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Proteomic platforms can be classified in bottom-up strategies, 
which analyze the sample after proteolytic digestion, and top-
down strategies, which analyze the intact naturally occurring 
proteome. Bottom-up platforms are high-throughput because 
they can investigate a large number of proteins, regardless of 
their dimension. Nonetheless, information on post-translational 
modifications (PTMs) can be lost, especially those regarding 
naturally occurring cleavages and alternative splicing. Top-down 
platforms cannot cover vast proteomes, however, they can 
disclose subtle structural variations occurring during protein 
maturation and allow label-free relative quantifications in 
an unlimited number of samples. A repertoire of 256 masses 
belonging to naturally occurring proteins and peptides consis-
tently detected by RP-HPLC-ESI-MS analysis of the acidic soluble 
fraction of human whole saliva is presented in this study. Of 
them, 233 have been identified, while 23 are still pending for 
the definitive characterization. The present review reports 
average and mono-isotopic masses of the peptides and proteins 
detected, RP-HPLC elution times, PTMs, origin and quali-quanti-
tative variations observed in several physiological and patholog-
ical conditions. The information reported can be a reference for 
users of top-down RP-HPLC-ESI-MS proteomic platforms applied 
to the study of the human salivary proteome as well as of other 
human bodily fluids.

Keywords:  α-defensins, β-thymosins, cystatins, histatins, human, 
proteome, proteomics, proline-rich proteins, saliva, statherin, 
S100 proteins, top-down

Introduction
Different attempts have been recently addressed towards the 
characterization of human salivary proteome [1–4]. Our group 
has been involved in this demanding task for more than twelve 
years utilizing a “solution based” top-down proteomic platform, 
focused on the detection and characterization of the intact natu-
rally occurring proteins and peptides soluble in acidic solution 
by RP-HPLC-ESI-MS (reversed-phase high-performance liquid-
chromatography, electrospray ionization, mass spectrometry). 
The general scheme of this approach is reported in Figure 1. 
In the first step, the average mass of intact peptides/proteins is 
determined by ESI-MS with a precision of at least 1:10,000 Da. 

For the identification purified proteins are also submitted to 
high resolution MS/MS experiments. Because proteins with 
mass higher than 3000–4000 Da do not usually provide MS/MS 
fragmentation spectra suitable for complete de novo sequencing, 
further experiments are required in order to obtain definitive 
characterization of protein structure, comprising PTMs (post-
translational modifications). For this purpose, HPLC partially 
purified protein are submitted to different chemical and enzy-
matic treatments, such as removal of phosphate groups by 
phosphatase, reduction of disulfide bridges and protection of 
cysteine residues by proper reactants. For proteins without the 
N-terminal not blocked, automated Edman sequencing allows 
amino-terminal sequence to be established. Alternatively, the 
digestion products obtained by different proteolytic enzymes are 
submitted to different analyses and high resolution MS-MS iden-
tifications. Overall, collected data allowed us to hypothesize the 
protein structure, which was confirmed or rejected by checking 
the correspondence between the theoretical and the experi-
mental (partial) MS-MS data collected on the intact naturally 
occurring protein.

As recently reported in the literature [5], top-down platforms 
nowadays cannot reach the same coverage of bottom-up plat-
forms for different reasons: (i) the intact protein has to be soluble 
in the acidic solution compatible with the ESI-MS analysis; (ii) the 
protein should not be heterogeneous (i.e. glycosylated isoforms), 
because in this case the mass of the intact protein cannot be 
deduced by the crowded ESI spectrum; (iii) protein dimensions 
have to be limited because big proteins MS-MS fragmentation 
spectra are too complex to be interpreted. Nonetheless, top-down 
strategies could reveal the rich isoform and PTM diversity present 
in the human body.

In this paper, we report the inventory (Table I) of 256 intact 
protein and peptide masses detected in whole human saliva: 
of them, 233 have been identified while 23 are pending for 
definitive characterization. Together with the RP-HPLC elution 
time, PTMs, origin and specific quali-quantitative variations 
observed in several physiological and pathological conditions 
are reported with a particular concern to the pediatric age. The 
list can be used as a reference for anyone who wants to carry out 
RP-HPLC-ESI-MS experiments and to utilize other top-down 
proteomic platforms for the study of the human salivary 
proteome.
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Details of the top-down platforms
The basic step of the top-down approach was the determination of 
the mass of the intact, naturally-occurring protein/peptide with 
accuracy better than 1:10,000 (Figure 1). This result was typically 
achieved by RP-HPLC-ESI-MS experiment, utilizing a classical 
C-8 reversed phase column (varying according to the flow-rate 
and the apparatus). The chromatographic elution was performed 
utilizing a gradient of water/acetonitrile with 0.05% 2,2,2-trifluo-
roacetic acid (TFA) as ion-pairing agent. TFA is recognized as a 
good ion-pairing HPLC agent. The drawback is that TFA is not a 
good ionization agent for the electrospray process, as either acetic 
or formic acid are, leading to a partial suppression of the ESI signal. 
Moreover, sometimes some salivary protein masses were increased 
of about 113 Da due to formation of TFA adducts during the ESI 
process [3]. In our experience, the use of formic acid instead of 
TFA led to an overall reduction of HPLC-ESI-MS performance. 
Figure 2 reports typical TIC profiles of salivary samples from 
subjects of different ages. We have indeed demonstrated that age-
dependent deep modifications of the human salivary proteome 
occur, especially in the pediatric age [6–8]. Figure 2 shows that 
different classes of salivary proteins were often detectable in well-
defined chromatographic clusters. This behavior clearly reflected 

the similarity of the structures and polarity of the members of 
the different families of salivary proteins. Typically, during the 
first 10 min of separation many fragments of bigger proteins/
peptides eluted, followed (10–20 min) by histatins, glycosylated 
(gPRPs) and basic-proline-rich proteins (bPRPs). Usually, the 
mass of gPRPs could not be established due to the crowded ESI 
spectra. At around 20 min, β-thymosins was detected, followed 
by a cluster comprising acidic-PRPs (aPRPs), and immediately 
after by α-defensins. In the 24–27 min range different derivatives 
of statherin were detectable, as well as small-proline-rich protein 
3 (SPRR3), a protein present at high concentration in preterm 
newborn saliva. Typically, in the 27–30 min range statherin and 
P-B peptide eluted, followed by cystatin A and B (and their deriv-
atives), salivary cystatins (“S”-type), different proteins of the S100 
family, α-amylase, human serum albumin (showing crowded ESI 
spectrum) and other miscellaneous proteins.

Relative quantification of proteins and peptides reported in 
Table I was performed by the extracted ion current (XIC) proce-
dure. Figure 3 shows the XIC procedure applied to the determi-
nation of the relative levels of thymosin β4 (Tβ4) in whole saliva 
of a preterm newborn (226 days of post-conceptional age) and of 
an adult. The selection of three specific m/z values corresponding 
to ions with +3/+5 charged allowed to isolate the specific peptide 

Figure 1.  Flowchart of the top-down proteomic platform typically utilized for the identification of the components of whole saliva reported in Table I.  
(TFA: 2,2,2-trifluoroacetic acid).
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peak. The improvement of the signal-to-noise ratio reflected in 
enhanced sensitivity. Measured XIC peak area (MA) is propor-
tional to the peptide amount. Thereby, under constant analytical 
conditions XIC peak area can be used for comparative determi-
nations in an unlimited number of samples. Since the volume of 
saliva injected in the HPLC apparatus was the same, XIC peak area 
shows that the level of Tβ4 in whole saliva of the preterm newborn 
was about six fold higher than that of the adult (Figure 3).

Table I present proteins and peptides ordered according to their 
increasing average molecular mass measured at low-resolution 
MS. It is relevant to outline that often the experimental masses of 
the proteins/peptides of Table I did not correspond to the theoret-
ical masses reported in international data banks. Indeed, the latter 
were often deduced from cDNA translation, and, consequently, 
did not take into account PTMs which may occur during protein 
maturation. In Table II, the sequence of some bPRP fragments of 
Table I is reported.

In the following sections, we describe some structural and 
genetic features of the protein families reported in Table I.

Histatins

The nice name given to these peptides by the Oppenheim group 
derives from the high number of histidine residues in their struc-
ture [9]. It has been shown that some of these peptides have a 
powerful antifungal activity against Candida albicans species [9]. 
It is widely accepted that all the members of this family arise from 
two parent peptides, histatin 1 and histatin 3, with a very similar 
sequence and are encoded by two genes (HIS1 and HIS2) located 

AQ3

Figure 2.  Typical HPLC-ESI-MS TIC (Total ion current) profiles of the acidic 
soluble fraction of human whole saliva of subjects with different ages. TIC 
profiles from (a) to (c) were from whole saliva samples of the same preterm 
newborn collected at different post-conceptional age (PCA). TIC profiles from 
(d) to (g) were from different healthy subjects. Apart from small variations 
linked to inter-individual differences, the seven profiles are good representative 
(qualitatively and quantitatively) of the profiles observed in other subjects of 
the same age range. The elution clusters of the most relevant salivary peptides 
and proteins reported in Table I (except human serum albumin (HSA) and 
α-amylase) are evidenced on the top of (a) and (g) profiles.
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on chromosome 4q13 [10]. Despite the very high sequence 
similarity, these two peptides follow different PTM pathways. 
Histatin 3 is submitted to a sequential cleavage generating at first 
histatin 6 (histatin3 Fr. 1/25), subsequently histatin 5 (histatin3 
Fr. 1/24) and then other fragments [11]. Before the proteomic era 
some of these fragments were named histatin 4-12 [9]. Recently, 
many other fragments have been detected, and a new nomencla-
ture has been proposed based on the name of the parent peptide 
(histatin 1 or histatin 3) and the number of the fragment a.a. 
residues [11]. The different susceptibility to cleavage of the two 
histatins derives from the presence in histatin 3 of the RGYR↓ 
convertase consensus sequence, absent in histatin 1. Histatin 1 
is phosphorylated on Ser-2 residue, but the non-phosphorylated 
derivative is always detectable in whole saliva, although at a low 
percentage. In spite of the presence of a Ser residue at position 
2, histatin 3 is not phosphorylated, probably due to the absence 
of a +2 flanking glutamic acid residue essential for the kinase 
recognition. Histatin 1 is partly poly-sulfated in submandibular 
glands on the 4 tyrosines of the C-terminal domain, differently 
from histatin 3, which lacks a tyrosine equivalent to Tyr-27 of 
histatin 1, probably essential for the tyrosylprotein sulfotrans-
ferase recognition [12].

Basic and glycosylated (basic) proline-rich proteins

Basic and glycosylated (basic) proline-rich proteins (bPRPs) are 
detectable only in parotid secretion. They are the product of four 
loci (PRB1-PRB4) located on chromosome 12p13. At least four 
alleles (S, M, L, VL) are present at PRB1 and PRB3 loci, and three 
(S, M, L) at PRB2 and PRB4 loci in the western population. All the 
bPRPs are only detectable as multiple peptide fragments deriving 
from bigger pro-proteins and the connection between the most 
common haplotypes and salivary phenotypes is still waiting 

for a complete definition. The nomenclature is puzzling and 
complicate. The structure of 10 bPRP peptides was established 
by Kaufmann [13], which named the peptides according to the 
name of the chromatographic fractions. A different nomenclature 
was proposed by Isemura and coll. [14,15] that assigned to each 
identified salivary peptide the name P-X, where the X symbol 
is an alphabet letter from A to I. Nonetheless, P-B peptide, as 
explained in the following, cannot be considered a classical bPRP. 
P-A peptide is a fragment of P-B peptide, usually undetectable 
and generated by proteolysis during P-B purification. P-C peptide 
is a 44 a.a. residues fragment deriving from the C-terminal region 
of aPRPs. As a consequence, the authentic bPRPs peptides are 
P-D, P-E P-F and P-H, because the structures of P-G and P-I 
peptides have not been determined yet. Recently we were able 
to determine the structure of a new bPRP peptide that we called 
P-J [7,16]. Other components of this family were named Ps1 and 
Ps2 [17] and finally two bPRPs were named bPRP Con1+ and 
Con1- according to their interaction with concanavalin A [18]. A 
more rationale nomenclature is surely auspicable. Some protein 
masses pending for a definitive characterization were tentatively 
attributed to bPRPs family on the basis of their chromatographic 
properties and the absence of absorption at 270–280 nm. Some 
masses sporadically detected, and probably pertaining to this 
class of proteins, are not reported in Table I.

Broad peaks eluting in the bPRPs chromatographic cluster 
were attributed to gPRPs on the basis of the crowded ESI spectra, 
which usually did not allow deconvolution. Recently, we were able 
to characterized the structure of six glycoforms of IB-8a CON1+ 
[19]. Five of the glycoforms carry a biantennary N-linked glycan 
fucosylated in the innermost N-acetylglucosamine of the core 
and showing from zero to four additional fucoses in the antenna. 
The sixth glycoform carries a monoantennary mono-fucosylated 
oligosaccharide. Level of fucosylation showed inter-individual 
variability with the major relative abundance for the tri-fucosyl-
ated glycoform. Non glycosylated IB-8a CON1+ and the variant 
IB-8a CON1-, lacking of the glycosylation site, have been also 
detected in human saliva [19].

Acidic proline-rich proteins

Acidic proline-rich proteins (aPRPs) are secreted both by parotid 
(about 70%) and submandibular/sublingual glands (about 30%). 
They are the expression products of two loci, PRH1 and PRH2 
located on chromosome 12p13, near to the cluster of bPRPs. 
PRH1 codes for the PIF-s, Db-s and Pa isoforms, PRH2 codes 
for the PRP-1 and PRP-2 isoforms. Therefore, five aPRP isoforms 
can be detected in the saliva of the Caucasian population, but 
considering that PRP-1 and Pif-s have the same mass and PRP-2 
has 1 Da mass difference with respect to PRP-1 and Pif-s, these 3 
isoforms cannot be usually discriminated in the HPLC-ESI-MS 
profile [20]. Moreover, TFA adducts can be detected for these 
isoforms [3]. All the isoforms have a pyroglutamic moiety at 
the N-terminus and are usually di-phosphorylated on Ser-7 
and Ser-22, even though minor quantities of mono-, non-phos-
phorylated and tri-phosphorylated isoforms (on Ser-17) are also 
detectable [20]. Four of these isoforms (PRP-1, PRP-2, PIF-s and 
Db-s) can be partially cleaved near to the C-terminus, eventually 
releasing a common peptide of 44 a.a. residues (P-C peptide) and 
4 truncated isoforms called PRP-3, PRP-4, PIF-f and Db-f. The 
Pa isoform is not cleaved, and it was usually detected in saliva 
as a S-S dimer due to the specific presence of a cysteine residue 
(Cys-103) in its structure. Minor quantities of other derivatives 
missing C-terminal residues from almost all isoforms were also 
detected [20].

Figure 3.  Extracted ion current (XIC) procedure for the detection of 
thymosin β4 in a sample of whole saliva of a preterm newborn (227 days of 
post-conceptional age; A and B profiles) and of an adult (30 years; C and D 
profiles). A and C correspond to the total ion current (TIC) profiles, B and D 
to the XIC profiles. XIC procedure was carried out selecting three m/z values 
([M+3H]3+ = 1655.5 m/z; [M+4H]4+ = 1241.9 m/z [M+5H]5+ = 993.8 m/z) 
corresponding to characteristic ions of thymosin β4. XIC procedure ensures 
an improvement of the signal to noise ratio with an enhancement of the 
sensitivity. NL, normalization level; MA, measured area; RT, retention time.
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Statherin and P-B peptide

Statherin is an unusual tyrosine-rich phospho-peptide (phos-
phorylated on Ser-2 and Ser-3) involved in oral cavity calcium ion 
homeostasis and teeth mineralization [21,22]. Its gene (STATH) 
is localized on chromosome 4q13.3, near to histatin genes [23]. 
In adult human saliva mono- and non-phosphorylated, as well 
as N- and C-terminal truncated isoforms are always detectable 
[24]. Furthermore, in adult human saliva minor amounts of a 
cyclic-statherin derivative (cyclo-statherin Q37) are detectable 
[25]. The cyclo-structure derives from an intra-molecular bridge 
between Lys-6 and Gln-37 generated by the action of oral trans-
glutaminase 2 on statherin.

P-B peptide, after the determination of its structure, was 
(erroneously) included in the bPRPs family. However, it is the 
product of PROL3 gene, localized on chromosome 4q13.3, very 
close to the statherin gene. Differently from classical bPRPs, P-B 
peptide is not a fragment of a bigger pro-protein, it is secreted 
both from parotid and Sm/Sl glands [26] and it displays three Tyr 
residues in the sequence. Statherin and P-B peptide elute closely 
in the chromatographic profile suggesting a similar polarity. For 
these reasons, P-B peptide could be functionally connected to 
statherin. However, while the statherin role on the modulation of 
oral calcium ion was recognized, none specific function for P-B 
peptide has been proposed to date.

Salivary (“S”-type) and other cystatins

Cystatins are detected in the RP-HPLC-ESI-MS chromato-
graphic profile after the peaks of statherin and P-B peptides [27]. 
“S-type” cystatins comprise cystatin S, SN and SA which belong 
to family 2 of cystatins, inhibitors of cysteine-proteinases and 
are mainly secreted by Sm/Sl glands. Recent studies suggested 
that their secretion is not granule-mediated [26]. Cystatin S may 
be mono-phosphorylated on Ser-3 (cystatin S1; about 65%) or 
di-phosphorylated on Ser-1 and Ser-3 (cystatin S2; about 25%). 
Cystatin C was frequently detectable in human saliva, while, until 
now, no protein mass detected in saliva could be attributed to 
cystatins D and M. Cystatin A and B (called also stefins) belong 
to family 1 of cystatins, differing from type 2 cystatins for size and 
phosphorylation. Cystatin A was detectable in 2 isoforms (acety-
lated and non-acetylated on its N-terminal) [8]. Cystatin B was 
N-terminally acetylated and usually it was usually not detected as 
unmodified protein in adult whole saliva, because of the reactivity 
of Cys-3 residue. Cystatin B, indeed was present in whole saliva 
as S-glutathionylated (about 55%) S-cysteinylated (about 15%) 
derivatives or as S-S dimer (about 30%) [28].

Proteins of the S100 family

Proteins of the S100 family elute in the terminal part of the chro-
matographic profile. We were able to identify S100A7 (D27 and 
E27 isoforms), S100A8, S100A9 (8 isoforms: short, long, long 
S-glutathionylated, long S-cysteinylated and their phosphory-
lated counterparts), S100A11 and S100A12 [8]. The difficulty 
in the characterization of these proteins relied in the mismatch 
between the theoretical masses reported in data banks and the 
experimental masses of mature proteins [8]. For this reason, some 
of the masses pending for characterization could pertain to S100 
B, S100A5 and S100A16. The source of these proteins in whole 
human saliva is unknown.

α-defensins and β-thymosins

α-Defensins 1-3 elute as a unique chromatographic peak after 
the aPRPs cluster. α-Defensin 4 eluted separately about 2 min 

before the statherin peak. α-Defensins belong to a family of 
broad-spectrum antimicrobial peptides, identified originally in 
human and rabbit leucocytes. 6 α-defensins (cryptidins) have 
been identified in humans to date. α-Defensins 1-4 are expressed 
in neutrophils, whereas α-defensins 5-6 are expressed in epithelial 
cells of the intestinal and reproductive tracts [29]. The name of 
β-thymosins derives from their first characterization from calf 
thymus extracts. Different studies have evidenced their ubiqui-
tous presence in many organs and tissues as well as in various 
bodily fluids. Thymosin β4, the most abundant, and thymosin β10 
are typical in humans [30]. Gingival crevicular fluid is one of the 
main source of these two peptide classes [31,32].

Miscellaneous proteins and peptides

Some other proteins have been characterized along the HPLC-
ESI-MS profile. SPRR3 (small-proline-rich protein 3) was mainly 
detectable in preterm newborn saliva in two variants, one with 
a Mav of 17239 ± 3 Da and the other with a Mav of 18065 ± 3 Da 
[33]. Therefore, 3 different phenotypes (2 homozygous and 
1 heterozygous) can be found in the western population. 
Antileucoproteinase, also mainly detectable in preterm newborn 
saliva, elutes between α-defensins 1-3 and SPRR3 [8]. Lysozyme 
elutes near to the S-type cystatins. The protein with a Mav 
22365 ± 4 Da was identified as the histone H1c, but the structure 
is pending for unambiguous characterization [8]. At the end of 
the chromatographic profile α, β and γ (both Gγ and Aγ) globins 
were sometimes detectable. In the terminal region of the HPLC 
profile other masses probably pertaining to α-amylase were some-
times detectable. However, the ESI spectrum was often crowded 
by multiple charge values, suggesting heterogeneity for this and 
other proteins which are not reported in Table I.

Fragments of bigger proteins and peptides

The most relevant PTM of salivary proteins is the proteolytic 
cleavage by a complex and not well known set of endo- and 
exo-proteinases that generates a multitude of small peptides. On 
the basis of the RXXR↓ consensus sequence, some of the endo-
proteinases probably belong to the furin-like convertase family, 
work before granule storage and are responsible for the genera-
tion of bPRPs, truncated isoforms of aPRPs, P-C peptide and 
histatin 6 [11]. The convertase acting on bPRPs is responsible for 
a complete digestion of the pro-protein, while aPRPs convertase, 
more active in Sm/Sl gland, is responsible for a partial cleavage of 
the proteins. Also the proteinase responsible for the first cleavage 
of histatin 3 can be included in the convertase family, because 2 
Arg separated by 2 a.a. residues seems a mandatory requirement 
for the enzyme recognition. In fact, histatin 1, lacking the Arg-25 
residue present in histatin 3, is less prone to proteolysis [11,26].

The removal of a C-terminal residue by specific carboxypep-
tidases following the convertase cleavage is a widespread event 
in many secretion processes and it can be observed also in many 
salivary peptides. One of the most relevant a.a. removal, in terms 
of relative abundance, involves the C-terminal Arg-25 of histatin 
6 generating histatin 5 [11].

Other peptidases of endogen or exogen origin are active after 
granule secretion and in the oral cavity. Some salivary proteins, 
such as bPRPs, P-C and P-B peptides, statherin, histatin 3 and 
histatin 5 are more prone to proteolysis than other salivary 
proteins. Some fragments of glyceraldehyde 3-phosphate dehy-
drogenase were often detected, especially in saliva of preterm 
newborns, but the intact protein was not found in human saliva 
till now. Other authors have studied the naturally occurring 
peptides generated by oral proteolytic activity [34,35]. Table I 
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reports some of the fragments identified by Huq and coll. [34] that 
we were able to consistently detect by HPLC-ESI-MS in different 
samples of whole saliva. The aim of a study of Helmerhorst and 
coll. [35] was the detection of specific proteinase activities in 
the oral cavity. They found a lot of salivary protein fragments 
which allow revealing, in the oral cavity, the activity of a specific 
glutamine endoproteinase that recognizes KPQ↓ as the main 
consensus sequence. This proteinase probably derives from dental 
plaque and it is likely microbial in origin. Table I reports only 
some fragments of this list, because their presence in saliva imme-
diately after specimen collection has to be confirmed. Some of the 
bPRP fragments detected by us and other researchers have been 
also reported by Vitorino et al. as recurrent non-covalent bound 
components of the enamel surface. This finding might provide a 
functional significance to this final bPRP maturation [36].

Other post-translational modifications

Beyond cleavage, salivary proteins are submitted to many other 
PTMs before, during and after secretion. Glycosylation is a 
relevant PTM of salivary proteins, but as previously mentioned, 
salivary glycosylated proteins are not easily evidenced by top-
down proteomic analysis because of the high heterogeneity. 
Many salivary proteins are phosphorylated. Top-down platform 
evidenced 2 major (Ser-8 and Ser-22) and 1 minor site (Ser-17) 
on all aPRPs, 1 site (Ser-8) on II-2 and IB-1 (bPRPs), 2 sites (Ser-2 
and Ser-3) on statherin, 1 site (Ser-2) on histatin 1 and 2 sites 
on cystatin S (Ser-2 and Ser-3). Due to the similar SX (E/Sp) 
consensus sequence, the kinase responsible for the phosphoryla-
tion of these sites should be an elusive Golgi casein kinase acting 
before granule storage [37]. About 40% of all the S100A9 isoforms 
were found to be phosphorylated on the penultimate Thr of the 
sequence by p38 MAP kinase [38].

Until now O-tyrosine sulfation of salivary proteins has been 
detected only on histatin 1 [12]. This modification was found to 
be specific of Sm/Sl glands, where not more than 10% of total 
histatin 1 could be detected as a mixture of isoforms carrying a 
different number of sulfate moieties (from 1 to 4). This PTM was 
probably hierarchical, being Tyr-27 the first residue submitted to 
sulfation, followed by Tyr-30, Tyr-34 and Tyr-36 [12].

Specific cysteine residues of cystatin B, S100A9 and SPRR3 
appeared prone to S-glutathionylation and S-cysteinylation. 
These PTMs were particularly extensive for cystatin B, because 
the S-unmodified protein was often undetectable in adult whole 
saliva [28]. Cysteine residues were also responsible for several 
covalent dimerization. Only Pa S-S 2-mer (Pa is one of the 5 
isoforms of aPRPs) was detectable in whole saliva. About 30% of 
cystatin B and small amounts of SPRR3 were also detectable as 
S-S 2-mer. Because SPRR3 exists in 2 isoforms, both homo- and 
hetero-dimers were detectable in heterozygosis.

Methionine residues are often prone to the oxidation (sulfoxide 
and sulfone). Met-sulfoxide derivatives of thymosin β4 (Met-6), 
S100A9 short (Met-89) and “S-type” cystatins were detected in 
whole saliva. These derivatives could be indicative of oxidative 
stress in the oral cavity.

In the presence of a glutamine or a glutamic acid, the 
N-terminal residue of many salivary proteins was typically 
cyclized in pyroglutamic acid, precluding Edman sequencing. 
Identified examples were the entire and truncated isoforms of all 
aPRPs, the bPRPs named IB-1 and II-2, as well as the P-B peptide.

N-terminal acetylation was another PTM largely found in 
many identified proteins. It was usually reported that this PTM 
was subsequent to the removal of the N-terminal Met residue 
[39]. S100A7 (both D27 and E27 isoforms), S100A11, SPRR3 and 

β-thymosins followed this rule. PTMs of S100A9 are particular. 
Two phosphorylated and non-phosphorylated isoforms, called 
long isoforms, derive from the removal of the N-terminal Met 
residue followed by acetylation. These 2 isoforms can be also 
partly S-glutathionylated and S-cysteinylated (on Cys-2 residue) 
bringing to 6 the total number of S100A9 long isoforms detect-
able in whole saliva. On the other hand, other 2 S100A9 isoforms, 
called short isoforms (phosphorylated and non-phosphorylated) 
derive from acetylation after removal of the N-terminal pentapep-
tide (MTCKM). Because this removal eliminates the Cys-2 residue 
from the S100A9 sequence, the S100A9 short isoforms does not 
originate S-modified derivatives. S100A12 loose the N-terminal 
Met residue, but it is not acetylated, cystatin B does not loose 
the N-terminal Met residue, but it is not found acetylated and 
S100A8 does not loose the N-terminal Met residue and it is not 
acetylated. Cystatin A was detected in 3 different isoforms, 1 with 
the N-terminal Met residue, 1 acetylated on the N-terminal Met 
and 1 (Mav 10872 ± 2 Da) without the N-terminal Met and non-
acetylated (this last pending for definitive characterization). This 
puzzling situation outlines that probably each protein has specific 
structural requirements on its N-terminal residues. However, the 
understanding of the molecular signals that any protein utilizes 
to drive its correct N-terminal modification and the functional 
significance of the different N-terminal modifications occurring 
in the same protein is surely a challenging task.

Source of salivary proteins

Most of the information reported in Table I on the source of 
salivary proteins was obtained by a top-down proteomic study 
that compared the natural occurring proteome of adult whole 
saliva with the proteins detectable in glandular (parotid and Sm/
Sl) saliva and enriched granule preparation from parotid and 
submandibular glands [26]. This study confirmed that bPRPs were 
exclusively secreted by the parotid gland. Approximately 70% of 
aPRPs isoforms was found to be secreted by parotid glands, the 
remaining 30% by Sm/Sl glands. Also, histatin 3 was secreted 
more by parotid than by Sm/Sl glands. Histatin 1, statherin and 
P-B peptide were roughly secreted in similar amounts by both 
major glands, while the main sources of “S type” cystatins were 
Sm/Sl glands. Gingival crevicular fluid was a relevant source of 
cystatin A, α-defensins and β-thymosins [30,32]. Conversely, in 
preterm saliva the high amount of β-thymosins derived from 
major salivary glands [40] even though the secretion pathway of 
this leaderless peptide [31] is still unknown. The sources and the 
secretion pathways of other proteins reported in Table I are not 
still well defined too.

Surprising differences of salivary proteome in pre-term 
newborns and in the pediatric age

Figure 2 shows the striking differences present in human salivary 
proteome as a function of age, with a particular concern to the 
pediatric age [7]. Given to the non-invasive collection of the 
sample the salivary proteome of preterm newborns was investi-
gated from about 195 days of post-conceptional age (PCA) [6,8]. 
In preterm newborns of about 195–220 days of PCA noticeable 
amounts of more than 40 proteins were detectable. Cystatin A  
(2 isoforms), cystatin B (3 isoforms), S100A7 (2 isoforms), 
S100A8, S100A9 (8 isoforms), S100A11, S100A12, small proline-
rich protein 3 (2 isoforms), lysozyme C, thymosins β4 and β10, 
antileukoproteinase, histone H1c, and α and γ globins [8] have 
been identified. The concentration of these proteins decreased 
quickly, even though with different trends, as a function of PCA 
reaching values detectable in adult at a PCA corresponding to the 
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normal term of delivery (about 270 days). At the same time, the 
level of salivary proteins characteristic of the adult increased, also 
in this case with different trends.

Many of the proteins identified in saliva of pre-term newborns 
are considered tumor markers in the adults. This observation led 
to suppose that these proteins might contribute to the molecular 
events that regulate cell growth, proliferation, or death during 
fetal development. The abnormal expression in the adults might 
be at the basis of anomalous cellular growth and to the develop-
ment of different tumors with embryonic etiology. The recogni-
tion of tumor stem cells in many solid cancers has reinvigorated 
the hypothesis of a pluripotent stem cell as the cell of origin for 
cancer [41]. Data from our group on Tβ4 expression in salivary 
glands’ tumors and in colon cancer [43] evidenced Tβ4 reac-
tivity in tumor cells undergoing epithelial-mesenchymal tran-
sition, a highly conserved cellular program typical of several 
stages of embryonic development as well as of cancer invasion 
and metastasis [44].

A study carried out on 67 subjects aged between 3 and 44 years 
evidenced several qualitative and quantitative age-dependent 
modifications of the salivary proteome. It was found that the 
concentration of salivary acidic proline-rich phosphoproteins, 
histatin-5, histatin-6, and monophosphorylated and diphos-
phorylated cystatin S showed a minimum between 6 and 9 years 
of age. Interestingly, bPRPs, almost absent in saliva of children, 
reached adult levels only after puberty [7], suggesting a poten-
tial role of these peptides in the modulation of taste perception. 
Indeed a recent study of our group showed for the first time that 
responsiveness to 6-n-propylthiouracil bitter taste is associated 
with salivary levels of II-2 peptide and Ps-1 protein, which are 
products of the PRB1 gene [45].

It is relevant to outline that the striking age-dependent modi-
fication of the human salivary proteome has to be carefully 
considered for the choice of the proper control group in the 
characterization of new disease biomarkers, relevant aim of any 
proteomic platform.

Pathological modification of the human salivary proteome 
detected by the top-down approaches

A conclusive aim of a proteomic dataset is its use for diagnostic and 
prognostic purposes. Due to the non invasive specimen collection 
saliva is very attractive in this regard. The protein list reported in 
this review could be a helpful reference for the detection of poten-
tial early biomarker of disease by using quantitation based on XIC 
area determination, as shown in Figure 3. Top-down analyses for 
the detection of the variations of the salivary proteome in other 
local and systemic diseases are in progress upon our laboratories.

Studies carried out on different patients with autism spectrum 
disorders (ASD) evidenced the hypo-phosphorylation of several 
salivary peptides and proteins (histatin 1, statherin and both 
the entire and truncated isoforms of aPRPs) in a subset of about 
60% of ASD subjects, the majority comprised in the normal to 
border-line cognitive development [46]. Hypo-phosphorylation 
of salivary peptides suggested potential asynchronies in the phos-
phorylation of other secretory proteins, which could be relevant 
in central nervous system during either embryonic development 
or early infancy.

A study carried out on whole saliva of 31 children affected 
by type 1 diabetes revealed a lower concentration of statherin, 
proline-rich peptides, P-B, P-C peptides, and histatins, and 
higher concentration of α-defensins 1, 2 and 4 and S100A9 short 
isoforms with respect to an age and sex matched control group 
[47]. The lower concentration of P-C peptide was paralleled by 

higher levels of some of its fragments. On the whole, the study 
highlighted the severe impairment of the repertoire of peptides 
involved in the safeguard of the oral cavity in diabetic children. 
A study carried out on 9 patients with primary Sjögren syndrome 
(SS) evidenced that pilocarpine treatment restored the protein 
levels and partially restored the protein numbers that were found 
to be decreased in primary SS patients, with the parotid gland 
proteins showing the best response to the drug [48,49]. Finally, 
a study carried out on 11 totally edentulous patients evidenced 
reduced levels of α-defensins respect to two groups of controls 
(one matched for age and gender, the second of younger subjects) 
[50]. Since these peptides have mainly crevicular origin, most 
likely the low levels measured resulted from the absence of the 
gingival sulcus in the edentulous subjects.

Concluding remarks
A limit of the “solution-based” top-down platform utilized was 
that many masses attributable to well know salivary proteins, 
such as carbonic anhydrase, immunoglobulin, peroxidases, 
mieloperoxidases, mucins were never detected in the HPLC-
ESI-MS profile, likely due to their insolubility in acidic solution. 
It should be taken into account that the limit of sensitivity of the 
HPLC-ESI-MS apparatus in use upon in laboratories on saliva 
samples was, at the best, in the range of 10–50 nanomoles/L and 
that increase of instrumental sensitivity can disclose a lot of other 
protein and peptide masses that might be added to the list in the 
future. Table I is a dynamic table that anyone can implement 
with new attributions. It can help not only researchers that would 
experience top-down platforms on human saliva, but also anyone 
who is involved in top-down attributions in other bodily fluid, 
because many proteins reported are not specific of saliva.
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Proteomic platforms can be classified in bottom-up strategies, which analyze the sample after 

proteolytic digestion, and top-down strategies, which analyze the intact naturally occurring 

proteome. Bottom-up platforms are high-throughput because they can investigate a large 

number of proteins, regardless of their dimension. Nonetheless, information on post-

translational modifications (PTMs) can be lost, especially those regarding naturally occurring 

cleavages and alternative splicing. Top-down platforms cannot cover vast proteomes, 

however, they can disclose subtle structural variations occurring during protein maturation 

and allow label-free relative quantifications in an unlimited number of samples. A repertoire 

of 256 masses belonging to naturally occurring proteins and peptides consistently detected by 

RP-HPLC-ESI-MS analysis of the acidic soluble fraction of human whole saliva is presented 

in this study. Of them, 233 have been identified, while 23 are still pending for the definitive 

characterization. The present review reports average and mono-isotopic masses of the 

peptides and proteins detected, RP-HPLC elution times, PTMs, origin and quali-quantitative 

variations observed in several physiological and pathological conditions. The information 

reported can be a reference for users of top-down RP-HPLC-ESI-MS proteomic platforms 

applied to the study of the human salivary proteome as well as of other human bodily fluids. 

Keywords: αalpha-defensins, βbeta-thymosins, cystatins, histatins, human, proteome, 

proteomics, proline-rich proteins, saliva, statherin, S100 proteins, top-down 

Introduction 

Different attempts have been recently addressed towards the characterization of human 

salivary proteome [1–4]
[1-4]

. Our group has been involved in this demanding task for more 

than twelve years utilizing a “solution based” top-down proteomic platform, focused on the 

detection and characterization of the intact naturally occurring proteins and peptides soluble 

in acidic solution by RP-HPLC-ESI-MS (reversed-phase high-performance liquid-

chromatography, electrospray ionization, mass spectrometry). The general scheme of this 
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approach is reported in Figure 1. In the first step, the average mass of intact peptides/proteins 

is determined by ESI-MS with a precision of at least 1:10,000 Da. For the identification 

purified proteins are also submitted to high resolution MS/MS experiments. Because proteins 

with mass higher than 3000–4000 Da do not usually provide MS/MS fragmentation spectra 

suitable for complete de novo sequencing, further experiments are required in order to obtain 

definitive characterization of protein structure, comprising PTMs (post-translational 

modifications). For this purpose, HPLC partially purified protein are submitted to different 

chemical and enzymatic treatments, such as removal of phosphate groups by phosphatase, 

reduction of disulfide bridges and protection of cysteine residues by proper reactants. For 

proteins without the N-terminal not blocked, automated Edman sequencing allows amino-

terminal sequence to be established. Alternatively, the digestion products obtained by 

different proteolytic enzymes are submitted to different analyses and high resolution MS-MS 

identifications. Overall, collected data allowed us to hypothesize the protein structure, which 

was confirmed or rejected by checking the correspondence between the theoretical and the 

experimental (partial) MS-MS data collected on the intact naturally occurring protein. 

As recently reported in the literature [5], top-down platforms nowadays cannot reach 

the same coverage of bottom-up platforms for different reasons: (i) the intact protein has to 

be soluble in the acidic solution compatible with the ESI-MS analysis; (ii) the protein should 

not be heterogeneous (i.e. glycosylated isoforms), because in this case the mass of the intact 

protein cannot be deduced by the crowded ESI spectrum; (iii) protein dimensions have to be 

limited because big proteins MS-MS fragmentation spectra are too complex to be interpreted. 

Nonetheless, top-down strategies could reveal the rich isoform and PTM diversity present in 

the human body. 

In this paper, we report the inventory (Table 1I) of 256 intact protein and peptide 

masses detected in whole human saliva: of them, 233 have been identified while 23 are 
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pending for definitive characterization. Together with the RP-HPLC elution time, PTMs, 

origin and specific quali-quantitative variations observed in several physiological and 

pathological conditions are reported with a particular concern to the paediatric age. The list 

can be used as a reference for anyone who wants to carry out RP-HPLC-ESI-MS experiments 

and to utilize other top-down proteomic platforms for the study of the human salivary 

proteome. 

Details of the top-down platforms 

The basic step of the top-down approach was the determination of the mass of the intact, 

naturally-occurring protein/peptide with accuracy better than 1:10,000 (Fig.ure 1). This result 

was typically achieved by RP-HPLC-ESI-MS experiment, utilizing a classical C-8 reversed 

phase column (varying according to the flow-rate and the apparatus). The chromatographic 

elution was performed utilizing a gradient of water/acetonitrile with 0.05% 2,2,2-

trifluoroacetic acid (TFA) as ion-pairing agent. TFA is recognized as a good ion-pairing 

HPLC agent. The drawback is that TFA is not a good ionization agent for the electrospray 

process, as either acetic or formic acid are, leading to a partial suppression of the ESI signal. 

Moreover, sometimes some salivary protein masses were increased of about 113 Da due to 

formation of TFA adducts during the ESI process [3]. In our experience, the use of formic 

acid instead of TFA led to an overall reduction of HPLC-ESI-MS performance. FigureFig. 2 

reports typical TIC profiles of salivary samples from subjects of different ages. We have 

indeed demonstrated that age-dependent deep modifications of the human salivary proteome 

occur, especially in the pediatric age [6–8]
[6-8]

. FigureFig. 2 shows that different classes of 

salivary proteins were often detectable in well-defined chromatographic clusters. This 

behavior clearly reflected the similarity of the structures and polarity of the members of the 

different families of salivary proteins. Typically, during the first 10 min of separation many 

fragments of bigger proteins/peptides eluted, followed (10–20 min) by histatins, glycosylated 
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(gPRPs) and basic-proline-rich proteins (bPRPs). Usually, the mass of gPRPs could not be 

established due to the crowded ESI spectra. At around 20 min, β-thymosins was detected, 

followed by a cluster comprising acidic-PRPs (aPRPs), and immediately after by α-defensins. 

In the 24–27 min range different derivatives of statherin were detectable, as well as small-

proline-rich protein 3 (SPRR3), a protein present at high concentration in preterm newborn 

saliva. Typically, in the 27–30 min range statherin and P-B peptide eluted, followed by 

cystatin A and B (and their derivatives), salivary cystatins (“S”-type), different proteins of the 

S100 family, α-amylase, human serum albumin (showing crowded ESI spectrum) and other 

miscellaneous proteins. 

Relative quantification of proteins and peptides reported in Table 1 was performed by 

the extracted ion current (XIC) procedure. FigureFig. 3 shows the XIC procedure applied to 

the determination of the relative levels of thymosin β4 (Tβ4) in whole saliva of a preterm 

newborn (226 days of post-conceptional age) and of an adult. The selection of three specific 

m/z values corresponding to ions with +3/+5 charged allowed to isolate the specific peptide 

peak. The improvement of the signal-to-noise ratio reflected in enhanced sensitivity. 

Measured XIC peak area (MA) is proportional to the peptide amount. Thereby, under 

constant analytical conditions XIC peak area can be used for comparative determinations in 

an unlimited number of samples. Since the volume of saliva injected in the HPLC apparatus 

was the same, XIC peak area shows that the level of Tβ4 in whole saliva of the preterm 

newborn was about six fold higher than that of the adult (FigureFig. 3). 

Table 1 I present proteins and peptides ordered according to their increasing average 

molecular mass measured at low-resolution MS. It is relevant to outline that often the 

experimental masses of the proteins/peptides of Table 1 I did not correspond to the 

theoretical masses reported in international data banks. Indeed, the latter were often deduced 

from cDNA translation, and, consequently, did not take into account PTMs which may occur 
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during protein maturation. In Table 2II[AU: Please note that the article contains a citation for 

Table II. However, Table II is missing in the article. Please provide Table II and a caption for 

it.], the sequence of some bPRP fragments of Table 1 I is reported. 

In the following sections, we describe some structural and genetic features of the 

protein families reported in Tables 1I. 

Histatins 

The nice name given to these peptides by the Oppenheim group derives from the high 

number of histidine residues in their structure [9]. It has been shown that some of these 

peptides have a powerful antifungal activity against Candida albicans species [9]. It is 

widely accepted that all the members of this family arise from two parent peptides, histatin 1 

and histatin 3, with a very similar sequence and are encoded by two genes (HIS1 and HIS2) 

located on chromosome 4q13 [10]. Despite the very high sequence similarity, these two 

peptides follow different PTM pathways. Histatin 3 is submitted to a sequential cleavage 

generating at first histatin 6 (histatin3 Fr. 1/25), subsequently histatin 5 (histatin3 Fr. 1/24) and 

then other fragments [11]. Before the proteomic era some of these fragments were named 

histatin 4-12 [9]. Recently, many other fragments have been detected, and a new 

nomenclature has been proposed based on the name of the parent peptide (histatin 1 or 

histatin 3) and the number of the fragment a.a. residues [11]. The different susceptibility to 

cleavage of the two histatins derives from the presence in histatin 3 of the RGYR↓↓ 

convertase consensus sequence, absent in histatin 1. Histatin 1 is phosphorylated on Ser-2 

residue, but the non-phosphorylated derivative is always detectable in whole saliva, although 

at a low percentage. In spite of the presence of a Ser residue at position 2, histatin 3 is not 

phosphorylated, probably due to the absence of a +2 flanking glutamic acid residue essential 

for the kinase recognition. Histatin 1 is partly poly-sulfated in submandibular glands on the 4 
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tyrosines of the C-terminal domain, differently from histatin 3, which lacks a tyrosine 

equivalent to Tyr-27 of histatin 1, probably essential for the tyrosylprotein sulfotransferase 

recognition [12]. 

Basic and glycosylated (basic) proline-rich proteins (bPRPs) 

Basic and glycosylated (basic) proline-rich proteins (bPRPs) are detectable only in parotid 

secretion. They are the product of four loci (PRB1-PRB4) located on chromosome 12p13. At 

least four alleles (S, M, L, VL) are present at PRB1 and PRB3 loci, and three (S, M. , L) at 

PRB2 and PRB4 loci in the western population. All the bPRPs are only detectable as multiple 

peptide fragments deriving from bigger pro-proteins and the connection between the most 

common haplotypes and salivary phenotypes is still waiting for a complete definition. The 

nomenclature is puzzling and complicate. The structure of 10 bPRP peptides was established 

by Kaufmann [13], which named the peptides according to the name of the chromatographic 

fractions. A different nomenclature was proposed by Isemura and coll. [14,15]. that assigned 

to each identified salivary peptide the name P-X, where the X symbol is an alphabet letter 

from A to I. Nonetheless, P-B peptide, as explained in the following, cannot be considered a 

classical bPRP. P-A peptide is a fragment of P-B peptide, usually undetectable and generated 

by proteolysis during P-B purification. P-C peptide is a 44 a.a. residues fragment deriving 

from the C-terminal region of aPRPs. As a consequence, the authentic bPRPs peptides are P-

D, P-E P-F and P-H, because the structures of P-G and P-I peptides have not been determined 

yet. Recently we were able to determine the structure of a new bPRP peptide that we called 

P-J [7,16]. Other components of this family were named Ps1 and Ps2 [17] and finally two 

bPRPs were named bPRP Con1+ and Con1- according to their interaction with concanavalin 

A [18]. A more rationale nomenclature is surely auspicable. Some protein masses pending for 

a definitive characterization were tentatively attributed to bPRPs family on the basis of their 

chromatographic properties and the absence of absorption at 270–280 nm. Some masses 
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sporadically detected, and probably pertaining to this class of proteins, are not reported in 

Table 1I. 

Broad peaks eluting in the bPRPs chromatographic cluster were attributed to gPRPs 

on the basis of the crowded ESI spectra, which usually did not allow deconvolution. 

Recently, we were able to characterized the structure of six glycoforms of IB-8a CON1+ 

[19]. Five of the glycoforms carry a biantennary N-linked glycan fucosylated in the 

innermost N-acetylglucosamine of the core and showing from zero to four additional fucoses 

in the antenna. The sixth glycoform carries a monoantennary mono-fucosylated 

oligosaccharide. Level of fucosylation showed inter-individual variability with the major 

relative abundance for the tri-fucosylated glycoform. Non glycosylated IB-8a CON1+ and the 

variant IB-8a CON1-, lacking of the glycosylation site, have been also detected in human 

saliva [19]. 

Acidic proline-rich proteins (aPRPs) 

Acidic proline-rich proteins (aPRPs) are secreted both by parotid (about 70 %) and 

submandibular/sublingual glands (about 30%). They are the expression products of two loci, 

PRH1 and PRH2 located on chromosome 12p13, near to the cluster of bPRPs. PRH1 codes 

for the PIF-s, Db-s and Pa isoforms, PRH2 codes for the PRP-1 and PRP-2 isoforms. 

Therefore, five aPRP isoforms can be detected in the saliva of the Caucasian population, but 

considering that PRP-1 and Pif-s have the same mass and PRP-2 has 1 Da mass difference 

with respect to PRP-1 and Pif-s, these 3 isoforms cannot be usually discriminated in the 

HPLC-ESI-MS profile [20]. Moreover, TFA adducts can be detected for these isoforms [3]. 

All the isoforms have a pyroglutamic moiety at the N-terminus and are usually di-

phosphorylated on Ser-7 and Ser-22, even though minor quantities of mono-, non-

phosphorylated and tri-phosphorylated isoforms (on Ser-17) are also detectable [20]. Four of 

these isoforms (PRP-1, PRP-2, PIF-s and Db-s) can be partially cleaved near to the C-
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terminus, eventually releasing a common peptide of 44 a.a. residues (P-C peptide) and 4 

truncated isoforms called PRP-3, PRP-4, PIF-f and Db-f. The Pa isoform is not cleaved, and 

it was usually detected in saliva as a S-S dimer due to the specific presence of a cysteine 

residue (Cys-103) in its structure. Minor quantities of other derivatives missing C-terminal 

residues from almost all isoforms were also detected [20]. 

Statherin and P-B peptide 

Statherin is an unusual tyrosine-rich phospho-peptide (phosphorylated on Ser-2 and Ser-3) 

involved in oral cavity calcium ion homeostasis and teeth mineralization [21,22]. Its gene 

(STATH) is localized on chromosome 4q13.3, near to histatin genes [23]. In adult human 

saliva mono- and non-phosphorylated, as well as N- and C-terminal truncated isoforms are 

always detectable [24]. Furthermore, in adult human saliva minor amounts of a cyclic-

statherin derivative (cyclo-statherin Q37) are detectable [25]. The cyclo-structure derives 

from an intra-molecular bridge between Lys-6 and Gln-37 generated by the action of oral 

transglutaminase 2 on statherin. 

P-B peptide, after the determination of its structure, was (erroneously) included in the 

bPRPs family. However, it is the product of PROL3 gene, localised localized on chromosome 

4q13.3, very close to the statherin gene. Differently from classical bPRPs, P-B peptide is not 

a fragment of a bigger pro-protein, it is secreted both from parotid and Sm/Sl glands [26] and 

it displays three Tyr residues in the sequence. Statherin and P-B peptide elute closely in the 

chromatographic profile suggesting a similar polarity. For these reasons, P-B peptide could 

be functionally connected to statherin. However, while the statherin role on the modulation of 

oral calcium ion was recognized, none specific function for P-B peptide has been proposed to 

date. 

Salivary (“S”-type) and other cystatins 
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Cystatins are detected in the RP-HPLC-ESI-MS chromatographic profile after the peaks of 

statherin and P-B peptides [27]. “S-type” cystatins comprise cystatin S, SN and SA which 

belong to family 2 of cystatins, inhibitors of cysteine-proteinases and are mainly secreted by 

Sm/Sl glands. Recent studies suggested that their secretion is not granule-mediated [26]. 

Cystatin S may be mono-phosphorylated on Ser-3 (cystatin S1; about 65 %) or di-

phosphorylated on Ser-1 and Ser-3 (cystatin S2; about 25%). Cystatin C was frequently 

detectable in human saliva, while, until now, no protein mass detected in saliva could be 

attributed to cystatins D and M. Cystatin A and B (called also stefins) belong to family 1 of 

cystatins, differing from type 2 cystatins for size and phosphorylation. Cystatin A was 

detectable in 2 isoforms (acetylated and non-acetylated on its N-terminal[8]) [8]. Cystatin B 

was N-terminally acetylated and usually it was usually not detected as unmodified protein in 

adult whole saliva, because of the reactivity of Cys-3 residue. Cystatin B, indeed was present 

in whole saliva as S-glutathionylated (about 55 %) S-cysteinylated (about 15 %) derivatives 

or as S-S dimer (about 30 %[28]) [28]. 

Proteins of the S100 family 

Proteins of the S100 family elute in the terminal part of the chromatographic profile. We 

were able to identify S100A7 (D27 and E27 isoforms), S100A8, S100A9 (8 isoforms: short, 

long, long S-glutathionylated, long S-cysteinylated and their phosphorylated counterparts), 

S100A11 and S100A12 [8]. The difficulty in the characterization of these proteins relied in 

the mismatch between the theoretical masses reported in data banks and the experimental 

masses of mature proteins [8]. For this reason, some of the masses pending for 

characterization could pertain to S100 B, S100A5 and S100A16. The source of these proteins 

in whole human saliva is unknown. 

α-defensins and β-thymosins 
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α-Defensins 1-3 elute as a unique chromatographic peak after the aPRPs cluster. α-Defensin 4 

eluted separately about 2 min before the statherin peak. α-Defensins belong to a family of 

broad-spectrum antimicrobial peptides, identified originally in human and rabbit leucocytes. 

6 α-defensins (cryptidins) have been identified in humans to date. α-Defensins 1-4 are 

expressed in neutrophils, whereas α-defensins 5-6 are expressed in epithelial cells of the 

intestinal and reproductive tracts [29]. The name of β-thymosins derives from their first 

characterization from calf thymus extracts. Different studies have evidenced their ubiquitous 

presence in many organs and tissues as well as in various bodily fluids. Thymosin β4, the 

most abundant, and thymosin β10 are typical in humans [30]. Gingival crevicular fluid is one 

of the main source of these two peptide classes [31,32]. 

Miscellaneous proteins and peptides 

Some other proteins have been characterized along the HPLC-ESI-MS profile. SPRR3 

(small-proline-rich protein 3) was mainly detectable in preterm newborn saliva in two 

variants, one with a Mav of 17239 ± 3 Da and the other with a Mav of 18065 ± 3 Da [33]. 

Therefore, 3 different phenotypes (2 homozygous and 1 heterozygous) can be found in the 

western population. Antileucoproteinase, also mainly detectable in preterm newborn saliva, 

elutes between α-defensins 1-3 and SPRR3 [8]. Lysozyme elutes near to the S-type cystatins. 

The protein with a Mav 22365 ± 4 Da was identified as the histone H1c, but the structure is 

pending for unambiguous characterization [8]. At the end of the chromatographic profile α, β 

and γ (both Gγ and Aγ) globins were sometimes detectable. In the terminal region of the 

HPLC profile other masses probably pertaining to α-amylase were sometimes detectable. 

However, the ESI spectrum was often crowded by multiple charge values, suggesting 

heterogeneity for this and other proteins which are not reported in Table 1I. 

Fragments of bigger proteins and peptides 
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The most relevant PTM of salivary proteins is the proteolytic cleavage by a complex and not 

well known set of endo- and exo-proteinases that generates a multitude of small peptides. On 

the basis of the RXXR↓ consensus sequence, some of the endo-proteinases probably belong 

to the furin-like convertase family, work before granule storage and are responsible for the 

generation of bPRPs, truncated isoforms of aPRPs, P-C peptide and histatin 6 [11]. The 

convertase acting on bPRPs is responsible for a complete digestion of the pro-protein, while 

aPRPs convertase, more active in Sm/Sl gland, is responsible for a partial cleavage of the 

proteins. Also the proteinase responsible for the first cleavage of histatin 3 can be included in 

the convertase family, because 2 Arg separated by 2 a.a. residues seems a mandatory 

requirement for the enzyme recognition. In fact, histatin 1, lacking the Arg-25 residue present 

in histatin 3, is less prone to proteolysis [11,26]. 

The removal of a C-terminal residue by specific carboxypeptidases following the 

convertase cleavage is a widespread event in many secretion processes and it can be observed 

also in many salivary peptides. One of the most relevant a.a. removal, in terms of relative 

abundance, involves the C-terminal Arg-25 of histatin 6 generating histatin 5 [11]. 

Other peptidases of endogen or exogen origin are active after granule secretion and in 

the oral cavity. Some salivary proteins, such as bPRPs, P-C and P-B peptides, statherin, 

histatin 3 and histatin 5 are more prone to proteolysis than other salivary proteins. Some 

fragments of glyceraldehyde 3-phosphate dehydrogenase were often detected, especially in 

saliva of preterm newborns, but the intact protein was not found in human saliva till now. 

Other authors have studied the naturally occurring peptides generated by oral proteolytic 

activity [34,35]. Table 1 I reports some of the fragments identified by Huq and coll. [34]. 

that we were able to consistently detect by HPLC-ESI-MS in different samples of whole 

saliva. The aim of a study of Helmerhorst and coll. [35]. was the detection of specific 

proteinase activities in the oral cavity. They found a lot of salivary protein fragments which 
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allow revealing, in the oral cavity, the activity of a specific glutamine endoproteinase that 

recognizes KPQ↓ as the main consensus sequence. This proteinase probably derives from 

dental plaque and it is likely microbial in origin. Table 1 I reports only some fragments of 

this list, because their presence in saliva immediately after specimen collection has to be 

confirmed. Some of the bPRP fragments detected by us and other researchers have been also 

reported by Vitorino et al. as recurrent non-covalent bound components of the enamel 

surface. This finding might provide a functional significance to this final bPRP maturation 

[36]. 

Other post-translational modifications 

Beyond cleavage, salivary proteins are submitted to many other PTMs before, during and 

after secretion. Glycosylation is a relevant PTM of salivary proteins, but as previously 

mentioned, salivary glycosylated proteins are not easily evidenced by top-down proteomic 

analysis because of the high heterogeneity. Many salivary proteins are phosphorylated. Top-

down platform evidenced 2 major (Ser-8 and Ser-22) and 1 minor site (Ser-17) on all aPRPs, 

1 site (Ser-8) on II-2 and IB-1 (bPRPs), 2 sites (Ser-2 and Ser-3) on statherin, 1 site (Ser-2) 

on histatin 1 and 2 sites on cystatin S (Ser-2 and Ser-3). Due to the similar SX (E/Sp) 

consensus sequence, the kinase responsible for the phosphorylation of these sites should be 

an elusive Golgi casein kinase acting before granule storage [37]. About 40% of all the 

S100A9 isoforms were found to be phosphorylated on the penultimate Thr of the sequence by 

p38 MAP kinase [38]. 

Until now O-tyrosine sulfation of salivary proteins has been detected only on histatin 

1 [12]. This modification was found to be specific of Sm/Sl glands, where not more than 10% 

of total histatin 1 could be detected as a mixture of isoforms carrying a different number of 

sulfate moieties (from 1 to 4). This PTM was probably hierarchical, being Tyr-27 the first 

residue submitted to sulfation, followed by Tyr-30, Tyr-34 and Tyr-36 [12]. 
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Specific cysteine residues of cystatin B, S100A9 and SPRR3 appeared prone to S-

glutathionylation and S-cysteinylation. These PTMs were particularly extensive for cystatin 

B, because the S-unmodified protein was often undetectable in adult whole saliva [28]. 

Cysteine residues were also responsible for several covalent dimerization. Only Pa S-S 2-mer 

(Pa is one of the 5 isoforms of aPRPs) was detectable in whole saliva. About 30% of cystatin 

B and small amounts of SPRR3 were also detectable as S-S 2-mer. Because SPRR3 exists in 

2 isoforms, both homo- and hetero-dimers were detectable in heterozygosis. 

Methionine residues are often prone to the oxidation (sulfoxide and sulfone). Met-

sulfoxide derivatives of thymosin β4 (Met-6), S100A9 short (Met-89) and “S-type” cystatins 

were detected in whole saliva. These derivatives could be indicative of oxidative stress in the 

oral cavity. 

In the presence of a glutamine or a glutamic acid, the N-terminal residue of many 

salivary proteins was typically cyclized in pyroglutamic acid, precluding Edman sequencing. 

Identified examples were the entire and truncated isoforms of all aPRPs, the bPRPs named 

IB-1 and II-2, as well as the P-B peptide. 

N-terminal acetylation was another PTM largely found in many identified proteins. It 

was usually reported that this PTM was subsequent to the removal of the N-terminal Met 

residue [39]. S100A7 (both D27 and E27 isoforms), S100A11, SPRR3 and β-thymosins 

followed this rule. PTMs of S100A9 are particular. Two phosphorylated and non-

phosphorylated isoforms, called long isoforms, derive from the removal of the N-terminal 

Met residue followed by acetylation. These 2 isoforms can be also partly S-glutathionylated 

and S-cysteinylated (on Cys-2 residue) bringing to 6 the total number of S100A9 long 

isoforms detectable in whole saliva. On the other hand, other 2 S100A9 isoforms, called short 

isoforms (phosphorylated and non-phosphorylated) derive from acetylation after removal of 

the N-terminal pentapeptide (MTCKM). Because this removal eliminates the Cys-2 residue 
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from the S100A9 sequence, the S100A9 short isoforms does not originate S-modified 

derivatives. S100A12 loose the N-terminal Met residue, but it is not acetylated, cystatin B 

does not loose the N-terminal Met residue, but it is not found acetylated and S100A8 does not 

loose the N-terminal Met residue and it is not acetylated. Cystatin A was detected in 3 

different isoforms, 1 with the N-terminal Met residue, 1 acetylated on the N-terminal Met and 

1 (Mav 10872 ± 2 Da) without the N-terminal Met and non-acetylated (this last pending for 

definitive characterization). This puzzling situation outlines that probably each protein has 

specific structural requirements on its N-terminal residues. However, the understanding of the 

molecular signals that any protein utilizes to drive its correct N-terminal modification and the 

functional significance of the different N-terminal modifications occurring in the same 

protein is surely a challenging task. 

Source of salivary proteins 

Most of the information reported in Table 1 I on the source of salivary proteins was obtained 

by a top-down proteomic study that compared the natural occurring proteome of adult whole 

saliva with the proteins detectable in glandular (parotid and Sm/Sl) saliva and enriched 

granule preparation from parotid and submandibular glands [26]. This study confirmed that 

bPRPs were exclusively secreted by the parotid gland. Approximately 70% of aPRPs 

isoforms was found to be secreted by parotid glands, the remaining 30% by Sm/Sl glands. 

Also, histatin 3 was secreted more by parotid than by Sm/Sl glands. Histatin 1, statherin and 

P-B peptide were roughly secreted in similar amounts by both major glands, while the main 

sources of “S type” cystatins were Sm/Sl glands. Gingival crevicular fluid was a relevant 

source of cystatin A, α-defensins and β-thymosins [30,32].
 
Conversely, in preterm saliva the 

high amount of β-thymosins derived from major salivary glands [40] even though the 

secretion pathway of this leaderless peptide [31] is still unknown. The sources and the 

secretion pathways of other proteins reported in Table 1 I are not still well defined too. 
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The sSurprising differences of salivary proteome in pre-term newborns 

and in the pediatric age. 

Fig.ure 2 shows the striking differences present in human salivary proteome as a function of 

age, with a particular concern to the pediatric age [7]. Given to the non-invasive collection of 

the sample the salivary proteome of preterm newborns was investigated from about 195 days 

of post-conceptional age (PCA[6,8]) [6,8]. In preterm newborns of about 195–220 days of 

PCA noticeable amounts of more than 40 proteins were detectable. Cystatin A (2 isoforms), 

cystatin B (3 isoforms), S100A7 (2 isoforms), S100A8, S100A9 (8 isoforms), S100A11, 

S100A12, small proline-rich protein 3 (2 isoforms), lysozyme C, thymosins β4 and β10, 

antileukoproteinase, histone H1c, and α and γ globins [8] have been identified. The 

concentration of these proteins decreased quickly, even though with different trends, as a 

function of PCA reaching values detectable in adult at a PCA corresponding to the normal 

term of delivery (about 270 days). At the same time, the level of salivary proteins 

characteristic of the adult increased, also in this case with different trends. 

Many of the proteins identified in saliva of pre-term newborns are considered tumor 

markers in the adults. This observation led to suppose that these proteins might contribute to 

the molecular events that regulate cell growth, proliferation, or death during fetal 

development. The abnormal expression in the adults might be at the basis of anomalous 

cellular growth and to the development of different tumors with embryonic etiology. The 

recognition of tumor stem cells in many solid cancers has reinvigorated the hypothesis of a 

pluripotent stem cell as the cell of origin for cancer [41]. Data from our group on Tβ4 

expression in salivary glands’ tumors and in colon cancer [43] evidenced Tβ4 reactivity in 

tumor cells undergoing epithelial-mesenchymal transition, a highly conserved cellular 
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program typical of several stages of embryonic development as well as of cancer invasion 

and metastasis [44]. 

A study carried out on 67 subjects aged between 3 and 44 years evidenced several 

qualitative and quantitative age-dependent modifications of the salivary proteome. It was 

found that the concentration of salivary acidic proline-rich phosphoproteins, histatin-5, 

histatin-6, and monophosphorylated and diphosphorylated cystatin S showed a minimum 

between 6 and 9 years of age. Interestingly, bPRPs, almost absent in saliva of children, 

reached adult levels only after puberty [7], suggesting a potential role of these peptides in the 

modulation of taste perception. Indeed a recent study of our group showed for the first time 

that responsiveness to 6-n-propylthiouracil bitter taste is associated with salivary levels of II-

2 peptide and Ps-1 protein, which are products of the PRB1 gene [45]. 

It is relevant to outline that the striking age-dependent modification of the human 

salivary proteome has to be carefully considered for the choice of the proper control group in 

the characterization of new disease biomarkers, relevant aim of any proteomic platform. 

Pathological modification of the human salivary proteome detected by the 

top-down approaches. 

A conclusive aim of a proteomic dataset is its use for diagnostic and prognostic purposes. 

Due to the non invasive specimen collection saliva is very attractive in this regard. The 

protein list reported in this review could be a helpful reference for the detection of potential 

early biomarker of disease by using quantitation based on XIC area determination, as shown 

in FigureFig. 3. Top-down analyses for the detection of the variations of the salivary 

proteome in other local and systemic diseases are in progress upon our laboratories. 

Studies carried out on different patients with autism spectrum disorders (ASD) 

evidenced the hypo-phosphorylation of several salivary peptides and proteins (histatin 1, 
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statherin and both the entire and truncated isoforms of aPRPs) in a subset of about 60% of 

ASD subjects, the majority comprised in the normal to border-line cognitive development 

[46]. Hypo-phosphorylation of salivary peptides suggested potential asynchronies in the 

phosphorylation of other secretory proteins, which could be relevant in central nervous 

system during either embryonic development or early infancy. 

A study carried out on whole saliva of 31 children affected by type 1 diabetes 

revealed a lower concentration of statherin, proline-rich peptides, P-B, P-C peptides, and 

histatins, and higher concentration of α-defensins 1, 2 and 4 and S100A9 short isoforms with 

respect to an age and sex matched control group [47]. The lower concentration of P-C 

peptide was paralleled by higher levels of some of its fragments. On the whole, the study 

highlighted the severe impairment of the repertoire of peptides involved in the safeguard of 

the oral cavity in diabetic children. A study carried out on 9 patients with primary Sjögren 

syndrome (SS) evidenced that pilocarpine treatment restored the protein levels and partially 

restored the protein numbers that were found to be decreased in primary SS patients, with the 

parotid gland proteins showing the best response to the drug [48,49]. Finally, a study carried 

out on 11 totally edentulous patients evidenced reduced levels of α-defensins respect to two 

groups of controls (one matched for age and gender, the second of younger subjects[50]) 

[50]. Since these peptides have mainly crevicular origin, most likely the low levels measured 

resulted from the absence of the gingival sulcus in the edentulous subjects. 

Concluding remarks 

A limit of the “solution-based” top-down platform utilized was that many masses attributable 

to well know salivary proteins, such as carbonic anhydrase, immunoglobulin, peroxidases, 

mieloperoxidases, mucins were never detected in the HPLC-ESI-MS profile, likely due to 

their insolubility in acidic solution. It should be taken into account that the limit of sensitivity 
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of the HPLC-ESI-MS apparatus in use upon in laboratories on saliva samples was, at the best, 

in the range of 10–50 nanomoles/L and that increase of instrumental sensitivity can disclose a 

lot of other protein and peptide masses that might be added to the list in the future. Table 1 I 

is a dynamic table that anyone can implement with new attributions. It can help not only 

researchers that would experience top-down platforms on human saliva, but also anyone who 

is involved in top-down attributions in other bodily fluid, because many proteins reported are 

not specific of saliva. 
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Table 1I.  List of 256 peptide and protein masses detected in whole saliva by a “solution based” top-down HPLC-ESI-MS platform. 

 M aver 

exper.
a
 

Protein identification Swiss 

Prot n. 

M+H+ 

theor. 

M aver 

theor. 

Elut. 

time
b
 

PTM modification Increase-

decrease 

Origin Reference 

1 523.2 histatin Histatin 3 Fr. 29–32 P15516 524.235 523.543 8.3   both Both major 

glands (↑ parotid) 

[11,26] 

2 556.3 histatin Histatin 3 Fr. 1-5 P15516 557.268 556.576 5.9   both Both major 

glands (↑ parotid) 

[11,26] 

3 597.3 histatin Histatin 3 Fr. 2-6 P15516 598.342 597.675 5.5   both Both major 

glands (↑ parotid) 

[11,26] 

4 640.3 histatin Histatin 3 Fr. 7-11 P15516 641.315 640.700 5.6   both Both major 

glands (↑ parotid) 

[11,26] 

5 686.3 histatin Histatin 3 Fr. 28–32 P15516 687.298 686.719 12.5   both Both major 

glands (↑ parotid) 

[11,26] 

6 710.4 bPRP fragment variousVa

rious 

710.383 709.800 6.8  ↓ paediatric 

age 

only Only parotid [7,26,34] 

7 712.4 histatin Histatin 3 Fr. 1-6 P15516 713.369 712.764 6.1   both Both major 

glands (↑ parotid) 

[11,26] 

8 720.4 bPRP fragment variousVa

rious 

720.368 719.795 8.1  ↓ paediatric 

age 

only Only parotid [7,26,34] 

9 721.4 bPRP fragment variousVa

rious 

721.352 720.780 7.9  ↓ paediatric 

age 

only Only parotid [7,26,34] 

10 755.4 histatin Histatin 3 Fr. 19–24 P15516 756.354 755.791 8.7   both Both major 

glands (↑ parotid) 

[11,26] 
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11 796.4 histatin Histatin 3 Fr. 6-11 P15516 797.417 796.887 7.6   both Both major 

glands (↑ parotid) 

[11,26] 

12 796.4 histatin Histatin 3 Fr. 7-12 P15516 797.417 796.887 7.8   both Both major 

glands (↑ parotid) 

[11,26] 

13 800.3 histatin Histatin 3 Fr. 27–32 P15516 801.341 800.823 14.1   both Both major 

glands (↑ parotid) 

[11,26] 

14 817.5 bPRP fragment variousVa

rious 

817.457 816.956 8.5  ↓ paediatric 

age 

only Only parotid [26,34] 

15 874.5 bPRP fragment variousVa

rious 

874.478 874.007 8.2  ↓ paediatric 

age 

only Only parotid [7,26,34] 

16 887.4 histatin Histatin 3 Fr. 26–32 P15516 888.373 887.901 13.8   both Both major 

glands (↑ parotid) 

[11,26] 

17 895.4 P-C Fr. 36–44 P02810 895.427 894.940 6.9  ↑ type 1 

diabetes 

both Both major 

glands (↑ parotid) 

[47] 

18 914.5 bPRP fragment variousVa

rious 

914.509 914.072 10.2  ↓ paediatric 

age 

only Only parotid [26,34] 

19 924.5 histatin Histatin 3 Fr. 5-11 

(Hst 12) 

P15516 925.512 925.061 7.2   both Both major 

glands (↑ parotid) 

[9,11,26] 

20 924.5 histatin Histatin 3 Fr. 7-13 P15516 925.512 925.061 6.2   both Both major 

glands (↑ parotid) 

[11,26] 

21 971.5 bPRP fragment variousVa

rious 

971.531 971.124 9.4  ↓ paediatric 

age 

only Only parotid [7,26,34] 

22 990.5 P-C Fr. 26–35 P02810 990.512 990.087 8.2  ↑ type 1 

diabetes 

both Both major 

glands (↑ parotid) 

[26,34,35,47] 

23 1038.4 bPRP fragment variousVa

rious 

1038.533 1038.128 10.7  ↓ paediatric 

age 

only Only parotid [26,34] 
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24 1067.6 bPRP fragment variousVa

rious 

1067.559 1067.170 9.7  ↓ paediatric 

age 

only Only parotid [7,26,34] 

25 1070.6 bPRP fragment variousVa

rious 

1070.611 1070.260 9.5  ↓ paediatric 

age 

only Only parotid [7,26,34] 

26 1071.6 bPRP fragment variousVa

rious 

1071.595 1071.245 9.5  ↓ paediatric 

age 

only Only parotid [7,26,34] 

27 1076.5 bPRP fragment variousVa

rious 

1076.512 1076.134 7.0  ↓ paediatric 

age 

only Only parotid [7,26,34] 

28 1076.5 bPRP fragment variousVa

rious 

1076.548 1076.177 6.8  ↓ paediatric 

age 

only Only parotid [7,26,34] 

29 1080.6 histatin Histatin 3 Fr. 5-12 

(Hst 11) 

P15516 1081.613 1081.249 11.4    bBoth major glands 

(↑ parotid) 

[9,11,26] 

30 1080.6 histatin Histatin 3 Fr. 6-13 P15516 1081.613 1081.249 9.1   both Both major 

glands (↑ parotid) 

[11,26] 

31 1152.6 bPRP fragment P02812 1152.576 1152.232 9.1  ↓ paediatric 

age 

only Only parotid [26,34] 

32 1165.5 bPRP fragment variousVa

rious 

1165.523 1165.184 7.0  ↓ paediatric 

age 

only Only parotid [7,26,34] 

33 1200.4 P-B peptide Fr. 46–57 P02814 1200.641 1200.403 21.1   both Both major 

glands 

[34] 

34 1208.7 histatin Histatin 3 Fr. 5-13 P15516 1209.708 1209.423 9.5   both Both major 

glands (↑ parotid) 

[11,26] 

35 1222.6 bPRP fragment variousVa

rious 

1222.617 1222.323 8.2  ↓ paediatric 

age 

only Only parotid [7,26,34] 

36 1224.6 aPRP Fr. 94–105 P02810 1224.623 1224.345 11.1  ↑ type 1 diab. both Both major 

glands (↑ parotid) 

[47] 
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37 1286.6 histatin Histatin 3 Fr. 15–24 P15516 1287.609 1287.363 9.2   both Both major 

glands (↑ parotid) 

[11,26] 

38 1334.7 histatin Histatin 3 Fr. 1-11 P15516 1335.667 1335.448 7.8   both Both major 

glands (↑ parotid) 

[11,26] 

39 1341.7 bPRP fragment variousVa

rious 

1341.655 1341.446 10.1  ↓ paediatric 

age 

only Only parotid [26,34] 

40 1433.7 histatin Histatin 3 Fr. 14–24 P15516 1434.677 1434.540 11.6   both Both major 

glands (↑ parotid) 

[11,26] 

41 1442.7 histatin Histatin 3 Fr. 15–25 P15516 1443.710 1443.550 9.6   both Both major 

glands (↑ parotid) 

[11,26] 

42 1471.7 P-C Fr. 1-14 P02810 1471.715 1471.555 8.7  ↑ type 1 

diabetes 

both Both major 

glands (↑ parotid) 

[47] 

43 1490.8 histatin Histatin 3 Fr. 1-12 P15516 1491.768 1491.635 8.5   both Both major 

glands (↑ parotid) 

[11,26] 

44 1513.6 bPRP fragment P10163 1513.798 1513.679 8.6  ↓ paediatric 

age 

only Only parotid [26,34] 

45 1561.8 histatin Histatin 3 Fr. 13–24 

(Hst 8) 

P15516 1562.772 1562.714 11.5   both Both major 

glands (↑ parotid) 

[9,11,26] 

46 1589.8 histatin Histatin 3 Fr. 14–25 P15516 1590.779 1590.727 11.0   both Both major 

glands (↑ parotid) 

[11,26] 

47 1618.9 histatin Histatin 3 Fr. 1-13 P15516 1619.863 1619.809 8.4   both Both major 

glands (↑ parotid) 

[11,26] 

48 1717.9 histatin Histatin 3 Fr. 12–24 

(Hst 7) 

P15516 1718.873 1718.901 11.8   both Both major 

glands (↑ parotid) 

[9,11,26] 

49 1717.9 histatin Histatin 3 Fr. 13–25 P15516 1718.873 1718.901 11.8   both Both major [9,11,26] 
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(Hst 10) glands (↑ parotid) 

50 1767.9 bPRP fragment variousVa

rious 

1767.914 1767.962 9.8  ↓ paediatric 

age 

only Only parotid [7,26,34] 

51 1818.0 aPRP Fr. 94–110 P02810 1818.958 1819.019 11.1  ↑ type 1 

diabetes 

both Both major 

glands (↑ parotid) 

[47] 

52 1856.9 bPRP fragment P02812 1856.889 1856.969 10.5  ↓ paediatric 

age 

only Only parotid [26,34] 

53 1867.0 P-C Fr. 26–44 P02810 1866.921 1867.011 9.5  ↑ type 1 

diabetes 

both Both major 

glands (↑ parotid) 

[47] 

54 1874.0 histatin Histatin 3 Fr. 12–25 

(Hst 9) 

P15516 1874.975 1875.089 11.2   both Both major 

glands (↑ parotid) 

[9,11,26] 

55 1932.2 bPRP fragment variousVa

rious 

1932.009 1932.169 10.7  ↓ paediatric 

age 

only Only parotid [7,26,34] 

56 2017.2 bPRP fragment variousVa

rious 

2017.025 2017.232 11.5  ↓ paediatric 

age 

only Only parotid [7,26,34,35] 

57 2029.2 bPRP fragment variousVa

rious 

2029.025 2029.243 11.3  ↓ paediatric 

age 

only Only parotid [7,26,34,35] 

58 2083.3 P-C Fr. 5-25 P02810 2083.047 2083.294 11.3  ↑ type 1 

diabetes 

both Both major 

glands (↑ parotid) 

[35,47] 

59 2521.8 P-C Fr. 1-25 P02810 2521.281 2521.781 11.8  ↑ type 1 

diabetes 

both Both major 

glands (↑ parotid) 

[35,47] 

60 2745.0 histatin Histatin 3 Fr. 12–32 

(Hst 4) 

P15516 2744.330 2744.974 13.8   both Both major 

glands (↑ parotid) 

[9,11,26] 

61 2917.2 P-C Fr. 15–44 P02810 2916.486 2917.236 12.6  ↑ type 1 

diabetes 

both Both major 

glands (↑ parotid) 

[47] 
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62 3036.3 histatin Histatin 3 Fr. 1-24 

(Hst 5) 

P15516 3035.522 3036.334 14.6   both Both major 

glands (↑ parotid) 

[9,11,26] 

63 3192.5 histatin Histatin 3 Fr. 1-25 

(Hst 6) 

P15516 3191.623 3192.521 14.3   both Both major 

glands (↑ parotid) 

[9,11,26] 

64 3371.0 α-defensin 2 P59665/6 3369.482 3370.966 23.5 3 S-S ↓ edentulous GCF [30,50] 

65 3442.0 α-defensin 1 P59665 3440.519 3442.045 23.5 3 S-S ↓ edentulous GCF [30,50] 

66 3472.9 peroxiredoxin 

Peroxiredoxin 6 Fr. 1-32 

P30041 3471.744 3472.864 31.4  ↑ pre-term ? [8] 

67 3486.1 α-defensin 3 P59666 3484.509 3486.055 23.5 3 S-S ↓ edentulous GCF [30,50] 

68 3645.0 statherin Statherin Des1-13 P02808 3643.685 3645.001 27.5   both Both major 

glands 

[24,26] 

69 3707.8 α-defensin 4 P12838 3707.767 3709.414 27.2 3 S-S ↓ edentulous GCF [30,50] 

70 3971.4 statherin Statherin Des1-10 P02808 3969.891 3971.399 28.0   both Both major 

glands 

[24,26] 

71 4062.4 histatin Histatin 3 P15516 4060.979 4062.407 17.7   both Both major 

glands 

[9,11,26] 

72 4114.8 G3P dehydrogenase Fr. 1-

39 

P04406 4113.308 4114.807 33.2  ↑ pre-term ? [8] 

73 4127.6 statherin Statherin Des1-9 P02808 4125.992 4127.587 28.5   both Both major 

glands 

[24,26] 

74 4145.5 P-C peptide Des PQ43–44 P02810 4144.072 4145.529 14.9   both Both major 

glands (↑ parotid) 

[20,26] 
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75 4242.6 P-C peptide Des Q44 P02810 4241.125 4242.646 14.9   both Both major 

glands (↑ parotid) 

[20,26] 

76 4370.8 P-C peptide P02810 4369.183 4370.776 15.0   both Both major 

glands (↑ parotid) 

[20,26] 

77 4392.1 G3P dehydrogenase Fr. 1-

41 

P04406 4390.415 4392.087 29.9  ↑ pre-term ? [8] 

78 4549.3 P-B peptide Des1-12 P02814 4547.411 4549.343 27.5   both Both major 

glands (↑ Sm/Sl) 

[24,26] 

79 4848.2 histatin Histatin 1 non 

phosph. 

P15515 4846.233 4848.172 22.0  ↓ ASD both Both major 

glands 

[9,26,46] 

80 4928.2 histatin Histatin 1 P15515 4926.200 4928.151 21.9 phosphPhosph. (S2)  both Both major 

glands 

[9,11,26] 

81 4936.5 thymosin Thymosin β10 P63313 4934.530 4936.523 20.8 acetyl Acetyl (N-term) ↑ pre-term GCF, both glands 

(in pre-term) 

[8,32,40] 

82 4946.5 thymosin Thymosin β4 

(cyclo) 

P62328 4944.467 4946.472 19.6  ↑ pre-term GCF, both glands 

(in pre-term) 

[8,32,40] 

83 4963.5 thymosin Thymosin β4 P62328 4961.494 4963.502 18.5 acetyl Acetyl (N-term) ↑ pre-term GCF, both glands 

(in pre-term) 

[8,32,40] 

84 4979.5 thymosin Thymosin β4 

sulfoxide 

P62328 4977.488 4979.502 18.3 acetyl Acetyl (N-term), 

(Met6) sulfoxide 

↑ pre-term GCF, both glands 

(in pre-term) 

[8,32,40] 

85 5008.2 histatin Histatin 1 mono-

sulfated 

P15515 5006.156 5008.216 21.9 phosphPhosph. (S2), 

mono-sulf (Y27) 

 only Only Sm/Sl [12] 

86 5060.9 P-B peptide Des1-7 P02814 5058.654 5060.921 30.1   both Both major 

glands (↑ Sm/Sl) 

[24,26] 

87 5088.3 histatin Histatin 1 di-

sulfated 

P15515 5086.113 5088.280 21.4 phosphPhosph. (S2), di-

sulf (Y27, Y30) 

 only Only Sm/Sl [12] 
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88 5131.4 statherin Statherin (di-

phosph) Des T42F43 

P02808 5129.334 5131.439 27.9 diDi-phosph (S2, S3) Des 

T42F43 

 both Both major 

glands 

[24,26] 

89 5152.6 statherin Statherin mono-

phosph Des F43 

P02808 5150.415 5152.564 27.5 monoMono-phosph (S2 

or S3) 

 both Both major 

glands 

[24,26] 

90 5168.3 histatin Histatin 1 tri-

sulfated 

P15515 5166.070 5168.344 20.8 phosphPhosph. (S2), tri-

sulf (Y27, Y30, Y34) 

 only Only Sm/Sl [12] 

91 5215.1 P-B peptide Des1-5 P02814 5212.728 5215.090 30.3   both Both major 

glands (↑ Sm/Sl) 

[24,26] 

92 5219.8 statherin Statherin non-

phosph 

P02808 5217.517 5219.761 28.6   both Both major 

glands 

[24,26] 

93 5232.5 statherin Statherin (di-

phosph) Des F43 (SV1) 

P02808 5230.381 5232.544 27.8 diDi-phosph (S2, S3) Des 

F43 

 both Both major 

glands 

[24,26] 

94 5248.4 histatin Histatin 1 tetra-

sulfated 

P15515 5246.027 5248.408 20.5 phosphPhosph. (S2), 

tetra-sulf (Y27, Y30, Y34, 

Y38) 

 only Only Sm/Sl [12] 

95 5264.6 statherin Statherin (di-

phosph) Des D1 

P02808 5262.423 5264.632 28.7 diDi-phosph (S2, S3) Des 

D1 

 both Both major 

glands 

[24,26] 

96 5299.7 statherin Statherin mono-

phosph 

P02808 5297.483 5299.740 28.9 monoMono-phosph (S2 

or S3) 

↑ ASD both Both major 

glands 

[24,26,46] 

97 5357.0 cystatin Cystatin B Fr. 54–

98 

P04080 5354.738 5357.030 29.5  ↑ pre-term ? [8] 

98 5362.7 cyclostatherin 

Cyclostatherin Q-37 

P02808 5360.423 5362.690 29.6 diDi-phosph (S2, S3) – 

cyclization K6 – Q37 

 both Both major 

glands 

[25,26] 

99 5371.3 P-B peptide Des1-4 P02814 5368.829 5371.277 30.0   both Both major 

glands (↑ Sm/Sl) 

[24,26] 
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100 5379.7 statherinStatherin P02808 5377.450 5379.720 29.2 diDi-phosph (S2, S3)  both Both major 

glands 

[21,24,26] 

101 5590.1 P-H (IB-4 – bPRP) P02812 5587.783 5590.096 15.2  ↓ paediatric 

age 

only Only parotid [7,13,15,16] 

102 5685 non Non iden. (prob. bPRP)    15.0 unknown Unknown 

bPRP 

↓ paediatric 

age 

only Only parotid [16] 

103 5792.7 P-B peptide P02814 5790.036 5792.734 30.0 pyroglu Pyroglu (Q)  both Both major 

glands (↑ Sm/Sl) 

[24–26] 

104 5842.5 P-F (IB-8c – bPRP) P02812 5839.992 5842.493 14.7  ↓ paediatric 

age 

only Only parotid [7,13,16] 

105 5842.6 cystatin Cystatin B Fr. 1-53 P04080 5839.888 5842.616 29.7 acetyl Acetyl (N-term) ↑ pre-term ? [8] 

106 5867.5 P-E Des-R61 (IB-9 – bPRP) P02811 5864.987 5867.503 14.9  ↓ paediatric 

age 

only Only parotid [7,13,14,16] 

107 5943.6 P-J (bPRP)  5941.003 5943.555 14.5  ↓ paediatric  

Aage 

only Only parotid [7,16] 

108 5961.8 cystatin Cystatin B Fr. 1-53 

S-cysteinyl 

P04080 5958.892 5961.755 29.8 acetyl Acetyl (N-term), 

cysteinyl (C3) 

↑ pre-term ?  

109 6023.7 P-E (IB-9 – bPRP) P02811 6021.088 6023.690 14.9  ↓ paediatric 

age 

only Only parotid [7,13,14,16] 

110 6147.9 cystatin Cystatin B Fr. 1-53 

S-glutathion. 

P04080 6144.956 6147.922 29.7 acetyl Acetyl (N-term), 

gluthationyl (C3) 

↑ pre-term ?  

111 6923.7 P-D (IB-5 – bPRP) 

(P32→A) 

P10163 6920.538 6923.692 15.9 P-D (P32 → A) ↓ paediatric 

age 

only Only parotid [7,13,14,16] 

112 6949.7 P-D (IB-5 – bPRP) P10163 6946.554 6949.730 15.9  ↓ paediatric 

age 

only Only parotid [7,13,14,16] 
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113 7452.0 II-2 Des R75 (bPRP) P04280 7466.621 7452.007 19.2 phosphPhosph. (S8), 

pyroglu (E) (Seq. from 

Ref. [3]) 

↓ paediatric 

age 

only Only parotid [7,13,16] 

114 7528.2 II-2 non phosph. (bPRP) P04280 7524.746 7528.214 19.8 pyroglu Pyroglu (E) 

(Seq. from Ref. [3]) 

↓ paediatric 

age 

only Only parotid [7,13,16] 

115 7608.2 II-2 (bPRP) P04280 7604.712 7608.194 19.2 phosphPhosph. (S8), 

pyroglu (E) (Seq. from 

Ref. [3]) 

↓ paediatric 

age 

only Only parotid [7,13,16] 

116 7806 non Non iden.    21.0  ↑ pre-term ? [8] 

117 7867 non Non iden.    21.0  ↑ pre-term ? [8] 

118 9437.2 IB-1 Des R96 (bPRP) P02812 9432.602 9437.196 19.4 phosphPhosph. (S8), 

pyroglu (Q) 

↓ paediatric 

age 

only Only parotid [7,13,16] 

119 9513.4 IB-1 non-phosph. (bPRP) P02812 9508.737 9513.404 19.7 pyroglu Pyroglu (Q) ↓ paediatric 

age 

only Only parotid [7,13,16] 

120 9593.3 IB-1 (bPRP) P02812 9588.703 9593.384 19.4 phosphPhosph. (S8), 

pyroglu (Q) 

↓ paediatric 

age 

only Only parotid [7,13,16] 

121 9956 non Non iden.    32.0  ↑ pre-term ? [8] 

122 10434 non Non iden. (prob. bPRP)    16.0 unknown Unknown 

bPRP 

↓ paediatric 

age 

only Only parotid [16,17] 

123 10444 S100A12 (calgran. C) P80511 10438.494 10443.847 40.0 M missing (N-term) ↑ pre-term ? [8] 

124 10651 non Non iden.    33.2  ↑ pre-term ? [8] 
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125 10765 non Non iden.    31.6  ↑ pre-term ? [8] 

126 10834 S100A8 (calgran. A) P05109 10828.656 10834.511 40.4  ↑ pre-term ? [8] 

127 10872 non Non iden.    32.5 cystatin Cystatin A M 

missing (pending for 

characterization) 

↑ pre-term ? [8] 

128 10925 aPRP (PIF-f) mono-phosph 

Des R106 

P02810 10920.008 10925.383 23.4 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

129 10925 aPRP (PRP-3) mono-

phosph Des R106 

P02810 10920.008 10925.383 23.4 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

130 10926 aPRP (PRP-4) mono-

phosph Des R106 

P02810 10920.992 10926.368 23.4 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

131 11001 aPRP (PIF-f) non-phosph P02810 10996.142 11001.590 23.8 pyroglu Pyroglu (Q) ↑ preterm both Both major 

glands (↑ parotid) 

[6,20,26] 

132 11001 aPRP (PRP-3) non-phosph P02810 10996.142 11001.590 23.8 pyroglu Pyroglu (Q) ↑ preterm both Both major 

glands (↑ parotid) 

[6,20,26] 

133 11002 aPRP (PRP-4) non-phosph P02810 10997.126 11002.575 23.8 pyroglu Pyroglu (Q) ↑ preterm both Both major 

glands (↑ parotid) 

[6,20,26] 

134 11005 aPRP (PIF-f) di-phosph Des 

R106 

P02810 10999.974 11005.363 22.8 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

135 11005 aPRP (PRP-3) di-phosph 

Des R106 

P02810 10999.974 11005.363 22.8 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

136 11006 aPRP (PRP-4) di-phosph 

Des R106 

P02810 11000.958 11006.347 22.8 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

137 11006 cystatin Cystatin A P01040 11000.670 11006.493 31.8  ↑ pre-term ? [8,27,30] 
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138 11049 cystatin Cystatin A acetyl 

(N-term) 

P01040 11042.680 11048.533 33.0 acetyl Acetyl (N-term) ↑ pre-term ? [8,27] 

139 11081 aPRP (PIF-f) mono-phosph P02810 11076.109 11081.570 23.4 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

↑ ASD and 

preterm 

both Both major 

glands (↑ parotid) 

[6,20,26,46] 

140 11081 aPRP (PRP-3) mono-

phosph 

P02810 11076.109 11081.570 23.4 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

↑ ASD and 

preterm 

both Both major 

glands (↑ parotid) 

[6,20,26,46] 

141 11082 aPRP (PRP-4) mono-

phosph 

P02810 11077.093 11082.555 23.4 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

↑ ASD and 

preterm 

both Both major 

glands (↑ parotid) 

[6,20,26,46] 

142 11161 aPRP (PIF-f) di-phosph P02810 11156.075 11161.550 22.8 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

↓ preterm both Both major 

glands (↑ parotid) 

[6,20,26] 

143 11161 aPRP (PRP-3) di-phosph P02810 11156.075 11161.550 22.8 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

↓ preterm both Both major 

glands (↑ parotid) 

[6,20,26] 

144 11162 aPRP (PRP-4) di-phosph P02810 11157.059 11162.535 22.8 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

↓ preterm both Both major 

glands (↑ parotid) 

[6,20,26] 

145 11182 cystatin Cystatin B P04080 11175.609 11181.631 33.0 acetyl Acetyl (N-term) ↑ pre-term ? [8] 

146 11241 aPRP (PIF-f) tri-phosph P02810 11236.041 11241.530 22.4 pyroglu Pyroglu (Q), tri-

phosph (S8, S17, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

147 11241 aPRP (PRP-3) tri-phosph P02810 11236.041 11241.530 22.4 pyroglu Pyroglu (Q), tri-

phosph (S8, S17, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

148 11242 aPRP (PRP-4) tri-phosph P02810 11237.025 11242.515 22.4 pyroglu Pyroglu (Q), tri-

phosph (S8, S17, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

149 11301 cystatin Cystatin B S-

cysteinyl 

P04080 11294.613 11300.769 32.9 acetyl Acetyl (N-term), 

cysteinyl (C3) 

↑ pre-term ? [8,28] 

150 11368 S100A7 (psoriasin D27) P31151 11361.526 11367.798 37.0 acetylAcetyl, M missing 

(N-term) E27 → D 

↑ pre-term ? [8] 
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151 11382 S100A7 (psoriasin E27) P31152 11375.542 11381.824 36.9 acetylAcetyl, M missing 

(N-term) 

↑ pre-term ? [8] 

152 11487 cystatin Cystatin B S-

glutathionyl 

P04080 11480.677 11486.936 32.8 acetyl Acetyl (N-term), 

gluthationyl (C3) 

↑ pre-term ? [8,28] 

153 11517 IB-6 (bPRP) P04280 11510.799 11516.666 16.7 Subst A63 → S respect to 

P04280 (as rep. in 15) 

↓ paediatric 

age 

only Only parotid [13,15,16] 

154 11652 S100A11 (calgizzarin) P31949 11644.802 11651.292 42.8 acetylAcetyl, M missing 

(N-term) 

↑ pre-term ? [8] 

155 11710 antileukoproteinaseAntileuk

oproteinase 

P03973 11702.362 11709.804 26.2 8 S-S ↑ pre-term ? [8] 

156 11886 IB-8a Con1+ (bPRP) P02812 11880.014 11886.120 15.6 Mistake of sequence in 

Swiss-Prot 

 only Only parotid [16,19] 

157 11896 IB-8a Con1- (bPRP) P02812 11890.035 11896.163 15.6 Mistake of sequence in 

Swiss-Prot 

↓ paediatric 

age 

only parotid [16,19] 

158 12689 S100A9 (calgran. B) short P06702 12682.293 12689.228 42.2 acetylAcetyl, MTCKM 

miss. (N-term) 

↑ pre-term ? [8] 

159 12705 S100A9 short mono-ox P06702 12698.288 12705.228 42.0 acetylAcetyl, MTCKM 

miss. (N-term), Met89 

sulfox. 

 ?  

160 12769 S100A9 (calgran. B) short 

phosph. 

P06702 12762.259 12769.208 42.2 acetylAcetyl, MTCKM 

miss. (N-term), phosph 

(T108) 

↑ pre-term ? [8] 

161 12785 S100A9 short phosph. 

mono-ox 

P06702 12778.254 12785.208 42.0 acetylAcetyl, MTCKM 

miss. (N-term), phosph 

(T108), Met89 sulfox. 

 ?  
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162 13044 aPRP (Db-f) mono-phosph 

Des R106 

P02810 13037.048 13043.679 23.9 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

163 13120 aPRP (Db-f) non-phosph P02810 13113.183 13119.886 24.1 pyroglu Pyroglu (Q)  both Both major 

glands (↑ parotid) 

[20,26] 

164 13124 aPRP (Db-f) di-phosph Des 

R106 

P02810 13117.014 13123.659 23.3 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

165 13153 S100A9 (calgran. B) long P06702 13145.485 13152.839 41.9 acetylAcetyl, M missing 

(N-term) 

↑ pre-term ? [8] 

166 13200 aPRP (Db-f) mono-phosph P02810 13193.149 13199.866 23.9 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

167 13233 S100A9 (calgran. B) long 

phosph 

P06702 13225.452 13232.819 41.9 acetylAcetyl, M missing 

(N-term), phosph (T112) 

↑ pre-term ? [8] 

168 13272 S100A9 (calgran. B) long 

cyst 

P06702 13264.490 13271.977 41.6 acetylAcetyl, M missing 

(N-term), cysteinyl (C2) 

↑ pre-term ? [8] 

169 13280 aPRP (Db-f) di-phosph P02810 13273.115 13279.846 23.3 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

170 13291 Ib8a (Con1+) glycosyl. P02812 13283.521 13290417 15.6 glycosylGlycosyl. (N98) 

 (see n.156–157) 

Fuc1Gal1Man3GlcNAc3 

 only Only parotid [19] 

171 13343 cystatin Cystatin C (γ trace) P01034 13335.576 13343.108 35.1 (2 S-S)  Sm/Sl (traces in 

parotid) 

[26,27] 

172 13352 S100A9 (calg. B) long cyst 

phosph. 

P06702 13344.456 13351.957 41.6 acetylAcetyl, M missing 

(N-term), cysteinyl (C2), 

phosph (T112) 

↑ pre-term ? [8] 

173 13360 aPRP (Db-f) tri-phosph P02810 13353.081 13359.826 23.0 pyroglu Pyroglu (Q), tri-

phosph (S8, S17, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 
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174 13458 S100A9 (calg. B) long glut P06702 13450.553 13458.145 41.5 acetylAcetyl, M missing 

(N-term), glutathionyl 

(C2) 

↑ pre-term ? [8] 

175 13538 S100A9 (calg. B) long glut 

phosph 

P06702 13530.520 13538.124 41.5 acetylAcetyl, M missing 

(N-term), glutathionyl 

(C2), phosph (T112) 

↑ pre-term ? [8] 

176 13656 Ib8a(Con-1+) glycosyl. P02812 13648.653 13655.755 15.6 glycosylGlycosyl. (N98) 

 (see n.156–157) 

Fuc1Gal2Man3GlcNAc4 

 only Only parotid [19] 

177 13780 non Non iden.    39.3  ↑ pre-term ? [8] 

178 13802 Ib8a(Con-1+) glycosyl. P02812 13794.711 13801.898 15.6 glycosylGlycosyl. (N98) 

 (see n.156–157) 

Fuc2Gal2Man3GlcNAc4 

 only Only parotid [19] 

179 13948 Ib8a(Con-1+) glycosyl. P02812 13940.769 13948.041 15.6 glycosylGlycosyl. (N98) 

 (see n.156–157) 

Fuc3Gal2Man3GlcNAc4 

 only Only parotid [19] 

180 14094 Ib8a(Con-1+) glycosyl. P02812 14086.827 14094.184 15.6 glycosylGlycosyl. (N98) 

 (see n.156–157) 

Fuc4Gal2Man3GlcNAc4 

 only Only parotid [19] 

181 14185 cystatin Cystatin S P01036 14176.808 14184.725 35.3 2 S-S  Sm/Sl (traces in 

parotid) 

[26,27] 

182 14240 Ib8a(Con-1+) glycosyl. P02812 14232.885 14240.327 15.6 glycosylGlycosyl. (N98) 

 (see n.156–157) 

Fuc5Gal2Man3GlcNAc4 

 only Only parotid [19] 
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183 14265 cystatin Cystatin S1 P01036 14256.774 14264.705 35.3 phosph Phosph (S3), (2 

S-S) 

 Sm/Sl (traces in 

parotid) 

[26,27] 

184 14281 cystatin Cystatin S1 mono-

ox. 

P01036 14272.769 14280.704 35.2 phosph Phosph (S3), 

oxidation (1 O) 

unknown res., (2 S-S) 

 Sm/Sl (traces in 

parotid) 

[27] 

185 14297 cystatin Cystatin S1 di-ox. P01036 14288.764 14296.703 35.2 phosph Phosph (S3), 

oxidation (2 O) 

unknown res., (2 S-S) 

 Sm/Sl (traces in 

parotid) 

[27] 

186 14312 cystatin Cystatin SN P01037 14304.094 14312.038 34.6 (2 S-S)  Sm/Sl (traces in 

parotid) 

[26,27] 

187 14328 cystatin Cystatin SN mono-

ox. 

P01037 14320.089 14328.037 33.9 oxidation Oxidation (1 

O) unknown res., (2 S-S) 

 Sm/Sl (traces in 

parotid) 

[26,27] 

188 14344 cystatin Cystatin SN di-ox. P01037 14336.084 14344.036 33.7 oxidation Oxidation (1 

O) unknown res., (2 S-S) 

 Sm/Sl (traces in 

parotid) 

[27] 

189 14345 cystatin Cystatin S2 P01036 14336.740 14344.684 35.3 diDi-phosph (S1,S3), (2 

S-S) 

 Sm/Sl (traces in 

parotid) 

[26,27] 

190 14346 cystatin Cystatin SA P09228 14338.008 14346.018 36.8 2 S-S  Sm/Sl (traces in 

parotid) 

[26,27] 

191 14361 cystatin Cystatin S2 mono-

ox. 

P01036 14352.735 14360.684 35.2 diDi-phosph (S1,S3), 

oxidation (1 O) 

unknown res., (2 S-S) 

 Sm/Sl (traces in 

parotid) 

[27] 

192 14362 cystatin Cystatin SA mono-

ox 

P09228 14354.003 14362.018 36.6 oxidation Oxidation (1 

O) unknown res., (2 S-S) 

 Sm/Sl (traces in 

parotid) 

[27] 

193 14377 cystatin Cystatin S2 di-ox. P01036 14368.730 14376.683 35.2 diDi-phosph (S1,S3), 

oxidation (2 O) 

unknown res., (2 S-S) 

 Sm/Sl (traces in 

parotid) 

[27] 
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194 14424 cystatin Cystatin SN TFA 

adduct 

P01037 14416.072 14424.046 34.6 (2 S-S) – artifact artifactArtifact artifactArtifact [3] 

195 14536 cystatin Cystatin SN 2TFA 

adduct 

P01037 14528.050 14536.055 34.6 (2 S-S) – artifact artifactArtifact artifactArtifact [3] 

196 14693 Lysozyme P61626 14684.097 14692.604 35.6 (4 S-S) ↑ pre-term ? [8] 

197 14990 non Non iden.    35.4  ↑ pre-term ? [8] 

198 15079 non Non iden.    34.6  ↑ pre-term ? [8] 

199 15127 α-globin P69905 15117.892 15126.853 43.0   ?  

200 15354 aPRP (PIF-s) non-phosph P02810 15346.308 15354.351 23.2 pyroglu Pyroglu (Q) ↑ preterm both Both major 

glands (↑ parotid) 

[7,20,26] 

201 15354 aPRP (PRP-1) non-phosph P02810 15346.308 15354.351 23.2 pyroglu Pyroglu (Q) ↑ preterm both Both major 

glands (↑ parotid) 

[7,20,26] 

202 15355 aPRP (PRP-2) non-phosph P02810 15347.292 15355.336 23.2 pyroglu Pyroglu (Q) ↑ preterm both Both major 

glands (↑ parotid) 

[7,20,26] 

203 15381 aPRP (Pa 1-mer) mono-

phosph 

P02810 15373.182 15381.282 23.3 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

 enriched Enriched 

granules 

preparations 

[20,26] 

204 15434 aPRP (PIF-s) mono-phosph P02810 15426.274 15434.331 22.9 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

↑ ASD and 

preterm 

both Both major 

glands (↑ parotid) 

[7,20,26,46] 

205 15434 aPRP (PRP-1) mono-

phosph 

P02810 15426.274 15434.331 22.9 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

↑ ASD and 

preterm 

both Both major 

glands (↑ parotid) 

[7,20,26,46] 

206 15435 aPRP (PRP-2) mono-

phosph 

P02810 15427.258 15435.316 22.9 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

↑ ASD and 

preterm 

both Both major 

glands (↑ parotid) 

[7,20,26,46] 
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207 15461 aPRP (Pa 1-mer) di-phosph P02810 15453.148 15461.262 23.0 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

 enriched Enriched 

granules 

preparations 

[26] 

208 15514 aPRP (PIF-s) di-phosph P02810 15506.240 15514.311 22.2 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

↓ preterm both Both major 

glands (↑ parotid) 

[7,20,26] 

209 15514 aPRP (PRP-1) di-phosph P02810 15506.240 15514.311 22.2 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

↓ preterm both Both major 

glands (↑ parotid) 

[7,20,26] 

210 15515 aPRP (PRP-2) di-phosph P02810 15507.224 15515.296 22.2 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

↓ preterm both Both major 

glands (↑ parotid) 

[7,20,26] 

211 15541 aPRP (Pa 1-mer) tri-phosph P02810 15533.115 15541.242 22.7 pyroglu Pyroglu (Q), tri-

phosph (S8, S17, S22) 

 enriched Enriched 

granules 

preparations 

[26] 

212 15546 aPRP (PRP-1 type) mono-

phos TFA adduct 

P02810 15538.252 15546.340 23.9 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

– artifact 

artifactArtifact artifactArtifact [3] 

213 15594 aPRP (PIF-s) tri-phosph P02810 15586.207 15594.291 21.6 pyroglu Pyroglu (Q), tri-

phosph (S8, S17, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

214 15594 aPRP (PRP-1) tri-phosph P02810 15586.207 15594.291 21.6 pyroglu Pyroglu (Q), tri-

phosph (S8, S17, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

215 15595 aPRP (PRP-2) tri-phosph P02810 15587.191 15595.276 21.6 pyroglu Pyroglu (Q), tri-

phosph (S8, S17, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

216 15626 aPRP (PRP-1 type) di-phos 

TFA adduct 

P02810 15618.218 15626.320 23.3 pyroglu Pyroglu (Q), di-

phosph (S8, S22) – 

artifact 

artifactArtifact artifactArtifact [3] 

217 15867 β-globin P68871 15858.257 15867.216 42.5   ? [8] 
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218 15995 γ-globin (G-γgamma) P69892 15986.262 15995.248 43.7   ? [8] 

219 16001 non Non iden.    27.4  ↑ pre-term ? [8] 

220 16009 γγ-globin (A-γgamma) P69891 16000.278 16009.275 43.9   ? [8] 

221 17239 SPRR3 (cornifin β) 17 kDa A5YKK8 17228.798 17238.816 27.4 acetylAcetyl, M missing 

(N-term) (S-S var) 

↑ pre-term ? [8,33] 

222 17358 SPRR3 17 kDa mono-cyst. A5YKK8 17347.802 17357.955 27.8 acetylAcetyl, M missing 

(N-term), mono-

cyisteinyl (S-S var.) 

↑ pre-term ? [8,33] 

223 17473 aPRP (Db-s) non-phosph P02810 17463.348 17472.647 23.8 pyroglu Pyroglu (Q)  both Both major 

glands (↑ parotid) 

[20,26] 

224 17544 SPRR3 17 kDa mono-glut A5YKK8 17533.866 17544.122 27.8 acetylAcetyl, M missing 

(N-term), mono-

glutathionyl (S-S var.) 

↑ pre-term ? [8,33] 

225 17553 aPRP (Db-s) mono-phosph P02810 17543.314 17552.627 23.4 pyroglu Pyroglu (Q), 

mono-phosph (S8 or S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

226 17633 aPRP (Db-s) di-phosph P02810 17623.281 17632.607 22.9 pyroglu Pyroglu (Q), di-

phosph (S8, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

227 17713 aPRP (Db-s) tri-phosph P02810 17703.247 17712.587 22.7 pyroglu Pyroglu (Q), tri-

phosph (S8, S17, S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

228 17803 Non iden.    36.4  ↑ pre-term ? [8] 

229 18065 SPRR3 (cornifin β) 18 kDa Q9UBC9 18054.203 18064.795 27.6 acetylAcetyl, M missing 

(N-term) (S-S var.) 

↑ pre-term ? [8,33] 
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230 18184 SPRR3 18 kDa mono-cyst Q9UBC9 18173.207 18183.933 28.0 acetylAcetyl, M missing 

(N-term), mono-

cysteinyl (S-S var.) 

↑ pre-term ? [8,33] 

231 18303 SPRR3 18 kDa di-cyst Q9UBC9 18292.211 18303.071 28.0 acetylAcetyl, M missing 

(N-term), di-cysteinyl 

(S-S var.) 

↑ pre-term ? [8,33] 

232 18370 SPRR3 18 kDa mono-glut Q9UBC9 18359.271 18370.100 28.0 acetylAcetyl, M missing 

(N-term), mono-

gluthationyl (S-S var.) 

↑ pre-term ? [8,33] 

233 18420 non Non iden.    36.2  ↑ pre-term ? [8] 

234 18675 SPRR3 18 kDa di-glut Q9UBC9 18664.339 18675.406 28.1 acetylAcetyl, M missing 

(N-term), di-glutathionyl 

(S-S var.) 

↑ pre-term ? [8,33] 

235 20206 non Non iden.    37.9  ↑ pre-term ? [8] 

236 20930 non Non iden.    33.6  ↑ pre-term ? [8] 

237 22361 cystatin Cystatin B S-S 

dimer 

P04080 22349.202 22361.246 34.3 S-S dimer (Cys3) acetyl 

N-term 

 2 [28] 

238 22365 histone Histone H1c P16402 ? ? 34.4 disagrement 

Disagreement between 

exp. and theor. Mass 

↑ pre-term ? [8] 

239 22698 non Non iden.    36.9  ↑ pre-term ? [8] 

240 22778 non Non iden.    36.9 phosph Phosph isoform 

of 22698? 

↑ pre-term ? [8] 
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241 23462 non Non iden. (prob. bPRP)    17.6 unknown Unknown 

bPRP (Ps1?) 

↓ paediatric 

age 

only Only parotid [7,16,17] 

242 24652 non Non iden.    44.8  ↑ pre-term ? [8] 

243 24904 non Non iden.    40.0 peroxiredoxin 

Peroxiredoxin 6? 

(pending for charact.) 

↑ pre-term ? [8] 

244 27050 non Non iden.    26.7  ↑ pre-term ? [8] 

245 29412 non Non iden. (prob. bPRP)    16.8 unknown Unknown 

bPRP (Ps2?) 

↓ paediatric 

age 

only Only parotid [7,16,17] 

246 30712 aPRP (Pa 2-mer) tri-phosph 

Des Q150 

P02810 30696.256 30712.398 24.0 pyroglu Pyroglu (Q), di-

phosph (S8, S22) + mono-

phos (S8 or S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

247 30761 aPRP (Pa 2-mer) di-phosph P02810 30744.349 30760.549 24.5 pyroglu Pyroglu (Q), di-

phosph 2 × (S8 or S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

248 30792 aPRP (Pa 2-mer) tetra-

phosph Des Q150 

P02810 30776.223 30792.378 23.6 pyroglu Pyroglu (Q), 

tetra-phosph 2 × ×(S8, 

S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

249 30841 aPRP (Pa 2-mer) tri-phosph P02810 30824.315 30840.529 24.0 pyroglu Pyroglu (Q), di-

phosph (S8, S22) + mono-

phos (S8 or S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

250 30921 aPRP (Pa 2-mer) tetra-

phosph 

P02810 30904.281 30920.509 23.6 pyroglu Pyroglu (Q), 

tetra-phosph 2 × ×(S8, 

S22) 

 both Both major 

glands (↑ parotid) 

[20,26] 

251 31000 aPRP (Pa 2-mer) penta- P02810 30984.247 31000.489 23.2 pyroglu Pyroglu (Q), di-  both Both major [20,26] 
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phosph phosph (S8, S22) + tri-

phos (S8, S17, S22) 

glands (↑ parotid) 

252 31032 aPRP (Pa 2-mer) tetra-

phosph TFA add 

P02810 31016.259 31032.517 23.6 pyroglu Pyroglu (Q), 

tetra-phosph 2 × ×(S8, 

S22) – artifact 

artifactArtifact artifactArtifact [3] 

253 31144 aPRP (Pa 2-mer) tetra-

phosph 2 TFA add 

P02810 31128.237 31144.526 23.6 pyroglu Pyroglu (Q), 

tetra-phosph 2 × ×(S8, 

S22) – artifact 

artifactArtifact artifactArtifact [3] 

254 34475 SPRR3 17 kDa homo-2-

mer 

A5YKK8 34455.580 34475.617 28.2 acetylAcetyl, M missing 

(N-term) (S-S var) S-S 

homo-2-mer 

↑ pre-term ? [8,33] 

255 35301 SPRR3 17–18 kDa hetero-

2-mer 

A5YKK8 

; 

Q9UBC9 

35280.985 35301.595 28.2 acetylAcetyl, M missing 

(N-term) (S-S var) S-S 

hetero-2-mer 

↑ pre-term ? [8,33] 

256 36127 SPRR3 18 kDa homo-2-

mer 

Q9UBC9 36106.391 36127.573 28.2 acetylAcetyl, M missing 

(N-term) (S-S var) S-S 

homo-2-mer 

↑ pre-term ? [8,33] 

aWith an error of ±1:10000. 

bWith a variation of ± 0.8 min. 

ASD: autism spectrum disorder; GCF: gingival crevicular fluid. 

Figure 1. Flowchart of the top-down proteomic platform typically utilized for the identification of the components of whole saliva reported in 

Table 1I. (TFA: 2,2,2-trifluoroacetic acid). 
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Figure 2. Typical HPLC-ESI-MS TIC (Total ion current) profiles of the acidic soluble fraction of human whole saliva of subjects with different 

ages. TIC profiles from (a) to (c) were from whole saliva samples of the same preterm newborn collected at different post-conceptional age 

(PCA). TIC profiles from (d) to (g) were from different healthy subjects. Apart from small variations linked to inter-individual differences, the 

seven profiles are good representative (qualitatively and quantitatively) of the profiles observed in other subjects of the same age range. The 

elution clusters of the most relevant salivary peptides and proteins reported in Table 1 I (except human serum albumin (HSA) and α-amylase) are 

evidenced on the top of (a) and (g) profiles. 

Figure 3. Extracted ion current (XIC) procedure for the detection of thymosin β4 in a sample of whole saliva of a preterm newborn (227 days of 

post-conceptional age; A and B profiles) and of an adult (30 years; C and D profiles). A and C correspond to the total ion current (TIC) profiles, 

B and D to the XIC profiles. XIC procedure was carried out selecting three m/z values ([M+3H]
3+

 = 1655.5 m/z; [M+4H]
4+

 = 1241.9 m/z 

[M+5H]
5+

 = 993.8 m/z) corresponding to characteristic ions of thymosin β4. XIC procedure ensures an improvement of the signal to noise ratio 

with an enhancement of the sensitivity. NL: , normalization level; MA: , measured area; RT: , retention time. 
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