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Floating rate bonds are coupon-paying instruments generally 
indexed to interest parameters. At the trading date, the payment 
dates and indexation rules are known, while the value of future 
coupons is uncertain. In this perspective, floating rate bonds are 
generally seen as a portfolio of zero coupon bonds. Therefore, 
at each coupon payment date, the bond should be quoted at 
face value and its duration should match the maturity of the 
replicating zero coupon bond. However, the empirical evidence 
based on historical prices of real floating rate bonds shows that 
such an instrument is not systematically quoted at parity and its 
market risk profile could differ from that of the replicating zero 
coupon bond. The aim of this work is to study the duration of a 
floating rate bond using a partial modified duration approach 
after decomposing the floating rate bond into its main building 
blocks. The final goal is to capture the effective risk factors of 
these instruments in real financial markets in order to define 
synthetic risk measures that should be able to reflect the 
instrument’s effective risk profile.  
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1. Introduction  
 
Duration is a fundamental asset and liability management tool commonly used to measure 
interest rate risk exposure. For plain vanilla bonds, duration measures the ratio between 
the proportional change in the bond value to the infinitesimal parallel shift of the yield 
curve. As commonly known, the duration metric of a plain vanilla bond may provide 
inaccurate results as it measures the sensitivity of a bond price according to a single risk 
factor (namely, the yield) and is only of use if the yield curve shifts in parallel. If, for 
example, the yield curve is affected by a rotation, then such a measure is of little value. In 
addition, if a bond is callable or puttable (or an option is embedded) then the measure 
fails. Nevertheless, capital market practitioners are comfortable with duration because it 
represents a single, synthetic and powerful risk indicator. Important to underline in this 
context is the significant research on potential instruments to enhance the accuracy of 
estimates using the traditional duration metric. For example, duration accuracy can be 
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improved by adding extra elements, such as convexity, or using duration vectors instead of 
a single measure. 
 
Nevertheless, all possible upgrades of the traditional duration measure still consider a 
single yield curve as a unique risk factor influencing bond price behavior. This has been 
relatively true, especially for the Eurozone, up to the recent sovereign debt crisis. Bond 
portfolio risk frameworks based mainly on traditional duration have started showing clear 
signs of weakness in a macroeconomic scenario where there is no longer a single yield 
curve and therefore a unique and given source of risk. The price of a bond and/or the 
value of a fixed income portfolio is instead influenced by different components (the 
creditworthiness of issuers amongst others). Moreover, daily rate variations of different risk 
factors are far from correlated and could follow different paths. For instance, as a risk-off 
mood starts to prevail in the market, the risk-free rate drops and the credit spread jumps 
as investors sell riskier - and buy safer - bonds as a consequence of the typical „flight to 
quality‟ movement. However, even in this context, being able to rely on a set of synthetic 
indicators reflecting a fixed income portfolio risk profile is still important for market 
practitioners who need to understand the potential impact on the entire portfolio value 
arising from different and often negatively correlated risk factor movements. 
 
To achieve this goal, sophisticated computational engines enable obtaining more complex 
risk measures with a single click (i.e., Value at Risk and/or ALM sensitivity measures), 
which take into account different risk factors (in case of bonds, the risk-free rate coupled 
with the issuer‟s credit worthiness). These measures again represent a too synthetic single 
figure as the relevant moves are difficult to understand and attempting a possible match 
with traditional duration estimations could be even more challenging and/or misleading. 
 
In this context, our present work aims to enrich the capital market practitioner‟s toolbox 
with a new set of sensitivity measures (Addessi et al. 2012). Starting from the partial 
derivatives approach embedded in the traditional duration framework, this could prove very 
useful to understanding the main causes of variations in the fixed-income portfolio value 
depending on several and different risk factors and applying this to a variable cash flow 
evaluation. 
 
Specifically, the objective of our work is to bridge the gap in literature with respect to 
duration calculations using a single yield curve, suggesting the use of a risk factor matrix 
that can explain changes in the value of bonds in line with the variation of each risk factor 
identified and hypothesizing synchronous or uncorrelated variations. Indeed, this 
multidimensional approach, nevertheless based on Reitano‟s (1992a and 1992b) partial 
duration model and the yield single curve, is in line with current market scenarios where a 
single currency can usually be associated with a plurality of curves (particularly for the 
Eurozone where each issuing government uses a particular yield curve). 
 
Our proposed approach enables: 
 
 Enriching the set of analysis tools that can be used to interpret the effect (ex-ante 
 and ex-post) of market movements on the market values of single instruments 
 and/or portfolios. 
 Critically evaluating the results obtained with more sophisticated measurement 
 instruments (i.e., VAR) for which, however, an analysis by components can be 
 particularly costly without always clarifying the potential market effects. 
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 Assessing and managing the effectiveness of derivatives in hedging only one of 
 the risk factors (i.e., asset swaps to hedge the interest rate risk implicit in 
 government bonds). 
 
With reference to the floating rate instruments, we use Reitano‟s (1992a) original 
framework based on partial durations duly extended to take account of a variety of risk 
factors to enrich and extend Pacati‟s (2001) model developed in a single curve scenario.  
 
In particular, our proposed approach overcomes, also from a purely mathematical 
perspective, the widespread assumption amongst market practitioners that a floating rate 
instrument is by construction immune from interest rate changes; an approach as yet 
unexplored in literature.  
 
We test the validity of our proposed mathematical approach on real Italian market data. 

 

2. Literature Review 
 
Macaulay (1938) first defined duration to compare securities with different payment 
schedules based on their weighted average income stream. The various duration 
measures that followed can generally be divided into durations based on traditional bond 
mathematics and durations based on no-arbitrage or equilibrium-based bond pricing 
models. 
 
The first duration measure, albeit not explicitly modeling the underlying term structure 
behavior, is attributed to Macaulay (1938). Subsequent studies such as Cooper‟s (1977) 
show that duration is not the ideal measure to predict the response of riskless asset values 
to changes in interest rates. The study indicates that a blind selection of portfolios based 
on their duration would be an unrealistically naïve strategy and that there are ways of 
enriching the concept of duration without losing the basic analytical framework from which 
it derives. Bierwag (1977), Bierwag and Kaufman (1977), and Khang (1979) assume 
specific characteristics of the term structure movement, such as changes in both the level 
and shape of the yield curve. Khang (1979) proposes different duration measures for 
specific changes in the yield curve. 
 
More recent measures have been proposed by Chambers, Carleton and McEnally (1988), 
Ho (1992), Nawalkha and Chambers (1996, 1997), and Nawalkha, Soto and Zhang 
(2003). Chambers, Carleton and McEnally (1988) indicate that interest risk can only be 
measured by a vector of numbers as opposed to a single number and propose the 
Duration Vector. Ho (1992) proposes the Key Rate Duration, which associates the price 
sensitivity of a bond to multiple segments of the yield curve. Nawalkha and Chambers 
(1996) propose an M-Absolute duration measure that allows greater immunization 
compared to the traditional Fisher and Weil (1971) duration by selecting a bond portfolio 
clustered around its planning horizon date. Nawalkha and Chambers (1997) and 
Nawalkha, Soto and Zhang (2003) extend the Nawalkha and Chambers (1996) analysis 
into a multi-factor M-Vector. 
 
The development of duration measures based on no-arbitrage or equilibrium-based bond 
pricing models coincides with Ingersoll, Skelton and Weil‟s (1978) appraisal of Macaulay‟s 
(1938) duration and developments in studies on bond pricing models. The seminal papers 
of Vasicek (1977) and Cox, Ingersoll and Ross (1985) gave birth to the no-arbitrage or 
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equilibrium-based bond pricing models. Ingersoll, Skelton and Weil (1978) provide an 
arbitrage-based criticism of the Macaulay (1938) duration. To resolve this criticism, 
duration measures are developed that take into account an explicit random process driving 
bond pricing models. Cox, Ingersoll and Ross (1979) formally derive a duration measure 
consistent with the general equilibrium conditions of the Cox, Ingersoll and Ross (1985) 
term structure model. 
 
Moreover, Reitano (1992a) proposes partial duration as a measure applicable to 
quantifying the potential effect exerted by non-parallel changes in the yield curve. Reitano 
(1992b) introduces directional duration, assuming that the interest rate shift is not unique 
for the entire investment period and could move in different directions. 
 
Reitano‟s (1992a) model does not however apply partial duration to floating rate bonds 
and is based on a single curve scenario, which does not enable taking due account of the 
proliferation of risk factors that we have witnessed since the Lehman crisis. 
 
Other authors (see for example, Shirvani and Wilbratte 2005), propose an approximation 
formula for bond price volatility as an alternative to the well-known Macaulay (1938) 
formula to achieve more accurate approximations of the magnitude of coupon bond price 
changes in response to interest rate changes. In addition, their model resolves an 
insufficiency of the Macaulay model by providing a functional form that reflects the 
asymmetric effects of interest rate changes on bond prices. However, this approach does 
not consider the possibility of breaking down the duration into its partial n durations or 
breaking down the yield curve into its specific risk components. 
 

Several authors (e.g., Pacati 2001) establish equivalency between Macaulay‟s duration 
applied to known cash flows and variable cash flows. Pacati (2001) attempts to evaluate 
the price and duration of a perfectly indexed bond with variable cash flow and demonstrate 
that it can be seen as a zero coupon bond portfolio and its duration is consequently equal 
to the maturity of the ZCB.  
 
Combining Reitano‟s evolved model with Pacati‟s framework allows synthesizing and 
modeling the variations in the variable interest rate using partial duration and multiple risk 
factors, thus including the credit component of the issuing institution that in terms of pricing 
is represented by the spread compared to the risk-free rate and to fluctuations in bond 
prices that in times of market turmoil are anything but contained. 
 

3. Fixed and Floating Rate Bond Framework: Theoretical Underpinnings 

 
Partial duration (Reitano 1992a) allows quantifying the potential effect exerted by both 
parallel and non-parallel changes in the yield curve. If the yield curve has n time points, 

partial duration  kkD ;0  referring to the kth  yield curve point is: 

 
k

k

kk

P

P
D









1
;0  (1) 

where k  represents the infinitesimal variation to the kth  yield curve point and kP  is the 

resultant bond price variation. If the yield curve shifts in parallel, we can compute the 
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traditional synthetic duration, which can be approximated by the sum of the n partial 
durations (see equation (2)). 

   



n

k

kkDD
1

;0;0   (2) 

More interesting is the hypothesis of not only an additive but also a rotary shift in the yield 
curve (i.e., yield curve twist) as shown in Figure 1. In this case, a partial duration 
framework could be useful. To compute the effect produced by a curve twist, we must 

consider two different (n-dimensional) information vectors:  nk  ,,,,, 21   and 

 nk zzzzZ ,,,,, 21  , both defined on the same time schedule. The first vector 

represents the (usual) information on market yields, the second is the shift direction vector: 

its components  kz  are used to graduate the movements in the yield curve. Figure 1 

graphically shows a numeric example of yield curve twist. If  %5 ,%3 ,%2  and

 3 ;5,0 ;1 Z the new yield vector is   3%5 ;5,0%3 ;%2 * ,  where Δ  

represents the shift amplitude (3): 
 

  *  (3) 

Figure 1.  Yield curve twist: an example 

 

Given the bond price  ;0P   and its duration  ;0D , we can estimate the effect on 

the current value of a fixed income instrument using Taylor‟s expansion:   
 

        ;01;0 DPP  (4) 

 
Using equations (3) and (4), the new current bond value - under the hypothesis that only 

the k   moves - is explained in equation (5): 

 

      kkkk DPP   ;01;0  (5) 
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Its modified (partial) duration M

kD   is: 

   
  k

kM

k

P

PP
D








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;0

;0
 

Both the duration and modified duration can be decomposed into the sum: 
 

                                  nnkk DzDzDzDzD  2211;0                               
(6) 

 

where  kk Dz   with k=1, 2, …, n represents the contribution on the duration of the k-

th cash flow, relative to the direction Z . 
 
The main lesson from the recent Eurozone sovereign debt crisis is that even within a 
single currency area, the yield curve is no longer unique. It is therefore no longer possible 
to assume that each single government lends money based on the same yield curve, 
which is mainly influenced by the risk-free component. The assumption that the 
creditworthiness of an issuer is only a residual, essentially flat and not very volatile 
component, is no longer acceptable. Empirical evidence has incontrovertibly demonstrated 
that this is not the baseline scenario for traders even in the so-far quiet fixed income 
market.  
 
In particular, Figure 2 shows that from the second half of 2011 up to the second half of 
2013, against a progressive reduction in the risk-free component, a steady increase in the 
component occurred as a result of the principal component of the Italian government bond 
yield curve. 
 

Figure 2:  The evolution of fixed income European markets: the case of Italy 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
For this reason, we decompose the interest rate δ into its main components. Under this 
hypothesis, the traditional yield is a scalar obtained by multiplying two information vectors: 

v  (different risk factor) and 
T

w  (different weights). We assume a two dimensional v  
vector. In other words, the interest rate is the result of the interaction of the risk-free rate 

and spread (assumed as a proxy of issuer creditworthiness). If we assume 









1

1T

w  , the 

interest rate becomes: 
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


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


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1

1


T
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where τ represents the risk-free rate component and σ the spread component. Using 
equation (7), the bond price becomes: 
 

       

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n

k

kkk

n

k
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11
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We use equation (1) to compute the partial derivatives of (8) with respect to both the risk-
free rate component and the spread component, and obtain two different sensitivity 
measures: 
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The proposed decomposition does not involve the introduction of new duration measures. 
Traditional duration can be used to identify ex ante the effect on a bond price caused by 
multiple risk factors and/or to check ex post the effective causes leading to a given market 
price movement. Indeed, using both the Taylor expansion (see equation (4)) and the 
proposed decomposition (see equation (7)), we can estimate the new price:  
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If we consider a yield curve, we can easily decompose the yield vector: 
 

 ⃗      
 

where   is the n-component yield vector, V is a  2n  matrix representing the two risk 

factors  and W is a  12  matrix representing the different risk factor weights: 
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 21 wwW  
(11.b) 
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According to equations (11.a), (11.b) and (11), the duration, defined as the first central 
moment, becomes: 
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Focusing on the interaction between the risk factor decomposition and the partial duration 
framework as discussed above and using equation (8) to define the bond price, we can 

compute the first partial derivatives with respect to    and    (equations (9.a) and (9.b)) 
where the kth partial duration is (see equation 1): 
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We can decompose the partial derivative (and thus the partial duration) according to the 
risk factor‟s decomposition explained in equation (11). The kth decomposed partial 
durations (DDk) are: 
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Equations (13a) and (13b) show that for each tk  we need to consider two distinct partial 
durations. Interesting to note is that equations (13a) and (13b), representing the derived 
partial durations, are analytically the same but depend on different risk parameters: in our 
case, this allows separately evaluating the risk free and the credit effect on a bond price. 
The linear combination (see equation (13)) is useful to estimate the total effect of the two 
components on price. Extending this approach to a general approach with n different risk 
factors is intuitive.   
  
In this way, we enrich Reitano‟s (1992a) approach with a new dimension: market risk 
factors. Analytically, this step is equivalent to transforming the k partial duration vector into 

a [   ] matrix, where k is the number of periods corresponding to the bond cash flows 
and n is the number of risk factors influencing the behavior of the instrument‟s price.  
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As a consequence, the linear combination of the different matrix elements can help the 
analyst to quickly and intuitively consider the consequences of uncorrelated risk 
movements. 
 
The shock price can then be estimated as:  
 

       
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


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
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;0;0
;0;0     (14) 

 
The overall effect on price will depend on the possible moves of the different risk factors. 
As Figure 3 shows, if both risk factors drop, the bond price increases, if both risk factors 
increase, the bond price drops. Forecasting the effect on the bond price of the different 
movements of the two risk factors is more difficult: the price may be unaffected if the risk-
free and spread movements are balanced.  
 

Figure 3:  Possible price paths 

 
Applying partial durations and risk factor decomposition to the floating rate bond can be 
even more challenging. 
 
Floating rate bonds, largely used in financial markets, are coupon-paying instruments 
linked to the interest rate term structure. At the trade date, the payment dates and 
indexation rules are known, while the amount of each future coupon is unknown and 
therefore uncertain. Moreover, floating rate bonds are often indexed to market parameters, 
which could be strongly correlated to the risk-free yield curve generally used to discount 
cash flows.  
 
The aim of this section is to define an analytical framework that identifies a comprehensive 
set of duration measures for floating rate bonds.  
 
Hence, we focus on a floating rate bond with the interest coupon indexed to a specific 
market parameter (i.e., 6-month Euribor rate). In this context, the same risk-free yield 
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curve will be used to estimate future interest payments and thereafter discounting the bond 
cash flows. 
 
To achieve our objective, we decouple the entire floating bond price into its single building 
blocks as follows: 
 
a. Fixed block corresponding to the fixed and known components of future cash           
flows             
b.  Floating block corresponding to unknown future payments. 
 
The price of the floating rate bond will be given by the sum of prices computed separately 
for the above-mentioned components: 
 

      ;0;0;0 FloatFix PPP   (15) 

where 
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1
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The fixed block can be analyzed using the set of duration measures described in the 
previous section. We thus focus on the floating block starting from Pacati‟s (2001) 
approach to estimate the duration of a floating rate bond in a risk-free environment.  
  
In this perspective, floating rate bonds are generally seen as a portfolio of zero coupon 
bonds. This means that at each payment date, the bond should quote at par and its 
duration should match the maturity of the zero coupon expiring at the next coupon 
payment date. If the yield curve used to calculate future interest payments corresponds to 
that used in discounting the entire bond cash flows, a single zero coupon bond is enough 
to replicate the entire floating rate bond, as shown in Figure 4.  
 

Figure 4: Floating rate bond: evaluation framework within a risk-free environment 
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Nevertheless, the empirical evidence based on a historical series of real floating rate bond 
prices shows that such an instrument does not systematically quote at par at each single 
coupon payment date.  
 
Figure 5 shows that, especially in the second half of 2011 and during 2012, the instrument 
price settled at levels even lower than the 85 percentage points (left side) and also 
deviating from parity by nearly 15 percentage points in proximity to the coupon payment 
dates (right side). 

 
Figure 5:  Floating Rate Bond: empirical evidence 

 

 
 
The entire market risk profile could therefore differ greatly from the risk of the replicating 
zero coupon bond. Differences may arise from indexation - which in effective markets is 
rarely synchronous – and the presence of different risk factors affecting the entire value of 
a floating rate bond.   
 
Consequently, moving to a more flexible partial duration framework, the Pacati approach 
assumes that when estimating the sensitivity of a floating rate bond to the risk-free 
component of the yield curve, only a single measure can be referred to, namely, the 
maturity of the zero coupon bond expiring at the next coupon payment date.     
 
Once the risk-free sensitivity measure has been identified, we focus on the spread 
sensitivity measure.  
 
Intuitively, according to the duration framework rationale, it could be argued that the more 
relevant source of spread sensitivity will be given by the face value payable at the bond‟s 
final maturity. 
 
Therefore, to determinate the spread sensitivity and given that we have already dealt with 
the risk-free sensitivity, we can first adjust the final cash flow as follows (assuming a 
notional amount of one unit):  
 

            1expexpexpexpexp;0  nnnnnspreadn tttttc   (16) 
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We then calculate the partial derivatives: 
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(18) 

Finally, we move to a partial duration approach obtaining: 
 

   
   

 
 

0
exp

exp

expexp

expexp
, 











n

nn

nn

nnn

n
t

tt

tt

ttt
DD








  

(19) 

   
    n

nn

nnn

n t
tt

ttt
DD 











expexp

expexp
,  

(20) 

Equations (19) and (20) show that the adjusted last payment will have zero sensitivity to 
the risk-free component of the yield curve, being only exposed to the spread movements 
of the yield curve. 
 

4. Some Applications: The Floating Rate Bond Case 
 
4.1 Methodology  
 
The aim of this section is to test the validity and potential uses of the DDk approach.  
To achieve this goal, we proceed with the following main steps: 
 
1. Decompose the generic risk factor bond yield into its main components. This  enables 
estimating the possible effects of different risk factors on a fixed income  portfolio's 
value, enhancing the evaluation of the risk mitigation effect of  derivatives such as 
interest rate swaps and, in case of partial risk hedging,  aiming at hedging "only" the 
risk-free component. 
2.   Extend the traditional duration (Macauley 1938; Castellani et al. 1993; De  Felice 
and Moriconi 1991) with reference to a partial duration framework (Reitano  1992a), 
which also allows taking into account the non-parallel movements of  multiple risk 
factors. 
3.   Define a partial duration approach for a variable cash flow. 
 
With reference to testing the Italian market data, it should be specified that given the 
proposed mathematical approach, the tests were conducted with the aim of verifying 
whether given a certain market scenario, the results of the approximations obtained with 
the presented framework were sufficiently in line with the data recorded ex post. Hence, in 
terms of the present paper, the more strictly statistical aspects inherent in the sample size 
and the testable hypotheses were not applied. However, our future intention is to test the 
soundness of the proposed approach to verify its correctness on a wider range of data. 
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4.2 Empirical Evidence  
 
We use a floating rate bond - the Italian CCT€ with maturity of about 4 years - with semi-
annual coupons indexed to the 6-month Euribor rate with the characteristics specified in 
Table 1. 
 

Table 1: Financial characteristics of an Italian CCT€ used to test the DDk model. 

International Securities Identification Number IT0004652175 

Face Value 100 

Variable Coupon EUR 6M +0.80 bps 

Maturity 15/10/2017 

Issuer Italy 

Discount Curve Italian Government Bond Yield 
Curve 

 
We define the main risk factors as follows:  
a.  the risk-free component that determines the instrument‟s floating coupon (i.e., 
 euro swap curve against 6 months); 
b.  the credit-spread component that reflects the issuer‟s credit profile (i.e., the 
 difference between the swap curve and the Italian government bond yield  curve). 
 
To establish the soundness of the partial duration approach to a floating rate bond, we 

estimate the expected change in price through the shift of generic points ,  and , with 

 representing the corresponding term to the duration, and compare it with the price 
exerted by the given market scenarios. 
We focus on two different real market scenarios, decomposing the risk factors affecting the 
FRN price.  
 
In the first scenario, we compare the Italian government yield curve on 28 February 2014 
with the level of the Italian curve on 3 April 2014: the risk-free component shows an 
upward movement while the spread component, especially on the longer term, shows 
downward pressure. The risk factors show different movements not only in their amplitude, 
but also in the direction of the shifts. 
 
In the second scenario, we compare the level registered by the Italian curve at the end of 
February 2014 with that registered on 7 November 2011. In this case, both risk 
components show an upward movement but the credit-spread component shows a larger 
movement, driven by the turmoil experienced by the European government bond markets 
at the end of 2011. 
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Table 2: Market scenarios 
 

 
 

As Table 2 shows, the scenarios adopted for the empirical analysis include: 
 
 In the November 2011 scenario, a positive change in both components of the yield 
 curve. The shifts applied to the risk-free curve and the spread component move 
 respectively in the 80/140 interval from 97 to 415 base points. 
 In the April 2014 scenario, a positive change in the risk-free component (in the  range 
from 3 to 18 bps) and a reduction in the spread component that reaches  levels of - 30 
bps in the medium term. 
 
The adoption of variations differentiated by type of components (risk-free and spread) and 
for different maturities of the yield curve is essential to highlight the consistency of the 
partial durations approach. 
 
Table 3 and Table 4 report the sensitivity measures calculated by applying our framework 
based on partial durations and risk factor decomposition. 
 
As expected, in both cases, we observe that the traditional duration approach does not 
permit a valid estimation of the price sensitivity for a CCT€ (Buffa and Peccati 1989). The 
price variation we compute using the traditional approach in both scenarios is close to zero 
while the market price of the instrument varies significantly especially in the November 
2011 scenario.   

 
Table 3: Sensitivity Analysis February 2014 vs. April 2014 
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Table 4:  Sensitivity Analysis February 2014 vs. November 2011 
 

 
 
At the same time, the application of our framework returns good results: the price variation 
we compute in both scenarios is very similar to the effective price variation we observe 
when fully evaluating the instrument. 
 
In particular, Tables 3 and 4 show that the analysis of the different risk factors and 
maturities of the yield curve in the partial approach allows highlighting the prevalence of 
the spread component that is mainly manifested - also in the floating rate instrument 
analyzed - in proximity to bond maturity. In both the April 2014 vs. the February 2014 
scenario (Table 3) and in the April 2014 vs. November 2011 scenario (Table 4) the 
estimated price change, in addition to being in line with the actual change in the price 
recorded on the markets, is primarily determined by the variation of the curve due to the 
movement of the spread. 
 

5. Summary and Conclusions  
 
Duration is one of the most frequently used measures of bond interest rate risk exposure 
when the bond is a “plain vanilla” type. If wanting to estimate changes in a callable or 
puttable bond value, the duration approach fails. Nevertheless, capital market practitioners 
often refer to duration as it is synthetic and simple to use. Together with duration, 
researchers and practitioners use other powerful tools (such as convexity) to improve the 
accuracy of the price movement estimates. These duration upgrades still consider a single 
risk factor (yield curve) and only the possibility that the yield curve shift up or down but 
does not, for example, rotate. 
 
The recent sovereign debt crisis has highlighted that more than one risk factor exists and 
must be considered: there is no longer a single yield curve and therefore a unique and 
given source of risk. Moreover, bond prices are influenced not only by the risk free rate but 
also, for example, by the creditworthiness of issuers.  
 
In this context, it is important to consider a set of synthetic risk indicators to understand the 
potential effect of different and frequently uncorrelated risk factor movements on the 
portfolio value and to interpret the significance of measurements obtained by applying 
more sophisticated but often opaque approaches (e.g., VAR). This also enables obtaining 
a synthetic representation of the exposure to major risk factors and estimating the potential 
reactions in case of variations among the correlation factors. 
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In this work, we enrich the capital market practitioner‟s toolbox with a new set of sensitivity 
measures. We start from the partial derivatives approach embedded in the traditional 
duration framework and enhance it by considering several and different risk factors. 
Finally, we apply this approach to a variable cash flow evaluation.  
 
In this way, the total or partial duration vectors operating in a simplified market scenario 
characterized by a single interest rate curve become matrices for the timely evaluation of 
the possible market effects resulting from a plurality of risk factors. In particular, our paper 
enhances the traditional frameworks based on duration while preserving their synthetic 
and powerful nature, rendering these even more suitable compared to more complex 
indicators such as VAR to interpret the effects of an increasingly complex market scenario 
on measuring the fair value of a portfolio. 
 
We decompose the generic risk factor bond yield into its main components to estimate the 
possible effects of different risk factors on a fixed income portfolio's value, enhancing the 
evaluation of the risk mitigation effect of derivatives such as interest rate swaps and, in 
case of partial risk hedging, aiming at hedging only the risk-free component. We use the 
traditional duration (Macauley 1938; Castellani et al. 1993; De Felice and Moriconi 1991) 
and extend it to a partial duration framework (Reitano 1992b) to take into account the non-
parallel movements of multiple risk factors. In the last part, we define a decomposed 
partial duration for a variable cash flow and test decomposed partial duration on market 
data to verify the real predictive capacity of the proposed approach. 
 
Analyzing the market data, we conclude that the decomposed partial duration approach 
enables estimating the expected price change after a non-parallel shift of the curve, taking 
into account different risk factors and their different movements.  
 
We “upgrade” the decomposed partial duration approach taking into account a more 
sophisticated representation of the floating component and analyze several risk factors 
(such as macroeconomic variables) as well as different types of indexations (such as 
inflation) to estimate price movements in a more accurate way.  
 
The results obtained enable a simple and rigorous quantification of the contribution of each 
risk factor in determining the expected changes in the value of variable coupon bonds. 
 
The innovative approach proposed is flexible and adaptable to changing market scenarios. 
If the risk factors undergo changes, then the weights of (11) can simply be changed to 
adapt the model to the new market conditions. 
 
In the future, we aim to deepen the model to estimate the risk factors and corresponding 
weights, for example, by using the approach that Reinhart and Sack (2002) propose. 
 
In addition, a further element of the study is implementing the DDK model by considering a 
stochastic model of the yield curve (multi-factor) bond valuations and random cash flows. 
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