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Abstract—Some key features of the end-systems impact on the
way communications happen within the IoT: available objects’
resources are limited, different objects may provide the same
information (e.g. sense the same physical measure), the number
of nodes in the IoT is quickly overcoming the number of Internet
hosts with greater reliability issues. This entails for a new
paradigm of communication with respect to those characterizing
the traditional Internet. Before providing the required informa-
tion about the physical world, objects coordinate with the other
objects in groups and provide a unified service to the external
world (the application that requires the service), with the intent to
distribute the load of the requested services according to specific
community defined rules, which could be: lifetime extension,
QoS (Quality of Service) maximization, reward maximization,
or others. In this paper other than describing the characteristics
of this new communication paradigm and challenges it is called
to address, we also propose a first solution for its implementation
that relies on a distributed optimization protocol based on the
consensus algorithm. Results of simulations and real experiments
are also presented that show the viability in implementing the
new communication model in a distributed way.
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I. INTRODUCTION

The last few years have been characterized by the techno-
logical revolution of the Internet of Things (IoT) [1], which
represents a vision where devices with different capabilities
(e.g., sensors, actuators, Radio Frequency Identification tags,
smartphones, embedded devices) are reachable through the
Internet in order to augment the current digital world with
physical world information. As we know since its invention,
the Internet interconnects nodes with dissimilar characteristics
without central authorities by introducing some simple yet
effective protocols that allow for nodes’ interoperability so
that information is successfully exchanged and services are
provided by servers to clients and among peers. Fortunately,
the same happens among objects in the IoT so that interop-
erability is assured and the data sensed by objects distributed
and connected to the physical world is now available for the
benefit of the human users.

Some key features however characterize many IoT objects:
i) available nodes’ resources (electrical energy, memory, pro-
cessing, node capability to perform a given task) are often
limited. This is the case, for example, of battery powered
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nodes, which have limited energy amounts. ii) sensors may
provide information that is not unique but can be generated
by set of different objects which for example are capable to
sense the same physical measure of the same geographical.
iii) the number of nodes in the IoT is quickly overcoming
the number of hosts in the t́raditional’ Internet and most of
these have a low reliability due mostly to the mobility and
energy. This entails for a new paradigm of communication
according to which objects coordinate with the other objects
in groups and provide a unified service to the external world
(the application that requires the service), with the intent
to distribute the load of the requested services according to
specific community defined rules, which could be: lifetime
extension, QoS (Quality of Service) maximization, reward
maximization, or others. It is evident that an appropriate coor-
dination of objects’ resources utilization would consistently
improve their performance. Given the size of a distributed
heterogeneous system such as the IoT network, the optimal
creation of communities and the resource allocation within
are not trivial issues. Furthermore, typical IoT networks are
characterised by the dynamic behaviour of their nodes. In
fact, emerging applications in smart environments such as
smart cities and smart homes, where IoT is preponderant,
are often based on opportunistic networks. In opportunistic
networks, connections among nodes are created dynamically
in an infrastructure-less way: when forwarding a message,
next hops are chosen opportunistically, on the basis of their
likelihood to get the message closer to its destination [2]. In
such a dynamic context, with frequent and quick changes of
scenario, it is not reasonable the community management to
be centralized but a distributed approach has to be followed.

The major contribution of this paper is twofold: we first
describe the characteristics and challenges that the proposed
new communication paradigm is called to address (in Sec-
tion III); we then propose a first solution for its implementation
which relies on a distributed optimization protocol based on
the consensus algorithm (described in Section IV), which
solves the problem of resource allocation and management
preserving the required QoS. The paper is completed with
Section II that analyses some past works, Section V that
provides a performance analysis, and Section VI that draws
final conclusions.

II. PAST WORKS

Resource allocation has been extensively studied in the
Wireless Sensor Network (WSN) field [3]. A big effort has
been put into resource allocation to extend WSN lifetime. In
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(a) Node i joins the network (b) VO1 and VO2 send ACK to
node i

(c) Node i becomes VO3 and VO4

Fig. 1. Sequence of steps when a new node i joins the network

[4] the authors propose a framework to estimate network per-
formance, which doesn’t use node resources and does not intro-
duce additional energy consumption that could compromise the
network lifetime. In [5] a centralized task allocation algorithm
to improve network lifetime is proposed. This study focuses
on the reduction of the overall energy consumption into a
heterogeneous WSN, with attention to nodes’ residual energy.
In [6] the same problem is analysed taking into account also
task execution time. The authors in [7] propose the DLMA,
an overlaying framework that determines the distribution of
tasks among the nodes in a WSN by means of a distributed
optimization algorithm, based on a gossip communication
scheme, aimed at maximizing network lifetime. A similar
approach is studied in [8], where a distributed algorithm based
on particle swarm optimization is proposed.

As far as IoT networks are concerned, resource allocation
is an open issue. Network heterogeneity, which regards both
node capabilities and characteristic parameters, makes the
resource allocation a challenging task. Semantic descriptions
are needed, so that a common middleware can be designed
in order to ensure interoperability among different devices.
Comprehensive ontologies that provide a semantic model for
IoT are defined in [9] and [10]. Most of the existing studies on
resource allocation for IoT are focused on IoT service provi-
sioning, such as in [11] and [12]. In these studies, the aim is to
find and allocate the resources that enable service execution.
However, they do not focus on finding the best configuration
that corresponds to an optimal resource allocation. None of
the works found in the literature tries to find the optimal
resource allocation associated to the lowest impact of the
application assigned to the network. In this paper, a distributed
optimization protocol, based on consensus algorithm [13], that
solves the problem of resource allocation and management is
described. Consensus algorithms consist in a collection of laws
that regulates the interaction and the exchange of information
between each node and its neighbours (nodes that are only one
hop far from each other). They have been used to a great extent
in problems involving interconnection of dynamic systems,
such as flocking theory [14], rendezvous in space [15], and
distributed sensor fusion in sensor networks [16].

III. ARCHITECTURE

In typical IoT scenarios it frequently happens that some
nodes perform the same task, such as the measurement of

the traffic in the same street, the detection of moving ob-
jects/persons in a given environment, or the processing of
measured data. Accordingly, the IoT is made of groups of
nodes, i.e. task groups, that perform similar and replaceable
tasks. To understand the meaning of task group, suppose, for
example, that the network performs a temperature sensing in
an area called A: only those nodes that are equipped with a
temperature sensor and that are deployed within area A are
included in the task group related to this task.

The scenario proposed in this paper is that of an opportunis-
tic IoT, where nodes continuously join and leave the network.
In this scenario, the IoT is made of virtual objects (VOs) [17]
that are activated by the Central Deployment Server, which
is in charge of identifying the objects tasks that have to be
activated to deploy the target application. The VO role may
be implemented by a node in the task group and is in charge
of processing the requests generated by the central server and
forwarding configuration messages to the other physical nodes
(note that the VO may coincide with the only single physical
node that is capable of implementing the required task). Then,
the nodes in the task group autonomously decide how to
properly allocate resources to the required task by distributing
the burden among them. The aim of the algorithm explained
in the following is to dynamically change tasks’ assignment
to share the effort required to perform the considered task, in
terms of necessary network resources. More precisely, nodes
involved in the same task, i.e. belonging to the same task
group, converge to the same lifetime by adjusting the frequency
at which they perform the task. In this way, the resources
required to complete the task are equally distributed among
nodes, and the network lifetime is, therefore, improved.

In order for nodes to start a negotiation, they need to have
already joined the related task group. This join procedure will
now be explained in detail. As soon as a node i joins the net-
work, it broadcasts to its one-hop neighbours the information
related to the tasks that it is able to perform. Accordingly,
each VO related to task k, namely VOk, adds node i to the
list of nodes Xk that belong to its task group, and replies with
an acknowledgment. If no VO is associated to one or more
tasks yet, node i is designated as VO for those tasks, and it
sends this information to the Central Deployment Server. As
shown in Fig. 1, suppose, for example, that node i is able to
perform 4 tasks. Thanks to the middleware running on top
of the network, the description of those tasks is converted



to 4 different ID numbers, corresponding to the IDs of the
equivalent task groups. Suppose that, in this example, node i
is associated to task groups {1, 2, 3, 4}, the VOs VO1 and VO2

are associated to task groups 1 and 2, and that no VO has been
associated to task groups 3 and 4, yet. Thus, VO1 and VO2

will add node i to their list of nodes X1 and X2. Obviously,
node i will not receive acknowledgements for task groups 3
and 4. Hence, node i will assume the role of both VO3 and
VO4, and it will inform the Central Deployment Server.

When an application requires the execution of a given task,
the Central Deployment Server sends an activation signal to the
appropriate VOs, which forward it to their list of nodes. Then,
the negotiation algorithm is started. The nodes of the involved
task group start to adjust their frequency of task execution,
in order to distribute the task load among themselves. The
algorithm ensures that the required QoS is always preserved.
In fact, the total number of samples per second collected by
the task group is constrained to be constant. In the following,
this negotiation algorithm will be described in detail.

IV. CONSENSUS AMONG TASK GROUP NODES

A. Agreement on task frequency among nodes

Each node i that performs task k collects data with fre-
quency fi,k(t). The power consumed by node i to perform
task k is expressed by:

Pi,k(t) = Ei,kfi,k(t) (1)

where Ei,k is the energy spent by node i for task k. Assuming
to keep the total number of samples per second generated
by all the nodes in the task group constant and equal to the
application requirement Fk, fi,k(t) can be changed by nodes
within the same task group to find the optimal combination that
distributes the task burden among them. Energy Ei,k can be
split in different contributions such as sensing energy Esens

i,k ,
transmission energy Etx

i,k and computing energy Ecomp
i,k :

Ei,k = Esens
i,k + Etx

i,k + Ecomp
i,k (2)

Each node i is also associated to a residual energy Eres
i (t)

that depends on its residual battery charge – and thus decreases
with time –, and on its lifetime τi(t), which is the time before
running out of battery. Node i’s lifetime is expressed as:

τi(t) =
Eres

i (t)∑
k Pi,k(t)

(3)

In the proposed solution we aim at maximising the network
lifetime, which is the time before the first node fails. This
objective is equivalent to the target of having uniform objects’
lifetimes in the community. Considering only task k, we define
the contribution in lifetime of node i to task k as:

τi,k(t) =
Eres

i (t)

Pi,k(t)
=

Eres
i (t)

Ei,kfi,k(t)
=

1

ci,k(t)fi,k(t)
(4)

In order for nodes to tend to a uniform lifetime, this
contribution should tend to an amount τk that is equal for
all the nodes involved in task k’s execution, i.e.

lim
t→∞

τi,k(t) = τk ∀i ∈ Xk (5)

To lighten the notation, in Eq. 4 we add ci,k(t) as a cost
function that reflects the extent to which the node can be used,
according to the ratio between its energy consumption for task
k and its residual energy. At the same time t if ci,k(t) <
cj,k(t), i can be used more extensively than j.

For a graphical representation of the problem at a time t,
we can draw the residual energy Eres

i (t) and the consumed
power Pi,k(t) on the x and y axes, respectively. As shown in
Fig. 2, mapping all combinations for all the nodes, we obtain a
constellation of points where each node has a different lifetime
τi,k(t), which depends on the initial node battery status (yellow
points in Fig. 2). By applying Eq. 5 we force these points to
move into a a straight line with a slope τk by changing each
frequency fi,k(t), so that each node will have the same lifetime
(white points in Fig. 2). The required changes are driven by the
community QoS target expressed in terms of the total number
of samples per second provided by the community Fk, so that
the following constraint is introduced:

Nk∑
i=1

fi,k(t) = Fk (6)

When the appropriate VO forwards an activation signal to
the list of interested nodes, the message conveys Fk. We can
apply Eq. 4 into Eq. 6 as follows:

τk(t) =
1

Fk

∑Nk

i=1 ci,k(t)
=

1

FkNkCk(t)
(7)

To reach the goal each node in the task group needs to
know Ck(t), i.e. the mean value of all the ci,k(t) values for task
k. After a node knows this value, it can evaluate the frequency
that corresponds to its optimal lifetime:

fi,k(t) =
1

ci,k(t)τk(t)
=
FkNkCk(t)

ci,k(t)
(8)

To compute the value of Ck(t) the numerosity of the task
group is needed. This is possible because the VO has the list of
interested nodes, so Nk can be forwarded at the beginning of
the process by means of the activation signal. If the conditions
of the network change during the task execution (e.g., a new
node enter the community or a node fault happens), the nodes
detecting the change flood the message so that each node is
reached. A centralized solution is computationally very simple,
but with respect to a decentralized solution, it requires higher
transmission costs due to a lot of control messages and the
system has a slower reactivity due to topology or node status
(i.e. residual energy) changes.

B. The distributed solution based on the consensus protocol

To reach the goal, in a totally distributed way, an average
consensus protocol is implemented by the nodes within the
task group to evaluate Ck(t). We focus on a particular class
of iterative algorithms for average consensus. To estimate the
average value across the network, we use a consensus protocol
propagation that is totally asynchronous and distributed. When
the procedure starts, each node allocates a variable ci,k(t) to
iteratively estimate the value of Ck(t). At an initial time t = 0:

ci,k(0) = ci,k(0) ∀i = {1, · · · , Nk} (9)



In order for the estimated ci,k(t) to converge towards
the correct average Ck(t) (computed on all nodes in the
task group), each node follows the rule of the consensus
protocol and updates the local estimation by adding a weighted
sum of the local discrepancies, i.e., the differences between
neighbouring node estimated values and its own. At each time
step t+1 > t, the update rule of the consensus protocol is the
following:

ci,k(t+ 1) = ci,k(t) +

Oj∑
i=1

Wi,j(cj,k(t)− ci,k(t)) (10)

where Oi defines the number of node j neighbours.

Wi,j is a weight associated with the communication be-
tween i and j. If the weights are associated with undirected
edges, we have Wi,j = Wj,i. It’s also possible to consider
asymmetric weights, associated with ordered pairs of nodes, so
the previous equality is not true. Weights have to satisfy some
basic constraints, as well as the convergence condition, such
as defined by Xiao et al. in [18]. So we decide to take very
simple set of weights that define a one hop communication
(the node i communicates only with the neighbours):

Wi,j =

{
1 if j ∈ Oi

0 if j /∈ Oi
(11)

From the described protocol follows that the i − th node
transmits only the value of ci,k(t) and subscribes this value
each iteration with the neighbour. So the protocol does not
rely on extensive transmissions and the related amount of data
exchanged is very small. From the point of view of the node
buffer occupancy, each node stores only one variable and it
subscribes this at each iteration with the neighbours, so the
memory required by the protocol is very limited.

V. PERFORMANCE ANALYSIS

The performance analysis focuses on two case studies: the
first one is a simulated scenario; the second one is a real
scenario. To better understand the problem and to simplify
the analysis we consider a scenario where the residual energy
decreases very slowly than the convergence of protocol, so we
can consider all terms as time independent.

A. Simulation Scenario

In this case study we used the Matlab software to imple-
ment a framework to simulate the protocol using broadcast
communications among the nodes. The network topology has
been created following a random geometric distribution and
transmissions on the network are asynchronous. The broad-
cast communication entails that if i sends a packet, this is
received by all neighbours, which update their values. The
simulation was run on 20 nodes (i.e. Nk = 20) in a random
topology. We initialized nodes values: Eres

i (t), Ei,k, fi,k(t)
with random values, the QoS request Fk has a random value,
too. We assumed that each node transmit 500 packets. By
the simulation we intended to study the performance of the
protocol in terms of convergence speed and error, considering
a broadcast communication among nodes. Fig. 2 shows the
protocol lifetime convergence. Yellow points show the initial
condition of network nodes. After 20 packets transmitted on

the network, each node has corrected its task frequency and
tends to the convergence (red points). Green points show the
state of the nodes after 80 iterations. In the end, white points
show the final state of the node, after 500 iterations. At the end
of the simulation the protocol can be considered converged. In
fact, in Fig. 2 white points are very near the ideal position that
is marked by the blue line. So by Fig. 2 is clear that as the
number of exchanged packets increases, nodes reach a better
consensus and, in this case, the same lifetime.

From the QoS point of view, we analyse the percentage
error with respect to the QoS constraint Fk. Fig. 3 shows that
the initial error is −25%, but before 50 packets are transmitted
this value decreases by 10%, and after 50 iterations we obtain
a very low error value of about 5%. So it’s possible, after a first
transition time, to consider also the QoS constraint satisfied.
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B. Real Scenario

The last experiment consists in the study of the protocol
performance in a real scenario. In this section, we firstly
illustrate the tools that we used. Then, we analyse the results
to validate the performance of the proposed consensus appli-
cation. The tools used for the experiments are the following:

• Development kit case provided by Telit Wireless Solu-
tions. This kit is made of ZigBee radio boards that are
based on the CC2530 Chip with the Embedded Telit Z-
One ZigBee-PRO Stack. The antennas are external dipoles
characterized by an omnidirectional pattern.

• The software Wireshark is used to inspect the packet
content. To analyse the performance of the network from



the Wireshark output and to conduct network discovery
and commissioning, a specific tool named SRManager
Tool has been developed by Telit Wireless Solution in
collaboration with our lab. In this experiment, this tool has
been used to set up the consensus protocol experiments.

During the experiments we used three devices that com-
municated using the ZigBee standard on channel number 14
in the 2.4 GHz ISM frequency band and we used one device
in sniffer mode to capture the packets on the network. The
type of communication is the gossip. This modality entails
that two nodes communicate to update their values, instead the
broadcast when each node communicate with all neighbours.
To reduce communication overhead, we inserted the necessary
information inside the overhead of the packets.
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Fig. 4. Convergence error in real scenario

Fig. 4 shows the algorithm convergence in real scenario. As
in the simulation discussed in the previous subsection, nodes
converge at consensus. A good consensus has been reached
after about 15 packets exchanged, corresponding to a mean of
5 update for node. From the error point of view the initially
error reaches peaks of 60% and −30%. Nevertheless, after 15
packets are transmitted, this value decreases by ±20%, and
eventually we obtain a very low error value of about ±3%.

VI. CONCLUSIONS

In this work, we presented a new consensus protocol
for a distributed decision on resource allocation in a IoT
scenario with the aim to improve the network lifetime and
management preserving the required Quality of Service (QoS).
We simulated a IoT scenario with many heterogeneous nodes
involved in the same task. The simulated case convergence
has shown to be very fast. The proposed protocol allowed for
improving the lifetime network because each node’s lifetime
tend to an amount s that is equal for all the nodes involved
in the same task. In terms of preserving the required QoS
the proposed protocol allowed for achieving an error lower
than 5% than the QoS constraint. Respect to a centralized
solution, the proposed protocol is totally decentralized and
asynchronous, so it brings benefits such as reduction of control
message transmissions and increase in system reactivity. Real
experiments validated the simulation results. Node lifetime
proved to converge and the percentage error was lower than
±20% after an average of 5 packets transmitted by each node,
and lower than ±3% after 30 packets.

Future works will be focused on the extension of the
protocol to the multitasking optimization. Furthermore, the

proposed resource allocation protocol can be easily extended
in a scenario with a network that changes topology quickly.
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