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Abstract

Objective: Metabolomics is a new ‘‘omics’’ platform aimed at high-throughput identification,
quantification and characterization of small molecule metabolites. The metabolomics approach

has been successfully applied to the classification different physiological states and

identification of perturbed biochemical pathways. The purpose of the current investigation is

the application of metabolomics to explore biological mechanisms which may lead to the onset
of metabolic syndrome in adulthood.

Methods: We evaluated differences in metabolites in the urine collected within 12 hours from

23 infants with IUGR (IntraUterine Growth Restriction), or LGA (Large for Gestational Age),

compared to control infants (10 patients defined AGA: Appropriate for Gestational Age). Urinary
metabolites were quantified by GC-MS and used to highlight similarities between the two

metabolic diseases and identify metabolic markers for their predisposition. Quantified

metabolites were analyzed using a multivariate statistics coupled with receiver operator
characteristic curve (ROC) analysis of identified biomarkers.

Results: Urinary myo-inositol was the most important discriminant between LGA+ IUGR and

control infants, and displayed an area under the ROC curve¼ 1.

Conclusion: We postulate that the increase in plasma and consequently urinary inositol may
constitute a marker of altered glucose metabolism during fetal development in both IUGR and

LGA newborns.
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Introduction

Progress in new systems biology methodologies which study

metabolic alterations of aetiological processes at the origin of

many pathologies are becoming more important. In particular,

metabolomics, a new analytical technique defined as the study

of the complex system of metabolites, is capable of describing

the biochemical phenotype of a biological system [1].

At present, attention is being focused mainly on the formu-

lation of new hypotheses concerning the biological mechan-

isms that lead to the onset of diabetes and metabolic

syndrome in adulthood. Metabolomics has been recently

applied to identify several biomarkers (including myo-

inositol) for mechanisms which may lead to infantile obesity

and the subsequent onset of metabolic diseases [2].

Comprehensive analysis of changes in metabolic profiles

during fetal and neonatal life may present an important

reference for understanding fundamental biochemical mech-

anisms, which may lead to consequent metabolic alterations.

Previous investigations have demonstrated that fetal malnu-

trition, whether excessive (overnutrition) or insufficient

(hyponutrition), can permanently alter the fetus’s metabolic

state and increase the risk of chronic diseases later in life.

This suggests that neonates with intrauterine growth retard-

ation (IUGR) and large-for-gestational-age (LGA) neonates,

despite opposing metabolic characteristics during fetal life, at

birth may exhibit a common condition of reduced glucose

tolerance which can persist into adulthood, and consequently

leads to an increased risk of developing metabolic syndrome

related pathologies such as obesity and type 2 diabetes [3].

The current investigation compared urine metabolic profiles

of IUGR and LGA neonates to controls to identify metabolic

similarities between IUGR and LGA and to identify markers

for biochemical alterations during fetal life which may lead to

the onset of metabolic syndrome in adulthood.
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Methods

Patient cohort and sample collection

This study was carried out on urine samples of three groups of

patients admitted to the Neonatal Intensive Care Unit (NICU)

and Puericulture of the University of Cagliari. Ethical

committee approved the study protocol and written informed

consent was obtained from the parents before enrolment in the

study. The first group included 11 IUGR patients (5 males and

6 females) diagnosed with ultrasonography in the prenatal

period [4] and with birth weight below the 10th percentile

(mean gestational age 37.1). The second group comprised 12

LGA neonates (7 males and 5 females) with birth weight

above the 90th percentile (mean gestational age 37.6) while

the third group included 10 neonates (5 males and 5 females)

with birth weight adequate for gestational age (AGA) (mean

gestational age 37.4). The clinical data of each patient were

recorded in the hospital registers Urine samples from the

three groups were collected within 12 hours from birth (prior

to feeding). Each urine sample (2–3ml) was collected from

the patients using a noninvasive method with a ball of cotton,

then aspired with a syringe and transferred to a sterile 15ml

Falcon tube. The tubes were then stored at ÿ80 �C until the

time of the analysis using the GC-MS technique. An aliquot of

100mL from each sample formed a urine pooled sample to be

analysed with the others as quality control sample.

Sample preparation

One-hundred fifty microliters of urine were transferred in

glass vials (2mL) with PTFE-lined screw caps and evaporated

to dryness overnight in an Eppendorf vacuum centrifuge.

30 mL of a 0.24M solution of methoxylamine hydrochloride

in pyridine was added to each vial, samples were vortex

mixed and left to react for 17 h at room temperature. Then

30 mL of MSTFA (N-Methyl-N-trimethylsilyl trifuoroaceta-

mide) were added and left to react for 1 h at room

temperature. The derivatized samples were diluted with

hexane (300 mL) just before GC-MS analysis. The GC-MS

analysis was performed on an Agilent 5975C interfaced to the

GC 7820 equipped with a DB-5ms column (J & W), injector

temperature at 230 �C, detector temperature at 280 �C, helium

carrier gas flow rate of 1ml/min. The GC oven temperature

program was 90 �C initial temperature with 1min hold time

and ramping at 10 �C/min to a final temperature of 270 �C

with 7min hold time. 1 mL of the derivatized sample was

injected in split (1:20) mode. After a solvent delay of

3 minutes, mass spectra were acquired in full scan mode using

2.28 scans/s with a mass range of 50–700Amu.

Sample analysis

The chromatogram of the pooled sample was used to build a

dedicated library of urinary metabolites: some chromato-

graphic peaks were identified through comparison of reten-

tion times and mass spectra with those obtained from

authentic samples. Other metabolites were identified using

the National Institute of Standards and Technology (NIST08)

mass spectral database. In this way, 120 target compounds

were identified, thus generating a custom library which was

used for later automated analysis of samples by AMDIS

(Automated Mass Spectrometry Deconvolution and

Identification System, http://chemdata.nist.gov/mass-spc/

amdis/) software.

Mathematical model

Partial least squares discriminant analysis (PLS-DA) [5] is a

multivariate classification model, which is similar to principal

components analysis (PCA) [5], but unlike PCA maximizes

the covariance in independent variables (metabolites) and a

dependent variable (class labels, e.g. IUGR+LGA, AGA). To

capture the maximum variance between clinically defined

groups in the first dimension of the PLS-DA model, first

latent variable (LV), all information orthogonal to group

discrimination needs to be removed from the model.

Unfortunately, the plane of separation between class scores

in a preliminary PLS-DA model spanned two or more LVs

(materials not shown). To simplify model interpretation of

which variables had the greatest contribution to the discrim-

ination between clinical classes [6–8], we implemented

orthogonal signal correction-PLS (OSC-PLS) using the

SIMCAP+12 Umetrics software [5]. OSC-PLS discriminant

analysis (OSC-PLS-DA) was used to maximize the captured

variance between samples in the first dimension of the model

(LV 1). We generated an OSC-PLS model based on our data

and then used the resulting OSC-corrected data as input to

generate an OSC-PLS-DA model. Variable loadings for the

first LV were compared between PLS-DA and OSC-PLS-DA

models. For most variables the magnitude of the model

loading did not change greatly, but there were some param-

eters whose sign for the loading changed; we needed to make

sure that the sign of the variable loading accurately reflected

each parameter’s relative change between classes. In this way

we specifically focused on how OSC affects the model’s

perception of the importance or weights of the variables

resulting in significant differences in weights (delta weights)

between a pure PLS-DA and an OSC-PLS-DA model. The

primary step in this application of OSC filtering to a PLS-DA

model is the building of the appropriate Y discrete-values

function; the metabolic hypothesis may be tested with the

function:

y ¼ 0 8 samples 2 AGA

y ¼ 1 8 samples 2 IUGRÿLGA

The Y column is added to the X matrix of the metabolite

concentration and can be used to remove the orthogonal

components in the X variance matrix.

Biomarker validation

Receiver Operating Characteristic (ROC) curves are generally

considered the method of choice for evaluating the perform-

ance of potential biomarkers. Some authors have developed a

web-based tool designed to assist researchers in performing

common ROC-based analyses on metabolomic data also using

a multivariate approach [9]. The module provides a well-

established approach based on the Partial Least Squares –

Discriminant Analysis (PLS-DA) for classification and feature

selection. Monte Carlo cross validation (MCCV) with mul-

tiple iterations was employed to compute ROC curves and
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calculate confidence intervals of the AUCs. The purpose of

this module is to create and identify robust predictive models

using multiple biomarkers. The authors integrated feature

selection and classification procedures for the PLS-DA

algorithm. The procedures were repeated several times to

identify the best model as well as the most stable features.

The input for ROCCET web tools is the data table containing

absolute or relative abundance values of compound concen-

trations. The file should be a data table with samples in rows

and features (metabolites) in columns; the phenotype labels

must follow immediately after the sample IDs. We uploaded

the OSC-X matrix filtered by means of the Y 2-values

classification function (classes for AGA versus IUGR-LGA).

Data were logarithmically transformed and Pareto scaled and

then the ROC analysis with the PLS-DA algorithm was

performed. The parameter for classifier performances, the

area under the ROC curve, was unitary due to the OSC

filtration action. A validation of the OSC-correction approach

was conducted in R [10] using the R package DeviumWeb

(https://github.com/dgrapov/DeviumWeb). DeviumWeb was

used to generate an OSC-PLS-DA model according to

previously published methods [11]. The sample scores and

variable importance rank were in close agreement between

the two approaches.

Results

Our GC-MS analysis of the urine samples showed significant

differences among AGA, LGA, and IUGR groups. A com-

parison between the chromatograms of urine samples collected

from AGAs, LGAs and IUGRs are shown in Figure 1.

As can be noted, quantitative and qualitative differences

are present among the groups. Subsequently, to elucidate the

association between the most important variables, a multi-

variate statistical approach was performed. The spectra of the

urine samples were aligned and the values of the relative

concentrations were placed in a numerical matrix with a size

of 33� 111. An explorative PCA model was built for all three

groups together and then for each group of subjects

(PCA class). Furthermore, to explore an innovative metabolic

hypothesis we later considered performing the analysis within

two groups: (1) LGA+ IUGR, (2) AGA. The comparison

between these groups aimed to explore the common dysfunc-

tional pathways of LGA+ IUGR, if they were present.

However, with an unsupervised approach the separation

among the three groups was not clear (data not shown). For

this reason, a method to extract the part of the covariant

metabolome using these two groups LGA+ IUGR and AGA

was adopted. A new function with discrete arbitrary values

was created and the samples belonging to the LGA+ IUGR

class had 1 value whilst the AGA class 0. The binary Y

variable created was subsequently used as the single Y

function for the OSC filter application to remove the non-

covariant part within the metabolic change of interest. After

OSC transformation of data, a PLS-DA model was built and a

clear separation between the groups (Figure 2) was found with

this OSC-PLS-DA model. The OSC-PLS-DA model gener-

ated had a high goodness of fit and predictability as

indicated by an R2Y value of 0.979 and a Q2 value of

0.903 respectively with a CV-ANOVA p value of 1.8� 10-9.

The analysis of the corresponding loading plot revealed

variables of importance for the clustering, thus allowing

identification of metabolites responsible for the variance

observed. The most important variable that significantly

contributed to the separation between the LGA+ IUGR/AGA

groups was myo-inositol which was higher in the

LGA+ IUGR group compared to AGA group. In addition,

the metabolites: urea, glycerol, glucose, citric acid and uric

acid were also important for clinical class discrimination.

A multivariate analysis of the OSC data was also performed

by means of the web tool MetaboAnalyst [9] with the

ROCCET module used to calculate the ROC curves for

evaluation of the model classification power in terms of

sensibility and sensitivity (www.metaboanalyst.ca). The ROC

curve for myo-inositol showed an area under the curve almost

equal to 1 [Figure 3 left]. The following Figure 3 (right)

shows the box plot of the OSC-transformed concentrations of

myo-inositol OSC.

Data were processed also with the R software reproducing

results found with the SIMCAP12 (Figure 4).

Discussion

To date, little is known about the overall metabolic state of

IUGR and LGA neonates. In clinical practice, only a limited

number of metabolites are normally measured in neonates’

biological liquids by means of conventional analytical

methods. In recent years, metabolomics has assumed an

important clinical role since it is capable of making a

simultaneous qualitative and quantitative assessment of

a consistent number of metabolites in biological fluids so

as to supply a description of the present biochemical status of

an organism. Some studies in the literature correlate the

behavior of single substances such as inositol with intrauter-

ine growth retardation and suggest their possible role as

markers in such a pathology [12–14]. Inositol is a carbocyclic

polyol (the most important form in nature is myo-inositol)

which plays a fundamental role as the structural base of the

second messengers in eukaryotic cells, including the inositol

phosphates such as phosphatidylinositol and phosphatidyli-

nositol phosphate (PIP) [15]. It is an important metabolite for

different cell functions, among which cell growth and

survival, the development and functioning of peripheral

nerves, osteogenesis and reproduction. Many are the hor-

mones and neurotransmitters that trigger the production of

inositol following interaction with their receptors: classic

examples include insulin, serotonin, noradrenalin, histamine

and angiotensin. Certain organs such as the brain, the liver

and the pancreas have inositol concentrations up to 28 times

higher than those found in plasma; this emphasizes the

importance of this metabolite at the tissue and cellular levels.

In this study, the application of metabolomics made it

possible to identify molecules responsible for the differences

between the diverse metabolic profiles, among which myo-

inositol, whose urine content increased in IUGR and LGA

neonates compared to controls. Different inositol isomers

were found to possess insulin-mimetic properties and were

efficient in reducing post-prandial glucose levels in the blood.

Anomalies in the inositol metabolism were also associated

with insulin resistance and long-term microvascular
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Figure 1. GC/MS chromatograms of urine
samples from LGA (top), AGA (middle), and
IUGR (bottom) subjects.
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complications of diabetes, thus stressing a role of inositol or

its derivatives in the glucose metabolism [16]. In human

subjects with type 2 diabetes and experimental models (rhesus

monkeys, rats) there is an intracellular depletion of myo-

inositol with an increase in its secretion and at the same time a

decrease in the amount of D-chiro-inositol in the urine [17].

This kind of urinary excretion leads to a decrease in the

urinary [D-chiro-inositol]/[myo-inositol] ratio. The same

anomalous inositol behavior is to be seen in insulin-sensitive

tissues (liver, muscle, fat and kidneys) of human and animal

diabetic subjects [18]. Some researchers have found a

nonlinear, U-shaped association between birth weight and

type 2 diabetes which leads to an increased risk both for

neonates with high birth weight and those with low birth

Figure 2. Score Plot of the OSC-PLS-DA model: 1¼ black box AGA samples; 2¼Open Diamond LGA+ IUGR samples.

Figure 3. Left: ROC curve for the Inositol
OSC feature as biomarker; right: boxplot for
the OSC-concentration values for the two
classes 1¼AGA and 2 LGA+ IUGR.
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weight for their gestational ages [19]. This confirms what has

been observed in cardiovascular [20] and kidney [21]

pathologies. All this may explain the altered metabolic

pattern found in IUGR and LGA neonates compared to

controls and especially the increase in urinary myo-inositol

that accumulates in the two pathologies. In this work,

patients’ urine samples were collected within 12 hours from

birth when they had not yet been fed. The contribution of

nutritive substances to the fetus is a key factor in the

regulation of fetal growth. Many studies in the literature argue

that environmental factors acting on the fetus (such as the

kind of nutrition) may influence its prenatal development,

thus determining structural and functional alterations that

appear to be irreversible and continue in the course of

postnatal life, leading to an increased risk of developing

dysmetabolic diseases in adulthood. Several studies on animal

models have confirmed that exposure to a hyper- and

hypoglycemic environment in the uterus leads to a reduced

glucose tolerance at birth which continues into adulthood,

independently of subjects’ genetic predisposition [22,23]. It is

known that insulin plays a role in favoring lipid and protein

synthesis as well as cell growth and inositol is known to be

one of its important secondary messengers [24]. Up to now,

works have been published to suggest that the glucose

mechanism altered during fetal development in IUGRs may

be marked by the increase in extracellular myo-inositol and

some of these studies employed metabolomics in analyzing

patients’ samples [25,26]. This is the first work described in

the literature that analyzed by means of metabolomics the

urine metabolic profiles in IUGR and LGA neonates,

comparing them to controls for the purpose of defining the

metabolic patterns associated with such pathologies. The

urinary increase in inositol (likely related to the high

plasmatic concentrations of inositol), often associated with

glucose intolerance and insulin resistance in adults, may also

be considered valid markers of an altered glucose metabolism

during fetal development both in IUGRs and LGAs. It is thus

to be hoped that future progress in metabolomics will soon

make it possible to arrive at a more effective personalized

nutritional therapy for the prevention of chronic adult

pathologies in these patients.
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