
 
 

 

  
Abstract— In this paper, an agent-based architecture devised 

to perform experiments on hierarchical planning is described. 
The planning activity results from the interaction of a 
community of agents, some of them being explicitly devoted to 
embed one or more existing planners. The proposed 
architecture allows to exploit the characteristics of any external 
planner, under the hypothesis that a suitable wrapper –in form 
of planning agent– is provided. An implementation of the 
architecture, able to embed one planner of the graphplan 
family, has been used to directly assess whether or not 
abstraction mechanisms can help to reduce the time complexity 
of the search on specific domains. Some preliminary 
experiments are reported, focusing on problems taken from the 
AIPS 2002, 2000 and 1998 planning competitions. Comparative 
results, obtained by assessing the performances of the selected 
planner (used first in a stand-alone configuration and then 
embedded into the proposed multi-agent architecture), put into 
evidence that abstraction may significantly speed up the search. 
 

Index Terms—Abstraction, Hierarchical Planning, 
Multi-agent Interactions. 
 

I. INTRODUCTION  

UILDING an ordered set of abstractions for controlling 
the search has proven to be an effective approach for 

dealing with the complexity of planning tasks. This technique 
requires the original search space to be mapped into new 
abstract spaces, in which irrelevant details are disregarded at 
different levels of granularity. 

Two main abstraction mechanisms have been studied in the 
literature: action- and state-based. The former combines a 
group of actions to form macro-operators [7], whereas the latter 
exploits representations of the world given at a lower level of 
detail. The most significant forms of state-based abstraction 
rely on (i) relaxed models, obtained by dropping operators’ 
applicability conditions [10], and on (ii) reduced models, 
obtained by completely removing certain conditions from the 
problem space [6]. Both models, while preserving the 

 
 

provability of plans that hold at the ground level, perform a 
“weakening” of the original problem space, thus suffering from 
the drawback of introducing “false” solutions at the abstract 
levels [4]. 

For a given abstraction hierarchy, both the downward and 
upward solution properties may hold (DSP and USP [11], 
respectively). The former property ensures that, for every 
abstract solution, at least one corresponding ground solution 
exists. Conversely, the latter property ensures that, for any 
ground solution, at least one corresponding abstract solution 
exists. 

Analysis and experimental results have shown that 
hierarchical planning is most effective when the hierarchy 
satisfies the downward refinement property (DRP) [2], whereby 
every abstract solution can be refined to a concrete-level 
solution without backtracking across abstraction levels. 
However the DRP is a strong requirement, difficult to meet in 
practice; that is why, a weakened form of DRP, i.e., near-DRP, 
has been investigated, which requires the ratio between “false” 
and “true” abstract solutions being reasonably low. 

In this paper, an agent-based hierarchical planner is 
presented, able to embed any domain-independent (non 
hierarchical) planner provided that a compliance with the PDDL 
1.2 standard [9] is ensured. Assuming that the near-DRP holds 
for the set of problems used as a benchmark, the embedded 
planner is exploited at any level of the hierarchy, each level 
being characterized by the definition of a corresponding 
domain. A suitable decoupling between levels is guaranteed 
by using domain-specific rules that describe how predicates 
must be translated from a level to its superior and vice-versa. 
Translations are currently hand-coded and are given in a 
PDDL-like format explicitly defined to support abstractions. 

In principle, abstractions might occur on types, operators, 
and predicates, although in the current implementation of the 
system only abstractions with the expressive power of reduced 
models are allowed.  

The remainder of this paper is organized as follows: first, the 
overall system architecture is illustrated. Then, all 
customizations required to perform hierarchical planning with 
multi-agent interactions are described, with particular emphasis 
on the domain-specific translations required to exp loit the 
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embedded, non-hierarchical, planner at any level of abstraction 
–including the ground one. Subsequently, experimental results 
are discussed. Finally conclusions are drawn and future work 
is briefly outlined.  

II. SYSTEM ARCHITECTURE  

Being aimed at investigating the impact of abstraction 
mechanisms on the search complexity, we implemented an 
agent-based system where hierarchical planning is performed 
through the interaction between a planning supervisor agent 
(PSA) and a community of planning agents, at least one for 
each level of abstraction, including the ground level. Each 
planning agent operates as a “wrapper” for an external planner 
able to process domain and problem definitions in a PDDL 
syntax. The supervisor’s main responsibility is to coordinate 
the work of planning agents by feeding them with sub-
problems issued at the proper abstraction level. In general, 
each planning agent can embed a different planner, thus giving 
rise to an agent-based planning system built upon a 
heterogeneous set of external planners. An ontology agent 
(OA) is responsible for providing any required domain 
description, no matter which level of abstraction is requested.  

Headed at assessing the improvement obtained by enforcing 
abstraction on a particular planning system, we decided to 
embed the same planner in all planning agents. In this way, the 
significance of experimental results is ensured by the fact that 
comparisons can be made using the same planner, with and 
without abstraction mechanisms. Furthermore, the following 
constraints hold: (a) there are two levels of granularity; 
denoted as ground and abstract, and (b) planning agents can 
generate only linear plans. Figure 1 illustrates how such 
constraints affect the generality of the architecture sketched 
above: only two planning agents are actually required, called 
ground planning agent (GPA) and abstract planning agent 
(APA), respectively.  

We are assuming that GPA and APA  contain their own set 

of operators, types and predicates devoted to cope with the 
given problem at the proper level of granularity. 
Notwithstanding this general assumption, in this work we gave 
planning agents the capability of dealing only with 
abstractions on predicates, in accordance with the constraints 
that characterize reduced models. In other words, an on / off 
forwarding rule can currently be enforced on a predicate that 
belong to a level, depending on the will of making it available 
or not to its superior.  

In principle, any domain-independent and PDDL-compliant 
planner could be embedded within a planning agent, together 
with a suitable description –provided to the PSA – aimed at 
specifying how the domain translation between the GPA and 
the APA (and vice versa) must be performed. For the sake of 
simplicity, we assume that the selected external planner is able 
to generate only linear plans. 

A. Extending PDDL for Dealing with Abstraction 

Inputs to the system are the given problem and a structured 
description of the domain. The problem is described in 
accordance with the standard PDDL 1.2 syntax, and makes use 
of the “define problem” statement. The description of the 
domain must be specified for each level through suitable 
“define domain” statements. Figure 2 illustrates a sample of 
definitions taken from the elevator domain, used in the AIPS 
2000 planning competition [1]. 

To add a level of abstraction to this domain, separate 
information has been provided, consisting of: (i) a specification 
of the abstract domain, and (ii) a specification of how bi-
directional translations occur between adjacent levels. As 
described in Figure 3 and Figure 4, we decided to maintain the 
former in a standard PDDL format, whereas for the latter a 
novel PDDL-like format has been defined and adopted. 

Concentrating on Figure 4, let us point out that the general 
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Fig. 1. The overall agent -based architecture.  

(define (domain elevator-ground) 
 (:requirements :typing) 
 (:types passenger floor) 
 (:predicates 
  (origin ?person – passenger ?floor - floor) 
   [...etc...] 
  (lift-at ?floor - floor)) 
 (:action board 
   :parameters (?f - floor ?p - passenger) 
   :precondition (and (lift-at ?f)  
                      (origin ?p ?f)) 
   :effect (and (boarded ?p))) 
   [...etc...] 
 (:action down 
   :parameters (?f1 ?f2 - floor) 
   :precondition (and (lift-at ?f1) 
                      (above ?f2 ?f1)) 
   :effect (and (lift-at ?f2)  
                (not (lift-at ?f1)))))  

Fig. 2. An extract of the ground-level definitions for the elevator 
domain. 



 
 

 

form for denoting an upward translation rule consists of 
specifying, with a Lisp clause, a predicate that belongs to the 
upper level and the corresponding translation –on the left and 
right part of the clause, respectively. Of course, this 
specification can be used to perform both upward and 
downward translations. In particular, when the abstract-level 
goal must be set, an upward translation occurs aimed at 
mapping the ground problem space into an abstract one. 

Conversely, when an abstract operator must be refined, a 
downward translation occurs. As an example of translation 
rule, let us make a remark about the clause: 

 
((origin ?p – passenger ?f - floor) 
 (origin ?p - passenger ?f - floor)) 

 
which specifies that the predicate origin must be preserved 

while going upward and vice-versa. A further example 
illustrates how a predicate can be disregarded while going 
upward: 

 
(nil (lift-at ?f - floor)) 
 
which specifies that the predicate lift -at is not translated into 

any abstract-level predicate. Note that this kind of clauses can 
be also omitted, being assumed by default. However, for the 
sake of clarity, a knowledge engineer may explicitly state which 
predicates should not be translated upward according to the 
given syntax. 

Let us point out that the translations described above allow 
to specify Knoblock’s reduced models [6], although the 
expressive power of such notation could be able to represent 
also more sophisticated translation strategies (for example, is -a 
and part -of abstractions performed over types and / or 
predicates are feasible). 

B. Planning as a Result of Multi-Agent Interactions 

The PSA takes as inputs a ground-level problem, a 

description of the domain (splitted into gro und and abstract 
level), and a set of rules –to be used while translating ground 
into abstract predicates and vice-versa. 

To search for a solution, first the PSA translates from the 
ground to the abstract space all the facts asserted (in form of 
predicates) in the init section together with the predicates 
expressed in the goal section, so that the APA can be fed with 
this information. Then, the PSA sends a planning request, 
through a FIPA -ACL request performative, issued to the APA, 
which invokes the embodied planner to search for all existing 
(abstract) solutions. In case the APA does not currently know 
the domain ontology, a request for loading it is issued to the 
OA, which takes care of feeding the APA with the requested 
ontology, otherwise a failure performative is sent back to the 
APA. Afterwards, a solution –if any– is selected and sent to 
the PSA through a suitable inform performative. The PSA 
translates each operator of the abstract plan into a sub-
problem (understandable by the ground level planner), and 
sends a planning request to the GPA, which invokes the 
embedded planner to find possible refinements. If a refinement 
cannot be found, a failure performative is sent to the PSA, 
which enforces backtracking on the APA. The whole process 
ends when a solution is found or the PSA notifies an overall 
search failure. Note that the refinement of an abstract operator 
is performed by activating the planner embedded in the GPA 
on the goal obtained by translating downward its effects. It is 
worth pointing out that, to avoid incidental deletion of 
subgoals already attained during previous refinements, they 
are actually added to the list of subgoals that results from 
translating downward the effects of the current abstract 
operator to be refined.  

III. EXPERIMENTAL RESULTS 

The current prototype of the system has been implemented 
in Common Lisp Object System (CLOS), for the sake of rapid 
prototyping. The embedded planners used to perform 

(define (domain elevator-abstract) 
 (:requirements :typing) 
 (:types passenger floor) 
 (:predicates 
  (origin ?person - passenger ?floor - floor) 
  (destin ?person - passenger ?floor - floor) 
  (boarded ?person - passenger) 
  (served ?person - passenger)) 
 (:action load 
  :parameters (?p - passenger ?f - floor) 
  :precondition (and (origin ?p ?f)) 
  :effect (and (boarded ?p))) 
 (:action unload 
  :parameters (?p - passenger ?f - floor) 
  :precondition (and (boarded ?p) 
                     (destin ?p ?f)) 
  :effect (and (served ?p)))) 

Fig. 3. The abstract -level definitions for the elevator domain.  

(define (hierarchy elevator) 
 (:domains elevator-ground elevator-abstract) 
  (:translations 
   (:level 0 
    (:predicates 
       ((origin ?p - passenger ?f - floor)  
        (origin ?p - passenger ?f - floor)) 
       ((destin ?p - passenger ?f - floor) 
        (destin ?p - passenger ?f - floor)) 
       ((boarded ?p - passenger) 
     (boarded ?p - passenger)) 
       ((served ?p - passenger) 
        (served ?p - passenger)) 
       (nil 
        (above ?f1 - floor ?f2 - floor)) 
       (nil  
        (lift-at ?f - floor))))))) 

Fig. 4. Hierarchical translations for the elevator domain. 



 
 

 

experiments are GRAPHPLAN (GP) [3] and BLACKBOX [5]. In 
the following, GP and BB are used to denote the GRAPHPLAN 
and BLACKBOX algorithms, whereas HGP and HBB are used 
to denote their “agentified” hierarchical counterpart, 
respectively. 

To assess how abstraction can improve the search, we 
performed some preliminary tests on five domains used in the 
AIPS planning competitions (2002 [12], 2000 [8], and 98 [9]): 
elevator, logistics, blocks -world, zeno-travel, and gripper. 
Experiments were conducted on a machine powered with an 
Intel Celeron CPU working at 1200 Mhz with 256Mb of RAM. 
A time bound of 1000 CPU seconds has also been adopted. 

A. Brief Description of the Selected Domains 
The elevator domain is characterized by a lift, devoted to 

carry passengers from a floor to another. A starting and a 
destination floor are specified for each passenger. The goal is 
to serve all passengers. 

The logistics domain describes a set of cities, each 
containing several locations; some of which are airports. There 
are also trucks, used for in-city driving, and airplanes, used to 
fly between different cities. The goal is to move some packages 
to their (local or remote) destinations. 

In the well-known blocks-world domain, stackable blocks 
need to be re-assembled on a table with unlimited space. A 

robot arm can be used for stacking/unstacking a block 
onto/from another block, and for putting down or picking up a 
block.  

The zeno-travel domain deals with people transportation 
using planes able to perform fast or slow movements; fast 
movements consume fuel faster than slow movements.  

In the gripper domain there is a ro bot equipped with two 
grippers. The robot must be used to carry some balls from one 
room to another. 

All domains have been structured according to a ground 
and an abstract level, following the approach sketched for the 
elevator domain (as reported in Figure 2, Figure 3, and Figure 
4). Since we are dealing with two levels of abstraction, only 
ground-to-abstract (i.e., upward) translation rules   are actually 
required. 

B. Testing the Selected Domains 

For each domain, several tests have been performed –
characterized by increasing complexity. Table 1 compares the 
CPU time of each planner over the set of problems taken from 
the AIPS planning competitions. Dashes show problem 
instances that could not be solved by the corresponding 
system within the chosen time-bound. 

Elevator. Experiments performed on the elevator domain 
clearly show that –for GP and BB– the CPU time rises very 
rapidly while trying to solve problems of increasing length (see 
Figure 5, whose y-axis is expressed in logarithmic scale), 
whereas HGP and HBB keep solving problems with greater 
regularity (although the relation between number of steps and 
CPU time remains exponential). 

Logistics. In the logistics domain, GP suffers from a phase 
transition problem (see Figure 6): it easily solves problems up 
to a certain length but it is unable to solve problems within the 
imposed time limits if a given threshold is exceeded. On the 
other hand, HGP keeps solving problems of increasing length 
without putting into evidence any such phenomenon. BB 
performs better than HBB for small problems, whereas HBB 
outperforms BB on more complex problems. 
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Fig. 5. CPU time comparisons in the elevator domain (x-axis 
reporting the problem ID).  

Table 1. Performance comparison of BB and GP, together with 
their hierarchical counterparts HBB, and HGP. 

Problem GP HGP BB HBB 
elevator-1-4 0.007 0.062 0.098  0.333  
elevator-3-1 0.234 0.364 1.342  1.208  
elevator-4-1 1.956 0.837 1.030  1.744  
elevator-4-4 10.114 0.839 311.046 1.792  
elevator-5-1 364.74 2.032 180.781 2.548  
elevator-7-2 -- 12.043 -- 3.899  
logistics-4-2 0.682 1.227 0.266  0.461  
logistics-5-2 0.085 0.165 0.151  0.466  
logistics-7-0 -- 10.931 4.494  2.176  
logistics-8-1 -- 16.265 2.898  3.027  
Logistics-10-0 -- 43.435 8.272  3.763  
Logistics-15-0 -- 203.467 10.915 6.333  
blocks-4-0 0.345 0.317 0.162  0.674  
blocks-6-0 3.040 1.821 0.263  1.684  
blocks-8-0 31.612 11.123 0.924  2.467  
blocks-10-0 -- -- 6.821  5.003  
blocks-11-0 -- -- 16.236 4.254  
blocks-14-0 -- -- -- 9.845  
zeno-1 0.027 0.519 0.223  0.369  
zeno-8 -- 42.549 0.941  2.360  
zeno-9 -- -- 0.344  3.377  
zeno-11 -- -- 11.203 2.786  
zeno-13 -- -- 62.999 20.524  
zeno-14 -- -- -- 20.042  
gripper-2 4.722 0.565 0.424  0.635  
gripper-3 7.914 1.732 5.224  1.203  
gripper-4 18.321 2.630 268.737 1.554  
gripper-5 57.212 4.377 421.186 1.548  
gripper-6 -- 7.968 586.439 2.267  
gripper-9 -- 24.294 -- 3.631  

 



 
 

 

Blocks-world. As shown in Figure 7, the tests performed on 
the blocks-world domain reveal a similar trend between GP and 
HGP, although the latter performs slightly better than the 
former. As for BB, it performs better than HBB for simple 
problems, whereas HBB outperforms BB on problems of 
medium complexity. 

Zeno-travel. In this domain, an improvement of HBB over BB 
can be observed, similar to the one shown for the blocks-world 
domain (see Figure 8). It is worth noting that, unfortunately, 
neither GP nor HGP are able to successfully tackle any problem 
of this domain. 

Gripper. Figure 9 reports some information about the 
performances of GP, BB, and their hierarchical counterparts 
over the set of problems devised for assessing the gripper 
domain. Both HGP and HBB clearly overwhelm their non-

hierarchical counterparts. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, an agent-based system has been described, 
devised to assess whether abstraction can significantly reduce 
the time complexity of planning problems. The proposed 
system is an agent-based hierarchical planner, able to embed a 
PDDL-compliant external planner, to be used for planning at 
any level of abstraction. 

Some preliminary tests have been made on five domains 
taken from the AIPS 2002, 2000 and 1998 planning 
competitions.  

As expected, abstraction is not useful for improving the 
search performance on simple problems (characterized by 
solutions of limited length), due to the overhead introduced by 
the need of dealing with different levels of abstraction. On the 
other hand, especially for problems of increasing complexity, 
experimental results clearly show that abstraction-based 
techniques can significantly increase the performance of the 
search. 

As for the future work, we are currently investigating a 
mechanism for automatically abstracting domains, given their 
ground-level description. This ability would be very helpful 
while trying to assess the performances of the system on a 
large set of domains. 
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Fig. 6. CPU time comparisons in the logistics domain (x-axis 
reporting the problem ID). 
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