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This paper describes the oxidation of inorganic sulfide to sulfate, minimizing the formation of elemental sulfur. The described
catalytic reaction uses dilute hydrogen peroxide at nearly neutral pH values in the presence of a bioinspired, heterogenized, and
commercial ferriporphin. A substantial increase of the percentage of sulfide converted to sulfate is obtained in comparison with
the yields obtained when working with hydrogen peroxide alone. The biomimetic catalyst also proved to be a much more efficient
catalyst than horseradish peroxidase. Accordingly, it could be suitable for large-scale applications. Further studies are in progress
to drive sulfate yields up to nearly quantitative.

1. Introduction

Recently, emissions containing hydrogen sulfide (H
2
S) have

been a health and environmental issue since it is unfortu-
nately a very toxic compound for many human tissues [1],
produced by many human activities.

Many chemical and physical methods have been pro-
posed for its degradation [2–10]. However, they are usually
featured by extreme operational conditions, turning the
whole processes to be economically impacting.

Also, microbiological methods have been suggested, sho
wing however several problems concerning the long time of
reaction, stability, and compatibility of the rubbery mem-
branes with the gas components [11, 12].

Even an enzymatic alternative has been described [13–
15], since organic sulfides (thioethers, R–S–R) can be selec-
tively oxidized to the corresponding sulfoxides and sulfones
under very mild conditions with the help, for example, of
BDS (biodesulfurization) [14, 15] catalyzed by enzymes such
as oxygenases. However, the industrial applicability of enzy-
matic BDS has not yet been obtained, since the enzyme

sources are limited and the costs are too high [13]. Not nec-
essarily BDS leads to sulfur elimination from sulfur-contai-
ning organic molecules. In most cases, thiols and thioethers,
respectively, change to sulfonic acid and sulfones. An alterna-
tive approach to eliminate thiols has been proposed, involv-
ing the combined action of mushroom tyrosinase, air, and
suitable catechols. The o-quinones arising from the enzyme
action covalently bind thiols leading to odorless compounds
[16].

Recently, also metalloporphins have been suggested as
catalysts for removal of thioethers [13, 17, 18]. These macro-
cycles represent a very versatile class of redox catalysts, being
able to oxidize different recalcitrant organic compounds,
under quite mild operational conditions [19–23].

However, in order to achieve an inexpensive and feasible
process, the immobilization of the catalysts should be per-
formed, in order to allow catalysts recovery, proper ligand
supply, and stabilization of the catalysts [24, 25]. In our
previous studies, we reported the immobilization of some
metalloporphins onto solid supports emulating the structure
of cytochrome P-450 and ligninolytic peroxidases. These
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Figure 1: Proposed structure of the catalytic adduct PP-PVA/
FeTFPP.

catalytic adducts were able to oxidize both lignin model
compounds (recently reviewed in [26]) and durable textile
dyes [27–29].

In this paper, we describe the immobilization of a com-
mercially available Fe-porphin onto a solid support grafted
with pyridine residues (Figure 1 [30]). The ability of this
adduct to oxidize sulfide ion leading to sulfate has been
studied, focusing on the minimization of the amount of
elemental sulfur produced. The catalytic conditions have
been fully evaluated, in the perspective of a mild and feasible
industrial process. Also, a comparison with an enzymatic
system has been performed.

2. Experimental

All the reagents used were of the best grade available and
were used as purchased without further purification. Fully
hydrolysed PVA, Av. MW 30,000–50,000, was from Aldrich
(Milan, Italy, cat. number 363138). Glutaraldehyde, as a 50%
aqueous solution, mainly containing oligomers in addition to
the monomeric aldehyde, was from Fluka, Milan, Italy, cat.
number 49629.

2.1. Preparation of FeTFPP/PP-PVA Adduct. The preparation
FeTFPP/PP-PVA adduct was performed as already described
[30].

Briefly, aminopropyl cross-linked PVA (AP-PVA) was
prepared by treating 500mL of a 10% w/v PVA aqueous

solution with 5mL 4-aminobutyraldehyde diethyl acetal, and
pH was adjusted to ∼2 with 6M HCl.

Then, 10mL of a 50% v/v glutaraldehyde aqueous solution
was added under stirring and the pH adjusted to ∼1 with 6M
HCl. The obtained gel was kept at 90∘C for 1 h and finally
overnight at 25∘C. The product was ground for 10min at
16,000 rpmwithUltra Turrax T25 Basic (IKATechnik,Milan,
Italy), exhaustively washed with water, 0.1M NaOH, water
again, 2-propanol, and finally carefully dried into a warm
oven.

Each gram of the AP-PVA powder was suspended in
excess water and treated with 0.1mL of 4-pyridinecarbo-
xaldehyde. The pH was adjusted to 5 with 0.1M acetic acid/
sodium acetate buffer, and 0.5 g sodium cyanoborohydride
was added. After 24 h, the support was exhaustively washed
with 0.1M aqueous glycerol, water, 0.1MNaOH, water again,
and 2-propanol. The wet PP-PVA was then carefully dried
overnight in a vacuum oven at 50∘C.

Each gram of PP-PVA was treated with 20mg FeTFPP,
solubilized in 10mL DMSO.The slurry was kept 24 h stirring
in the dark (because of metalloporphin photosensitivity)
and washed exhaustively at first with DMSO then with 2-
propanol. The adduct was finally dried at 50∘C in a vacuum
oven.

Bound metalloporphin was quantified by difference
through spectrophotometric measurement (UltroSpec 2100
pro, Amersham Bioscience, Milan, Italy) at 411 nm (𝜀

411
=

115,000M−1 cm−1 in DMSO), as already described [30].

2.2. Catalytic Assay. A mixture containing 10mg of catalyst
(corresponding to 0.67mg/0.63 𝜇mol of ferriporphin) sus-
pended in 1mL of 25mM buffer solution containing 10mM
NaHS and 45mM aqueous H

2
O
2
was kept stirring at 25∘C

in the dark. Blank experiments were performed without one
substrate or without catalyst. In a series of experiments, the
concentrations of the substrates were varied within a proper
range.

After prefixed periods of time, aliquots of the reaction
solution (500𝜇L) were treated with 100 E.U. of purified
catalase for 30 at 25∘C and used for sulfide and sulfate
quantification. In order to test catalytic performance at
various pHs, some McIlvaine buffers were used: pH 3, pH 4,
pH 5, pH 6, pH 7, and pH 8.

2.3. Sulfide and Sulfate Determination. Sulfide concentration
was determined through photometric automatized cuvette
test LCK653 (Hack Lange, Rheineck, Switzerland), using DR
2700 Portable Spectrophotometer (Hack Lange, Rheineck,
Switzerland).

Sulfate was estimated after acidification of the samples
(200𝜇L) with 50𝜇L 1M HCl. To remove some colloidal sul-
fur, when necessary, the acidified samples were centrifuged at
12,000×g for 15min. Sulfate analysis was performed through
photometric automatized cuvette test LCK153 (Hack Lange,
Rheineck, Switzerland) based on a nephelometric measure.

2.4. Enzymatic Comparison. When horseradish peroxidase
(HRP) was used, up to 1.5 E.U. was present in a final volume
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of 1mL of 25mM buffer (pH 5), NaHS 10mM, and 8.8mM
H
2
O
2
.

3. Results and Discussion

In a previous paper, we had fully characterized the adduct
PP-PVA/FeTFPP and studied its catalytic activity on lignin-
model compounds [30].

Under the described experimental conditions, PP-PVA/
FeTFPP was also able to achieve more than 70% conversion
of the sulfide in 24 h. In the same time, high amounts of sulfate
were produced in the presence of hydrogen peroxide and
the described heterogenized ferriporphin (more than 60% in
24 h). Many combinations of different substrate concentra-
tions (both peroxide and sulfide), catalyst, and buffers were
tested to optimize the oxidation of sulfide to sulfate, with
the aim of minimizing the production of elemental colloidal
sulfur, whose removal is rather tedious.

An outstanding well-known property of hydrogen sulfide
and of its anions HS−and S2−, in fact, is the high tendency
to produce elemental sulfur upon mild oxidation. A milky
colloidal turbidity arises in aqueous solutions, hindering a
reliable analysis of residual sulfide unless such sulfur is not
properly removed. Apart from the analytical concerns, from
a technological perspective, the hardly recoverable colloidal
sulfur is a drawback of any procedure involving hydrogen
sulfide oxidation.

Elemental sulfur was not apparent during PP-PVA/
FeTFPP catalysis at neutral or alkaline pH values, where it
was kept into the solution by residual sulfide, as polysulfides
S
𝑥

2−. These are readily decomposed upon acidification, and
the arising sulfur was removed by centrifugation when
appropriate, as noted above.

On the contrary, sulfate recovery would not be a problem,
even at a plant scale, as it could be precipitated as calcium
sulfate (gypsum), dried, and placed in landfill or eventually
used as a soil improver in agriculture.

When the reaction was studied within a range of several
hours, careful comparison with proper blank samples was
necessary to take into account the slow autoxidation of
sulfide, in particular at alkaline pH values.

The pH influence on the efficiency of sulfide removal was
studied within the pH range 3–8. Figure 2 clearly shows that
the optimal pH for sulfide oxidative removal is 5, although a
reasonable efficiencywas still observed at pH 8.The efficiency
drop was higher on the acidic side of the studied range.

Taking into the due account the main aim of this study,
namely, the complete oxidation of sulfide to sulfate, the
correct stoichiometric ratio (1 : 4 at least) between sulfide and
hydrogen peroxidemust bemaintained. Namely, the reaction
is as follows:

H
2
S + 4H

2
O
2
→ SO

4

2−
+ 4H
2
O + 2H+ (1)

Otherwise, oxidation will be incomplete, and formation of
colloidal sulfur and/or polysulfides becomes more likely.
Furthermore, under such conditions, the analytical determi-
nation of reactants was quite uncertain.
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Figure 2: PP-PVA/FeTFPP oxidizes hydrogen sulfide with a pH-
dependent behavior. 10mg of catalyst reacted in the presence of
25mM buffer solution, 10mM NaHS, and 45mM H

2
O
2
(1mL

final volume) at 25∘C for 24 h. Results are expressed as sulfide
conversion (i.e., sulfide removal regardless of the chemical nature
of the oxidation product(s)) (𝑛 = 5).

Such a problem of incomplete oxidation simply does
not exist in the case of thiols (mercaptans) that are easily
and cleanly oxidized to the corresponding sulfonic acids
[31]. Organic sulfides (thioethers) are converted to the cor-
responding sulfones upon oxidation [32], also under met-
alloporphin catalysis [33–36]. Therefore, clean oxidation of
hydrogen sulfide in water to sulfate under mild operative
conditions is a serious challenge. However, the ability of
concentrate hydrogen peroxide to oxidize hydrogen sulfide
at slightly alkaline pH is well known by far. Anyway, we
have faced the problem with the aid of a bioinspired catalyst,
namely, an electron-deficient ferriporphin immobilized on
to a suitable hydrophilic, insoluble support (Figure 1). This
was found to be capable of promoting sulfide oxidation to
sulfate under very low concentrations of hydrogen peroxide.
As noted above, many data exist relative to metalloporphin-
catalyzed oxidation of sulfide to the corresponding sulfox-
ides and/or sulfones under proper experimental conditions.
Somewhat surprisingly, no data have been found in the liter-
ature about hydrogen sulfide oxidation by metalloporphin-
based catalysts, under experimental conditions similar to
those effective in the case of organic sulfides. The already
noted high tendency of H

2
S to be oxidized with production

of colloidal elemental sulfur, in particular under alkaline
conditions, is most probably the explanation of such a lack of
published studies. A vast number of experimental trials were
in fact necessary to find the optimal conditions to convert
hydrogen sulfide to sulfate, taking into the due account that
an excessive peroxide concentration could oxidatively destroy
the same catalyst. A slight H

2
S oxidation was seen also in the

blank experiments where the immobilized metalloporphin
was present and hydrogen peroxide was omitted from the
reaction mixture. This could be explained by means of a
hypothetical redox reaction where the ferric porphin was
slowly reduced by H

2
S to its ferrous counterpart. This could



4 Journal of Chemistry

80

60

110 Blank79.2 70.4 44

40

20

0

Su
lfa

te
 y

ie
ld

2
4

h 
(%

)

[H2O2] (mM)

Figure 3: Sulfate yields obtained under PP-PVA-FeTFPP catalysis.
Appropriate blank experiments were carried out in absence of
hydrogen peroxide (Blank bar in the figure). 10mg of catalyst reacted
in the presence of 25mMbuffer solution pH5, 10mMNaHS, and the
indicated H

2
O
2
at 25∘C for 24 h (final volume 1mL) (𝑛 = 5).

Table 1:Multicycle activity of the supportedmetalloporphine. 10mg
of catalyst reacted in the presence of 25mM buffer solution, 10mM
NaHS, and 45mMH2O2 (1mL final volume) at 25∘C for 2 h (𝑛 = 3).

Cycle % Residual activity
1 100
2 91
3 90
4 80
5 78
6 76
7 71
8 63

in turn react with molecular oxygen thus regenerating the
ferric catalyst and closing the catalytic cycle.

Also, hydrogen peroxide in the absence of the ferripor-
phin catalyst could oxidize hydrogen sulfide. However, the
yields of sulfate are sharply lower, whereas more colloidal
sulfur was formed. All the sulfate yields upon catalytic
oxidation compared to the described blank experiments are
summarized in Figure 3.

PP-PVA/FeTFPPwas also able to keep its catalytic activity
after several catalytic cycles. The results summarized in
Table 1 showed that over 60% of initial catalytic activity is
maintained after 8 catalytic cycles.

The biomimetic oxidation of PP-PVA/FeTFPP was also
compared with enzymatic catalysis by the means of hors-
eradish peroxidase (HRP). The results are summarized in
Figure 4.

HRP was not able to exceed 30% sulfide conversion, even
at the highest concentration tested. In the same condition,
PP-PVA/FeTFPP allowed a twofold higher conversion, being
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Figure 4: Comparison between the biomimetic catalysis and
horseradish peroxidase (HRP). The indicated E.U. of HRP was
incubated in a final volume of 1mL of 25mM buffer pH 5, 10mM
NaHS, and 8.8mMH

2
O
2
. PP-PVA/FeTFPP catalysis occurred in the

same conditions described in Figure 3 (𝑛 = 5).

therefore quite a more promising large-scale alternative for
sulfide treatment.

With respect to the possible oxidation mechanism(s),
some different paths could be hypothesized (Figure 5). A pos-
sibility is the “classical” peroxidase-like mechanism already
proposed for enzymatic sulfoxidation of thioethers [37]. In
this path, theCompound I analogue Porph+∙Fe(IV)=Oextracts
one electron fromH

2
S orHS− leading to radical speciesH

2
S+∙

orHS∙, respectively.These could in turn react with the solvent
water so triggering the further oxidation. Alternatively, the
radical species arising from sulfide oxidation reacts with
the Compound II analogue PorphFe(IV)=O (oxygen rebound
mechanism). The intervention of the solvent should be most
probably ruled out by analogy to that found in thioether
sulfoxidation by hydrogen peroxide in the presence of the
same ferriporphin described here [38]. Instead, the oxygen
rebound mechanism should be the main path leading from
sulfide to sulfate, under PP-PVA/FeTFPP catalysis. This
hypothesis is strengthened by the observation that thioethers
are oxidized to their sulfoxide counterparts by horseradish
and lignin peroxidases, with incorporation of 18O in the
arising sulfoxides, when the oxygen donor is H

2

18O
2
. Any-

way, the arising sulfoxides are formed with low yields, owing
to the low tendency of peroxidase to transfer their oxygen
from the corresponding Compound I to the substrate [39]. A
remarkable exception is that of chloroperoxidases that follow
a direct oxygen transfer mechanism [40]. Not surprisingly,
the peroxidase we have chosen (horseradish peroxidase) for
the reasons of the low costs related to a potential plant
scale application was rather unsatisfactory also as a sulfide
oxidation catalyst, evenwhenused in high concentrations rel-
ative to those of the sulfide substrate. So, we have concluded
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Figure 5: Proposed catalytic path for the immobilized metalloporphin. Path (a) represents the direct oxygen transfer from compound I
analogue to sulfide. Paths (b) and (c) represent the rebound mechanism via compound II.

that hydrogen sulfide removal by hydrogen peroxide through
peroxidase catalysis is not a feasible process.

In the case of metalloporphin catalysis a direct transfer of
the oxygen atom from theCompound I analogue to the sulfur
in sulfide could be envisaged and has been discussed in the
literaturewith concerns to thioethers (path (a) of Figure 5 [39,
41]). However, the prevailing view is a rebound mechanism
for these substrates [38] (paths (b) and (c) of Figure 5). In
the case of (hydrogen) sulfide, an electron transfer from
the (hydrogen) sulfide to the Compound I analogue would
be immediately followed by an oxygen transfer from the
arising Compound II analogue to the sulfide radical. By this
way, we suggest that an extremely reactive and transient
sulfenic intermediate HSOH or HSO− should arise, quickly
evolving to more oxidized sulfur compounds and finally to
sulfate, most probably by the direct action of excess hydrogen
peroxide, possibly without any need of further metallopor-
phin catalysis. As a point of fact, the alternative hypothesis
postulating a direct oxygen transfer should anyway lead to
the same products.

4. Conclusion

We have shown the ability of a commercial metalloporphin,
immobilized on to a cross-linked functionalized hydrophilic
polymer to catalyze the hydrogen sulfide oxidation to sulfate,
under very mild operative conditions and avoiding the for-
mation of significant amount of elemental sulfur.Therefore, a
diluted and nearly neutral hydrogen peroxide solution could
be a tool to accomplish the oxidation in the presence of the
described heterogenized ferriporphin. Biomimetic adduct
also led to better catalytic performances than its enzymatic

counterpart. PP-PVA/FeTFPP could be therefore a feasible
alternative also in the large-scale process of H

2
S removal.
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