

Abstract— In this paper, an agent-based architecture devised

to perform experiments on hierarchical planning is described.
The planning activity results from the interaction of a
community of agents, some of them being explicitly devoted to
embed one or more existing planners. The proposed
architecture allows to exploit the characteristics of any external
planner, under the hypothesis that a suitable wrapper –in form
of planning agent– is provided. An implementation of the
architecture, able to embed one planner of the graphplan
family, has been used to directly assess whether or not
abstraction mechanisms can help to reduce the time complexity
of the search on specific domains. Some preliminary
experiments are reported, focusing on problems taken from the
AIPS 2002, 2000 and 1998 planning competitions. Comparative
results, obtained by assessing the performances of the selected
planner (used first in a stand-alone configuration and then
embedded into the proposed multi-agent architecture), put into
evidence that abstraction may significantly speed up the search.

Index Terms—Abstraction, Hierarchical Planning,
Multi-agent Interactions.

I. INTRODUCTION

UILDING an ordered set of abstractions for controlling
the search has proven to be an effective approach for

dealing with the complexity of planning tasks. This technique
requires the original search space to be mapped into new
abstract spaces, in which irrelevant details are disregarded at
different levels of granularity.

Two main abstraction mechanisms have been studied in the
literature: action- and state-based. The former combines a
group of actions to form macro-operators [7], whereas the latter
exploits representations of the world given at a lower level of
detail. The most significant forms of state-based abstraction
rely on (i) relaxed models, obtained by dropping operators’
applicability conditions [10], and on (ii) reduced models,
obtained by completely removing certain conditions from the
problem space [6]. Both models, while preserving the

provability of plans that hold at the ground level, perform a
“weakening” of the original problem space, thus suffering from
the drawback of introducing “false” solutions at the abstract
levels [4].

For a given abstraction hierarchy, both the downward and
upward solution properties may hold (DSP and USP [11],
respectively). The former property ensures that, for every
abstract solution, at least one corresponding ground solution
exists. Conversely, the latter property ensures that, for any
ground solution, at least one corresponding abstract solution
exists.

Analysis and experimental results have shown that
hierarchical planning is most effective when the hierarchy
satisfies the downward refinement property (DRP) [2], whereby
every abstract solution can be refined to a concrete-level
solution without backtracking across abstraction levels.
However the DRP is a strong requirement, difficult to meet in
practice; that is why, a weakened form of DRP, i.e., near-DRP,
has been investigated, which requires the ratio between “false”
and “true” abstract solutions being reasonably low.

In this paper, an agent-based hierarchical planner is
presented, able to embed any domain-independent (non
hierarchical) planner provided that a compliance with the PDDL
1.2 standard [9] is ensured. Assuming that the near-DRP holds
for the set of problems used as a benchmark, the embedded
planner is exploited at any level of the hierarchy, each level
being characterized by the definition of a corresponding
domain. A suitable decoupling between levels is guaranteed
by using domain-specific rules that describe how predicates
must be translated from a level to its superior and vice-versa.
Translations are currently hand-coded and are given in a
PDDL-like format explicitly defined to support abstractions.

In principle, abstractions might occur on types, operators,
and predicates, although in the current implementation of the
system only abstractions with the expressive power of reduced
models are allowed.

The remainder of this paper is organized as follows: first, the
overall system architecture is illustrated. Then, all
customizations required to perform hierarchical planning with
multi-agent interactions are described, with particular emphasis
on the domain-specific translations required to exp loit the

Experimenting Abstraction Mechanisms
through an Agent-Based Hierarchical Planner

G. Armano, G. Cherchi, and E. Vargiu
 DIEE Department of Electrical and Electronic EngineeringUniversity of Cagliari

Piazza d’Armi I-09123 Cagliari
{armano, cherchi, vargiu}@diee.unica.it

B

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54598901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

embedded, non-hierarchical, planner at any level of abstraction
–including the ground one. Subsequently, experimental results
are discussed. Finally conclusions are drawn and future work
is briefly outlined.

II. SYSTEM ARCHITECTURE

Being aimed at investigating the impact of abstraction
mechanisms on the search complexity, we implemented an
agent-based system where hierarchical planning is performed
through the interaction between a planning supervisor agent
(PSA) and a community of planning agents, at least one for
each level of abstraction, including the ground level. Each
planning agent operates as a “wrapper” for an external planner
able to process domain and problem definitions in a PDDL
syntax. The supervisor’s main responsibility is to coordinate
the work of planning agents by feeding them with sub-
problems issued at the proper abstraction level. In general,
each planning agent can embed a different planner, thus giving
rise to an agent-based planning system built upon a
heterogeneous set of external planners. An ontology agent
(OA) is responsible for providing any required domain
description, no matter which level of abstraction is requested.

Headed at assessing the improvement obtained by enforcing
abstraction on a particular planning system, we decided to
embed the same planner in all planning agents. In this way, the
significance of experimental results is ensured by the fact that
comparisons can be made using the same planner, with and
without abstraction mechanisms. Furthermore, the following
constraints hold: (a) there are two levels of granularity;
denoted as ground and abstract, and (b) planning agents can
generate only linear plans. Figure 1 illustrates how such
constraints affect the generality of the architecture sketched
above: only two planning agents are actually required, called
ground planning agent (GPA) and abstract planning agent
(APA), respectively.

We are assuming that GPA and APA contain their own set

of operators, types and predicates devoted to cope with the
given problem at the proper level of granularity.
Notwithstanding this general assumption, in this work we gave
planning agents the capability of dealing only with
abstractions on predicates, in accordance with the constraints
that characterize reduced models. In other words, an on / off
forwarding rule can currently be enforced on a predicate that
belong to a level, depending on the will of making it available
or not to its superior.

In principle, any domain-independent and PDDL-compliant
planner could be embedded within a planning agent, together
with a suitable description –provided to the PSA – aimed at
specifying how the domain translation between the GPA and
the APA (and vice versa) must be performed. For the sake of
simplicity, we assume that the selected external planner is able
to generate only linear plans.

A. Extending PDDL for Dealing with Abstraction

Inputs to the system are the given problem and a structured
description of the domain. The problem is described in
accordance with the standard PDDL 1.2 syntax, and makes use
of the “define problem” statement. The description of the
domain must be specified for each level through suitable
“define domain” statements. Figure 2 illustrates a sample of
definitions taken from the elevator domain, used in the AIPS
2000 planning competition [1].

To add a level of abstraction to this domain, separate
information has been provided, consisting of: (i) a specification
of the abstract domain, and (ii) a specification of how bi-
directional translations occur between adjacent levels. As
described in Figure 3 and Figure 4, we decided to maintain the
former in a standard PDDL format, whereas for the latter a
novel PDDL-like format has been defined and adopted.

Concentrating on Figure 4, let us point out that the general

Abstract Planning Agent

Hierarchy
definition Problem

Planning
Supervisor Agent

Solution

Ground Planning Agent

Embedded Planner

Ontology Agent

Embedded Planner

Fig. 1. The overall agent -based architecture.

(define (domain elevator-ground)
 (:requirements :typing)
 (:types passenger floor)
 (:predicates
 (origin ?person – passenger ?floor - floor)
 [...etc...]
 (lift-at ?floor - floor))
 (:action board
 :parameters (?f - floor ?p - passenger)
 :precondition (and (lift-at ?f)
 (origin ?p ?f))
 :effect (and (boarded ?p)))
 [...etc...]
 (:action down
 :parameters (?f1 ?f2 - floor)
 :precondition (and (lift-at ?f1)
 (above ?f2 ?f1))
 :effect (and (lift-at ?f2)
 (not (lift-at ?f1)))))

Fig. 2. An extract of the ground-level definitions for the elevator
domain.

form for denoting an upward translation rule consists of
specifying, with a Lisp clause, a predicate that belongs to the
upper level and the corresponding translation –on the left and
right part of the clause, respectively. Of course, this
specification can be used to perform both upward and
downward translations. In particular, when the abstract-level
goal must be set, an upward translation occurs aimed at
mapping the ground problem space into an abstract one.

Conversely, when an abstract operator must be refined, a
downward translation occurs. As an example of translation
rule, let us make a remark about the clause:

((origin ?p – passenger ?f - floor)
 (origin ?p - passenger ?f - floor))

which specifies that the predicate origin must be preserved

while going upward and vice-versa. A further example
illustrates how a predicate can be disregarded while going
upward:

(nil (lift-at ?f - floor))

which specifies that the predicate lift -at is not translated into

any abstract-level predicate. Note that this kind of clauses can
be also omitted, being assumed by default. However, for the
sake of clarity, a knowledge engineer may explicitly state which
predicates should not be translated upward according to the
given syntax.

Let us point out that the translations described above allow
to specify Knoblock’s reduced models [6], although the
expressive power of such notation could be able to represent
also more sophisticated translation strategies (for example, is -a
and part -of abstractions performed over types and / or
predicates are feasible).

B. Planning as a Result of Multi-Agent Interactions

The PSA takes as inputs a ground-level problem, a

description of the domain (splitted into gro und and abstract
level), and a set of rules –to be used while translating ground
into abstract predicates and vice-versa.

To search for a solution, first the PSA translates from the
ground to the abstract space all the facts asserted (in form of
predicates) in the init section together with the predicates
expressed in the goal section, so that the APA can be fed with
this information. Then, the PSA sends a planning request,
through a FIPA -ACL request performative, issued to the APA,
which invokes the embodied planner to search for all existing
(abstract) solutions. In case the APA does not currently know
the domain ontology, a request for loading it is issued to the
OA, which takes care of feeding the APA with the requested
ontology, otherwise a failure performative is sent back to the
APA. Afterwards, a solution –if any– is selected and sent to
the PSA through a suitable inform performative. The PSA
translates each operator of the abstract plan into a sub-
problem (understandable by the ground level planner), and
sends a planning request to the GPA, which invokes the
embedded planner to find possible refinements. If a refinement
cannot be found, a failure performative is sent to the PSA,
which enforces backtracking on the APA. The whole process
ends when a solution is found or the PSA notifies an overall
search failure. Note that the refinement of an abstract operator
is performed by activating the planner embedded in the GPA
on the goal obtained by translating downward its effects. It is
worth pointing out that, to avoid incidental deletion of
subgoals already attained during previous refinements, they
are actually added to the list of subgoals that results from
translating downward the effects of the current abstract
operator to be refined.

III. EXPERIMENTAL RESULTS

The current prototype of the system has been implemented
in Common Lisp Object System (CLOS), for the sake of rapid
prototyping. The embedded planners used to perform

(define (domain elevator-abstract)
 (:requirements :typing)
 (:types passenger floor)
 (:predicates
 (origin ?person - passenger ?floor - floor)
 (destin ?person - passenger ?floor - floor)
 (boarded ?person - passenger)
 (served ?person - passenger))
 (:action load
 :parameters (?p - passenger ?f - floor)
 :precondition (and (origin ?p ?f))
 :effect (and (boarded ?p)))
 (:action unload
 :parameters (?p - passenger ?f - floor)
 :precondition (and (boarded ?p)
 (destin ?p ?f))
 :effect (and (served ?p))))

Fig. 3. The abstract -level definitions for the elevator domain.

(define (hierarchy elevator)
 (:domains elevator-ground elevator-abstract)
 (:translations
 (:level 0
 (:predicates
 ((origin ?p - passenger ?f - floor)
 (origin ?p - passenger ?f - floor))
 ((destin ?p - passenger ?f - floor)
 (destin ?p - passenger ?f - floor))
 ((boarded ?p - passenger)
 (boarded ?p - passenger))
 ((served ?p - passenger)
 (served ?p - passenger))
 (nil
 (above ?f1 - floor ?f2 - floor))
 (nil
 (lift-at ?f - floor)))))))

Fig. 4. Hierarchical translations for the elevator domain.

experiments are GRAPHPLAN (GP) [3] and BLACKBOX [5]. In
the following, GP and BB are used to denote the GRAPHPLAN
and BLACKBOX algorithms, whereas HGP and HBB are used
to denote their “agentified” hierarchical counterpart,
respectively.

To assess how abstraction can improve the search, we
performed some preliminary tests on five domains used in the
AIPS planning competitions (2002 [12], 2000 [8], and 98 [9]):
elevator, logistics, blocks -world, zeno-travel, and gripper.
Experiments were conducted on a machine powered with an
Intel Celeron CPU working at 1200 Mhz with 256Mb of RAM.
A time bound of 1000 CPU seconds has also been adopted.

A. Brief Description of the Selected Domains
The elevator domain is characterized by a lift, devoted to

carry passengers from a floor to another. A starting and a
destination floor are specified for each passenger. The goal is
to serve all passengers.

The logistics domain describes a set of cities, each
containing several locations; some of which are airports. There
are also trucks, used for in-city driving, and airplanes, used to
fly between different cities. The goal is to move some packages
to their (local or remote) destinations.

In the well-known blocks-world domain, stackable blocks
need to be re-assembled on a table with unlimited space. A

robot arm can be used for stacking/unstacking a block
onto/from another block, and for putting down or picking up a
block.

The zeno-travel domain deals with people transportation
using planes able to perform fast or slow movements; fast
movements consume fuel faster than slow movements.

In the gripper domain there is a ro bot equipped with two
grippers. The robot must be used to carry some balls from one
room to another.

All domains have been structured according to a ground
and an abstract level, following the approach sketched for the
elevator domain (as reported in Figure 2, Figure 3, and Figure
4). Since we are dealing with two levels of abstraction, only
ground-to-abstract (i.e., upward) translation rules are actually
required.

B. Testing the Selected Domains

For each domain, several tests have been performed –
characterized by increasing complexity. Table 1 compares the
CPU time of each planner over the set of problems taken from
the AIPS planning competitions. Dashes show problem
instances that could not be solved by the corresponding
system within the chosen time-bound.

Elevator. Experiments performed on the elevator domain
clearly show that –for GP and BB– the CPU time rises very
rapidly while trying to solve problems of increasing length (see
Figure 5, whose y-axis is expressed in logarithmic scale),
whereas HGP and HBB keep solving problems with greater
regularity (although the relation between number of steps and
CPU time remains exponential).

Logistics. In the logistics domain, GP suffers from a phase
transition problem (see Figure 6): it easily solves problems up
to a certain length but it is unable to solve problems within the
imposed time limits if a given threshold is exceeded. On the
other hand, HGP keeps solving problems of increasing length
without putting into evidence any such phenomenon. BB
performs better than HBB for small problems, whereas HBB
outperforms BB on more complex problems.

Elevator

0,001

0,01

0,1

1

10

100

1000

1-0 1-2 1-4 2-1 2-3 3-0 3-2 3-4 4-1 4-3 5-0 5-2 5-4 6-1 6-3 7-0 7-2 7-4 8-1 8-3 9-0

Problems

T
im

e
(s

ec
)

GP
HGP

BB

HBB

Fig. 5. CPU time comparisons in the elevator domain (x-axis
reporting the problem ID).

Table 1. Performance comparison of BB and GP, together with
their hierarchical counterparts HBB, and HGP.

Problem GP HGP BB HBB
elevator-1-4 0.007 0.062 0.098 0.333
elevator-3-1 0.234 0.364 1.342 1.208
elevator-4-1 1.956 0.837 1.030 1.744
elevator-4-4 10.114 0.839 311.046 1.792
elevator-5-1 364.74 2.032 180.781 2.548
elevator-7-2 -- 12.043 -- 3.899
logistics-4-2 0.682 1.227 0.266 0.461
logistics-5-2 0.085 0.165 0.151 0.466
logistics-7-0 -- 10.931 4.494 2.176
logistics-8-1 -- 16.265 2.898 3.027
Logistics-10-0 -- 43.435 8.272 3.763
Logistics-15-0 -- 203.467 10.915 6.333
blocks-4-0 0.345 0.317 0.162 0.674
blocks-6-0 3.040 1.821 0.263 1.684
blocks-8-0 31.612 11.123 0.924 2.467
blocks-10-0 -- -- 6.821 5.003
blocks-11-0 -- -- 16.236 4.254
blocks-14-0 -- -- -- 9.845
zeno-1 0.027 0.519 0.223 0.369
zeno-8 -- 42.549 0.941 2.360
zeno-9 -- -- 0.344 3.377
zeno-11 -- -- 11.203 2.786
zeno-13 -- -- 62.999 20.524
zeno-14 -- -- -- 20.042
gripper-2 4.722 0.565 0.424 0.635
gripper-3 7.914 1.732 5.224 1.203
gripper-4 18.321 2.630 268.737 1.554
gripper-5 57.212 4.377 421.186 1.548
gripper-6 -- 7.968 586.439 2.267
gripper-9 -- 24.294 -- 3.631

Blocks-world. As shown in Figure 7, the tests performed on
the blocks-world domain reveal a similar trend between GP and
HGP, although the latter performs slightly better than the
former. As for BB, it performs better than HBB for simple
problems, whereas HBB outperforms BB on problems of
medium complexity.

Zeno-travel. In this domain, an improvement of HBB over BB
can be observed, similar to the one shown for the blocks-world
domain (see Figure 8). It is worth noting that, unfortunately,
neither GP nor HGP are able to successfully tackle any problem
of this domain.

Gripper. Figure 9 reports some information about the
performances of GP, BB, and their hierarchical counterparts
over the set of problems devised for assessing the gripper
domain. Both HGP and HBB clearly overwhelm their non-

hierarchical counterparts.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, an agent-based system has been described,
devised to assess whether abstraction can significantly reduce
the time complexity of planning problems. The proposed
system is an agent-based hierarchical planner, able to embed a
PDDL-compliant external planner, to be used for planning at
any level of abstraction.

Some preliminary tests have been made on five domains
taken from the AIPS 2002, 2000 and 1998 planning
competitions.

As expected, abstraction is not useful for improving the
search performance on simple problems (characterized by
solutions of limited length), due to the overhead introduced by
the need of dealing with different levels of abstraction. On the
other hand, especially for problems of increasing complexity,
experimental results clearly show that abstraction-based
techniques can significantly increase the performance of the
search.

As for the future work, we are currently investigating a
mechanism for automatically abstracting domains, given their
ground-level description. This ability would be very helpful
while trying to assess the performances of the system on a
large set of domains.

REFERENCES
[1] Bacchus, F. Results of the AIPS 2000 Planning Competition. 2000.
Url: http://www.cs.toronto.edu/aips2000.

[2] Bacchus, F., and Yang, Q. Downward Refinement and the Efficiency
of Hierarchical Problem Solving. Artificial Intelligence. 1994. 71:43-
100.

[3] Blum, F. and Furst, M. Fast Planning through Planning Graph
Analysis. Artificial Intelligence . 1997, 90(1-2): 279-298.

[4] Giunchiglia, F., and Walsh, T. A theory of Abstraction. Technical
Report 9001-14, IRST, 1990, Trento (Italy).

[5] Kautz, H., and Selman, B. BLACKBOX: A New Approach to the
Application of Theorem Proving to Problem Solving. In Working notes
of the Workshop on Planning as Combinatorial Search, AIPS-98
Pittsburg, PA, 1998.

Logistics

0,01

0,1

1

10

100

1000

4-0 4-2 5-1 6-0 6-2 7-0 8-0 9-0 10
-0

11
-1

12-
1

13-
1

14
-1

15-
1

11
-0(

2)

14
-0(

2)

Problems

T
im

e
(s

ec
)

GP

HGP
BB

HBB

Fig. 6. CPU time comparisons in the logistics domain (x-axis
reporting the problem ID).

Blocks

0,1

1

10

100

4-0 5-0 6-0 7-0 8-0 9-0 10-0 11-0 12-0 13-0 14-0

Problems

Ti
m

e
(s

ec
) BB

HBB

GP
HGP

Fig. 7. CPU time comparisons in the blocks-world domain.

Zeno Travel

0,1

1

10

100

1 2 3 4 5 6 7 8 9 10

Problems

T
im

e
(s

ec
)

BB

HBB

Fig. 8. CPU time comparisons in the zeno-travel domain.

Gripper

0,10

1,00

10,00

100,00

1000,00

g1 g2 g3 g4 g5 g6 g9

Problems

Ti
m

e
(s

ec
)

GP

HGP

BB

HBB

Fig. 9. CPU time comparisons in the gripper domain.

[6] Knoblock, C.A. Automatically Generating Abstractions for Planning.
Artificial Intelligence 68(2), 1994.

[7] Korf, R.E. Planning as Search: A Quantitative Approach. Artificial
Intelligence. 1987, 33(1), 65-88.

[8] Long, D. The AIPS-98 Planning Competition. AI Magazine. 2000,
Vol. 21(2) 13-33.

[9] McDermott, D., and the AIPS-98 Planning Competition Committee.
1998. PDDL – The Planning Domain Definition Language.

[10] Sacerdoti, E.D. Planning in a hierarchy of abstraction spaces.
Artificial Intelligence 1974, 5:115-135.

[11] T enenberg, J.D. Abstraction in Planning. Ph.D. thesis, Computer
Science Department, University of Rochester, 1988.

[12] Results of the AIPS Planning Competition. (2002). 2002. Url:
http://www.dur.ac.uk/d.p.long/competition.html.

