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Abstract. This paper is concerned with a parabolic Keller-Segel system in

Rn, with n = 2 or 3, under Neumann boundary conditions. First, important

theoretical and general results dealing with lower bounds for blow-up time
estimates are summarized and analyzed. Next, a resolution method is proposed

and used to both compute the real blow-up times of such unbounded solutions

and analyze and discuss some of their properties.

1. Introduction. In 1970 Keller and Segel proposed a mathematical model of
chemotaxis phenomena; it consists of a system of parabolic equations (see [7]),
whose solution describes the movement of cells in a bounded domain in response
to the presence of a chemical substance which is inhomogeneously distributed in
space. The mathematical formulation of this problem is prescribed by the following
system of PDEs: {

ut = ∇ · (µ∇u− χu∇v),

τvt = ∆v − k2v + u.
(1)

In system (1) the spatial distribution of the cells/bacteria is identified with the func-
tion u and that of the chemical substance/chemoattractant with v. The chemoat-
tractant spreads diffusively and decays with rate k2; it is also produced by the
bacteria with rate 1. The bacteria diffuse with mobility µ and also drift in the
direction of the gradient of the concentration of the chemoattractant with velocity
χ|∇v|; χ is called chemosensitivity. Furthermore, the parameter τ ≥ 0 is a mea-
sure of the ratio of the time scales of the cell movement and the distribution of
the chemical. Once an initial distribution for both the bacteria and the chemical is
given, the homogeneous Neumann boundary conditions represent the most natural
and real situation of system (1); no net flux of the distributions with the external
domain is permitted.
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By rescaling the equations, we can always rewrite (1) with τ = 0 or τ = 1; in
the former case the model is called parabolic-elliptic and in the latter parabolic-
parabolic. In particular, for the parabolic-elliptic the spread rates degenerate to
infinite, i.e. the chemical diffuses much faster than the cells move. We refer to
paper [6] for a series of results dealing with some properties of the solutions of (1)
in the parabolic-elliptic case.

In this manuscript we are interested in chemotactic collapse, a phenomenon con-
nected to the same model (1); it is experimentally observed that the bacteria may
concentrate in one or more points (see [5]). On the other hand, as discussed in [3]
and [4], the so called isothermal collapse (related to relativistic or ultra-cold gases)
represents another possible singular scenario.

From a mathematical point of view, the collapse corresponds to the blow-up
of the solution at some finite time t?. In this sense, the blow-up phenomena of
solutions to various problems, particularly for nonlinear parabolic systems, have
received considerable attention (see, for instance, [9]-[14]).

Specifically, this work is concerned with the behavior of nonnegative and classical
solutions (u, v) = (u(x, t), v(x, t)), with x = (x1, . . . , xn) for n = 2 or 3, of the
following system 

ut = ∆u− k1∇ · (u∇v), x ∈ Ω, t ∈ (0, t?),

vt = k2∆v − k3v + k4u, x ∈ Ω, t ∈ (0, t?),

uν = 0 and vν = 0, x ∈ ∂Ω, t ∈ (0, t?),

u = u0(x) ≥ 0 and v = v0(x) ≥ 0, x ∈ Ω,

(2)

where Ω is a regular domain of Rn, whose boundary ∂Ω is sufficiently smooth,
ν = (ν1, . . . , νn) stands for the unit outer normal to ∂Ω, kI (I = 1, 2, 3, 4) are
positive constants, and u0(x) and v0(x) are nonnegative functions satisfying the
corresponding compatibility conditions on ∂Ω.

We focus our attention on lower bounds and blow-up times of unbounded solu-
tions of problem (2). Precisely, in §2 we recall the main results obtained by Payne
and Song in [15]; in this work the authors derive a first order time dependent dif-
ferential inequality by means of an appropriate auxiliary function (herein called
W -norm) of the solution of (2), depending on u and ∆v. Subsequently, they give
an explicit lower bound of t? in the sense of this norm, for both n = 2 and n = 3, by
means of analytical techniques. This lower bound estimate depends on the geometry
of Ω, on the data kI (I = 1, 2, 3, 4), and on u0(x) and v0(x).

Furthermore, there exist numerous papers devoted to the quantitative analysis
of blowing up solutions of problems defined on bounded or unbounded domains
(see for example [1] and [2]). In this sense, §3 deals with the resolution of problem
(2); starting from its weak formulation, we propose an algorithm based on a mixed
Finite Element Method in space and Euler Method in time (see [8]) capable of
numerically solving the above system. This resolution approach is implemented in
the 2D case to analyze the behaviors of the aforementioned W -norm as well of the
infinity norm (indicated with L-norm) of some blowing up solutions of (2); more
precisely, the values of the corresponding blow-up times in these two norms and
evolutions of the blow-up spatial point are studied.

Finally, the paper is complemented by some conclusions (§4).
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2. An explicit lower bound: main results. To derive a lower bound of the
blow-up time t? of a solution (u, v) of (2), let us introduce the auxiliary function

W (t) = α

∫
Ω

u2dx +

∫
Ω

(∆v)2dx, (3)

for some positive constant α to be specified, and also give the following

Definition 2.1. A classical solution (u, v) of (2) blows up in W -norm (3) at time
t? if

lim
t→t?

W (t) =∞.

As we said, the details of these two theorems are available in paper [15]; precisely,
by using the same nomenclature we have:

Theorem 2.2. (Lower bound for t? in the 2D case; n = 2). Let (u, v) be a classical
solution of (2), Ω being a bounded and convex domain in R2, with the origin inside.

Assume α =
k2
4

k2
. If (u, v) becomes unbounded in W -norm (3) at some finite time

t?, then an estimate from below for t? is given by

t? ≥
∫ ∞
W0

dη

A1η
3
2 +B1η2

, (4)

where W0 = W (0) = α
∫

Ω
u2

0dx +
∫

Ω
(∆v0)2dx, A1 and B1 being positive constants

depending on the geometry of Ω and on the constant kI (I = 1, 2, 3, 4).

Theorem 2.3. (Lower bound for t? in the 3D case; n = 3). Let (u, v) be a classical
solution of (2), Ω being a bounded and convex domain in R3, with the origin inside.

Assume α =
k2
4

k2
. If (u, v) becomes unbounded in W -norm (3) at some finite time

t?, then an estimate from below for t? is given by

t? ≥
∫ ∞
W0

dη

Aη
3
2 +Bη3

, (5)

where W0 = W (0) = α
∫

Ω
u2

0dx +
∫

Ω
(∆v0)2dx, A and B being positive constants

depending on the geometry of Ω and on the constant kI (I = 1, 2, 3, 4).

Remark 1. By analyzing the proofs of Theorems 2.2 and 2.3, it is seen that since
the constants A1, B1, A and B are not uniquely determined, neither estimate in
(4) and in (5) is. In this sense they represent one of the possible lower bounds of t?

in the W -norm. On the other hand, the integrals in (4) and in (5) can be explicitly
computed: ∫ ∞

W0

dη

A1η
3
2 +B1η2

=
2

A1

√
W0

+
B1

A2
1

log
( B2

1W0

(A1 +B1

√
W0)2

)
, (6)

and ∫ ∞
W0

dη

Aη
3
2 +Bη3

=

√
3πB

1
3

A
4
3

− 2
√

3B
1
3

3A
4
3

arctan
(A 1

3 − 2B
1
3

√
W0√

3A
1
3

)
+

2

A
√
W0

+
B

1
3

3A
4
3

log
(A 2

3 −A 1
3B

1
3

√
W0 +B

2
3W0

(A
1
3 +B

1
3

√
W0)2

)
.

(7)

First of all, let us underline that the expression A
2
3−A 1

3B
1
3

√
W0+B

2
3W0 is positive,

so that the logarithm in (7) is well defined. Moreover, (6) and (7) decrease with W0

increasing (actually also t? does, as shown in examples of §3.2.1); as a consequence,
if W0 is large enough, both estimates are very close to zero. Therefore, since the
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existence of blowing up solutions of (2) is also linked to the magnitudes of its initial
data (i.e., W0), we expect that the real value of t? is in general considerably larger
than the estimates given in the two theorems (see some examples in [16]).

We conclude this section by mentioning that in [13] the authors of this manuscript
investigate system (2) under a more general assumption, consisting of choosing
kI = kI(t) (I = 1, 2, 3, 4) and non constant; in fact, the time dependence of these
coefficients may affect the behavior of the solution (u, v).

Input: (u0,v0), ∆t, ε0,m = 0

solving (10) and (11)

��
(um,vm)

computing norm at step m by (13)

))
||(u, v)||m

if ||(u,v)||m≤ε0

uu
if ||(u,v)||m>ε0

U5

m = m+ 1

solving (10) and (11)

OO

Solution: t? ≈ m∆t

Table 1. Computation of the blow-up time t?. The necessary in-
put data are the threshold ε0, the time step ∆t and the initial da-
tum (u0,v0); subsequently, it is possible to calculate the sequences
(um,vm) and ||(u, v)||m and, consequently, to compute t?. Let us
clarify that if ||(u, v)||m = Wm (respectively, Lm) t? represents t?W
(respectively, t?L)

3. Numerical resolution method. Let us give a resolution method for system
(2). We propose a mixed Finite Element Method in space and Euler Method in
time algorithm. Let us point out that even though Euler’s approximation produces
results with first order precision, it is totally appropriate to the aims of our research
(see [16]).

3.1. Finite element method: semi-discretization in space. If a mesh of Ω ⊂
Rn (n = 2 and 3) is fixed and N represents the total number of nodes of Ω, let
(U ,V) be the numerical approximation of the solution (u, v) of (2): therefore, by
separating variables {

U(x, t) =
∑N

i=1 u
i(t)ϕi(x),

V(x, t) =
∑N

i=1 v
i(t)ϕi(x),

(8)

where ϕi(x) is the standard quadratic basis function at the vertex xi, for i = 1, ..., N .
Thanks to the divergence theorem and the homogeneous boundary conditions of
system (2), by multiplying its first two equations by a generic test function ϕj(x),
the following variational form in space is achieved:{

(Ut, ϕj) + (∇U ,∇ϕj) = k1(U∇V,∇ϕj),

(Vt, ϕj) + k2(∇V,∇ϕj) = k4(U , ϕj)− k3(V, ϕj),
j = 1, . . . , N, t ≥ 0, (9)

where (·, ·) denotes the usual L2 inner product.
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To compute the time evolutions of both coefficients ui and vi appearing in (8),
let ∆t = tm+1−tm be a given time step, with m = 0, 1, 2, . . . (t0 = 0), and (Um,Vm)
the approximation of (U(x, t),V(x, t)) at time tm. By applying an implicit Euler
finite difference approximation to system (9), it is seen that{

(Um+1−Um
∆t , ϕj) + (∇Um+1,∇ϕj) = k1(Um∇Vm,∇ϕj),

(Vm+1−Vm
∆t , ϕj) + k2(∇Vm+1,∇ϕj) = k4(Um, ϕj)− k3(Vm, ϕj),

i.e., taking into account (8),

M
um+1 − um

∆t
+Kum+1 = k1F(um,vm), (10)

and

M
vm+1 − vm

∆t
+ k2Kvm+1 = k4Mum − k3Mvm, (11)

with M ∈ RN×N (mass matrix), K ∈ RN×N (stiffness matrix) and F(um,vm) ∈
RN such that

Mij =
∫

Ω
ϕi(x)ϕj(x)dx,

Kij =
∫

Ω
∇ϕi(x) · ∇ϕj(x)dx,

F(um,vm)j =
∫

Ω
(
∑N

p,q=1 u
p
mv

q
mϕ

p(x)∇ϕq(x)) · ∇ϕj(x)dx,

being um = (u1
m, . . . , u

N
m)T and vm = (v1

m, . . . , v
N
m)T , where T indicates the transpo-

sition operator. Under these circumstances, (uim, v
i
m) represents the approximation

of the solution (u, v) of problem (2) at time tm, for m = 0, 1, 2, . . ., and at space
point xi, for i = 1, 2, . . . , N.

In this way the continuous solution of the nonlinear system (2) is identified to
the discrete solution of the linear system composed by (10) and (11)

3.2. Numerical algorithm: computing the blow-up times. Theorems 2.2 and
2.3 return an estimate of a lower bound for the blow-up time of positive solutions of
(2) in terms of W -norm (3). In this section we will analyze the blow-up phenomena
also by considering the natural infinity norm (indicated with L-norm) of a solution
(u, v) of the same system (see [5]):

L(t) = max
{

max
x∈Ω
|u(x, t)|,max

x∈Ω
|v(x, t)|

}
. (12)

Definition 3.1. A classical solution (u, v) of (2) blows up in L-norm (12) at time
t? if

lim
t→t?

L(t) =∞.

By means of the numerical approach presented in §3.1, we want to compare the
blow-up times in the sense of the W -norm and the L-norm. We indicate these values
with t?W and t?L; of course, they depend on the temporal evolutions of the W and
L norms, respectively.

To this end, first of all, we need to numerically quantify the values of the W -norm
and the L-norm at step m, i.e. Wm = W (tm) and Lm = L(tm); according to (3)
and (12), we can defineWm = α

∫
Ω

(∑n
i=1 u

i
mϕ

i(x)
)2

dx +
∫

Ω

(∑n
i=1 v

i
m∆ϕi(x)

)2

dx,

Lm = max
{

maxi=1,...,N |uim|,maxi=1,...,N |vim|
}
,

(13)
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with α as in Theorems 2.2 and 2.3. Therefore, we propose the following algorithm
to calculate t?W (i.e. t?L) for unbounded solutions of (2). Let ε0 be a fixed threshold:
once the initial data (u0,v0) is given, u1 and v1 are computed from (10) and
(11), respectively. Subsequently, (u1,v1) is used to update (u2,v2), and so on; we
exit the loop when the W -norm (i.e. the L-norm) of the solution at step m, Wm

(i.e. Lm), is larger than the initial threshold ε0 (Stopping Criterion); consequently,
t?W ≈ m∆t (i.e. t?L ≈ m∆t). The scheme in Table 1 summarizes this algorithm.

3.2.1. Numerical tests for n = 2. Let us consider the domain Q = Ω × R+
0 , being

Ω = [−2, 2]× [−2, 2] the square with center in the origin of the axes O = (0, 0) and
length 4. We take a uniform mesh, obtained by dividing each side of the square
into 200 equal parts (i.e. 40401 vertexes and 80000 triangles). We also choose

v0(x) = 0.55e−(x2+y2)(4− x2)2(4− y2)2 as initial condition (the chemical signal at
time t0 = 0), and ε0 = 106 as the threshold and ∆t = 10−4 as the integration step.
Moreover, we fix the following values for kI : k1 = 0.2, k2 = k4 = 1 and k3 = 0.1.
Once these data are set, we solve (2) in two cases, depending on the choice of the
other initial condition u0(x) (the bacteria at time t0 = 0):

Test 1: u0(x) = 1.15e−(x2+y2)(4− x2)2(4− y2)2;
Test 2: u0(x) = 24(((x2 − 4)2 + (y2 − 4)2 + 1)− 0.05((x2 − 4)4 + (y2 − 4)4)).

(a) Evolution of maxx∈Ω |u(x, t)| (b) Evolution of maxx∈Ω |v(x, t)|

(c) Comparison between maxx∈Ω |u(x, t)|
(continuous line) and maxx∈Ω |v(x, t)|
(dashed line)

(d) Evolutions of α
∫
Ω u

2dx (continuous

line) and
∫
Ω(∆v)2dx (dashed line)

(e) Comparison between the W -norm (contin-
uous line) and the L-norm (dashed line)

(f) Evolution in time of u(O)

Figure 1. Analysis of the behaviors of the W -norm and the L-
norm in time; the horizontal clear line represents the threshold

We observe that both v0(x) and u0(x) chosen in tests 1 and 2 verify the compatibility
conditions associated to system (2). The results obtained by running the algorithm
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of §3.2 are presented in Table 2; it points out that the blow-up time in the sense of
Definition 2.1 is smaller than the value computed in the sense of Definition 3.1. This
is justified by the different behaviors of the two norms, W and L; in fact, Figures 1(e)
and 3(a) show that the W -norm grows considerably faster with respect the L-norm.
In the same table we can observe that the blow-up time decreases with increasing the
corresponding norm of the initial data (see Remark 1). Furthermore, as we briefly
discussed in §1, if the initial cell density is sufficiently large the phenomenon of cell
aggregation is produced; the nonlocal chemical interaction dominates diffusion and
results in a blow-up of the bacteria distribution, represented by function u. Both
examples we are proposing obey this phenomenon; in either case, the contribution
of the part of both norms W and L corresponding to u dominates that of v. In
particular, for Test 1, this is observed in Figures 1(a), 1(b), 1(c) and 1(d).

(a) Solution u at time t = 0.002;

u(O) ≈ 299.268

(b) Solution u at time t = 0.0067;

u(O) ≈ 796.96

(c) Solution u at time t = 0.0133;
u(O) ≈ 1874.53

(d) Solution u at time t = 0.023;
u(O) ≈ 19973.6

Figure 2. Test 1: numerical solution. Evolution of u and its
graphical representation: with t increasing the value of u at O
increases

On the other hand, let us also specify that the initial function u0 of Test 1 has one
peak in the origin O. The effect of the blow-up is to produce a larger and sharper
peak at this same point (see Figure 2); Figure 1(f) exhibits the temporal evolution
of u(O), that in this case coincides with that of the L-norm. On the contrary,
the initial function u0 of Test 2 has four peaks in the points P1 = (x0, y0), P2 =

(x0,−y0), P3 = (−x0, y0) and P4 = (−x0,−y0) (with x0 = y0 =
√

4−
√

10), where
it achieves the same value. As shown in Figure 4 they coalesce and produce a single
peak in the origin O. More exactly, the values of u in these four points decrease
while its value at the origin O, which initially represents a local minimum of u0,
increases and eventually blows up (Figures 3(b), 3(c) and 3(d)).



8 MARIA ANTONIETTA FARINA, MONICA MARRAS AND GIUSEPPE VIGLIALORO

(a) Comparison between the W -norm (con-

tinuous line) and the L-norm (dashed line)

(b) Evolution of u(P1); u(P1), u(P2), u(P3)

and u(P4) decrease

(c) Evolution in time of u(O) (d) Comparison between the evolutions of

u(P1) (dashed line) and u(O) (continuous

line)

Figure 3. Analysis of the behaviors of the W -norm and the L-
norm in time; the horizontal clear line represents the threshold.
Let us observe that value of u at the blow-up point O increases and
absorbs u(P1), u(P2), u(P3) and u(P4); moreover, the evolution of
u at these point is the same

L0 W0 t?L t?W
Test 1 299.26 481225 0.0268 0.0186
Test 2 263.39 975613 0.0291 0.0097

Table 2. Computing the blow-up times in the sense of the W -
norm and the L-norm

Remark 2. In another example we have chosen as initial data a compatible function
u0(x) presenting four peaks, none at the origin O and one of them considerably
larger than the other peaks and situated at the point (−1,−1) of [−2, 2]× [−2, 2];
also in this case the values at these points decrease contrary to that at the origin
which increases; finally, they coalesce and produce a single peak in O.

4. Conclusions. In this work we have discussed some aspects of a two and three
dimensional Keller-Segel system connected to chemotaxis phenomena. Specifically,
the blowing up behaviors of its positive solutions have been analyzed. We have
started by reviewing theoretical results concerning lower bounds of unbounded so-
lutions in terms of an appropriate norm (the W -norm). In parallel, we have also
proposed a numerical resolution algorithm for the same system; it consists of a
mixed finite-difference and finite-element method. We have applied this algorithm
and given some numerical results for the 2D case; it is shown that with a fixed inte-
gration step highly concentrated blowing up solutions can be successfully captured.
In this sense, we have computed the blow-up time t?W in terms of the W -norm and
also t?L, i.e. that obtained in terms of the more natural infinity norm (the L-norm).
Moreover, an analysis of the temporal evolution of these norms has been carried
out; we observe that even though the W -norm increases considerably faster with
respect to the L-norm, t?W is not so much smaller than t?L. Moreover, the analysis
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(a) Solution u at time t = 0.001;
u(O) ≈ 263.38

(b) Solution u at time t = 0.007;
u(O) ≈ 540.75

(c) Solution u at time t = 0.013;
u(O) ≈ 1223.53

(d) Solution u at time t = 0.023;
u(O) ≈ 41973.6

Figure 4. Test 2: numerical solution. Evolution of u and its
graphical representation: with t increasing the value of u in O
increases and the values of u in P1, P2, P3 and P4 decrease, even
with the same behaviors

of the proposed tests also allows us to conclude that the method is coherent with
the expected results: in fact, for instance, the solution depends on that of the cor-
responding initial function and the more the initial norm (as much W as well L)
increases the more the associated blow-up time decreases.
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