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Abstract Some critical open problems of epistemic logics can be investigated in the frame-
work of a quantum computational approach. The basic idea is to interpret sentences like
“Alice knows that Bob does not understand that π is irrational” as pieces of quantum infor-
mation (generally represented by density operators of convenient Hilbert spaces). Logical
epistemic operators (to understand, to know. . .) are dealt with as (generally irreversible)
quantum operations, which are, in a sense, similar to measurement-procedures. This ap-
proach permits us to model some characteristic epistemic processes, that concern both hu-
man and artificial intelligence. For instance, the operation of “memorizing and retrieving
information” can be formally represented, in this framework, by using a quantum teleporta-
tion phenomenon.
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1 Introduction

Logical theories of epistemic operators (to know, to believe, . . .) have given rise to a number
of interesting open questions. Most standard approaches (based on extensions of classical
logic) succeed in modelling a general notion of “potential knowledge”. In this framework,
a sentence like “Alice knows that π is irrational” turns out to have the meaning “Alice could
know that π is irrational”, rather than “Alice actually knows that π is irrational”. A con-
sequence of such a strong characterization of knowledge is the unrealistic phenomenon of
logical omniscience, according to which knowing a sentence implies knowing all its logical
consequences.

A weaker approach to epistemic logics can be developed in the framework of a quantum
computational semantics. The aim is trying to describe forms of “actual knowledge”, which
should somehow reflect the real limitations both of human and of artificial intelligence.

In quantum computational semantics meanings of sentences are represented as pieces of
quantum information (mathematically described as density operators living in convenient
Hilbert spaces), while the logical connectives correspond to special examples of quantum
logical gates. How to interpret, in this framework, epistemic sentences like “Alice knows
that Bob does not understand that π is irrational”? The leading idea can be sketched as
follows. The semantics is based on abstract structures that contain finite sets of epistemic
agents evolving in time. Each agent (say, Alice at a particular time) is characterized by two
fundamental epistemic parameters:

• A set of density operators, representing the information that is accessible to our agent.
• A “truth-conception” (called the truth-perspective of the agent in question), which is tech-

nically determined by the choice of an orthonormal basis of the two-dimensional Hilbert
space C2. In this way, any pair of qubits, corresponding to the elements of the basis that
has been chosen, can be regarded as a particular idea about the truth-values Truth and Fal-
sity. From a physical point of view, we can imagine that a truth-perspective is associated
to a physical apparatus that permits one to measure a given observable.

The knowledge operations, described in this semantics, turn out to be deeply different
from quantum logical gates, since they cannot be, generally, represented by unitary quantum
operations. The “act of knowing” seems to involve some intrinsic irreversibility, which is,
in a sense, similar to what happens in the case of measurement-procedures.

The first part of this article is devoted to a mathematical description of the notion of
epistemic structure in a Hilbert-space environment, while the semantics for an epistemic
quantum computational language is developed in the second part. We will analyze, in this
framework, some epistemic situations that seem to characterize “real” processes of acquiring
and transmitting information.

2 Quantum Information and Truth-Perspectives

We will first recall some basic notions of quantum computation that will be used in our
semantics. The general mathematical environment is the n-fold tensor product of the Hilbert
space C2:

H(n) := C2 ⊗ · · · ⊗ C2
︸ ︷︷ ︸

n−times

,

where all pieces of quantum information live. The elements |1〉 = (0,1) and |0〉 = (1,0) of
the canonical orthonormal basis B(1) of C2 represent, in this framework, the two classical
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bits, which can be also regarded as the canonical truth-values Truth and Falsity, respectively.
The canonical basis of H(n) is the set

B(n) =
{
|x1〉 ⊗ · · · ⊗ |xn〉 : |x1〉, . . . , |xn〉 ∈ B(1)

}
.

As usual, we will briefly write |x1, . . . , xn〉 instead of |x1〉 ⊗ · · · ⊗ |xn〉. By definition,
a quregister is a unit vector of H(n): qubits are special cases of quregisters, living in the
space H(1). Quregisters thus correspond to pure states, namely to maximal pieces of in-
formation about the quantum systems that are supposed to store a given amount of quan-
tum information. We shall also make reference to mixtures of quregisters, to be called
qumixes, associated to density operators ρ of H(n). We will denote by D(H(n)) the set
of all qumixes of H(n), while D = ⋃

n{D(H(n))} will represent the set of all possible
qumixes. Of course, quregisters can be represented as special cases of qumixes, having
the form P|ψ〉 (the projection over the one-dimensional closed subspace determined by the
quregister |ψ〉).

From an intuitive point of view, a basis-change in C2 can be regarded as a change of
our truth-perspective. While in the canonical case, the truth-values Truth and Falsity are
identified with the two classical bits |1〉 and |0〉, assuming a different basis corresponds
to a different idea of Truth and Falsity. Since any basis-change in C2 is determined by a
unitary operator, we can identify a truth-perspective with a unitary operator T of C2. We
will write:

|1T〉 = T|1〉; |0T〉 = T|0〉,

and we will assume that |1T〉 and |0T〉 represent respectively the truth-values Truth and
Falsity of the truth-perspective T. The canonical truth-perspective is, of course, determined
by the identity operator I of C2. We will indicate by B

(1)
T the orthonormal basis determined

by T; while B
(1)
I will represent the canonical basis.

Any unitary operator T of H(1) can be naturally extended to a unitary operator T(n)

of H(n) (for any n ≥ 1):

T(n)|x1, . . . , xn〉 = T|x1〉 ⊗ · · · ⊗ T|xn〉.

Accordingly, any choice of a unitary operator T of H(1) determines an orthonormal basis
B

(n)
T for H(n) such that:

B
(n)
T =

{
T(n)|x1, . . . , xn〉 : |x1, . . . , xn〉 ∈ B

(n)
I

}
.

Instead of T(n)|x1, . . . , xn〉 we will also write |x1T , . . . , xnT〉.
The elements of B

(1)
T will be called the T-bits of H(1); while the elements of B

(n)
T will

represent the T-registers of H(n).
On this ground the notions of truth, falsity and probability with respect to any truth-

perspective T can be defined in a natural way.

Definition 2.1 (T-true and T-false registers)

• |x1T , . . . , xnT〉 is a T-true register iff |xnT〉 = |1T〉;
• |x1T , . . . , xnT〉 is a T-false register iff |xnT〉 = |0T〉.
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In other words, the T-truth-value of a T-register (which corresponds to a sequence of
T-bits) is determined by its last element.1

Definition 2.2 (T-truth and T-falsity)

• The T-truth of H(n) is the projection operator TP
(n)
1 that projects over the closed subspace

spanned by the set of all T- true registers.
• The T-falsity of H(n) is the projection operator TP

(n)
0 that projects over the closed sub-

space spanned by the set of all T- false registers.

In this way, truth and falsity are dealt with as mathematical representatives of possible
physical properties. Accordingly, by applying the Born-rule, one can naturally define the
probability-value of any qumix with respect to the truth-perspective T.

Definition 2.3 (T-Probability) For any ρ ∈ D(H(n)),

pT(ρ) := Tr
(

TP
(n)
1 ρ

)
,

where Tr is the trace-functional.

We interpret pT(ρ) as the probability that the information ρ satisfies the T-Truth.
In the particular case of qubits, we will obviously obtain:

pT

(
a0|0T〉 + a1|1T〉

)
= |a1|2.

For any choice of a truth-perspective T, the set D of all qumixes can be pre-ordered by a
relation that is defined in terms of the probability-function pT.

Definition 2.4 (Preorder)

ρ &T σ iff pT(ρ) ≤ pT(σ ).

As is well known, quantum information is processed by quantum logical gates (briefly,
gates): unitary operators that transform quregisters into quregisters in a reversible way. Let
us recall the definition of some gates that play a special role both from the computational
and from the logical point of view.

Definition 2.5 (The negation) For any n ≥ 1, the negation on H(n) is the linear operator
NOT(n) such that, for every element |x1, . . . , xn〉 of the canonical basis,

NOT(n)|x1, . . . , xn〉 = |x1, . . . , xn−1〉 ⊗ |1 − xn〉.

In particular, we obtain:

NOT(1)|0〉 = |1〉; NOT(1)|1〉 = |0〉,

according to the classical truth-table of negation.

1As we will see, the application of a classical reversible gate to a register |x1, . . . , xn〉 transforms the (canon-
ical) bit |xn〉 into the target-bit |x′

n〉, which behaves as the final truth-value. This justifies our choice in
Definition 2.1.
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Definition 2.6 (The Toffoli gate) For any n,m,p ≥ 1, the Toffoli gate is the linear opera-
tor T(n,m,p) defined on H(n+m+p) such that, for every element |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗
|z1, . . . , zp〉 of the canonical basis,

T(n,m,p)|x1, . . . , xn, y1, . . . , ym, z1, . . . , zp〉
= |x1, . . . , xn, y1, . . . , ym, z1, . . . , zp−1〉 ⊗ |xnym+̂zp〉,

where +̂ represents the addition modulo 2.

Definition 2.7 (The XOR-gate) For any n,m ≥ 1, the Toffoli gate is the linear operator
XOR(n,m) defined on H(n+m) such that, for every element |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 of the
canonical basis,

XOR(n,m)|x1, . . . , xn, y1, . . . , ym〉 = |x1, . . . , xn, y1, . . . , ym−1〉 ⊗ |xn+̂ym〉,

where +̂ represents the addition modulo 2.

Definition 2.8 (The SWAP-gate) For any n ≥ 1, for any i and for any j (where 1 ≤ i ≤ n

and 1 ≤ j ≤ n), the SWAP gate is the linear operator SWAP(n)
(i,j) defined on H(n) such that,

for every element |x1, . . . , xi, . . . , xj , . . . , xn〉 of the canonical basis,

SWAP(n)
(i,j)|x1, . . . , xi, . . . , xj , . . . , xn〉 = |x1, . . . , xj , . . . , xi, . . . , xn〉.

In other words, SWAP(n)
(i,j) exchanges the i-th with the j -th element in any element of the

basis.

Definition 2.9 (The Hadamard-gate) For any n ≥ 1, the Hadamard-gate on H(n) is the linear
operator

√
I
(n)

such that for every element |x1, . . . , xn〉 of the canonical basis:

√
I
(n)|x1, . . . , xn〉 = |x1, . . . , xn−1〉 ⊗ 1√

2

(
(−1)xn |xn〉 + |1 − xn〉

)
.

In particular we obtain:

√
I
(1)|0〉 = 1√

2

(
|0〉 + |1〉

)
;

√
I
(1)|1〉 = 1√

2

(
|0〉 − |1〉

)
.

Hence,
√

I
(1)

transforms bits into genuine qubits.

Definition 2.10 (The square root of NOT) For any n ≥ 1, the square root of NOT on H(n) is
the linear operator

√
NOT

(n)
such that for every element |x1, . . . , xn〉 of the canonical basis:

√
NOT

(n)|x1, . . . , xn〉 = |x1, . . . , xn−1〉 ⊗
(

1 − i

2
|xn〉 + 1 + i

2
|1 − xn〉

)
,

where i =
√

−1.
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All gates can be naturally transposed from the canonical truth-perspective to any truth-
perspective T. Let G(n) be any gate defined with respect to the canonical truth-perspective.
The twin-gate G

(n)
T , defined with respect to the truth-perspective T, is determined as follows:

G
(n)
T := T(n)G(n)T(n)†

,

where T(n)†
is the adjoint of T.

All T-gates can be canonically extended to the set D of all qumixes. Let GT be any gate
defined on H(n). The corresponding qumix gate (also called unitary quantum operation)
DGT is defined as follows for any ρ ∈ D(H(n)):

DGTρ = GTρG†
T.

It is interesting to consider a convenient notion of distance between truth-perspectives. As is
well known, different definitions of distance between vectors can be found in the literature.
For our aims it is convenient to adopt the Fubini-Study definition of distance between two
qubits.

Definition 2.11 (The Fubini-Study distance) Let |ψ〉 and |ϕ〉 be two qubits.

d
(
|ψ〉, |ϕ〉

)
= 2

π
arccos

∣∣〈ψ |ϕ〉
∣∣.

This notion of distance satisfies the following conditions:

(1) d(|ψ〉, |ϕ〉) is a metric distance;
(2) |ψ〉 ⊥ |ϕ〉 ⇒ d(|ψ〉, |ϕ〉) = 1;
(3) d(|1〉, |1Bell〉) = 1

2 , where |1〉 is the canonical truth, while |1Bell〉 =
√

I
(1)|1〉 = ( 1√

2
,− 1√

2
)

represents the Bell-truth (which corresponds to a maximal uncertainty with respect to
the canonical truth).

On this ground, one can naturally define the epistemic distance between two truth-
perspectives.

Definition 2.12 (Epistemic distance) Let T1 and T2 be two truth-perspectives.

dEp(T1,T2
)
= d

(
|1T1〉, |1T2〉

)
.

In other words, the epistemic distance between the truth-perspectives T1 and T2 is iden-
tified with the distance between the two qubits that represent the truth-value Truth in T1 and
in T2, respectively.

As is well known, a crucial notion of quantum theory and of quantum information is
the concept of entanglement. Consider a composite quantum system S = S1 + · · · + Sn.
According to the quantum theoretic formalism, the reduced state function determines for
any state ρ of S the reduced state Redi1,...,im(ρ) of any subsystem Si1 + · · · + Sim (where
1 ≤ i1 ≤ n, . . . ,1 ≤ im ≤ n). A characteristic case that arises in entanglement-phenomena
is the following: while ρ (the state of the global system) is pure (a maximal information),
the reduced state Redi1,...,im(ρ) is generally a mixture (a non-maximal information). Hence
our information about the whole cannot be reconstructed as a function of our pieces of
information about the parts.
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In the second part of this article we will see how these characteristic holistic features
of the quantum theoretic formalism will play an important role in the development of the
epistemic semantics [4].

Definition 2.13 (n-partite entangled quregister) A quregister |ψ〉 of H(n) is called an
n-partite entangled iff all reduced states Red1(|ψ〉), . . . ,Redn(|ψ〉) are proper mixtures.

As a consequence an n-partite entangled quregister cannot be represented as a tensor
product of the reduced states of its parts.

When all reduced states Red1(|ψ〉), . . . ,Redn(|ψ〉) are the qumix 1
2 I (which represents a

perfect ambiguous information) one says that |ψ〉 is maximally entangled.

Definition 2.14 (Entangled quregister with respect to some parts) A quregister |ψ〉 of
H(n) is called entangled with respect to its parts labelled by the indices i1, . . . , ih (with
1 ≤ i1, . . . , ih ≤ n) iff the reduced states Redi1(|ψ〉), . . . ,Redih (|ψ〉) are proper mixtures.

Since the notion of reduced state is independent of the choice of a particular basis, it
turns out that the status of n-partite entangled quregisters, maximally entangled quregisters
and entangled quregisters with respect to some parts is invariant under changes of truth-
perspective.

Example 2.1

• The quregister

|ψ〉 = 1√
2

(
|0,0,0〉 + |1,1,1〉

)

is a 3-partite maximally entangled quregister of H(3);
• the quregister

|ψ〉 = 1√
2

(
|0,0,0〉 + |1,1,0〉

)

is an entangled quregister of H(3) with respect to its first and second part.

3 Epistemic Situations and Epistemic Structures

Any logical analysis of epistemic phenomena naturally refers to a set of agents (say,Alice,
Bob, . . .), possibly evolving in time. Let T = (t1, . . . , tn) be a sequence of times (which can
be thought of as “short” time-intervals) and let Ag be a finite set of epistemic agents, de-
scribed as functions of the times in T . For any a ∈ Ag and any t of T , we write a(t) = at.
Each at is associated with a characteristic epistemic situation, which consists of the follow-
ing elements:

1. A truth-perspective Tat , representing the truth-conception of a at time t.
2. A set EpDat of qumixes, representing the information that is virtually accessible to at

(a kind of virtual memory).
3. Two epistemic maps Uat and Kat , that permit us to transform any qumix living in a space

H(n) into a qumix living in the same space. From an intuitive point of view, Uatρ is to
be interpreted as: at understands ρ (or, at has information about ρ); while Katρ is to be
interpreted as: at knows ρ.
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Definition 3.1 (Epistemic situation) An epistemic situation for an agent at is a system

EpSitat
= (Tat ,EpDat

,Uat ,Kat),

where:

1. Tat is a truth-perspective, representing the truth-conception of at.
2. EpDat

is a set of qumixes, representing the virtual memory of at. We indicate by EpD(n)
at

the set EpDat
∩ D(H(n)).

3. Uat is a map that assigns to any n ≥ 1 a map, called (logical) understanding operation:

U(n)
at

: B
(

H(n)
)
.→ B

(
H(n)

)
,

where B(H(n)) is the set of all bounded operators of H(n). The following conditions are
required:
3.1. ρ ∈ D(H(n)) =⇒ U(n)

at
ρ ∈ D(H(n)).

3.2. ρ /∈ EpD(n)
at

=⇒ U(n)
at

ρ = ρ0 (where ρ0 is a fixed element of D(H(n))).
4. Kat is a map that assigns to any n ≥ 1 a map, called (logical) knowledge operation:

K(n)
at

: B
(

H(n)
)
.→ B

(
H(n)

)
.

The following conditions are required:
4.1. ρ ∈ D(H(n)) =⇒ K(n)

at
ρ ∈ D(H(n)).

4.2. ρ /∈ EpD(n)
at

=⇒ K(n)
at

ρ = ρ0 (where ρ0 is a fixed element of D(H(n))).
4.3. K(n)

at
ρ &Tat

ρ, for any ρ ∈ EpD(n)
Tat

(where &Tat
is the preorder relation defined by

Definition 2.4).
4.4. K(n)

at
ρ &Tat

U(n)
at

ρ, for any ρ ∈ EpD(n)
at

.

For the sake of simplicity, we will generally write Uatρ and Katρ, instead of U(n)
at

ρ

and K(n)
at

ρ.
According to Definition 3.1, whenever an information ρ does not belong to the epistemic

domain of at, then both Uatρ and Katρ collapse into a fixed element (which may be iden-
tified, for instance, with the maximally uncertain information 1

2 I(n) or with the Tat -Falsity
Tat P

(n)
0 of the space H(n) where ρ lives). At the same time, whenever ρ belongs to the

epistemic domain of at, it seems reasonable to assume that the probability-values of ρ and
Katρ are correlated: the probability of the quantum information asserting that “ρ is known
by at” should always be less than or equal to the probability of ρ (with respect to the truth-
perspective of at) (condition 4.3.). Hence, in particular, we have:

pTat
(Katρ) = 1 ⇒ pTat

(ρ) = 1.

But generally, not the other way around! In other words, pieces of quantum information
that are known are true (with respect to the truth-perspective of the agent in question). Also
condition 4.4. appears quite natural: knowing implies understanding.

A knowledge operation Kat is called non-trivial iff for at least one qumix ρ,
pTat

(Katρ) < pTat
(ρ). Notice that knowledge operations do not generally preserve pure

states [1].
For any agent at whose epistemic situation is (Tat ,EpDat

,Uat ,Kat), two special sets
play an important intuitive role. The first set represents a kind of active memory of at, and
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can be defined as follows:

ActMem(at) :=
{
ρ ∈ EpDat

: pTat
(Uatρ) = 1

}
.

While the epistemic domain of at represents the virtual memory of at, ActMem(at) can
be regarded as the set containing all pieces of information that are actually understood by
agent a at time t. Another important set, representing the actual knowledge of a at time t, is
defined as follows:

ActKnowl(at) :=
{
ρ ∈ EpDat

: pTat
(Katρ) = 1

}
.

By definition of epistemic situation one immediately obtains:

ActKnowl(at) ⊆ ActMem(at) ⊆ EpD(at).

Using the concepts defined above, we can now introduce the notion of epistemic quan-
tum computational structure (which will play an important role in the development of the
epistemic semantics).

Definition 3.2 (Epistemic quantum computational structure) An epistemic quantum com-
putational structure is a system

S = (T ,Ag,EpSit)

where:

1. T is a time-sequence (t1, . . . , tn).
2. Ag is a finite set of epistemic agents a represented as functions of the times t in T .
3. EpSit is a map that assigns to any agent a at time t an epistemic situation

EpSitat
= (Tat ,EpDat

, Iat ,Kat).

It may happen that, at any time, all agents of an epistemic quantum computational struc-
ture S share one and the same truth-perspective. In other words, for any agents a, b and for
any times ti , tj : Tati

= Tbtj
. In such a case we will say that S is (epistemically) harmonic.

It is interesting to isolate some characteristic properties that may be satisfied by the agents
of an epistemic quantum computational structure.

Definition 3.3 Let S = (T ,Ag,EpSit) be an epistemic quantum computational structure
and let a be an agent of S .

• a has a sound epistemic capacity iff for any time t, the qumixes Tat P
(1)
1 and Tat P

(1)
0 be-

long to the epistemic domain of at. Furthermore, K
Tat
at P

(1)
1 = Tat P

(1)
1 and K

Tat
at P

(1)
0 =

Tat P
(1)
0 . In other words, at any time, agent a has access to the truth-values of his/her

truth-perspective, assigning to them the “right” probability-values.
• a has a perfect epistemic capacity iff for any time t and any qumix ρ belonging to the

epistemic domain of at, Katρ = ρ. Hence, at any time a assigns the “right” probability-
values to all pieces of information that belong to his/her epistemic domain.

• a has a maximal epistemic capacity iff, at any time t, a has a perfect epistemic capacity
and his/her epistemic domain coincides with the set D of all possible qumixes.
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Notice that a maximal epistemic capacity does not imply omniscience (i.e. the capacity
of deciding any piece of information). For, in quantum computational logics the excluded-
middle principle

∀ρ ∈ D
(

H(n)
)
: either pT(ρ) = 1 or pT

(
DNOT(n)

T ρ
)
= 1

is, generally, violated.
When all agents of an epistemic quantum computational structure S have a sound (per-

fect, maximal) capacity, we will say that S is sound (perfect, maximal).
In many concrete epistemic situations agents use to interact. In order to describe such

phenomenon from an abstract point of view, we introduce the notion of epistemic quantum
computational structure with interacting agents.

Definition 3.4 (Epistemic quantum computational structure with interacting agents) An
epistemic quantum computational structure with interacting agents is a system

S = (T ,Ag,EpSit, Int),

where:

1. (T ,Ag,EpSit) is an epistemic quantum computational structure;
2. Int is a map that associates to any time t ∈ T a set of pairs (at ,bt ) (where a,b ∈ Ag). The

intuitive interpretation of (at,bt) ∈ Int(t) is: the agents a and b interact at time t;
3. (at,bt) ∈ Int(t) ⇒ ∃t′ ≥ t∃ρ[(ρ ∈ ActMem(at) and ρ ∈ ActMem(bt′)) or

(ρ ∈ ActMem(bt) and ρ ∈ ActMem(at′))]. In other words, as a consequence of the in-
teraction, there is at least one piece of information ρ such that at time t agent a certainly
understands ρ, while at a later time t′ agent b certainly understands ρ; or viceversa.

What can be said about the characteristic mathematical properties of epistemic opera-
tions? Is it possible to represent the knowledge operations K(n)

at
occurring in an epistemic

quantum computational structure as special cases of qumix gates? This question has a nega-
tive answer. One can prove that non-trivial knowledge operations cannot be represented by
unitary quantum operations [1].

At the same time, some interesting knowledge operations can be represented by the more
general notion of quantum channel (which represents a special case of the concept of quan-
tum operation2).

Definition 3.5 (Quantum channel) A quantum channel on H(n) is a linear map E from
B(H(n)) to B(H(n)) that satisfies the following properties:

• for any A ∈ B(H(n)), Tr(E (A)) = Tr(A);
• E is completely positive.

From the definition one immediately obtains that any quantum channel maps qumixes
into qumixes.

A useful characterization of quantum channels is stated by Kraus first representation
theorem [6].

2See for instance [3] and [5].
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Theorem 3.1 A map

E : B
(

H(n)
)
.→ B

(
H(n)

)

is a quantum channel on H(n) iff for some set I of indices there exists a set {Ei}i∈I of
elements of B(H(n)) satisfying the following conditions:

(1)
∑

i E
†
i Ei = I(n);

(2) ∀A ∈ B(H(n)) : E (A) = ∑
i EiAE†

i .

Of course, qumix gates DG(n) are special cases of quantum channels, for which {Ei}i∈I =
{G(n)}.

One can prove that there exist uncountably many quantum channels that are non-trivial
knowledge operations of the space H(n) with respect to any truth-perspective [1].

An interesting example of a quantum channel that gives rise to a knowledge operation
is the depolarizing channel. Let us refer to the space H(1) and let p ∈ [0,1]. Consider the
following system of operators:

E0 =
√

4 − 3p

2
I(1); E1 =

√
p

2
X; E2 =

√
p

2
Y; E3 =

√
p

2
Z

(where X, Y, Z are the three Pauli-matrices). Define p D(1)
T as follows for any ρ ∈ D(C2):

p D(1)
T ρ =

3∑

i=0

TEiT
†ρTE†

i T
†.

It turns out that p D(1)
T is a quantum channel, called depolarizing channel. Notice that for

any truth-perspective T, p D(1)
T = p D(1)

I .
The channel p D(1)

I gives rise to a corresponding knowledge operation pKD(1)
at

for an
agent at (who is supposed to belong to an epistemic quantum computational structure S ).

Definition 3.6 (A depolarizing knowledge operation pKD(1)
at

) Define pKD(1)
at

as follows:

(1) EpDat
⊆ {ρ ∈ D(H(1)) : pTat

(ρ) ≥ 1
2 }.

(2) ρ ∈ EpDat
⇒ pKD(1)

at
ρ = p D(1)

I ρ.

Consider now 1KD(1)
at

and suppose that the structure S satisfies the condition:

ρ /∈ EpDat
⇒ 1KD(1)

at
ρ = 1

2
I(1).

We obtain: for any ρ ∈ D(H(1)), 1KD(1)
at

ρ = 1 D(1)
I ρ = 1

2I
(1). In other words, 1KD(1)

at
seems

to behave like a “fuzzification-procedure”, that transforms any (certain or uncertain) knowl-
edge into a kind of maximally unsharp piece of information.

Other examples of quantum channels representing knowledge operations that give rise to
interesting physical interpretations have been investigated in [7].

Unlike qumix gates, knowledge operations are not generally reversible. One can guess
that the intrinsic irreversibility of the act of knowing is somehow connected with a loss of
information due to the interaction with an environment.
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4 Memorizing and Retrieving Information via Teleportation

In epistemic processes that concern both human and artificial intelligence it is customary to
distinguish an internal from an external memory. In the framework of our approach, the in-
ternal memory IntMemat of an agent a (say, Alice) at time t can be naturally associated with
the set ActMem(at). Hence, a piece of information ρ will belong to the internal memory of
at iff pTat

(Uatρ) = 1. This means that at time t Alice has a kind of “aware understanding”
of the information ρ. At the same time, the external memory ExtMemat , can be identified
with a convenient subset of the epistemic domain of at. Owing to the concrete limitations
of the internal memory, the possibility of “depositing elsewhere” (in an external memory)
some pieces of information turns out to be very useful for Alice. Of course, at a later time,
Alice should be able to retrieve her “forgotten” information, storing it again in her internal
memory.

We will now try to model examples of this kind in the framework of our abstract quantum
computational approach. We will refer to a very simple physical situation. At any time t (of a
given time-sequence) the external memory ExtMemat of Alice is supposed to be physically
realized by a two-particle system S1 + S2, while the internal memory IntMemat is realized
by a single particle S3. For any time t, the global system S(t) = (S1 + S2 + S3)(t) will rep-
resent Alice’s physical memory-system. For the sake of simplicity, we suppose that the state
of S(t), indicated by |Ψ S(t)〉, is pure. Accordingly, |Ψ S(t)〉 will determine the states of the
subsystems, which will be, generally, mixtures. We write: ρ(S1+S2)(t) = Red(1,2)(|Ψ S(t)〉);
ρ(Si )(t) = Red(i)(|Ψ S(t)〉) (where 1 ≤ i ≤ 3).

On this basis, we can put:

• IntMemat = {ρ(S3)(t)};
• ExtMemat = {ρ(S1)(t),ρ(S2)(t),ρ(S1+S2)(t)}.

Now we want to describe a process of “memorizing and retrieving information”, by us-
ing a quantum teleportation phenomenon [2]. Physically, this process corresponds to the
time-evolution of the global memory-system S (in a given time-interval). Since during this
process Alice’s internal and external memories shall interact, we can imagine that Alice’s
external memory is associated with an agent b (say, Bob), who can communicate with Alice
via a classical channel (as happens in the standard teleportation-cases). Accordingly, our
abstract description will naturally make use of epistemic quantum computational structures
with interacting agents (Definition 3.4). For the sake of simplicity, we will refer to harmonic
structures, where all agents have, at any time, the canonical truth-perspective I.

At time t1 We suppose that at the initial time t1 the global memory-state is the following:

∣∣Ψ S(t1)
〉
= 1√

2

(
|0,0〉 + |1,1〉

)
⊗

(
a0|0〉 + a1|1〉

)
.

Hence, the state of the external memory is the entangled Bell-state, while the state of
the internal memory is a qubit. According to our convention, we obtain: IntMemat =
{ρ(S3)(t1)}, where ρ(S3)(t1) = Pa0|0〉+a1|1〉; ExtMemat = {ρ(S1)(t1),ρ

(S2)(t1),ρ
(S1+S2)(t1)},

where ρ(S1)(t1) = 1
2I

(1); ρ(S2)(t1) = 1
2I

(1); ρ(S1+S2)(t1) = P 1√
2
(|0,0〉+|1,1〉).

At time t2 In order to “forget” the information a0|0〉 + a1|1〉 (stored by her internal mem-
ory) Alice acts on her global memory, by applying the gate SWAP(3)

(1,3), which exchanges the
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states of the first and of the third subsystem of S. As a consequence, we obtain:

∣∣Ψ S(t2)
〉
= SWAP(3)

(1,3)

∣∣Ψ S(t1)
〉
=

(
a0|0〉 + a1|1〉

)
⊗ 1√

2

(
|0,0〉 + |1,1〉

)
.

Alice’s internal memory is now changed. We have:

ρ(S3)(t2) = 1
2
I(1),

which represents a maximally fuzzy information. Roughly, we might say that at time t2

Alice has “cleared out” her internal memory. At the same time, we have that ρ(S1)(t2) =
Pa0|0〉+a1|1〉 belongs to Alice’s external memory. The operation of memorizing the informa-
tion a0|0〉+a1|1〉 in the external memory is now completed. Interestingly enough, the entan-
glement correlation between S(3)(t2) and S(2)(t2) guarantees to Alice the possibility of in-
teracting with her external memory. It turns out that the transformation ρ(S3)(t1) .→ ρ(S3)(t2)
is described by the depolarizing knowledge operation (considered in the previous section),
which transforms any ρ of H(1) into 1

2I
(1).

Notice that the state of the global system |Ψ S(t2)〉 = (a0|0〉+a1|1〉)⊗ 1√
2
(|0,0〉+|1,1〉)

corresponds to the initial state of the standard teleportation-situation, where Bob (who has
physical access to the system S1 + S2) tries to send the qubit a0|0〉 + a1|1〉 to the “far” Alice
(who has access to S3), by using the entanglement-correlation between S2 and S3. We can
now proceed, by applying the steps that are currently used in a teleportation-process.

At time t3 Bob applies the gate XOR(1,1) to the external memory-state. As a consequence,
we obtain: |Ψ S〉t3 = [XOR(1,1) ⊗ I(1)]|Ψ S〉t2 = 1√

2
(a0|0〉 ⊗ (|0,0〉 + |1,1〉)) + 1√

2
(a1|1〉 ⊗

(|1,0〉 + |0,1〉)).
It is worth-while noticing that theoretically Bob is acting on the whole system S, while

materially he is only acting on the subsystem S1 + S2 that is accessible to him.

At time t4 Bob applies the gate Hadamard to the system S1 (whose state is to be tele-
ported into the internal memory). Hence, we obtain: |Ψ S〉t4 = [√I

(1) ⊗I(1) ⊗I(1)]|Ψ S〉t3 =
1
2 [(|0,0〉⊗(a0|0〉+a1|1〉))+(|0,1〉⊗(a0|1〉+a1|0〉))+(|1,0〉⊗(a0|0〉−a1|1〉))+(|1,1〉⊗
(a0|1〉 − a1|0〉))].

At time t5 Bob performs a measurement on the external memory, obtaining as a result one
of the following possible registers: |0,0〉, |0,1〉, |1,0〉, |1,1〉. As a consequence, the state of
the global system is transformed, by collapse of the wave-function; and such transformation
is mathematically described by a (generally irreversible) quantum operation.

Let P
(2)
|x,y〉 represent the projection-operator over the closed subspace determined by the

register |x, y〉. We obtain four possible states for the global memory-system:

1. |Ψ S
00(t5)〉 = 2[P (2)

|0,0〉 ⊗ I(1)]|Ψ S(t4)〉 = |0,0〉 ⊗ (a0|0〉 + a1|1〉);
2. |Ψ S

01(t5)〉 = 2[P (2)
|0,1〉 ⊗ I(1)]|Ψ S(t4)〉 = |0,1〉 ⊗ (a0|1〉 + a1|0〉);

3. |Ψ S
10(t5)〉 = 2[P (2)

|1,0〉 ⊗ I(1)]|Ψ S(t4)〉 = |1,0〉 ⊗ (a0|0〉 − a1|1〉);
4. |Ψ S

11(t5)〉 = 2[P (2)
|1,1〉 ⊗ I(1)]|Ψ S(t4)〉 = |1,1〉 ⊗ (a0|1〉 − a1|0〉).

By quantum non-locality, Bob’s action on the external memory has determined an instan-
taneous transformation of the state ρ(S3)(t4) of the internal memory, which will have now
one of the four possible forms:

a0|0〉 + a1|1〉; a1|0〉 + a0|1〉; a0|0〉 − a1|1〉; a0|1〉 − a1|0〉.
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Alice’s internal memory is no longer fuzzy, since it is storing again a qubit. However, only in
the first case this qubit coincides with the original a0|0〉 + a1|1〉 that Alice had stored in her
internal memory (at the initial time). In spite of this, Alice has the possibility of retrieving her
original information, through the application of a convenient gate. We have: a0|0〉+ a1|1〉 =
I(1)(a0|0〉 + a1|1〉) = NOT(1)(a1|0〉 + a0|1〉) = Z(a0|0〉 − a1|1〉) = NOT(1)Z(a1|0〉 − a0|1〉)
(where Z is the third Pauli-matrix).

In this situation, Bob can give an “order” to Alice, by using a classical communication
channel. The order will be:

• “apply I(1)!” (i.e. “don’t do anything!”), in the first case.
• “apply NOT(1)!”, in the second case.
• “apply Z!”, in the third case.
• “apply NOT(1)Z!” in the fourth case.

At time t6 Alice follows Bob’s order and retrieves her original information.
Notice that the transformation ρ(S3)(t1) .→ ρ(S3)(t6) (from the initial to the final state of

the internal memory) is mathematically described by the identity operator. Transformations
of this kind (which concern reduced states and are obtained by neglecting the interaction
with an environment) generally determine a loss of information; consequently they are de-
scribed by irreversible quantum operations. Interestingly enough, this is not the case in the
situation we have considered here, where the entanglement-correlation between the internal
and the external memory, associated with a classical communication, allows Alice to retrieve
exactly her initial information.
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