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Abstract. Abstraction can be an effective technique for dealing with
the complexity of planning tasks. This paper is aimed at assessing and
identifying in which cases abstraction can actually speed-up the overall
search. In fact, it is well known that the impact of abstraction on the
time spent to search for a solution of a planning problem can be positive
or negative, depending on several factors -including the number of ob-
jects defined in the domain, the branching factor, and the plan length.
Experimental results highlight the role of such aspects on the overall per-
formance of an algorithm that performs the search at the ground-level
only, and compares them with the ones obtained by enforcing abstrac-
tion.

1 Introduction

Abstraction is known to be an effective speed-up technique for classical plan-
ners. Actually, it is often not effective on simple problems, due to the overhead
introduced by the need of going back and forth across abstract spaces while
performing the search. In other words, enforcing abstraction on simple problems
may end up to wasting computational resources. On the other hand, the more
planners will be used to solve problems of increasing complexity, like those en-
countered in real-life applications, the more abstraction techniques will play a
central role in the task of reducing the search time.

Let us briefly recall some relevant abstraction techniques proposed in the
literature: (i) action-based, (ii) state-based, (iii) Hierarchical Task Networks, and
(iv) case-based. The first combines a group of actions to form macro-operators
(e.g., [1], [14]). The second exploits representations of the world given at a lower
level of detail; its most significant forms rely on (a) relaxed models, obtained by
dropping operators’ applicability conditions [16], and on (b) reduced models [13],
obtained by completely removing certain conditions from the problem space. In
the third (e.g., [9]), problem and operators are organized into a set of tasks: a
high-level task can be reduced to a set of partially ordered, lower-level, tasks.
Reductions allow specifying how to obtain a detailed plan from an abstract
one. In the fourth, abstract planning cases are automatically learned from given
concrete cases, as done in the PARIS system [7], although the user must provide
explicit refinement rules between adjacent levels of the hierarchy.
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Being interested in the action-based approach, let us focus on the pros and
cons of the cited techniques. The pionieristic work of Korf [14] was not explic-
itly tailored for abstraction hierarchies -the adoption of macro-operators being
limited to the ground level only. This choice was conjectured and shown to be
useful on several domains (see also [8]), although -in our opinion- adding macro-
operators at the ground level was at least arguable, due to the corresponding
negative impact on the average branching factor. On the other hand, in this
way, the completeness of the planner was preserved -none of the original ground
operators being removed from the domain. Moreover, the soundness was guar-
anteed as long as macro-operators represent legal sequences of ground operators.
As for the HTN-based techniques [9], in a sense, they can be considered as a
generalization of Korf’s macro-operators, with a greater expressive power due to
their capability of actually defining an abstraction hierarchy, together with the
ability of allowing partial ordering among operators. The main drawback of this
technique appears to be its strict dependence from the domain engineer, which
is responsible for defining a (possibly) sound and complete HTN network for
the given domain / problem. Furthermore, the amount of actual search strictly
depends on the domain engineer’s ability of devising high-level tasks with the
desirable property of being easily put together to form a solution for the given
problem.

This paper addresses the problem of whether or not abstracting macro-
operators can be effective for speeding up the search. Section 2 gives some basic
definition about abstraction hierarchies; in particular the ones deemed relevant
for the task of automatically abstracting macro-operators. Section 3 highlights
some important issues related to the task of abstracting macro-operators. Section
4 points to the aspects that allow predicting when abstraction can be potentially
useful or not. In section 5 experimental results are reported, aimed at assessing
abstraction on macro-operator as compared to the absence of abstraction.

2 Abstraction Hierarchies and Macro-Operators

In general, a planning domain is defined by two kinds of entities: predicates and
operators. A particular kind of unary predicates can also be taken into account,
giving rise to a third kind of entities -i.e., types- possibly organized according to
a suitable ”is-a” hierarchy.

To improve the performance of a planning algorithm, a domain can be or-
ganized into a set of abstraction levels, each of them containing its own set of
predicates and operators. Thus, the original search space can be mapped into
abstract spaces in which irrelevant details are disregarded at different levels of
granularity. In particular, abstracting a domain leads to the definition of an ab-
straction hierarchy, consisting of a set of predicates and operators, together with
a set of mapping functions devised to specify the mapping between two adjacent
levels. According to [11], an abstraction is a mapping between representations
of a problem. In symbols, an abstraction f : Σ0 → Σ1 consists of a pair of
formal systems (Σ0,Σ1) with languages Λ0 and Λ1 respectively, and an effective



total function f0 : Λ0 → Λ1. Extending the definition, an abstraction hierarchy
consists of a list of formal systems (Σ0,Σ1, ,Σn−1) with languages Λ0,Λ1, ,Λn−1

respectively, and a list of effective total functions fk : Λk → Λk+1, (k=0, 1, ,
n-2) devised to perform the mapping between adjacent levels of the hierarchy.

Let us consider two abstraction levels, namely ground and abstract (the ex-
tension of the definitions to an N-level hierarchy being trivial). A ground oper-
ator is characterized by a name, a list of parameters, and the specification of its
pre- and post-conditions given in terms of ground predicates. A ground operator
can be instantiated by substituting its parameters with objects taken from the
given problem, thus giving rise to an instantiated ground operator (i.e., an ac-
tion). An abstract operator is characterized by a name, a list of parameters, and
the specification of its overall pre- and post-conditions given in terms of abstract
predicates. A macro-operator is any legal sequence of ground operators, together
with the specification of its overall pre- and post-conditions. Formally, let be a
sequence of operators (actions), a corresponding macro-operator (macro-action)
can be defined by the following formulas:
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where γ+, γ−, η+, and η−, represent preconditions, negated preconditions,
add-list, and delete-list of the resulting macro-operator, respectively.

Although -in principle- abstraction might be performed on both predicates
(including types) and operators, there is no a predefined ordering in the abstrac-
tion process. In fact, one may start abstracting types, rather than predicates or
operators -although any choice performed on one kind of mapping may impact
on subsequent choices. Nevertheless, in this paper we are mainly interested in
abstracting operators starting from at least one supporting macro-operator, i.e.,
macro-operators whose pre- and post-conditions match the one defined for the
corresponding abstract operator.

It is worth pointing out in advance that the easiest way to generate an ab-
stract operator from a supporting macro-operator is to consider only the precon-
ditions and the effects of the latter. Thus, in the following, the terms abstract-
and macro-operator will be used as synonymous.

3 Generation of Macro-Operators

Macro-operators can be obtained by resorting to ”a posteriori” or ”a priori”
analysis.

An ”a posteriori” analysis can be done by processing solutions of previously-
solved planning problems, under the assumption that solutions of planning prob-
lems often contain recurrent sequences of actions. The application of formula 1
to a sequence generates a macro-action that -by definition- leads to the same



state that the given sequence of actions would achieve. In an ”a posteriori”
analysis, macro-actions must be uninstantiated to obtain macro-operators. To
unistantiate a macro-action, the objects involved in all its embedded actions
are substituted by typed variables. A system able to perform an ”a posteriori”
analysis has been described in [2], where an adaptive mechanism that allows dis-
covering relevant sequences from successful plans is proposed. Any such sequence
becomes a candidate for generating abstract operators to be embedded into a hi-
erarchical planner. To identify relevant sequences, a ”chunking” technique that
processes successful plans is exploited. Relevant sequences are identified by a
feedforward neural network, fed by a vector of suitable metrics evaluated for
each given sequence. A corresponding abstract operator is associated to each
sequence, which is made available to the abstract level for any subsequent plan-
ning problem to be solved. Due to the dependency between abstract operators
and already-solved planning problems, an agent equipped with such algorithm
may exhibit an individual adaptation to the given environment.

An ”a priori” analysis is performed by processing the given planning domain
(and the problem, if needed), without resorting to plans previously found (see
for example, [3]). In fact, analyzing the relationships among the operators of
the domain, a set of relevant sequences can be identified and used for build-
ing suitable macro-operators. Given a sequence of operators, a corresponding
macro-operator can be defined that embeds the sequence, and whose precondi-
tions and effects can be evaluated according to formula 1. Since the parameters
of a macro-operator are in fact variables, generating pre- and post-conditions
of the resulting operator involves a variable-unification process, which may led
to semantic inconsistencies. For instance, this problem may occur when deal-
ing with ”position predicates”, such as (at ?o - object ?l - location) taken from
the Logistics domain. According to its intended semantics, there cannot be two
predicates stating that the same object is in two different locations. This condi-
tion, not explicitly stated in the domain description, can be expressed through
the use of suitable state invariants. A detailed description about how to find
state invariants is given in [10], where four kinds of state invariants are defined:
identity, state membership, uniqueness of state membership, and fixed resource.
The information about the domain, enriched with invariants, allows to discrim-
inate between different alternatives, so that macro-operators’ parameters can
be correctly unified. A system able to generate macro-operators starting from
a static domain analysis (called DHG) has been described in [5]. The process
consists of finding a set of relevant sequences and then (possibly) promoting
them to macro-operators using a graph-oriented technique. A directed graph
G, containing information about the dependencies between domain operators,
is built. Nodes represent operators, and edges represent relations between ef-
fects of the source node and preconditions of the destination node. A relevant
sequence of operators may be extracted from each acyclic path. As considering
all possible paths would end up to a large amount of sequences, G is pruned
through a set of domain-independent heuristics (see [3] for further details). A
set of sequences (candidates to generate macro-operators) is then extracted. The



sequences deemed relevant are used for generating macro-operators [4], accord-
ing to formula 1. To avoid semantic inconsistencies, an analysis aimed at finding
state invariants is performed using TIM [10].

Let us consider, as an example, the two approaches for the blocks-world do-
main. As for the ”a posteriori” analysis, processing plans found by solving plan-
ning problems, recurrent sequences of action can be identified. In particular, a
pick-up action is typically followed by a stack action, whereas an unstack ac-
tion is typically followed by a put-down action. These actions can be grouped
together to form a macro-action. The sequence (pick-up A);(stack A B), where
A and B are two objects of type block, after the application of 1, followed by
a suitable uninstantiation process, leads to the corresponding macro-operator
(pick-up&stack ?b1 ?b2 - block). As for the ”a priori” analysis, processing the
blocks-world domain, the sequence (pick-up ?b1 - block);(stack ?b2 ?b3 - block)
can be identified. The application of (1), while computing the difference between
the set of preconditions of stack and the set of effects of pick-up, requires the
unification of the parameters ?b1 and ?b2, since pick-up has (holding ?b1) as
effect, whereas stack has (holding ?b2) as precondition (see Figure 1).

 

(:action pick-up 
   :parameters (?b1 - block) 
   :precondition  
      (and (clear ?b1) (ontable ?b1) (handempty)) 
   :effect  
      (and (not (ontable ?b1))(not (clear ?b1)) 
           (not (handempty))(holding ?b1))) 

(:action stack 
   :parameters (?b2 - block ?b3 - block) 
   :precondition (and (holding ?b2) (clear ?b3)) 
   :effect (and (not (holding ?b2))(not (clear ?b3)) 
                (clear ?b2)(handempty)(on ?b2 ?b3))) 

(:action pick-up&stack 
  :parameters (?b1 - block ?b2 - block) 
  :precondition 
    (and (clear ?b1)(clear ?b2)(ontable ?b1)(handempty)) 
   :effect 
    (and (not(ontable ?b1))(not(clear ?b2))(on ?b1 ?b2))) 

 

Fig. 1. pick-up and stack operator and the corresponding pick-up&stack macro-
operator



4 A Critical Look at the Abstraction Based on
Macro-Operators

The impact of abstraction on the time spent to search for a solution of a planning
problem can be positive or negative, depending on several factors -including the
average branching factor, and the plan length. Intuitively, in the worst case, the
search time grows with the average branching factor (b) and the plan lenght (l)
proportionally to bl. Let us note that, b is influenced by the number of domain
operators, the number of parameters of each operator, and the adopted heuristic
function; whereas l is influenced by the problem complexity.

Typically, the abstract domain contains fewer operators than the ground
domain; nevertheless, there is a usually-negative impact on the average branching
factor, due to the increased complexity of the macro-operators. In fact, a macro-
operator has generally a number of parameters greater than the ones belonging
to each of its operators. On the other hand, using macro-operators reduces the
average plan length. Thus, the time required to search for a solution at the
abstract level (Ta) may be significantly lower than the time required at the
ground level (Tg).

Let us recall that the abstract level is used to guide the search at the ground
level. Given a plan at the abstract level, each abstract operator must be refined,
each refinement becoming a planning problem at the ground level. For the sake
of simplicity, let us suppose that the time required to solve a problem using a
two-level abstraction (Th) is Ta+Tr, where Tr, i.e. the time needed to perform all
the refinements, is proportional to la · b

lg/la
g . If Th is greater than Tg, the impact

of abstraction is negative, especially if a large number of refinements occurs. It
is worth noting that when bg is close to 1, Tr becomes greater than Tg. This
typically occurs when a planner equipped with a good heuristic function is used
to refine the abstract solution, thus nullifying the advantages of abstraction. On
the other hand, the more bg increases, the more abstraction becomes effective.
In short, the use of abstraction based on macro-operators is not only influenced
by the branching factor and the plan length, but also by the adopted planning
algorithm.

To verify whether an abstraction based on macro-operator can improve the
performances of the search, we made experiments on some classical benchmark-
ing domains. Abstraction hierarchies have been automatically generated using
the DHG system, which follows an ”a priori” approach. For the sake of simplicity,
only two relevant domains have been selected, i.e., elevator and blocks-world.

Let us consider the elevator domain, whose operators are reported in Figure
2. An example of recurrent sequence is up;board, and the corresponding macro-
operator is:

(:action up-board
:parameters
(?passenger1 - passenger ?floor2 ?floor1 - floor)

:precondition
(and (origin ?passenger1 ?floor2)



 

(:action board 
  :parameters   (?f - floor ?p - passenger) 
  :precondition (and (lift-at ?f) (origin ?p ?f)) 
  :effect       (boarded ?p)) 
 
(:action depart 
  :parameters   (?f - floor ?p - passenger) 
  :precondition (and (lift-at ?f) (destin ?p ?f)(boarded ?p)) 
  :effect       (and (not (boarded ?p)) (served ?p))) 
 
(:action up 
  :parameters   (?f1 - floor ?f2 - floor) 
  :precondition (and (lift-at ?f1) (above ?f1 ?f2)) 
  :effect       (and (lift-at ?f2) (not (lift-at ?f1)))) 
 
(:action down 
  :parameters   (?f1 - floor ?f2 - floor) 
  :precondition (and (lift-at ?f1) (above ?f2 ?f1)) 
  :effect       (and (lift-at ?f2) (not (lift-at ?f1)))) 

Fig. 2. Operators of the elevator domain

(lift-at ?floor1) (above ?floor1 ?floor2))
:effect
(and (lift-at ?floor2) (boarded ?passenger1)

(not (lift-at ?floor1))))

Note that the up;board macro-operator has three parameters, whereas both up
and board have two parameters. In this case, the number of macro-actions corre-
sponding to the up;board macro-operator is greater than the number of actions
corresponding to the up operator plus the number of actions corresponding to
the board operator. In fact, the number of actions grows with respect to the
number of objects belonging to the problem. Let nf be the number of floors and
np the number of passengers, the corresponding number of up;board instances
is np · n2

f , the number of up instances is n2
f , and the number of board instances

is np · nf . Hence, the number of applicable actions depends on the number of
passengers and floors belonging to the problem to be solved. The automatic
hierarchy found by DHG has an abstract domain composed by four abstract
operators (obtained from the macro-operators corresponding to the sequences
up;board, up;depart, down;board, and down;depart). Each abstract operator has
three parameters (two floors and one passenger), being 4 · n2

f · np the number
of applicable actions at the abstract level. On the other hand, the number of
applicable actions at the ground level is 2 · n2

f + 2 · npnf . Comparing the two
expressions, it is clear that the branching factor at the abstract level is greater
than the one at the ground level.



As for the blocks-world domain, the automatic hierarchy found by DHG has
an abstract domain composed by two abstract operators (obtained from the
macro-operators corresponding to the sequences pick-up;stack and unstack;put-
down). Each abstract operator has two parameters, being 2 · n2

b the number of
applicable actions at the abstract level, where nb is the number of blocks. On the
other hand, the number of applicable actions at the ground level is 2 ·nb +2 ·n2

b .
Comparing the two expressions, it can be noted that the branching factor at the
abstract level is always lower than the one at the ground level.

It is now clear that different behaviors hold, depending on the characteristics
of the domain taken into account. In particular, two relevant and different cases
have been briefly discussed, pointing to the theoretical and actual branching
factor. Roughly speaking, we expect that a hierarchical planner based on macro-
operators performs better in the blocks-world than in the elevator domain.

5 Experimental Results

To assess the performance of the abstraction based on macro-operators, we com-
pared the results obtained without abstraction with the domain hierarchies au-
tomatically generated (based on macro-operators only). A set of benchmarking
domains, taken from the planning competitions ([15], [6]), including blocks-world
and elevator (simple miconic), has been chosen to generate the abstraction hi-
erarchies. The domain hierarchies have been used as input for the HW[] system
([3]) that can embed any external PDDL-compliant planner to search for so-
lutions at any required level of abstraction. Experiments have been performed
using FF ([12]) as external planner, being HW[FF] the resulting system.

Table 1 summarizes the results obtained for the selected domains. The col-
umn labeled Tg reports the time (expressed in milliseconds) needed to find the
solution without resorting to abstraction techniques; the corresponding columns
labeled steps reports the required number of steps. The column labeled Ta re-
ports the time (expressed in milliseconds) needed to find the solution using the
abstraction based on macro-operators; the corresponding columns labeled steps
reports the required number of steps. The column labeled Th reports the total
time (expressed in milliseconds) needed to find the solution using abstraction hi-
erarchies; the corresponding columns labeled steps reports the required number
of steps.

In the elevator domain, results show that Ta is generally lower than Tg,
since the average abstract plan length (la) is lower than the average ground plan
length (lg), although the average branching factor ba is greater than bg. The
average time needed to perform a refinement is comparable to Tg, and it can be
induced from experimental data that bg is actually close to 1. In this particular
case, la negatively affects Tr, which becomes greater than Tg. Hence, resorting
to abstraction based on macro-operators becomes ineffective.

In the blocks-world domain, results show that, Ta is always lower than Tg,
since the average abstract plan length (la) is lower than the average ground plan
length (lg), and the average branching factor bg is always greater than ba. In



Table 1. Performances comparison between FF without abstraction and HW[FF] with
an abstraction based on macro-operators.

No Abstraction Based on
Abstraction Macro-Operators

Objects Tg steps Ta steps Th steps
Elevator

np = 1nf = 2 11.9 4 10.94 2 38.6 4
np = 2nf = 4 13.2 7 15.57 4 72.1 8
np = 3nf = 6 17.1 10 21.44 7 136.6 14
np = 4nf = 8 22.4 14 19.13 8 176.7 16
np = 5nf = 10 27.8 17 23.92 10 266 20
np = 6nf = 12 28.8 19 24.34 13 467.6 26
np = 7nf = 14 38.6 23 26.27 14 641.3 28
np = 8nf = 16 43.3 27 27.26 18 1044 36
np = 9nf = 18 49.4 31 35.18 20 1057 40

Blocks-World
nb = 4 21.2 10 16.43 3 60.9 6
nb = 5 24.4 12 20.79 7 118.9 14
nb = 6 29.7 12 20.65 9 146.9 18
nb = 7 404.0 36 20.89 12 203.2 24
nb = 8 398.1 30 23.57 11 189.9 22
nb = 9 6493 52 25.8 15 273.1 30

this particular case, abstraction based on macro-operators becomes effective as
the problem complexity increases.

6 Conclusions and Future Work

Abstraction is one of the most useful techniques to improve the performances
of classical planners. In this paper, abstraction based on macro-operators has
been critically analyzed. Experimental results show that there are cases in which
abstraction can be effective or not. This work represents a first step towards the
comprehension of the underling mechanisms.

As for the future work, we are currently devising a method aimed at deciding
whether using abstraction based on macro-operators may be effective or not.
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