction.

• (Lax). We have ∆ = ∆′, p� q, r = p′ � q′, and:

∆, p′ ` p ∆, q ` r
∆ ` r

(Lax)

By applying the induction hypothesis on both premises, we obtain two natural deduction proofs π1, π2

of ∆, p′ ` p and ∆, q ` r, respectively. Let π3 be a natural deduction proof of ∆ ` p� q, obtained by
rule (Id). We combine π1, π2 and π3 by applying rule (�I2), from which we obtain a natural deduction
proof of ∆ ` r.

• (Fix). We have ∆ = ∆′, p� q, and:

∆, r ` p ∆, q ` r

∆ ` r

By applying the induction hypothesis on both premises, we obtain two natural deduction proofs π1,
π2 of ∆, r ` p and of ∆, q ` r, respectively. By Lemma A.1, there exists a natural deduction proof
π3 of ∆, q ` p. Let π4 be a natural deduction proof of ∆ ` p � q, obtained by rule (Id). We then
construct the following natural deduction proof:

∆, q ` r
(→I)

∆ ` q → r

(Id)
∆ ` p� q ∆, q ` p

(�E)
∆ ` q

(→E)
∆ ` r

For the “only if” part, we proceed by induction on the height of the natural deduction proof π of ∆ ` a. As
before, we only consider the cases concerning � formulas.

1. if π ends with a (�I1) rule it is straightforward from induction hypothesis applying the (Zero) rule of
sequent calculus.

24

[p]

...
q

(→I)
p→ q

...
p→ q

...
p

(→E)
q

...
p

...
q

(∧I)

p ∧ q

...
p ∧ q

(∧E1)
p

...
p ∧ q

(∧E2)
q

...
p

(∨I1)

p ∨ q

...
q

(∨I2)

p ∨ q

...
p ∨ q

[p]

...
r

[q]

...
r

(∨E)
r

...
q

(�I1)
p� q

...
p� q

[q]

...
p

(�E)
q

...
c� d

[p]

...
c

[d]

...
p� q

(�I2)
p� q

Figure 9: Natural deduction tree-style rules for PCL.

2. if π ends with an (�E) rule, then by induction hypothesis on the proofs π1, π2 premises of π we get
two sequent calculus proofs π∗1 of ∆ ` p � q and π∗2 of ∆, q ` p. By structural properties, we can
change π∗2 with π

′∗
2 with conclusions ∆, p� q, q ` p. From π

′∗
2 and ∆, p� q, q ` q we obtain a proof

of ∆, p� q ` q using a (Fix) rule; by composing it with π∗1 using a cut rule we get a sequent calculus
proof of ∆ ` q.

3. if π ends with (�I2), then by induction hypothesis on the proofs π1, π2, π3 premises of π we get the
sequent calculus proofs π∗1 of ∆ ` p� q, π∗2 of ∆, a ` p and a proof π∗3 of ∆, q ` c� d.

By structural properties, we can change π∗2 with π
′∗
2 with conclusions ∆, p � q, c ` p (resp. π∗3 with

π
′∗
3 with conclusions ∆, p� q, q ` c� d).

From π
′∗
2 and π

′∗
3 we obtain a proof of ∆, p � q ` c � d using a (Lax); by composing it using a cut

rule with π∗1 we get a sequent calculus proof of ∆ ` c� d.

In the proof of the following lemma it is convenient to use an alternative (equivalent) presentation of
natural deduction proofs for PCL, called tree-like. In this presentation a proof of a formula p from a set
of formulae ∆ is a tree having root p and as leaves elements of ∆. The tree is built following the rules
in Figure 9. We recall that bracketed formulas are called discharged, and do not count as leaves.

We will call the presentation of natural deduction proofs provided in the main text sequent-like, to
distinguish it from the tree-like one.

Lemma A.2. Let π be a PCL tree-style natural deduction proof of p with assumption ∆, which uses only
the rules (∧I), (∧E1), (∧E2), (→E), and (�E); then there exists a PCL sequent-like natural deduction proof π′

of ∆ ` p which uses only the rules (Id), (∧I), (∧E1), (∧E2), (→E), and (�E).

Proof. Straightforward verification, by induction on the height of π.

Lemma 3.4. Let ∆ be a Horn PCL theory. If ∆ ` α in natural deduction, then a proof of ∆ ` α exists
which uses only the rules (Id), (∧I), (∧E1), (∧E2), (→E), and (�E).

25

Proof. Let us take a natural deduction proof π of ∆ ` α. By Theorem 3.2, there exists a proof π̃ of ∆ ` α
in sequent calculus. Since PCL enjoys cut elimination and the subformula property [15], there exists a proof
π̃′ of ∆ ` α in sequent calculus which uses only the rules (→L), (Fix), (∧L1), (∧L2), (∧R) and (Id). We construct
by induction on the heigth of π̃′ a tree-like natural deduction proof π′ of α from ∆ only using the rules (∧I),
(∧E1), (∧E2), (→E), and (�E). We have the following exhaustive cases, according to the last rule used in π̃′:

• (Id). Then, π′ is a tree-style natural deduction proof consisting just of the leaf α, included in the set
of formulae ∆ ∪ {α}.

• (→L). We have that ∆ = ∆′, β → b, and:

∆ ` β ∆, b ` α
∆ ` α

Let π̃′1 and π̃′2 be the proofs used in the first and in the second premise, respectively. By applying
the induction hypothesis twice, we obtain a natural deduction proof π′1 of β from ∆, and a natural
deduction proof π′2 of α from ∆ ∪ {b}. From π′1 and β → b, by rule (→E) we obtain a proof π′3 of b
from ∆ ∪ {β → b}; then we replace in π′2 the leaf corresponding to b with the proof π′3 to get a proof
π′ of α from ∆ ∪ {β → b}. If such a leaf does not exists in π′2 we simply take π′2 as π′, replacing the
set ∆ ∪ {b} with ∆ ∪ {β → b}.

• (Fix). We have that ∆ = ∆′, β � b, and:

∆, α ` β ∆, b ` α
∆ ` α

Let π̃′1 and π̃′2 be the proofs used in the first and in the second premise, respectively. By applying the
induction hypothesis twice, we obtain a natural deduction proof π′1 of β from ∆ ∪ {α}, and a natural
deduction proof π′2 of α from ∆ ∪ {b}.
By replacing in π′1 the leaf corresponding to α with the proof π′2 we get a proof π′3 of β from ∆ ∪ {b}
(if there is not a leaf corresponding to α in π′1 we simply take π′2 as π′3).

From π′3 and β � b by a (�E) rule we get a proof π′4 of b from ∆; then we replace in π′2 the leaf
corresponding to b with the proof π′4 to get a proof π′ of α from ∆ (if there is not a leaf corresponding
to {b} in π′2 we simply take π′2 as π′, replacing the set ∆ ∪ {b} with ∆).

• (∧L1). We have that ∆ = ∆′, β1 ∧ β2, and:

∆, β1 ` α
∆ ` α

By induction on the proof π̃′1 of the premise, we get a natural deduction proof π′1 of α from ∆∪ {β1}.
Consider the proof π′2 of β1 from β1 ∧ β2 obtained by taking β1 ∧ β2 as hypothesis and applying rule
(∧E1). If we replace in π′1 the leaf corresponding to β1 with the proof π′2 we get a proof π′ of α from
∆ = ∆′ ∪ {β1 ∧ β2}. If such a leaf does not exists in π′1 we simply take π′1 as π′, replacing the set
∆ ∪ {β1} with ∆ = ∆′ ∪ {β1 ∧ β2}.

• (∧L2). Symmetrical to the previous case.

• (∧R). Straightforward by the induction hypothesis and by rule (∧I).

We obtain in this way a tree-like natural deduction proof π′, which uses only the rules (∧I), (∧E1), (∧E2),
(→E), and (�E). By applying Lemma A.2, we get a proof π in sequent-like natural deduction which uses only
the rules (Id), (∧I), (∧E1), (∧E2), (→E), and (�E).

Lemma 3.10. σ ∈ J∆K ∧ η ∈ J∆K =⇒ σ | η ⊆ J∆K

26

Proof. We will prove the lemma by well-founded induction on the relation ≺ ⊆ N2 × N2 defined as follows:

(n′,m′) ≺ (n,m) ⇐⇒ (n′ < n ∧ m′ ≤ m) ∨ (n′ ≤ n ∧ m′ < m)

Let Π be a proof of σ ∈ J∆K (of depth n), and let Ψ be a proof of η ∈ J∆K (of depth m).
For the base case (0, 0), both Π and Ψ consist only of the axiom (ε), hence the thesis follows trivially,

because ε | ε = {ε}.
For the inductive cases, we have the following subcases, according to the last rule used in Π and in Ψ

(symmetric cases are omitted)

• (ε)/−. We have that σ = ε. The thesis follows because σ | η = ε | η = {η} ⊆ J∆K.

• (→)/(→). For some σ′, η′, a, b, such that σ = σ′a and η = η′b, we have:

α→ a ∈ ∆ σ′ ∈ J∆K α ⊆ σ′
σ′ a ∈ J∆K

β → b ∈ ∆ η′ ∈ J∆K β ⊆ η′
η′ b ∈ J∆K

We now apply the induction hypothesis twice: by the premise σ′ ∈ J∆K, we obtain σ′ | η ⊆ J∆K; by
the premise η′ ∈ J∆K, we obtain σ | η′ ⊆ J∆K. By the rule (→), we have:

α→ a ∈ ∆, σ′ | η ⊆ J∆K, (∀τ ∈ σ′ | η. α ⊆ τ) =⇒ (σ′ | η) a ⊆ J∆K

β → b ∈ ∆, σ | η′ ⊆ J∆K, (∀τ ∈ σ | η′. β ⊆ τ) =⇒ (σ | η′) b ⊆ J∆K

The thesis follows because σ | η = (σ′a) | (η′b) = (σ′ | η)a ∪ (σ | η′)b ⊆ J∆K.

• (→)/(�). For some σ′, η′, a, b, such that σ = σ′a and η ∈ η′ | b, we have:

α→ a ∈ ∆ σ′ ∈ J∆K α ⊆ σ′
σ′ a ∈ J∆K

β � b ∈ ∆ η′ ∈ J∆, bK β ⊆ η′
η′ | b ⊆ J∆K

Since σ ∈ J∆K, then by Lemma 3.8 we also have σ ∈ J∆, bK. We now apply the induction hypothesis
twice: by the premise σ′ ∈ J∆K and by η ∈ J∆K, we obtain σ′ | η ⊆ J∆K; by the premise η′ ∈ J∆, bK
and by σ ∈ J∆, bK, we obtain σ | η′ ⊆ J∆, bK. By applying the rules (→) and (�), we have:

α→ a, σ′ | η ⊆ J∆K, (∀τ ∈ σ′ | η. α ⊆ τ) =⇒ (σ′ | η) a ⊆ J∆K

β � b, σ | η′ ⊆ J∆, bK, (∀τ ∈ σ | η′. β ⊆ τ) =⇒ (σ | η′) | b ⊆ J∆K

The thesis follows because σ | η ⊆ (σ′a) | (η′ | b) = (σ′ | η)a ∪ (σ | η′ | b) ⊆ J∆K.

• (�)/(�). Similar to the previous case.

Lemma 3.11. For all Horn PCL theories ∆:

(a) σ ∈ J∆K =⇒ ∀a ∈ σ. ∆ ` a

(b) ∀a ∈ σ. ∆ ` a =⇒ ∃η ∈ J∆K. σ ⊆ η

Proof. We first rewrite the statements in the following (equivalent) form:

(a) σ ∈ J∆K =⇒ ∀a ∈ σ. ∆ ` a

(b) ∆ ` α =⇒ ∃η ∈ J∆K. α ⊆ η

Item (a) is shown by induction on the depth of the derivation of σ ∈ J∆K. We have the following cases,
according to the last rule used in the derivation.

27

• (ε). Trivial, because ε = ∅.

• (→). For some β, b, η such that σ = ηb, we have that:

β → b ∈ ∆ η ∈ J∆K β ⊆ η
η b ∈ J∆K

Let a ∈ σ = η ∪ {b}. We have two cases. If a ∈ η, then the thesis follows directly from the induction
hypothesis. Otherwise, if a = b, then by the induction hypothesis we have that ∀b′ ∈ η. ∆ ` b′. Since
β ⊆ η, then by rule (∧I) we deduce ∆ ` β. Thus, by rule (→E) we obtain the thesis:

∆ ` β → b ∆ ` β
∆ ` b

• (�). For some β, b and η such that σ ∈ η | b, we have:

β � b ∈ ∆ η ∈ J∆, bK β ⊆ η
η | b ⊆ J∆K

Let a ∈ σ = η ∪ {b}. We first deal with the case a = b, by proving that ∆ ` b. By the induction
hypothesis, we have that ∀b′ ∈ η. ∆, b ` b′. By rule (∧I), this gives ∆, b `

∧
η; also, since β ⊆ η, by

introducing/eliminating conjunctions we deduce ∆, b ` β. Thus, by rule (�E) we conclude:

∆ ` β � b ∆, b ` β
∆ ` b

Since ∆ ` b and ∆, b `
∧
η, then by the Cut Lemma (Lemma A.1) we conclude that ∆ `

∧
η. This

gives the thesis for the case a ∈ η.

Item (b) is shown by induction on the height of the proof of ∆ ` α. By Lemma 3.4, we only have to consider
the following cases, according to the last rule used in the proof:

• (Id). We have ∆ ` a, with ∆ = ∆′, a = ∆′,> → a and α = a. We have:

> → a ∈ ∆ ε ∈ J∆K
(ε)

> = ∅ ⊆ ε
a = εa ∈ J∆K

(→)

• (∧I). We have α = α1 ∧ α2, where:
∆ ` α1 ∆ ` α2

∆ ` α1 ∧ α2

By applying twice the induction hypothesis, we find η1 ∈ J∆K and η2 ∈ J∆K such that α1 ⊆ η1 and
α2 ⊆ η2. Then, by Lemma 3.10 we have η1 | η2 ⊆ J∆K. Let η ∈ η1 | η2. The thesis follows because
α1 ∧ α2 = α1 ∪ α2 ⊆ η1 ∪ η2 = η.

• (∧E1). We have:
∆ ` α ∧ β

∆ ` α
By the induction hypothesis, there exists η ∈ J∆K such that α ∪ β ⊆ η. The case for (∧E2) is similar.

• (→E). We have α = a, and:
∆ ` β → a ∆ ` β

∆ ` a
By the induction hypothesis, there exists η′ ∈ J∆K such that β ⊆ η′. Then, by rule (→):

β → a ∈ ∆ η′ ∈ J∆K β ⊆ η′
η′a ∈ J∆K

The thesis follows with η = η′a, because α = a ⊆ η.

28

• (�E). We have α = a, and
∆ ` β � a ∆, a ` β

∆ ` a
By the induction hypothesis, there exists η′ ∈ J∆, aK such that β ⊆ η′. Then, by rule (�):

β � a ∈ ∆ η′ ∈ J∆, aK β ⊆ η′
η′ | a ∈ J∆K

The thesis follows by choosing any η ∈ η′ | a, because α = a ⊆ η.

Lemma 3.13. σν ∈ J∆K ∧ η ∈ J∆, σK =⇒ σ(ν | η) ⊆ J∆K

Proof. By induction on the depth of the proof of σν ∈ J∆K. The base case is when the rule (ε) is applied.
We have σ = ν = ε, hence the thesis holds trivially.

For the inductive case, we have the following two subcases, according to the last rule used to deduce
σν ∈ J∆K.

• (→). We have σν = τa, for some τ and a such that:

α→ a ∈ ∆ τ ∈ J∆K α ⊆ τ
τa ∈ J∆K

There are the following subcases:

– a ∈ τ . Then, τ = τa = σν. Hence, the thesis follows directly by the induction hypothesis.

– a 6∈ τ , ν = ε. By Lemma 3.9, we have that ση ∈ J∆K. The thesis follows because σ(ν | η) = σ(ε |
η) = ση.

– a 6∈ τ , ν 6= ε. Then, τ = σν′, with ν = ν′a. By the induction hypothesis, σ(ν′ | η) ⊆ J∆K. By
hypothesis, we also have τa = σν′a ∈ J∆K. By Lemma 3.10 we have

(
σ(ν′ | η)

)
| σν′a ⊆ J∆K.

The thesis follows because σ(ν | η) = σ(ν′a | η) = σ(ν′ | η | ν′a) =
(
σ(ν′ | η)

)
| σν′a ⊆ J∆K.

• (�). We have σν ∈ τ | a, for some τ and a such that:

α� a ∈ ∆ τ ∈ J∆, aK α ⊆ τ
τ | a ⊆ J∆K

There are the following subcases:

– a ∈ σ. We have that τ = σ′ν, for some σ′ ∈ σ | a. Since σ′ ν ∈ J∆, aK and η ∈ J∆, σK = J∆, a, σ′K
then by the induction hypothesis it follows that σ′(ν | η) ⊆ J∆, aK. Then, by rule (�) we obtain
σ′(ν | η) | a ⊆ J∆K. The thesis follows because σ(ν | η) ⊆ σ′(ν | η) | a ⊆ J∆K.

– a 6∈ σ, a ∈ ν. We have that τ = σν′, for some ν′ ∈ ν | a. Since σν′ ∈ J∆, aK and η ∈ J∆, σK ⊆
J∆, a, σK, then by the induction hypothesis it follows that σ(ν′ | η) ⊆ J∆, a, σK. Let τ ′ ∈ σ(ν′ | η).
Then, by rule (�), it follows that τ ′ | a ⊆ J∆K. Summing up, σ(ν′ | η) | a ⊆ J∆K. The thesis
follows because σ(ν | η) ⊆ σ(ν′ | η) | a ⊆ J∆K.

Lemma 3.18. For all Horn PCL theories ∆, for all Γ ⊆ !E ∪ UE, and for all α:

[∆]U ,Γ ` α =⇒

αR ⊆
⋃

J∆,Γ
!U

K (5a)

αU ⊆ UΓ
!

∆,Γ
U ∪ Γ

!U
(5b)

Proof. By induction on the depth of the proof of [∆]U ,Γ ` α.
The base case concerns the axiom (Id), for which we have [∆]U ,Γ

′, ?a ` ?a, with ? ∈ {!, U} and Γ = Γ′, ?a.
We have the following two subcases:

29

• ? = !. We have !a
R

= !a
U

= ∅, so both (5a) and (5b) hold trivially.

• ? = U . We have Ua
R

= ∅, so (5a) is trivial. For (5b) we have Ua
U

= {a}, hence the thesis follows by

Ua
U

= {a} ⊆ Γ
U ⊆ UΓ

!

∆,Γ
U ∪ Γ

!U
.

For the inductive case, we analyse the last rule used in the proof of [∆]U ,Γ ` α. According to Lemma 3.4,
there are the following exhaustive cases:

• (→E). We have that α = q, for some p and q such that:

[∆]U ,Γ ` p→ q [∆]U ,Γ ` p
[∆]U ,Γ ` q

By Definition 3.16, the formula p→ q ∈ [∆]U has one of the following forms:

– !a→ Ua. For (5a) the thesis follows trivially, because Ua
R

= ∅.
For (5b), we have Ua

U
= {a}. If a ∈ Γ

!
, we already have the thesis. Otherwise, if a 6∈ Γ

!
, then

[∆]U ,Γ 6` !a, hence the premise that !a→ Ua is eliminated through rule (→E) must be false.

– !β → Ua. This has been generated by an implication β → a ∈ ∆.

For (5a), we have that Ua
R

= ∅, hence the thesis follows trivially.

For (5b), we have that Ua
U

= {a}. There are two further subcases. If a ∈ Γ
!
, we already have

the thesis. Otherwise, assume a 6∈ Γ
!
. By the second premise of rule (→E), we have [∆]U ,Γ `

!β. By Definition 3.16, the encoding [·]U cannot introduce !-atoms, hence it must be Γ
! ` β.

By Lemma 3.11(b), there exists η ∈ JΓ
!
K such that β ⊆ η, and so by Lemma 3.8, η ∈ J∆,Γ

!
K.

Then, by rule (→):

β → a ∈ ∆ η ∈ J∆,Γ
!
K β ⊆ η

ηa ∈ J∆,Γ
!
K

Clearly, we also have Γ
! ` Γ

!
, then by Lemma 3.11(b) and by Lemma 3.8 we find some ν ∈ J∆,Γ

!
K

(such that ν ⊇ Γ
!
). Therefore, by Lemma 3.10:

ηa | ν ⊆ J∆,Γ
!
K

from which (using Lemma 3.8 to justify the last inclusion) we deduce that:

∃σ, σ′. σ = Γ
! ∧ σ aσ′ ∈ ηa | ν ⊆ J∆K ⊆ J∆,Γ

U
K

Since a 6∈ Γ
!
, by Definition 3.14 we obtain the thesis a ∈ UΓ

!

∆,Γ
U .

– Rβ → Ra. This has been generated by an implication β → a ∈ ∆.

For (5a), we have that Ra
R

= {a}. By the second premise of rule (→E), it must be [∆]U ,Γ ` Rβ.
By the induction hypothesis of (5a), it follows that:

β = Rβ
R
⊆
⋃

J∆,Γ
!U

K (6)

Let β = {b1, . . . , bn}. By (6), for all i ∈ 1..n there exists ηi ∈ J∆,Γ
!U

K such that bi ∈ ηi.

By Lemma 3.10, we have that η1 | · · · | ηn ⊆ J∆,Γ
!U

K. Let η ∈ η1 | · · · | ηn. Then, β ⊆ η, and so
by rule (→) we have:

β → a ∈ ∆ η ∈ J∆,Γ
!U

K β ⊆ η
ηa ∈ J∆,Γ

!U
K

from which the thesis follows, because a ∈ ηa.

For (5b), the thesis follows trivially because Ra
U

= ∅.

30

– Ua → Ra. For (5a), we have Ra
R

= {a}. By the second premise of rule (→E), it must be
[∆]U ,Γ ` Ua. Therefore, by the induction hypothesis of (5b):

{a} = Ua
U ⊆ UΓ

!

∆,Γ
U ∪ Γ!U

Now we have the following two subcases:

1. a ∈ Γ
!U

. Therefore, ∆,Γ
!U ` a. By Lemma 3.11(b) we find some σ ∈ J∆,Γ

!U
K such that

a ∈ σ, from which the thesis follows.

2. a ∈ UΓ
!

∆,Γ
U . By Definition 3.14, a 6∈ Γ

!
, and there exist σ, σ′ such that σ = Γ! and σ aσ′ ∈

J∆,Γ
U

K, from which the thesis follows (notice that J∆,Γ
U

K ⊆ J∆,Γ
!U

K by Lemma 3.8).

For (5b), the thesis follows trivially because Ra
U

= ∅.

• (�E). By Definition 3.16, it must be α = Ua, for some a and β such that:

[∆]U ,Γ,` Rβ � Ua [∆]U ,Γ, Ua ` Rβ
[∆]U ,Γ ` Ua

where Rβ � Ua ∈ [∆]U has been generated by β � a ∈ ∆.

For (5a), the thesis follows trivially, because Ua
R

= ∅.

For (5b), we have that Ua
U

= {a}. If a ∈ Γ
!
, we already have the thesis. Otherwise, assume a 6∈ Γ

!
.

By the second premise of rule (�E) we have [∆]U ,Γ
′ ` Rβ, where Γ′ = Γ ∪ {Ua}. Then, by the

induction hypothesis of (5a), it follows that:

β = Rβ
R ⊆

⋃
J∆,Γ′

!U
K =

⋃
J∆,Γ

!U
, aK (7)

Let β = {b1, . . . , bn}. By (7), for all i ∈ 1..n there exists ηi ∈ J∆,Γ
!U
, aK such that bi ∈ ηi.

By Lemma 3.10, we have that η1 | · · · | ηn ⊆ J∆,Γ
!U
, aK. Let η ∈ η1 | · · · | ηn. Then, β ⊆ η,

and so by rule (�) we have:

β � a ∈ ∆ η ∈ J∆,Γ
!U
, aK β ⊆ η

η | a ⊆ J∆,Γ
!U

K

Clearly, we also have Γ
! ` Γ

!
, then by Lemma 3.11(b) and by Lemma 3.8 we find some ν ∈ J∆,Γ

!U
K

(such that ν = Γ
!
). Therefore, by Lemma 3.10:

η | a | ν ⊆ J∆,Γ
!U

K

from which we deduce that:

∃σ, σ′. σ = Γ
! ∧ σaσ′ ∈ η | a | ν ⊆ J∆,Γ

!U
K

Since a 6∈ Γ
!
, we obtain the thesis a ∈ UΓ

!

∆,Γ
!U = UΓ

!

∆,Γ
U .

• (∧I), (∧E). Both cases are straightforward by the induction hypothesis.

Lemma 3.19. a ∈
⋃

J∆K ⇐⇒ [∆]U ` Ra

Proof. For (⇒) we prove the following statement, which implies the thesis:

σ ∈ J∆K =⇒ [∆]U ` Rσ

We proceed by induction on the depth of the derivation σ ∈ J∆K. According to the last rule used in the
derivation, there are the following cases:

31

• (ε). We have ε ∈ J∆K. The thesis follows trivially, because Rε = R∅ = >.

• (→). We have σ = σ′a, for some σ′ and a such that:

α→ a ∈ ∆ σ′ ∈ J∆K α ⊆ σ′
σ′a ∈ J∆K

By the induction hypothesis, [∆]U ` Rσ′. Since α ⊆ σ′, it follows that [∆]U ` Rα. Since α→ a ∈ ∆,
then by Definition 3.16 we have [∆]U ` Rα→ Ra. Therefore, by rule (→E) we can deduce [∆]U ` Ra,
from which the thesis follows.

• (�). We have σ ∈ σ′ | a for some σ′ and a such that:

α� a ∈ ∆ σ′ ∈ J∆, aK α ⊆ σ′
σ′ | a ⊆ J∆K

By the induction hypothesis we have [∆, a]U ` Rσ′, and since α ⊆ σ′ by the third premise of rule (�E),
it follows that [∆]U , Ra ` Rα. By Definition 3.16 we have Ua→ Ra ∈ Ω(∆), hence [∆]U ` Ua→ Ra.
Therefore, we can weaken the above to [∆]U , Ua ` Rα. Now, since α� a ∈ ∆, then [∆]U ` Rα� Ua.
By rule (�E):

[∆]U ` Rα� Ua [∆]U , Ua ` Rα
[∆]U ` Ua

from which by rule (→E) we obtain the thesis:

[∆]U ` Ua→ Ra [∆]U ` Ua
[∆]U ` Ra

For (⇐) the thesis follows directly by item (5a) of Lemma 3.18.

Lemma A.3. For all sets of atoms X, for all atoms a, and for ? ∈ {!, U}:

[∆]U , ?X ` Ra =⇒ [∆]U , RX ` Ra

Proof. We first show the following result. For all X ⊆ E:

∆, X ` a =⇒ [∆]U , RX ` Ra (8)

To prove (8) we proceed by induction on the depth of the proof of ∆, X ` a. If the last rule used is (�E),
we have that α = a, and, for some β:

∆, X ` β � a ∆, X, a ` β
∆, X ` a

Since β � a ∈ ∆, then by Definition 3.16 we have that Rβ � Ua ∈ [∆]U . By the induction hypothesis
(applied to the second premise of the (�E) rule), we have that [∆]U , RX,Ra ` Rβ. Since Ua→ Ra ∈ [∆]U ,
this can be weakened to [∆]U , RX,Ua ` Rβ. Summing up, we have the following derivation:

[∆]U , RX ` Ua→ Ra

[∆]U , RX ` Rβ � Ua [∆]U , RX,Ua ` Rβ
(�E)

[∆]U , RX ` Ua
(→E)

[∆]U , RX ` Ra

All the other cases (for the last rule used to derive ∆, X ` α) are straightforward.

Back to the main statement of Lemma A.3, we consider separately the cases where ? = U and ? =!.

32

• case ? = U . Assume that [∆]U , UX ` Ra. By Definition 3.16, this is equivalent to [∆, X]U ,` Ra.
By Lemma 3.19, a ∈

⋃
J∆, XK. By Lemma 3.11, ∆, X ` a. Then, by (8) we conclude that [∆]U , RX `

Ra.

• case ? =!. We first show that, for .∈ {!, U,R}:

[∆]U , !X `. a =⇒ ∆, X ` a (9)

This is done easily by induction on the depth of the proof of [∆]U , !X `. a. Now, assume that
[∆]U , !X ` Ra. By (9), we have ∆, X ` a. By (8), we conclude that [∆]U , RX ` Ra.

Lemma 3.20. Let σ = 〈e0 · · · en〉. Then,

∀i ∈ 0..n. [∆]U , !σi ` Uei ⇐⇒ ∃η. ση ∈ J∆K

Proof. For (⇐), without loss of generality we can show that:

∀i ∈ 0..n. [∆]U , !σi ` Uei ⇐= σ ∈ J∆K

We proceed by induction on the length of σ. The base case σ = ε is trivial. For the inductive case, we have
the following cases according to the last rule used in the derivation of σ ∈ J∆K.

• (→) We have σ = σnen, where

α→ en ∈ ∆ σn ∈ J∆K α ⊆ σn
σnen ∈ J∆K

By the induction hypothesis, we have that ∀i ∈ 0..n− 1. [∆]U , !σi ` Uei. Since σ = σnen, it remains
to prove that [∆]U , !σ ` Uen. Since α ⊆ σn, we deduce that [∆]U , !σ ` !α. Since α → en ∈ ∆, then
by Definition 3.16 we have [∆]U , !σ ` !α→ Uen. Then, by rule (→E) we have the thesis:

[∆]U , !σ ` !α→ Uen [∆]U , !σ ` !α

[∆]U , !σ ` Uen

• (�). We have σ ∈ σ′ | ek, where σ′ = 〈e′0 · · · e′n−1〉 = 〈e0 · · · ek−1 ek+1 · · · en〉, and:

α� ek ∈ ∆ σ′ ∈ J∆, ekK α ⊆ σ′
σ′ | ek ⊆ J∆K

By the induction hypothesis we have that ∀i ∈ 0..n − 1. [∆, ek]U , !σ′i ` Ue′i. By Definition 3.16, this

is equivalent to ∀i ∈ 0..n − 1. [∆]U , Uek, !σ′i ` Ue′i. Since σ = σ′ ∪ {ek} and !ek → Uek ∈ [∆]U , this
implies that ∀i 6= k. [∆]U , !σi ` Uei. Then, it remains to prove that [∆]U , !σk ` Uek. Since α ⊆ σ,
we have that [∆, ek]U , !σ ` !α, hence by Definition 3.16:

[∆]U , !σ, Uek ` !α (10)

By Definition 3.16 we have !α→ Uα ∈ [∆]U and Uα→ Rα ∈ [∆]U , hence by (10) it follows that:

[∆]U , !σ, Uek ` Rα

By Lemma A.3, it follows that
[∆]U , !σk, Rσ, Uek ` Rα

Since σ ∈ J∆K, then by Lemma 3.19 it follows that [∆]U ` Rσ. Then by Lemma A.1:

[∆]U , !σk, Uek ` Rα

Since α� ek ∈ ∆, then by Definition 3.16 we have Rα� Uek ∈ [∆]U . Then by rule (�E) we conclude:

[∆]U , !σk ` Rα� Uek [∆]U , !σk, Uek ` Rα
[∆]U , !σk ` Uek

33

B.5

B.1

3.2

3.21

B.7

4.2 B.2

4.8

[27]

B.4

3.20

4.5

4.7

4.11

B.8

Figure 10: Dependencies among the proofs.

For (⇒), assume that [∆]U , !σi ` Uei, for all i ∈ 0..n. By item (5b) of Lemma 3.18, it follows that:

∀i ∈ 0..n. ei ∈ Uσi

∆,σi
∪ !σi

!U

Notice that ei 6∈ σi = !σi
!U , hence

∀i ∈ 0..n. ei ∈ Uσi

∆,σi

By Definition 3.14, this means that:

∀i ∈ 0..n. ∃ηi, νi. ηi = σi ∧ ηieiν
i ∈ J∆, σiK (11)

We construct a proof trace ση ∈ J∆K as follows. Start with the first two elements in σ. By (11), we have:

η0 e0 ν
0 ∈ J∆, σ0K with η0 = ∅ = σ0

η1 e1 ν
1 ∈ J∆, σ1K with η1 = {e0} = σ1

Since σ0 = η0e0, then by Lemma 3.13, it follows that:

η0 e0 (η1 e1 ν
1 | ν0) = e0 (e1 ν

1 | ν0) ⊆ J∆K

In particular, for some ν′ ∈ ν1 | ν0 we can choose a trace σ0 = e0 e1 ν
′ ∈ J∆K. Repeating this procedure for

all the elements in σ, we finally obtain some ν such that σν ∈ J∆K.

B. Proofs for Section 4

The diagram in Figure 10 illustrates the dependencies among the proofs.

Lemma B.1. Let C be a conflict-free contract, and let σ be a play of C where all participants are innocent.
Then, σ = R∅.

Proof. Special case (for conflict-free CES) of Lemma 5.15 in [27].

Lemma 4.5. In finite conflict-free contracts, an event e is prudent in σ iff e ∈ Pσ.

34

Proof. (⇐) We start by examining the coinductive definition of prudent events and innocent participants
(Definition 2.12). We can regard such definition as determining a pair of relations (Pr, In), where Pr ∈
℘(E×E∗) relates e and σ when e is prudent in σ, while In ∈ ℘(A×E∞) relates A and σ when A s innocent
in σ. Since the definition is coinductive, the pair (Pr, In) can be expressed as the greatest fixed point of an
endofunction F operating as follows:

F : ℘(E × E∗)× ℘(A× E∞)→ ℘(E × E∗)× ℘(A× E∞)

Indeed, we can augment L = ℘(E × E∗) × ℘(A × E∞) with the partial order given by (P, I) v (P ′, I ′)
iff P ⊆ P ′ ∧ I ⊇ I ′. It is immediate to check that this ordering makes L a complete lattice (in which⊔
i(Pi, Ii) = (

⋃
i Pi,

⋂
i Ii)). We can formalize the function F underlying Definition 2.12 letting F (P, I) =

(P ′, I ′) where:

P ′ = {(e, σ) | ∃Σ. σe conform to Σ ∧
∀σ′ = σ e η fair conform to Σ.

(
∀B 6= π(e). (B, σ′) ∈ I

)
=⇒ φ(σ, σ′,A)}

I ′ = {(A, σ) | ∀e ∈ π−1(A). ∀i ∈ 0..|σ|. ∃j ≥ i. (e, σj) 6∈ P}

with predicate φ being:
φ(σ, σ′,A) , ∃k > |σ|. Γ(σ′k) ∩ π−1(A) ⊆ Γ(σ)

Note that the above makes F monotonic with respect to v. This ensures gfpF actually exists.
We now exploit the coinduction proof principle on the complete lattice L and function F to prove the

current lemma. The coinduction principle states that, for all x ∈ L:

x v F (x) =⇒ x v gfpF

To apply the above, we take x = (P, I) where:

P = {(e, σ) | e ∈ Pσ}
I = {(A, σ) | Pσ ∩ π−1(A) = ∅}

Then, the thesis “e ∈ Pσ =⇒ e prudent in σ” follows from x = (P, I) v gfpF , since that implies that
P ⊆ Pr. By the coinduction principle, we are left with proving x v F (x). Below, we let (P ′, I ′) = F (x),
and prove P ⊆ P ′ and I ⊇ I ′.
We first show P ⊆ P ′. Let (e, σ) ∈ P , let σ = 〈e0 · · · en〉, and let A = π(e). The choice of the strategy Σ in
P ′ is made as follows. For all η, let:

ΣA(η) =

{
{ei} if η = σi and π(ei) = A and i ∈ 0..n

Pη ∩ π−1(A) otherwise

Notice that, since the contract is conflict-free, then ΣA is well-defined; also, by construction σ conforms to
ΣA (in other words, ΣA has past σ). Let σ′ be a fair play extending σe, conform to ΣA, and such that
(B, σ′) ∈ I for all B 6= A. Since (e, σ) ∈ P , then e ∈ Pσ.

We need to prove that φ(σ, σ′,A). For this, recall that E is finite, so σ′ must be finite as well. This
allows us to take k = |σ′| > |σ|, leaving us to prove that Γ(σ′k) ∩ π−1(A) = Γ(σ′) ∩ π−1(A) ⊆ Γ(σ). Assume
by contradiction that there exists e′ ∈ (Γ(σ′)∩ π−1(A)) \Γ(σ). This implies that σ′ = σηe′η′ for some η, η′.
Since σ′ is conform to ΣA, we must have e′ ∈ Pση, implying by definition of P:

ση ` e′ ∨ ση ∪ Rση
 e′

In the first case, ση ` e′, the event e′ is not performed on credit, hence e′ 6∈ Γ(σ′) – contradiction. In

the second case, by monotonicity of the function λX. X ∪ RX , we get σ′ ∪ Rσ
′

 e′. If we can prove that

35

Rσ
′ ⊆ σ′, we reach a contradiction because σ′
 e′ implies that the credit e′ has been honoured, hence

e′ 6∈ Γ(σ′).

We are then left with proving Rσ
′ ⊆ σ′. By contradiction, assume there exists e1 ∈ Rσ

′ \σ′. By definition

of Rσ
′
, there exist η, η′ such that η = σ′, e1 ∈ η′, Γ(ηη′) ⊆ η = σ′ — and indeed η′ ⊆ Rσ

′
. Let e0 be the

first event in η′ such that e0 6∈ σ′ (which must exist because e1 ∈ η′). Then, ηη′ = ηη0e0η1 for some η0, η1.
Clearly, ηη0 ⊆ σ′. We have the following two cases:

• ηη0 ` e0. In this case, we have e0 ∈ Pσ
′
.

• ηη′
 e0. Since ηη′ ⊆ σ′ ∪ Rσ
′
, then by saturation σ′ ∪ Rσ

′

 e0. Hence we would have e0 ∈ Pσ

′
.

In both cases we obtained e0 ∈ Pσ
′

but e0 6∈ σ′. However, if π(e0) = A, then we would have that σ′ is not
fair respect to ΣA – contradiction. If instead π(e0) = B 6= A, then we would have (B, σ′) 6∈ I, contradicting

our earlier assumption. Summing up, this concludes the proof of Rσ
′ ⊆ σ′, hence the one for P ⊆ P ′ as well.

We now prove that I ⊇ I ′. Actually, we shall prove the contrapositive, i.e. whenever (A, σ) 6∈ I, it must be
(A, σ) 6∈ I ′. Let (A, σ) 6∈ I. By definition of I, there must exist some e ∈ π−1(A) such that e ∈ Pσ. Let
i = |σ|. Then, for all j ≥ i, e ∈ Pσj (indeed, since σi = σ we can only have j = i). By definition of P , this
amounts to say that (e, σj) ∈ P . In conclusion, we have found an event e ∈ π−1(A) for which there exists
some i such that, for all j ≥ i, (e, σj) ∈ P . By definition of I ′, this proves that (A, σ) 6∈ I ′.
(⇒) Assume that e is prudent for A in σ. We must prove that e ∈ Pσ. For all participants B, consider the
greatest prudent strategy ΣpB. Clearly, we can pick a fair trace σ′ = σ e ν such that ν conforms to all the
strategies ΣB. By fairness and by definition of innocence, all participants are innocent in σ′. We now prove
that Γ(σ′) ⊆ Γ(σ). Let σ′ = σ〈e0 · · · en〉 (recall that E is finite). By contradiction, assume that for some ei
(say, of participant B), ei ∈ Γ(σ′) but ei 6∈ Γ(σ). Since all events in e ν are prudent, then by Definition 2.12:

∃k > |σi|. Γ(σ′k) ∩ π−1(B) ⊆ Γ(σi) ⊆ σi 63 ei

That is, each event taken on credit is eventually removed from the credits. Since once removed, an event
can no longer appear in the credits, we reach a contradiction with ei ∈ Γ(σ′). By Γ(σ′) ⊆ Γ(σ) and by
the definition of R, it follows that eν ⊆ Rσ. Now there are two cases. If σ ` e, then we trivially have the
thesis. Otherwise, it must be the case that σ′
 e. Since σ′ = σeν ⊆ σ∪Rσ, by saturation we conclude that
σ ∪ Rσ
 e. Therefore, e ∈ Pσ.

Lemma B.2. For a conflict-free contract C, the strategy:

ΣpA = λσ. {e ∈ π−1(A) | e is prudent in σ}

is prudent for A in C. Furthermore, A is innocent in all fair plays conforming to ΣpA.

Proof. Let σ = 〈e0 · · · en〉 be a fair play where A does all her prudent events and all other participants are
innocent. Clearly, also A is innocent in σ, hence by Lemma B.1, σ contains exactly the reachable events R∅.
By Lemma 4.5, for all i < |σ|, ei is prudent in σi iff e ∈ Pσi , i.e. if either σi ` ei or σi ∪ Rσi
 ei. In
the first case, ei does not augment the credits; in the second case, if ei is taken on credit then the credit
is eventually honoured, because σ = R∅ ⊇ σi ∪ Rσi (and so, σ
 ei). Therefore, Γ(σ) = ∅, from which the
thesis follows.

Theorem 4.2. Let ∆ ∼ E, and let Φ be a reachability payoff induced by ϕ. Then, A agrees on C = 〈E,Φ〉
iff {a | ∆ ` a} ∈ ϕ(A).

Proof. In [27] a bijection [·]R is defined from conflict-free CES into the Horn fragment of PCL. The encoding
[·]R maps an enabling ` into an →-clause, and a circular enabling
 into an �-clause, as follows:

[(Xi . ei)i∈I]R = {[Xi . ei]R | i ∈ I}

[X . e]R =
(∧

X
)

[.] e

where [.] =

{
→ if .= `
� if .=

36

Lemma 6.3 and Theorem 6.4 in [27] show that, for all e ∈ E:

e ∈ R∅ ⇐⇒ [E]R ` e (12)

Roughly, this amounts to say that if ∆ ∼ E then the reachable events of E coincide with the provable atoms
in ∆. We now exploit (12) to prove the statement of Theorem 4.2.

For the (⇒) direction, assume that A agrees on C. By (12), {a | ∆ ` a} = R∅. Let σ be a fair play conforming
to the winning strategy of A, and conforming the the prudent strategies ΣpB of the other participants B.
Since A wins in σ, then σ ∈ ΦA. Now, Φ is a reachability payoff induced by ϕ, hence σ ∈ ϕ(A). Since E is
conflict-free, and since all the participants are innocent in σ (Lemma B.2), then by Lemma B.1 it follows
that σ = R∅, from which the thesis {a | ∆ ` a} ∈ ϕ(A) follows.

For the (⇐) direction, the proof is specular to the above.

For conflict-free CES, we can inductively characterize the reachable events and the prudent events (with

past C) as the sets R̂ and ÛC , respectively. Lemmas B.4 and B.5 below provide some structural properties

of R̂ and ÛC , respectively, to be exploited in the subsequent proof of Lemma B.8.

Definition B.3. For a CES E and for all C,X ⊆ E, we define the sets R̂(X) and ÛC(X) as follows:

e ∈ X
e ∈ R̂(X)

(∈
R̂

)
R̂(X) ` e
e ∈ R̂(X)

(`
R̂

)
R̂(X ∪ {e})
 e

e ∈ R̂(X)
(

R̂
)

e ∈ C
e ∈ ÛC(X)

(∈
Û

)
C ` e

e ∈ ÛC(X)
(`

Û
)

R̂(C ∪X)
 e

e ∈ ÛC(X)
(

Û
)

Lemma B.4. For a conflict-free CES E, for all X,Y ⊆ E, and for all Z ⊆fin E:

(a) X ⊆ R̂(X)

(b) X ⊆ Y =⇒ R̂(X) ⊆ R̂(Y).

(c) R̂(R̂(X)) = R̂(X)

(d) Y ⊆ R̂(X) =⇒ R̂(X ∪ Y) = R̂(X)

(e) R̂(X ∪ Z)
 Z =⇒ Z ⊆ R̂(X)

(f) R̂(X ∪ Z)
 Z =⇒ R̂(X ∪ Z) = R̂(X)

Proof. For items (a), (b), (c), see Lemma A.2 in [27]. For item (d), see Lemma A.3 in [27]. For item (e), see

Lemma A.4 in [27]. For item (f), by Lemma B.4(e) we have Z ⊆ R̂(X). The thesis follows by Lemma B.4(d).

Lemma B.5. For a conflict-free CES E, and for all C,C ′, X, Y ⊆ E:

(a) C ⊆ C ′ ∧ X ⊆ Y =⇒ ÛC(X) ⊆ ÛC
′
(Y)

(b) Y ⊆ R̂(X) =⇒ ÛC(X ∪ Y) ⊆ ÛC(X)

(c) ÛC(X) ⊆ R̂(C ∪X)

Proof. All the items are straightforward by Definition B.3.

Notation B.6. Hereafter, when ∆ ∼ E we shall write [E]U for [∆]U .

37

Lemma B.7. [E]U , Φ ` ϕ =⇒ ϕ! ⊆ Φ
!

Proof. Straightforward induction on the depth of the proof of [E]U , Φ ` ϕ.

Lemma B.8. For all C ⊆ E and e ∈ E:

(a) e ∈ R̂E ⇐⇒ [E]U ` Re

(b) e ∈ ÛCE ⇐⇒ [E]U , !C ` Ue

Proof. Note that, after Theorem 3.2, we can use for the entailment relation ` the Gentzen rules for PCL.

For the (⇐) direction, we shall first prove the following statement. For all sets of atoms Γ, and for all
conjunctions of atoms ϕ:

[E]U , Γ ` ϕ =⇒

{
ϕR ⊆ R̂(Γ

!UR
) (13a)

ϕU ⊆ ÛΓ
!

(Γ
UR

) ∪ Γ
U

(13b)

Since the Gentzen proof system of PCL enjoys cut elimination [15], we can consider a proof tree π of
[E]U , Γ ` ϕ without occurrences of the (Cut) rule. The RHS of each sequent in π is a conjunction of atoms,
and so π only contains occurrences of the rules (Id), (∧L1), (∧L2), (∧R), (→L), (Fix). We prove (13a) and (13b)
by induction on the depth of π.

The base case concerns the axiom (Id), which gives [E]U , Γ ` ϕ whenever ϕ ∈ Γ. For (13a), we have

ϕR ⊆ Γ
R ⊆ R̂(Γ

R
) ⊆ R̂(Γ

!UR
). For (13b), we have ϕU ⊆ Γ

U
.

For the inductive case, we analyse the last rule used in π. There are the following exhaustive cases:

• (∧L1) and (∧L2). Straightforward by the induction hypothesis.

• (∧R). For some conjunctions of atoms p and q such that ϕ = p ∧ q:

[E]U , Γ ` p [E]U , Γ ` q
[E]U , Γ ` p ∧ q

(∧R)

By applying the induction hypotheses of (13a) and (13b) on the two premises:

ϕR = (p ∧ q)
R

= pR ∪ qR ⊆ R̂(Γ
!UR

)

ϕU = (p ∧ q)
U

= pU ∪ qU ⊆ ÛΓ
!

(Γ
UR

) ∪ Γ
U

• (→L). We have p→ q ∈ [E]U for some conjunctions of atoms p and q, and:

[E]U , Γ, p→ q ` p [E]U , Γ, q ` ϕ
[E]U , Γ ` ϕ

(→L)

According to Definition 3.16, the formula p→ q ∈ [E]U must have one of following forms:

– !e → Ue. We have that qU = {e}, while q!R = ∅. By applying the induction hypothesis to the
rightmost premise of the rule, we obtain:

ϕR ⊆ R̂(Γ, q
!UR

) = R̂(Γ
!UR ∪ {e})

ϕU ⊆ ÛΓ,q
!

(Γ, q
UR

) ∪ Γ, q
U

= ÛΓ
!

(Γ
UR ∪ {e}) ∪ Γ

U ∪ {e}

By the leftmost premise of the rule we have that [E]U , Γ ` !e. Then, by Lemma B.7 it must be

e ∈ Γ
!
.

For (13a), we have Γ
!UR ∪ {e} = Γ

!UR
, from which the thesis follows.

For (13b), by Definition B.3 we have ÛΓ
!

(Γ
UR ∪ {e}) = ÛΓ

!

(Γ
UR

) and e ∈ ÛΓ
!

(X) for all X, from
which the thesis follows.

38

– Ue→ Re. We have that qR = {e}, while q!U = ∅. By applying the induction hypothesis to both
premises of the rule, we obtain:

e ∈ ÛΓ
!

(Γ
UR

) ∪ Γ
U

(14)

ϕR ⊆ R̂(Γ, q
!UR

) = R̂(Γ
!UR ∪ {e}) (15)

ϕU ⊆ ÛΓ,q
!

(Γ, q
UR

) ∪ Γ, q
U

= ÛΓ
!

(Γ
UR ∪ {e}) ∪ Γ

U
(16)

From (14), Lemma B.4 gives that e ∈ R̂(Γ
!UR

) ∪ Γ
U

= R̂(Γ
!UR

). By applying Lemma B.4(b)

to (15), we have ϕR ⊆ R̂(Γ
!UR ∪ R̂(Γ

!UR
)). Lemma B.4(c) allows then to obtain the thesis

of (13a), i.e. ϕR ⊆ R̂(Γ
!UR

).

For (13b), we have that:

ϕU ⊆ ÛΓ
!

(Γ
UR ∪ {e}) ∪ Γ

U
by (16)

= ÛΓ
!

(Γ
!UR ∪ {e}) ∪ Γ

U
by Definition B.3

⊆ ÛΓ
!

(Γ
!UR

) ∪ Γ
U

by Lemma B.5(b)

= ÛΓ
!

(Γ
UR

) ∪ Γ
U

by Definition B.3

– RX → Re. This has been generated because of an enabling X ` e in E. By applying the induction
hypothesis to both premises of the rule:

X ⊆ R̂(Γ
!UR

) (17)

ϕR ⊆ R̂(Γ
!UR ∪ {e}) (18)

ϕU ⊆ ÛΓ
!

(Γ
UR ∪ {e}) ∪ Γ

U
(19)

For (13a), X ` e and (17) imply that e ∈ R̂(Γ
!UR

). Then, we can apply Lemma B.4(c) to (18)

and obtain the thesis ϕR ⊆ R̂(Γ
!UR

).

For (13b), we have that:

ϕU ⊆ ÛΓ
!

(Γ
UR ∪ {e}) ∪ Γ

U
by (19)

= ÛΓ
!

(Γ
!UR ∪ {e}) ∪ Γ

U
by Definition B.3

⊆ ÛΓ
!

(Γ
!UR

) ∪ Γ
U

by Lemma B.5(b)

= ÛΓ
!

(Γ
UR

) ∪ Γ
U

by Definition B.3

– !X → Ue. This has been generated because of an enabling X ` e in E. By applying the induction
hypothesis to the rightmost premise of the rule:

ϕR ⊆ R̂(Γ
!UR ∪ {e})

ϕU ⊆ ÛΓ
!

(Γ
UR ∪ {e}) ∪ Γ

U ∪ {e}

By the leftmost premise of the rule we have that [E]U , Γ ` !X, and so by Lemma B.7 it must be

X ⊆ Γ
!
. Therefore, Γ

! ` e, from which we conclude that e ∈ R̂(Γ
!
) ⊆ R̂(Γ

!UR
). Lemma B.4(c)

gives the thesis for (13a).

For (13b), from Γ
! ` e it follows that e ∈ ÛΓ

!

(X), for all X. The thesis follows from Lemma B.5(c)
and Lemma B.5(b).

39

• (Fix). We have that p� q ∈ [E]U for some conjunctions of atoms p and q, and:

[E]U , Γ, p� q, ϕ ` p [E]U , Γ, q ` ϕ
[E]U , Γ ` ϕ

(Fix)

By Definition 3.16, the formula p � q ∈ [E]U must have been obtained as the encoding of a circular
enabling X
 e in E, which gives p = RX and q = Ue.

By applying the induction hypothesis to both premises of rule (Fix):

X ⊆ R̂(Γ, ϕ
!UR

) = R̂(Γ
!UR ∪ ϕ!UR) (20)

ϕR ⊆ R̂(Γ, q
!UR

) ⊆ R̂(Γ
!UR ∪ {e}) (21)

ϕU ⊆ ÛΓ
!

(Γ
UR ∪ {e}) ∪ Γ

U ∪ {e} (22)

We have that:

X ⊆ R̂(Γ
!UR ∪ ϕ!UR) by (20)

⊆ R̂(Γ
!UR ∪ ϕUR) by Lemma B.7

⊆ R̂(Γ
!UR ∪ ϕU ∪ R̂(Γ

!UR ∪ {e})) by (21)

⊆ R̂(Γ
!UR ∪ {e} ∪ ϕU ∪ R̂(Γ

!UR ∪ {e})) by Lemma B.4(b)

⊆ R̂(Γ
!UR ∪ ϕU ∪ {e}) by Lemma B.4(c)

⊆ R̂(Γ
!UR ∪ ÛΓ

!

(Γ
UR ∪ {e}) ∪ Γ

U ∪ {e}) by (22)

= R̂(Γ
!UR ∪ ÛΓ

!

(Γ
UR ∪ {e})) by Lemma B.4(f)

⊆ R̂(Γ
!UR ∪ R̂(Γ

!UR ∪ {e})) by Lemma B.5(c)

= R̂(Γ
!UR ∪ R̂(Γ

!UR
)) by Lemma B.4(f)

= R̂(Γ
!UR

) by Lemma B.4(c)

For (13a), since X ⊆ R̂(Γ
!UR ∪ {e})
 e, by Lemma B.4(f) we obtain the thesis:

ϕR ⊆ R̂(Γ
!UR ∪ {e}) = R̂(Γ

!UR
)

For (13b), since X ⊆ R̂(Γ
!UR

)
 e, then e ∈ R̂(Γ
!UR

) = R̂(Γ
! ∪ Γ

UR
). By Definition B.3 it follows

that e ∈ ÛΓ
!

(Γ
UR

). Thus:

ϕU ⊆ ÛΓ
!

(Γ
UR ∪ {e}) ∪ Γ

U ∪ {e} by (22)

= ÛΓ
!

(Γ
!UR ∪ {e}) ∪ Γ

U ∪ {e} by Definition B.3

⊆ ÛΓ
!

(Γ
!UR

) ∪ Γ
U ∪ {e} by Lemma B.5(b)

= ÛΓ
!

(Γ
UR

) ∪ Γ
U ∪ {e} by Definition B.3

= ÛΓ
!

(Γ
UR

) ∪ Γ
U

since e ∈ ÛΓ
!

(Γ
UR

).

We now prove that (13a) and (13b) imply items a and b of Lemma B.8, respectively.
For item a, assume that [E]U ` Re. Let Γ = ∅ and ϕ = Re. By (13a) we obtain:

{e} = ϕR ⊆ R̂(Γ
!UR

) = R̂(∅) = R̂E

40

For item b, assume that [E]U , !C ` Ue. Let Γ = !C, and let ϕ = Ue. Then, Γ
!

= C, Γ
UR

= ∅, and
ϕU = {e}. By (13b) we obtain:

{e} = ϕU ⊆ ÛΓ
!

(Γ
UR

) ∪ Γ
U

= ÛC(∅) = ÛC

For the (⇒) direction of item (a), we prove the following stronger statement. For all X, if e ∈ R̂(X) then

[E]U , RX ` Re. Assume that e ∈ R̂(X). We proceed by induction on the derivation of e ∈ R̂(X). According
to the last rule used in the derivation, there are the following cases:

• (∈
R̂

). We have e ∈ X, from which the thesis follows trivially.

• (`
R̂

). We have R̂(X) ` e. Let C0 ⊆ R̂(X) be a minimal set such that C0 ` e. By the induction
hypothesis, [E]U , RX ` RC0. Also, by Definition 3.16, RC0 → Re ∈ [E]U . Therefore, by rule (→L):

[E]U , RX, RC0 → Re ` RC0 [E]U , RX, Re ` Re
[E]U , RX ` Re

• (

R̂

). We have R̂(X ∪ {e})
 e. Let C0 ⊆ R̂(X ∪ {e}) be a minimal set such that C0
 e. By the
induction hypothesis, [E]U , RX,Re ` RC0. Also, by Definition 3.16, RC0 � Ue ∈ [E]U . Therefore, by
rule (Fix):

[E]U , RX, RC0 � Ue, Re ` RC0 [E]U , RX, Ue ` Re
[E]U , RX ` Re

where the second premise has been obtained because Ue→ Re ∈ [E]U .

For the (⇒) direction of item (b), assume that e ∈ ÛC . We proceed by cases on the rule used in the
derivation.

• (∈
Û

). We have that e ∈ C. Therefore, [E]U , !C ` !e, and since !e→ Ue ∈ [E]U we obtain the thesis.

• (`
Û

). By the rule premise, it must be C ` e. Let C0 ⊆ C be a minimal set such that C0 ` e. Then,(
(RC0 → Re) ∧ (!C0 → Ue)

)
∈ [E]U . Since C0 ⊆ C, then !C0 → Ue implies that !C → Ue. Therefore,

[E]U , !C ` Ue.

• (

Û

). By the rule premise, it must be C ∪ RC
 e. Let C0 ⊆ C ∪ RC be a minimal set such that
C0
 e. By Definition 3.16, RC0 � Ue ∈ [E]U . Since the encoding [E]U comprises !e → Ue and
Ue → Re for all e, then [E]U , !C ` RC. By Item a, [E]U , !C ` R(RC). Thus, [E]U , !C ` RC0. Then,
we can weaken RC0 � Ue to RC0 → Ue, and use rule (→L) to deduce [E]U , !C ` Ue.

Lemma 4.7. Let ∆ ∼ E. Then, for all X ⊆ E, PXE = UX∆ .

Proof. We have that:

e ∈ PXE ⇐⇒ e ∈ ÛXE \X by Definition B.3

⇐⇒ [E]U , !X ` Ue ∧ e 6∈ X by Lemma B.8(b)

⇐⇒ [∆]U , !X ` Ue ∧ e 6∈ X as ∆ ∼ E

⇐⇒ e ∈ UX∆ ∧ e 6∈ X by Theorem 3.21

⇐⇒ e ∈ UX∆ since UX∆ ∩X = ∅

41

Theorem 4.11. Let ∆ ∼ E, and let the strategy ΣA be defined as:

ΣA(σ) = Uσ∆ ∩ π−1(A)

Then, ΣA is a prudent strategy for A in C = 〈E,Φ〉. Moreover, if Φ is a reachability payoff and C admits an
agreement, then ΣA is winning for A.

Proof. By Lemma 4.7, Uσ∆ = PσE. By Lemma 4.5, PσE contains all and only the prudent events in σ. Thus,
by Lemma B.2, ΣA is the maximal prudent strategy for A. For the second part, assume that C = 〈E,Φ〉
admits an agreement, and that Φ is a reachability payoff induced by ϕ. Let σ′ be a play where all the
participants win: then, σ′ ∈ ϕ(A), and A is credit-free in σ′. By Lemma B.1, σ′ = R∅. Now, let σ
be a fair play conforming to ΣA. If some B 6= A is culpable, then A wins. Otherwise, by Lemma B.1,
σ = R∅ = σ′ ∈ ϕ(A), and by Definition 2.12 A is credit-free. Then, we conclude that A wins in σ.

42

	Introduction
	Vicious circles in contracts and in logic
	From vicious to virtuous circles
	Contribution

	Game-theoretic contracts
	Proof traces in Propositional Contract Logic
	Natural deduction for PCL
	Horn fragment of PCL
	Proof traces
	Urgent atoms

	A logical view of contracts
	Related work and Conclusions
	Proofs for pcl
	Proofs for ces-pcl

