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Abstract 

Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, 
including a lack of standardized imaging protocols. Here we present a prospectively harmonized 
quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI 
systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides 
guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-
weighted imaging for SC cross-sectional area (CSA) computation, multi-echo gradient echo for 
gray matter CSA, and magnetization transfer and diffusion weighted imaging for assessing white 
matter microstructure. In a companion paper from the same authors, the spine generic protocol 
was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine 

generic protocol are also available in an open-access document that can be found at: 
https://spinalcordmri.org/protocols. The protocol will serve as a starting point for researchers and 
clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in 
neuroimaging protocols will be more common. The protocol could be implemented by any trained 
MR technician or by a researcher/clinician familiar with MRI acquisition.  

 

 

  

https://spinalcordmri.org/protocols
https://spinalcordmri.org/protocols
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Introduction 

Quantitative MRI (qMRI) aims to provide objective continuous metrics that specifically reflect the 
morphology, microstructure and/or chemical composition of tissues 1,2, thereby enabling deeper 
insight and understanding of disease pathophysiology. While qMRI techniques have been 
successfully implemented in the brain for several decades, they remain largely underutilized for 
spinal cord (SC) imaging in both clinical and research settings, mostly as a direct consequence 
of the many challenges that need to be overcome in order to acquire good quality data 3,4. 

For the past 20 years, researchers have been developing methods to overcome the challenges 
around SC imaging, including more sensitive coil arrays 5,6 and advanced pulse sequences for 
mitigating motion and susceptibility artifacts 4,7. As a result, it is now possible to acquire SC qMRI 
data that have a strong potential for providing new insights into SC anatomy and function. 
However, a remaining issue is that there is no clear consensus within the imaging community for 
acquiring SC qMRI data, leading to (i) wasted time and money spent on pilot scans for every new 
SC research initiative, and (ii) large variability in imaging parameters for multi-site, multi-
manufacturer studies, hampering statistics for assessing biomarkers. 

Development of the Protocol  

The present study gathered a consortium of international SC researchers to provide a 
prospectively harmonized consensus protocol for acquiring high-quality qMRI of the human 
cervical SC at 3 Tesla (T) across the three main MRI manufacturers (GE, Philips and Siemens). 
We call this the spine generic protocol. QMRI techniques covered in the spine generic protocol 
(illustrated in Figure 1) include:  

SC cross-sectional area (CSA): The CSA of the whole SC has been shown to be a sensitive 
biomarker in multiple sclerosis (MS) 8–11, amyotrophic lateral sclerosis (ALS) 12–16, X-linked 
adrenoleukodystrophy (ALD) with myelopathy17, as well as both traumatic and non-traumatic SC 
injury 18,19. Additionally, SC segmentation is useful for atlas-based analysis 20.  

CSA of the SC gray matter (GM): GM CSA is relevant for diagnosis 21 and prognosis in ALS 16. 
Additionally, delineating the GM is relevant for quantifying pathologies juxtaposed with the GM 
(e.g. MS lesions), for fMRI applications, and for atlas-based analysis.  

Diffusion tensor imaging (DTI): DTI is a technique that is based on multi-directionally 
encoded diffusion weighted images (DWI). DTI can quantify microstructural integrity and has been 
deemed sensitive to degeneration and demyelination of SC white matter (WM) tracts in a variety 
of diseases3,22–25 and after SC injury19,23. In non-traumatic SC injury, DWI appears to be a 
promising approach that is sensitive to presymptomatic microstructural changes26,27. 

Magnetization transfer (MT): The MT technique has been shown to be sensitive to 
demyelination 28 and has been applied in various SC diseases, such as adrenomyeloneuropathy 
(AMN) 29 and MS 30, as well as in SC injury 22,31.   

https://paperpile.com/c/eZ4cGE/aLZ5u+YAzuL
https://paperpile.com/c/eZ4cGE/aLZ5u+YAzuL
https://paperpile.com/c/eZ4cGE/PFGw2+gGWSX
https://paperpile.com/c/eZ4cGE/v4h8y+R1Qj3
https://paperpile.com/c/eZ4cGE/Yc1Kb+gGWSX
https://paperpile.com/c/eZ4cGE/z17aO+MNmjF+uoYMx+N20ZV
https://paperpile.com/c/eZ4cGE/jNrM8+KJbjM+hfkS0+YfR6K+XrfmQ
https://paperpile.com/c/eZ4cGE/pOvJz
https://paperpile.com/c/eZ4cGE/UJrZk+TGarY
https://paperpile.com/c/eZ4cGE/ED448
https://paperpile.com/c/eZ4cGE/Qo3HE
https://paperpile.com/c/eZ4cGE/XrfmQ
https://paperpile.com/c/eZ4cGE/3Dlj9+PFGw2+zOqV8+6dJTT+aaUE4
https://paperpile.com/c/eZ4cGE/zOqV8+TGarY
https://paperpile.com/c/eZ4cGE/j3KxV+6eS0B
https://paperpile.com/c/eZ4cGE/mN5AM
https://paperpile.com/c/eZ4cGE/FU3ma
https://paperpile.com/c/eZ4cGE/JaWQK
https://paperpile.com/c/eZ4cGE/eEkRG+3Dlj9
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Figure 1. Illustration of the MRI metrics that could be extracted from the spine generic 

protocol. The top panel “Cross-sectional area (CSA) measurements” shows morphometric 
measures of the spinal cord and its gray and white matter. The bottom panel “Atlas-based 
analysis” on the left shows axial views of qMRI maps: Magnetization Transfer Ratio (MTR), 
Fractional Anisotropy (FA) and Mean Diffusivity (MD), with an overlay of 4 spinal tracts of general 
interest: the descending corticospinal tract (CST) and the ascending cuneatus, left (L) and right 
(R). The “Atlas” image corresponds to the white matter atlas 32, which includes 30 white matter 
tracts that could be used for computing metrics within specific tracts of interest. This atlas also 
includes 6 parcellations of the gray matter. The table shows average values of each metric in the 
corresponding tract. 

 

To demonstrate the practical implementation and reproducibility of the proposed protocol, single-
subject and multi-subject datasets were acquired across multiple centers. Relevant qMRI metrics 
were calculated using a fully-automatic analysis pipeline, and those metrics were compared within 
site, across sites (for the same manufacturer), and across different manufacturers. Details of the 
datasets, processing pipelines and generated normative values are available in a companion Data 
Descriptor paper published in Scientific Data 33. 

When optimizing protocols across manufacturers, a key question is: Should we minimize the 

differences in acquisition parameters across manufacturers, or should we optimize image quality 

on each platform? The spine generic protocol was designed to reach a compromise between 
these two key aims: minimizing protocol differences in order to facilitate the interpretation of multi-
manufacturer studies, but at the same time we optimized parameters for each manufacturer 
separately when the hardware or software enabled it. For example, on the DWI protocol, the echo 
time (TE) was always minimized in order to maximize SNR, which minimally affects the diffusion-
specific signal (the b-value was kept the same). Given that platforms are equipped with different 

https://paperpile.com/c/eZ4cGE/HyfrJ
https://paperpile.com/c/eZ4cGE/5All
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gradient nominal strength capabilities (ranging from 40 mT/m to 80 mT/m for current clinical 
systems), this yielded very different TEs depending on the platform. These aspects were taken 
into consideration when designing the spine generic protocol, resulting in a protocol with a high 
SNR regime that is hence less sensitive to changes in the TE. As illustrated in the companion 
data paper 33, fractional anisotropy values across Siemens sites equipped with gradient systems 
varying from 40 to 80 mT/m (TEs ranging from 55 to 99 ms), produced an inter-site coefficient of 
variation (COV) of 3.5%, which was smaller than the intra-site COV of 4.24%. The intersubject 
variability was thus higher than the inter-site variability, despite the large changes in TEs. Another 
important consideration is that different TE across manufacturers/models will likely result in 
different diffusion times. This may be an additional source of inter-manufacturer variability, as it 
has been shown that common DWI metrics such as DTI radial diffusivity can exhibit diffusion time 
dependence, especially in anatomical regions containing large axons 34. Similarly, some software 
versions were limited with respect to the minimum achievable repetition time (TR) on MT 
sequences; again, here the TR was optimized for each system separately, yielding full MT 
protocols (GRE-MT1/MT0/T1w) that varied from 5.4 min to 8.9 min, depending on the platform. 
However, in this case, MTR and MTsat were impacted by TR. This partly explains the 
discrepancies observed between GE and the two other manufacturers (see 33). 

Because hardware and pulse sequence environments vary across manufacturers, it will never be 
possible to obtain the exact same acquisition configuration across manufacturers. Even for the 
same manufacturer, some variability could exist due to the different specifications for different 
models and the adjustment and maintenance status of individual scanners (acoustic resonances, 
helium levels, eddy-currents, software patches, etc.). From a practical standpoint, as in the case 
for the T1w vs. T2w SC CSA (see Figure 11 in 33), the relationship between qMRI metrics obtained 
from different manufacturers/models/sites can be modeled as fixed or random effects 35. 

The spine generic protocol has been used (fully, in part or with modifications) in the following 
applications: imaging methods 36, method development in healthy subjects 20,37–50, functional MRI 
51,52, MS 53–55, mucopolysaccharidoses 56, adrenoleukodystrophy17, ALS 16,57, spinal muscular 
atrophy 58,59, degenerative cervical myelopathy 26,27,60–62, and stroke 63. 

The spine generic protocol has also been recommended in recent guidelines24,64–67 and was 
adopted by multi-center initiatives such as the INSPIRED68 and the CanProCo55 studies, 
respectively dealing with cervical myelopathy and MS populations.  

Applications 

The proposed protocol is not geared towards a specific disease and it is suitable for imaging WM 
pathology (demyelination and Wallerian degeneration via axon/myelin-sensitive techniques), GM 
pathology (ALS, via GM CSA quantification), and traumatic and non-traumatic SC injury 
(structural scans to assess compression and/or to quantify atrophy above/below lesions or injury). 
Additional clinical scans (e.g. 2D FLAIR, STIR) that are specific to particular diseases and/or are 
part of the clinical routine can be added at the discretion of the researcher/clinician. Potential 
clinical uses of this protocol include improved diagnosis of pathology, monitoring of disease 
progression or recovery, and/or prediction of outcomes.  

https://paperpile.com/c/eZ4cGE/5All
https://paperpile.com/c/eZ4cGE/yAbWE
https://paperpile.com/c/eZ4cGE/5All
https://paperpile.com/c/eZ4cGE/5All
https://paperpile.com/c/eZ4cGE/MIczC
https://paperpile.com/c/eZ4cGE/3bkVR
https://paperpile.com/c/eZ4cGE/GRJJt+raykv+4VK8J+YXMOL+jcMGb+3dcZA+eD0cC+7ThIa+OhgOM+AnBX4+X86X8+ED448+8JwUA+XtSeZ+gwKOY
https://paperpile.com/c/eZ4cGE/oNoUS+s27Ph
https://paperpile.com/c/eZ4cGE/BdPby+YHaEd+whUwv
https://paperpile.com/c/eZ4cGE/EZtpO
https://paperpile.com/c/eZ4cGE/pOvJz
https://paperpile.com/c/eZ4cGE/IjUUq+XrfmQ
https://paperpile.com/c/eZ4cGE/u0nGC+COjS5
https://paperpile.com/c/eZ4cGE/8mVjg+j3KxV+ASopT+SfqyX+6eS0B
https://paperpile.com/c/eZ4cGE/OkUQi
https://paperpile.com/c/eZ4cGE/JyQTN+EOlUz+6dJTT+Vezq9+RPKqp
https://paperpile.com/c/eZ4cGE/7hLeE
https://paperpile.com/c/eZ4cGE/whUwv
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Experimental Design 

Sequences 

The required sequences are illustrated in Figure 2. Justifications for the sequence type and their 
pros and cons are summarized in Table 1. The manufacturer-specific sequence names are listed 
in Table 2.   

 

Table 1. Purpose, pros and cons of sequences of the spine generic protocol. 

 Purpose Pros Cons 

T1w  
(3D sagittal) 

- Measuring SC CSA and/or 
volume 

- Registering to a template 
(preferred for disc labeling) 

- Assessing lesions 
- Measuring brain atrophy 

- Efficient SNR per unit time 
- High SC/CSF contrast (good for SC 

segmentation) 
- 320 mm2 FOV in ~5min at 1 mm iso 

with full brain and cervical-spine 
coverage 

- Low specific absorption rate (SAR) 
- High WM/GM contrast in the brain 

(good for cortical surface 
segmentation) 

- Vertebral discs are well contrasted 

- Sensitive to motion 
(pulsatile, swallowing) 

- Poor WM/GM contrast in 
the SC 

T2w  
(3D sagittal) 

- Measuring SC CSA and/or 
volume (preferred over the 3D 
T1w due to higher spatial 
resolution) 

- Registering to a template 
registration (preferred for cord 
segmentation) 

- Assessing lesions and 
compression  

- Very high SC/CSF contrast 
- Less sensitive to motion than the 3D 

T1w 
- Better spatial resolution than the 3D 

T1w (0.8 mm vs. 1 mm) 

- High SAR 
- Poor WM/GM contrast in 

the SC 
- Cannot cover full brain in 

<10 min at 0.8 mm iso 
- Poor visibility of vertebral 

discs 
- More prone to Gibbs ringing 

artifact at high-contrast 
SC/CSF interface 

DWI (2D axial) - Computing DTI metrics 
(fractional anisotropy (FA), mean 
diffusivity (MD), radial diffusivity 
(RD), axial diffusivity (AD)) that 
are sensitive to axonal damage, 
demyelination and degeneration 
69. 

- Quantify SC neural tissue 
microstructural properties 

- Sensitive to WM pathologies (e.g. 
degenerative demyelination, injury, 
edema, tumor) 

- Longitudinal monitoring of patient-
specific SC microstructure (i.e. 
disease progression) 

- Detect origin of microstructural 
damage before non-reversible 
changes (e.g. T2w hyperintensities, 
appearance of clinical symptoms) 

- Short acquisition time (<5 min) 

- Sensitive to B0 
inhomogeneities (EPI 
readout) 

- DTI metrics are biased by 
SNR 70 

https://paperpile.com/c/eZ4cGE/pJSsL
https://paperpile.com/c/eZ4cGE/qbXRU
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GRE-MT1/MT0/T1w  
(3D axial) 

- Computing MTR, MT-CSF and 
MTsat (requires T1w to partially 
compensate for B1+ 
homogeneity and T1 effects on 
the MTR 71) 

- Detecting WM 61  and GM 
pathology (myelopathy) 

- Quantify SC neural tissue 
microstructural properties 

- Sensitive to WM pathologies (e.g. 
degenerative demyelination, injury, 
edema, tumor) 

- Longitudinal monitoring of patient-
specific SC microstructure (i.e. 
disease progression) 

- Detect origin of microstructural 
damage before non-reversible 
changes (e.g. T2w hyperintensities, 
appearance of clinical symptoms) 

- High in-plane axial resolution (good 
for atlas-based analysis of various 
WM tracts) 

- The combined echoes provide high 
WM/GM contrast (depending on 
parameters). 

- Fast 
- Low SAR (except for the MT 

sequence) 

- Sensitive to motion 
- Sensitive to B0 

inhomogeneities (signal 
drop-out due to intra-voxel 
dephasing, can be 
mitigated using thinner 
slices) 

- Quantitative metrics 
sensitive to B1 (except for 
the ME-GRE sequence) 

ME-GRE  
(2D axial) 

- Segmenting the SC and GM for 
measuring cord/WM/GM CSA 

- Registering to a template and 
accounting for GM shape 

- Measuring SC and GM CSA 

 

 

Table 2. List of sequences included in the spine generic protocol. 

 GE Philips Siemens 

T1w (3D) BRAVO/IR-FSPGR T1TFE MPRAGE 

T2w (3D) CUBE VISTA SPACE 

DWI (2D) Spin Echo EPI with or 
without FOCUS(*) 

Zoom Diffusion(*) ep2d_diff with or without 
ZOOMit(*) 

ME-GRE (2D) MERGE mFFE GRE “medic” 

GRE-MT1/MT0/T1w (3D) SPGR FFE GRE 

All sequences come by default with the MRI system, except those marked with (*), which require 
a special license. ME stands for multi-echo. Note that on the Philips system, the MT1 and MT0 
scans are acquired within the same sequence, and the MTR is automatically calculated. 

 

Shimming 

Shimming refers to homogenizing the static magnetic field (B0) and is a necessary step for 
recording reliable images, especially in regions that are prone to large B0 inhomogeneities, such 
as the SC. Without proper shimming, fat saturation would not work effectively, slice excitation 

https://paperpile.com/c/eZ4cGE/x9hjr
https://paperpile.com/c/eZ4cGE/ASopT
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profiles would not be accurate, and EPI data is prone to distortions and signal drop out, with the 
latter being particularly prevalent in gradient echo imaging often used in functional MRI studies.  

The very first “active” attempt to mitigate susceptibility artifacts is usually performed just before 
starting an MRI scan via a procedure called active shimming. This procedure consists of 
estimating a field map and then computing a set of “shim coefficients”, i.e. the amount of current 
that needs to go into each gradient and shim coil in order to minimize the static magnetic field 
inhomogeneity in a specified “shim adjust volume”. 

Slice orientation 

For 3D acquisitions with isotropic resolution (T1w and T2w), we recommend sagittal acquisition 
for an efficient S-I coverage with the minimum number of slices required to cover the cord (on the 
T2w). Note that typical clinical 2D scans use thick sagittal slices, which is popular for diagnosis 
with T1/T2/STIR/PDw contrasts, but these should not be used for measuring CSA or for template-
based analysis due to the poor R-L resolution. 

For qMRI methods that produce microstructural metrics (MT, DWI), we recommend axial 
orientation (orthogonal to the SC) with high in-plane resolution and thick slices. This approach 
takes advantage of the (quasi-) coherently oriented fibers along the S-I direction to increase slice 
thickness and thus gain SNR. The high in-plane resolution, ideally sub-millimetric, is important for 
minimizing the partial volume effect between adjacent internal structures (WM tracts, GM), 
thereby ensuring accurate quantification of metrics. For 2D multislice sequences, if the sequence 
allows, each individual slice should ideally be orthogonal to the cord 72. If not possible, slices 
should be oriented such that the region of most interest is orthogonal to the cord (leaving other 
regions with larger partial volume effects). Alternatively, if time allows, slices may be separated 
into several pseudo-contiguous slabs, each orthogonal to the cord and containing 3-5 slices. Note 
that using thinner slices mitigates the partial volume effect, although this comes at the cost of 
lower SNR. Thinner slices also mitigate intravoxel dephasing due to inhomogeneities in the static 
magnetic field, which lead to signal drop-out in gradient-echo imaging 73. Axial acquisitions with 
thick slices are also recommended for measuring GM CSA. 

Phase-encoding direction 

There are a few considerations to be made when choosing the phase-encoding direction. For 
transverse (perpendicular-to-the cord) image orientation, one advantage of R-L phase encoding 
is that the SC is less curved along this axis, allowing for a smaller FOV (only if using outer-volume 
suppression technique) and thus less k-space lines, yielding faster acquisition times in single-line 
readout schemes and less distortions in EPI. R-L phase encoding also allows for greater 
robustness in the presence of poor fat suppression (due to the fat in the posterior neck region) 
and less ghosting due to swallowing and pulsatile vessels. Alternatively, when using EPI, A-P 
phase encoding will not create a R-L asymmetry, which could be problematic in some study 
designs where the R-L symmetry of the cord is part of the underlying study hypotheses (e.g. 
comparing diffusion metrics between the left and right CST). A-P phase encoding is also less 
prone to peripheral nerve stimulation (although this also depends on the manufacturer, and how 
oblique the slices are). 

https://paperpile.com/c/eZ4cGE/41ATp
https://paperpile.com/c/eZ4cGE/yZHcy
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Thoraco-lumbar cord 

While the present protocol is optimized and validated for the cervical cord, most of the sequences 
proposed here could be ported to the thoraco-lumbar region with minimal or no adjustments. The 
amount of modification required mostly depends on the RF receive coil that is available. One 
notable advantage of the cervical region is the possibility of having coil elements around the neck, 
which provides better performance for accelerated acquisitions (GRAPPA, SENSE) and higher 
signal-to-noise ratio (SNR). When imaging the lower cord, coil elements are typically arranged in 
a flat fashion, reducing acceleration and SNR. Hence, sequences already suffering from low SNR 
might need modifications, e.g., a larger voxel size.  

In general, the T1w, T2w and MT sequences could likely be applied to the lower cord without 
modifications. The DWI protocol may require additional averaging and/or larger in-plane voxels 
to increase the SNR. Furthermore, using saturation bands for inner field of view (FOV) DWI 
acquisitions may be much more challenging or even impossible due to specific absorption rate 
(SAR) and saturation band thickness limits. The ME-GRE sequence is feasible 74 but may require 
additional averaging 75, and/or the use of navigator echoes to compensate for respiration-related 
ghosting. Protocol optimization could be aided by the use of advanced spinal cord phantoms 
made of “tissue-like” materials that mimic respiration-related dynamic changes in the B0 field, 
such as the one proposed by De Tillieux et al. 76. 

Other field strengths 

While the spine generic protocol was optimized and validated at 3T, only slight modifications 
would be required to adapt the protocol to 1.5T systems. Depending on what researchers would 
like to do (CSA measurements, lesion quantification, etc.), the SNR and contrast-to-noise ratio 
would need to be adjusted by finding the right tradeoff between spatial resolution and acquisition 
time. Relaxation parameters also change at lower and higher fields. For example, tissue T1 is 
shorter at 1.5T, which could help reduce TR in T1w sequences. Fortunately, SAR is also lower at 
1.5T, which allows one to reduce the TR in SAR-intensive sequences, such as the MT protocol 
or the T2w sequence (including the DWI sequence). Another advantage of 1.5T is that 
susceptibility distortions on DWI EPI data are reduced. 

At 7T, parameters would likely require greater changes than those needed to adapt to 1.5T. While 
SNR is higher at 7T, allowing one to reduce the voxel size, susceptibility effects are also 
increased. This is particularly problematic for the EPI-based DWI protocol (increased image 
distortions) 77 and the long TE gradient echo sequences used for the T2* protocols 78. Additionally, 
SAR is higher at 7T, which leads to challenges when using SAR-intensive sequences such as the 
MT protocol, the DWI sequence, or the T2w sequence.  

More challenges exist when moving between field strengths, including B1+ effects, dynamic B0 
changes, changes in T1, T2 and T2*, local vs. body RF transmit coils, and different safety profiles. 
Further investigations are therefore needed to properly adapt the spine-generic protocol to other 
field strengths. 

 

https://paperpile.com/c/eZ4cGE/9uoix
https://paperpile.com/c/eZ4cGE/j1GqT
https://paperpile.com/c/eZ4cGE/aQlZj
https://paperpile.com/c/eZ4cGE/sVcJx
https://paperpile.com/c/eZ4cGE/tw4jC
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Future directions 

The spine generic acquisition protocol is a major milestone for the SC qMRI community. It 
provides a starting point for researchers and clinicians implementing new SC imaging initiatives. 
We would like to stress that the protocol will evolve with new MR hardware and software releases, 
as well as with research advances such as protocol optimizations and novel pulse sequence 
developments. Moreover, in future releases, the protocol will also be available for other 
manufacturers (e.g., Canon). For this reason, we suggest that researchers using and publishing 
with this protocol always refer to its release number (https://github.com/spine-
generic/protocols/releases). The SC MRI community has initiated a forum 
(https://forum.spinalcordmri.org/) to encourage discussions about the generic protocol, how to use 
it, and how we could further improve it.  

In the Supplementary materials, we discuss alternative techniques to those included in the main 
procedure (such as advanced shimming, navigator echoes, B1+ mapping, phase sensitive 
inversion recovery (PSIR), reconstruction, interpolation, and filters), some of which are still at the 
research stage but could eventually be added to the protocol. In addition, we discuss additional 
equipment that can be used to immobilize the subject, including cervical collars and custom tight-
fitting helmets.  

We would like to reiterate that the spine generic protocol is not geared towards a specific disease. 
Researchers are at liberty to tune the proposed protocol by modifying parameters and/or 
adding/removing sequences as needed. A recent example is the development of a standardized 
brain and spinal cord MRI protocol for patients with MS 79. 

The present study also comes with two publicly-available datasets (single- and multi-subject). To 
the best of our knowledge, these are the first “large-scale” multi-center qMRI SC datasets ever 
acquired and made public. The multi-subject dataset could be used to create normative qMRI 
values, serving as age-matched healthy control references. More generally, these datasets could 
be used for developing new image processing tools dedicated to the SC, and the fact that they 
are publically available makes it possible for researchers to compare tools with the same data. 

At a time when reproducibility of scientific results is a major concern 80, the proposed consensus 
acquisition protocol, along with publicly-shared datasets and transparent analysis pipeline, aims 
to provide a basis for research reproducibility and study harmonization. 

 

Materials 

Equipment 

MRI Scanner 

A whole body GE, Philips or Siemens 3T MRI scanner  

https://github.com/spine-generic/protocols/releases
https://github.com/spine-generic/protocols/releases
https://forum.spinalcordmri.org/
https://paperpile.com/c/eZ4cGE/B1445
https://paperpile.com/c/eZ4cGE/VHyKm


13/43 

Coils 

Image quality is largely affected by the receive coil. While most 1.5T and 3T systems use the 
integrated body coil for radiofrequency transmission to ensure adequate homogeneity, also 
referred to as the B1+ profile, reception can be done with various other coils, each having specific 
performance characteristics in terms of their sensitivity profile, which defines signal-to-noise ratio 
(SNR), and g-factor, which describes the parallel imaging capability; i.e., how much one can 
accelerate (in the phase-encode and slice-select directions) 5. The recommended receive coils, 
for specific parts of the spine, are listed in Table 3.  

Sequences 

The required sequences are illustrated in Figure 2 and manufacturer-specific sequence names 
are listed in Table 2. All the recommended sequences are available as a product; however, old 
software versions might not have all up-to-date product sequences, and there may be research 
sequences that are equivalent. When applicable, this information is mentioned within this 
manuscript. The protocols (pdf + import files) are freely available at: https://github.com/spine-
generic/protocols. 
  

https://paperpile.com/c/eZ4cGE/v4h8y
https://github.com/spine-generic/protocols
https://github.com/spine-generic/protocols
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Table 3. Recommended receive coils for SC imaging for GE, Philips and Siemens systems. 

  Cervical Thoracic/Lumbar 

 

GE 
HD/HDxt 8-ch Cervical Thoracic Lumbar (CTL) array 8-ch CTL array 

PETMR 19-ch Head Neck Unit (HNU) array 14-ch Central Molecular imaging Array (CMA) 

MR750w 16-ch Head Neck Spine (HNS) array 48-ch Geometry Embracing Method Phased Array 
(GEMPA) 

Philips Achieva 16-ch head/neck/neurovascular  
or 

32-ch head coil 

15-ch posterior spine(**) 

Ingenia(*) 12-ch posterior array(**) 

 
 
Siemens 

Trio  
12-ch brain + 4-ch neck array + spine array(**) 

 
 
 
 

Spine array(**) 
Verio 

Skyra  
64-ch head/neck  

or 
20-ch head/neck + spine array(**) Prisma 

Vida 

Default coils in the spine generic protocol. (*): (i) posterior spine coil could also be used depending on 
coverage, (ii) for thoracic/lumbar SC imaging; anterior coil could be used to improve image quality in 
sequences with anterior-posterior phase-encoding. (**): The relevant elements of the spine array are to be 
selected depending on the region to cover. When using “auto select” (Siemens) or “SmartSelect” (Philips), 
elements will be automatically selected based on the slice positioning. It is advised to use it. This table is 
subject to changes with the evolution of the market. 
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Figure 2. List of sequences included in the spine generic protocol (in black) with possible 

applications (in red). The total acquisition time is 20-30min, depending on the 
manufacturer/model. 

 

Procedure 

Equipment setup ● TIMING: 2 min 

Install coil 

1. Select the coil depending on your manufacturer and application (Table 3).  

Subject and equipment preparation ● TIMING: 5-10 min 

Positioning and immobilization strategies.  

2. Carefully position the subject to optimize image quality. Try to have the cervical SC as 
straight as possible, so that axial slices are orthogonal to the SC centerline. This minimizes 
partial volume effects with the surrounding cerebrospinal fluid (CSF). Reducing neck 
curvature also helps to improve field homogeneity because the shim volume (i.e., the 3D 
box centered over the region of interest where the MR system computes the optimal shim 
coefficients) is less likely to contain air-tissue interfaces. To minimize cervical lordosis, ask 
the subject to tilt their head slightly towards their chest. Placing some cushions below the 
head can help, as illustrated in Figure 3. However, subjects should not be too 
uncomfortable and still be able to swallow in a way that minimizes motion. For thoraco-
lumbar acquisitions, leg support helps minimize lumbar lordosis and provides more 
comfort for the subject. 

3. Verify that the subject is aligned in the left-right direction and ensure alignment of the spine 
with the sagittal plane whenever possible. 
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Figure 3. Patient positioning. Suggested subject positioning: Use a cushion to minimize cervical 
lordosis (bottom panel) 

 

 
4. Pad/clamp the subject’s head tightly with cushions to avoid head motion. Note that, while 

doing this has the merit of not requiring additional purchases (e.g. cervical collar81 or 
specialized immobilization apparatus), this setup is not easily reproducible and depends 
on the MR technician. It also does not ensure that subjects are always positioned in the 
same way for longitudinal experiments. Therefore, it is important that researchers 
specify the type of cushions used and ideally take a picture showing how to position 
those cushions while the subject is in the coil.  

5. Tell the subject that their neck/spine will be imaged and that if they move, image quality 
may be severely compromised. Mimic how not to swallow by exaggerating head and 
swallowing motions. Asking subjects not to swallow at all can sometimes lead to more 
motion due to the swallowing reflex that is triggered once a large volume of saliva is 
accumulated. This can also pose a choking risk, given that subjects are in a supine 
position. As a compromise, notify the subject when they can swallow between scans. Ask 
the subject to breathe normally and to avoid taking deep breaths. Breathing pattern affects 
image quality due to the dynamic B0 variations82 that result from respiration. The latter can 
cause ghosting on gradient echo data and pixel displacement on EPI sequences.  

Pulse Oximeter 

6. Install the pulse oximeter on one of the participant’s fingers. The pulse oximeter will 
monitor the cardiac pulse, which will be used for cardiac gating on the DWI scan.  

Positioning the Isocenter (laser marking) 

7. For thoracic/lumbar applications, set isocenter (laser) around the region of interest. If you 
are doing brain and cervical cord imaging, mark the isocenter right below the nose. This 
will ensure that the localizer will cover the desired region. Note that for all other sequences, 
the table will move so that the center of the FOV is acquired at the scanner’s isocenter (to 
ensure maximal gradient linearity).  

Image Acquisition ● TIMING: 20-30 min 

 

CRITICAL Before starting the acquisition, make sure the coil elements are properly selected. If 
you are using a coil which corresponds to the saved protocol (Table 3), the correct elements 
should be automatically selected. If you are not using a default coil, or if you are acquiring in the 
thoraco-lumbar region, then you will need to select the elements corresponding to the FOV. For 
some manufacturers and platforms, the elements will be automatically selected depending on the 
location and size of the FOV (mode “auto select” or “SmartSelect”), but regardless it is always 
important to double check. 

https://paperpile.com/c/eZ4cGE/TjSUm
https://paperpile.com/c/eZ4cGE/Ryasg
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CRITICAL It is extremely important that you check each image right after its acquisition, not wait 
until the end of the imaging session. For example, if you notice that the wrong coil was used, fix 
the problem for the rest of the images (and reacquire the image if there is still time). Or if you spot 
excessive subject motion, talk to the subject before acquiring the next image. 

T1w Scan 

8. Adjust the FOV so that it includes the whole head, as shown in Figure 4.  

 
Figure 4. Positioning of FOV for T1w scans. 

9. GE users: To have the images reconstructed at the proper matrix size, click on “Save Rx 

→ “Scan”, then click on “Research” → “Download”. Then Click on “Research” → “Display 

CVs”. Then, modify the following CVs accordingly: rhimsize=320, rhrcxres=320, 

rhrcyres=256. You can check on the console if the field was modified appropriately, by 
looking at the “image header”, after reconstruction. You should get: (0x0028, 
0x0010)=192; (0x0028, 0x0030)=1\1. 

10. Acquire the T1w scan. Further details of interest about the parameters used in the T1W 
scan can be found in Box 1. 

Box 1: Additional details about the parameters for T1w scan 
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● Slab selective excitation: to avoid R-L aliasing of the body (phase encoding directions on 
this 3D sequence are R-L and S-I). 

● TR, TE, TI, Flip Angle: inspired by the Human Connectome Project (HCP) protocol 83. The 
TR was slightly reduced to find a compromise between satisfactory white/gray matter 
contrast in the brain and reducing the total acquisition time. 

 

T2w Scan 

11. Center the FOV at C3-C4 as shown in Figure 5. Align along the spine (see coronal view) 

 
Figure 5. Positioning of FOV for T2w scans.  

12. GE users: To have the images reconstructed at the proper matrix size, click on “Save Rx 

→ “Scan”, then click on “Research” → “Download”. Then Click on “Research” → “Display 

CVs”. Then, modify the following CVs accordingly: rhimsize=320, rhrcxres=256, 

rhrcyres=256. You can check on the console if the field was modified appropriately, by 
looking at the “image header”, after reconstruction. You should get: (0x0028, 
0x0010)=192; (0x0028, 0x0030)=1\1 

13. Acquire the T2w scan. Further details of interest about the parameters used in the T2W 
scan can be found in Box 2. 

 

Box 2: Additional details about the parameters for T2w scan: 

https://paperpile.com/c/eZ4cGE/2Cc7J
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● Slab selective excitation: to avoid R-L aliasing of the body (phase encoding directions on 
this 3D sequence are R-L and S-I). 

● TR: sufficiently high to prevent T1 recovery effects causing signal dropout in the CSF (See 
Figure 3b in 33), while keeping it low to reduce total acquisition time. 

● TE, Flip Angle: inspired by previous studies 31,64, optimized for satisfactory SC/CSF 
contrast and SAR. 

 

 

DWI Scan 

 

14. Use ZOOMit (Siemens), Zoom Diffusion (Philips) or FOCUS (GE), if available. Otherwise, 
use saturation bands for aliasing suppression (see Figure 6). 

15. Center the FOV in the cord at the level of C3/C4 disc (Figure 6). Rotate the FOV such 
that slices are orthogonal to the spinal cord, in both the sagittal and coronal planes. 

 

Figure 6. Positioning of FOV, shim box and saturation bands for the DWI scan. 

 
CRITICAL Phase-encode should be A-P. 

16. Adjust the shim volume such that it covers the FOV, in both the sagittal and coronal planes 
(green box).  

https://paperpile.com/c/eZ4cGE/5All
https://paperpile.com/c/eZ4cGE/JyQTN+eEkRG
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17. GE users: Click on “shim volume” and then center on the spinal cord. If you cannot 
modify the size of the shim box, don’t worry. 

18. GE users: When tilting the slice, the TE might increase by a few ms. If you wish to use 
the same TE throughout an entire study, we suggest you try tilting the FOV in the 
coronal and sagittal plane, and report what the minimum TE is. The more you tilt, the 
longer the TE will be (hence lower SNR) but the more conservative you will be in 
keeping a fixed TE throughout the entire study.   

19. GE users: To have the images reconstructed at the proper matrix size, click on “Save Rx 

→ “Scan”, then click on “Research” → “Download”. Then Click on “Research” → “Display 

CVs”. Then, modify the following CVs accordingly: rhimsize=96, rhrcxres=86, 

rhrcyres=43. You can check on the console if the field was modified appropriately, by 
looking at the “image header”, after reconstruction. You should get: (0x0028, 
0x0010)=192; (0x0028, 0x0030)=1\1 

CRITICAL Before starting the acquisition, make sure the PulseOx trigger is working. It should 
look like what is shown in Figure 7. 

 

Figure 7. Example of pulse oximeter trace on a Siemens scanner for triggered acquisition (small 
triangles).  

 
20. Acquire the DWI scan. Further details of interest about the parameters used in the DWI 

scan can be found in Box 3. 

 

Box 3: Additional details about the parameters for DWI scan 

● 2D axial: for spinal tract-based metric quantifications (see section Slice orientation) 
● Spatial resolution: 0.9 x 0.9 x 5 mm (no interpolation) 
● FOV: Reducing the FOV along the phase-encoding direction for EPI reduces susceptibility-

related distortions. SC geometry is favorable to such acquisition techniques. There are three 
main techniques for reducing the FOV: 
○ 2DRF excitation: FOCUS 84 (GE, version DV25 and onwards), ZOOMit 85 (Siemens). Paid 

licence. Not available on all versions.  

https://paperpile.com/c/eZ4cGE/EQjCv
https://paperpile.com/c/eZ4cGE/IcfAw
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○ Cross-sectional RF excitations “Zoom Diffusion” 86,87 (Philips): available for software 
versions 5.3 and higher. For older software, it is possible to use a research sequence 
which is equivalent to the product sequence.  

○ Outer volume suppression with sat bands: (available for all manufacturers). Note: 
because the saturation band approach is not perfect (fat can be missed and aliased on 
top of the SC, as exemplified in Figure 3f in ), it is strongly recommended for it to be 
used only if other options are not available.  

○ For more details about the pros/cons of each reduced FOV technique for the SC, the 
reader is referred to 88.  

● Contiguous slices 

○ Pros: can do tractography, greater statistical power 
○ Cons: reduced coverage (more slices can be added at the discretion of the researcher) 

● b-value: single-shell at 800 s/mm2 
○ A single-shell protocol was chosen due to time constraints. For more advanced diffusion 

models (e.g. NODDI, DBSI), additional shells can be added, potentially increasing TE/TR 
as the b-value is increased. 

○ If the SNR is too low (the SC is barely visible on diffusion-weighted images), the b-value 
could be lowered (e.g., 600-700 s/mm2), thereby reducing TE and increasing the SNR. 
Note that increasing the number of repetitions is not helpful because in this low-SNR 
regime the noise distribution is more Rician-like, hence averaging of the magnitude signal 
results in an upward bias. On the other hand, if the SNR is sufficient, on scanners with 
strong gradients (⩾80 mT/m) it is recommended to set an additional b-value shell (2000-
3000 s/mm2 or higher) to provide better sensitivity to diffusion-based contrast (to see 
demyelination/degeneration) and enable the use of more advanced diffusion models. For 
any multi-shell acquisition, using a fixed TE across shells is recommended. 

○ Users should note that a low b-value (800 s/mm2) may not detect complex fiber geometry 
for tractography applications (e.g., crossing, fanning). The b-value and number of 
diffusion directions can be modified to fit researchers’ needs.  

● Number of directions: 30-32 uniformly distributed over the sphere. The exact diffusion 
gradient scheme is manufacturer-specific. The DWI protocol also includes with 5 b=0 
images acquired at the beginning or interspersed (this is possible by editing 
"DiffusionVectors.txt" on Siemens, “dti_vectors_input.txt” on Philips, or “tensor.dat” on GE, 
but probably only sensible for research sites). All b=0 should have the same TE as the DWI 
data.  

● TR and cardiac gating: It is recommended to acquire EPI data during the quiescent phase 
of the cardiac-related SC motion 89. The quiescent phase of the SC lasts for about 500 ms 
within a cardiac cycle 89. On the Siemens platform, we added a concatenation to break down 
the volume acquisition and only acquire ~3 slices during the quiescent phase of the cord. 
On the Philips platform, 1 or 2 slices are acquired per beat (depending on the heart rate).  
We suggest using a pulse oximeter instead of an ECG (it has adequate precision and is 
less cumbersome to use). The trigger delay is subject-dependent 89 and its definition 
depends on the platform and sequence parameters, making it difficult to provide an optimal 
number that fits all subjects and platforms. For example, the SPAIR fat saturation on the 

https://paperpile.com/c/eZ4cGE/Y5YHq+vXgMT
https://paperpile.com/c/eZ4cGE/Fu65v
https://paperpile.com/c/eZ4cGE/Ov5zX
https://paperpile.com/c/eZ4cGE/Ov5zX
https://paperpile.com/c/eZ4cGE/Ov5zX
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Siemens platform adds ~83 ms before each excitation, while on the Philips platform the 
minimum delay is about 110 ms (used by the SPIR fat sat pulse and the outer volume 
suppression pulses). For convenience, we set the delay to the minimum value, but 
researchers can optimize this value accordingly. 

● TE: should be minimum (to maximize SNR). 
● Echo spacing (controlled with the bandwidth): should be minimum (to minimize distortions). 
● Diffusion gradient mode: monopolar (if available) to ensure lower TE. If needed, bipolar 

mode can be used to minimize eddy current-related distortions. On older Siemens platforms 
(e.g. VB17), the ep2d_diff product sequence is bipolar, however research or work-in-
progress sequences exist, such as WIP511 (monopolar option, with polarity alternation, freq 
stab and skewed fat sat). 

● Dynamic Stabilization: Frequency stabilization (Siemens), Dynamic Stabilization (Philips), 
Real Time Field Adjustment (GE): These options help reduce artifacts related to changes in 
the magnetic field over time. 

● Phase Encoding: P-A instead of A-P so that (i) susceptibility distortions have the effect of 
“stretching” instead of “compressing” the SC (no information loss) and (ii) in case of poor fat 
saturation, posterior neck fat will be aliased outside of the FOV. 

● Shimming box (+ advanced shimming) should be carefully positioned around the SC. See 
Figure 7. 

● Acceleration (GRAPPA/SENSE): We recommend no in-plane acceleration because a 
small matrix size (96×96) combined with a reduced FOV (~60% reduction) and partial 
Fourier (7/8), leaves too few phase-encoding lines for reliable image reconstruction. 
Besides, in-plane acceleration reduces SNR by factor sqrt(R), where R is the in-plane 
acceleration factor. 

● Simultaneous multi-slice: While this technique is gaining popularity for reducing the 
overall acquisition time by exciting several slices at the same time, thereby reducing the 
volume TR, we do not suggest its use here because the number of slices (n=15) and their 
gap is small, which hampers the acceleration performance, and further reducing the TR 
would hamper longitudinal relaxation. 

● Fat suppression: 2DRF protocols use water excitation while the Philips Zoom sequence 
employs a SPIR fat saturation pulse to minimize fat contribution. If insufficient, skewed 
techniques 90 could be tried. 

● Partial Fourier: 75% k-space to mitigate phase errors, while still being able to reduce TE. 
A larger k-space window also minimizes the risk of a total drop-out that can happen when 
the peak of an echo moves entirely outside the readout window. 

● Fieldmap (blip-up/down): Given the difficulty of acquiring a robust fieldmap and correcting 
for susceptibility-related distortions using a blip-up/down sequence in the SC (partly 
because the manifestation of artifacts in the up/down directions might be slightly different, 
due to e.g., CSF presence, B0 field differences between up/down because of respiratory-
related B0 variation), we do not recommend that these be acquired. Any type of correction 
might introduce more artifacts if misused. Instead, we suggest acquiring data with minimal 
distortions in the first place (by minimizing the echo spacing, optimizing shimming, etc.) and 
correcting residual distortions by registering the DWI data on to a structural scan (e.g. b=0 

https://paperpile.com/c/eZ4cGE/cuyee
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on the T2 space). For more details, see this forum post: 
http://forum.spinalcordmri.org/t/how-to-correct-for-distortions-in-spinal-cord-diffusion-mri-
data/326. 

 

  

http://forum.spinalcordmri.org/t/how-to-correct-for-distortions-in-spinal-cord-diffusion-mri-data/326
http://forum.spinalcordmri.org/t/how-to-correct-for-distortions-in-spinal-cord-diffusion-mri-data/326
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GRE-MT1 / MT0 / T1w Scans 

21. Make sure that the FOV center and orientation are the same as for the DWI scan. 
Normally, if you imported the full protocol, the FOV should be copied automatically from 
the DWI scan. If not, please do “copy parameters” (center of FOV and orientation). Use 
“auto” mode for shimming. 

22. GE users: To avoid confusion with regards to the slice orientation, the protocol is saved 
as “axial”. Please click on “oblique” to be able to rotate the slice in the sagittal and 
coronal planes. 

23. GE users: To match the RF frequency of other manufacturers, modify the CV off_rfmt 

24. GE users: To have the images reconstructed at the proper matrix size, click on “Save Rx 

→ “Scan”, then click on “Research” → “Download”. Then Click on “Research” → “Display 

CVs”. Then, modify the following CVs accordingly: rhimsize=192, rhrcxres=172, 

rhrcyres=172. You can check on the console if the field was modified appropriately, by 
looking at the “image header”, after reconstruction. You should get: (0x0028, 
0x0010)=192; (0x0028, 0x0030)=1\1 

CRITICAL If you get a SAR limitation on the MT scan, increase the TR to the minimum suggested 
(e.g., going from 35 ms to 36 ms). If the TR is increased, it is very important that you also change 
the TR on the GRE-MT0 sequence (TR should be the same on the MT1 and MT0 scans). 

25. Acquire GRE-MT1/MT0/T1w scan. Further details of interest about the parameters used 
in the GRE-MT1/MT0/T1w scan can be found in Box 4. 

 

Box 4: Additional details about the parameters for GRE-MT1 / MT0 / T1w Scans: 

● 2D vs. 3D: 3D is recommended because with some manufacturers (incl. Siemens) the MT 
pulse is not selective, therefore using a 2D sequence will result in a different MT effect 
across slices. 

● TR and Flip angle: optimized so as to minimize the standard deviation of the MTR, given 
the limitations on different systems (ex: SAR, TR, etc.).  

● TE: minimized to reduce T2* relaxation. 
● Saturation bands: not recommended because the offset excitation creates an MT effect, 

which could vary across manufacturers (different implementation). 
● Fat saturation pulses: should not be used with a quantitative MT protocol (MTR, MTsat, 

qMT, MTCSF, etc.) because the off resonance pulse will create an additional MT effect.  
● Water excitation (using composite binomial pulses): not recommended since the effect on 

the off-resonance fat signal will impact the MT effect. 
● MT frequency offset: Using product sequences, the frequency offset cannot be changed. 

Siemens and GE use 1.2 kHz while Philips uses 1.1 kHz, which is the recommendation for 
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the spine generic protocol. If, however, one has access to research sequences that allow 
changing that parameter, increasing the frequency offset (e.g., to 4kHz) will result in higher 
WM/GM contrast that could be  advantageous when segmenting the GM. The RF strength 
and pulse pattern for the MT pulse cannot be disclosed here because it is proprietary 
information of the manufacturers. 

● Multiecho combined: Although combining echoes provides higher SNR, we do not always 
recommend it because signal dropout at later echo times could bias MT metrics. Also, on 
GE systems, it is not possible to use multiecho with the MT pulse. 

 

 

GRE-ME Scan 

26. Make sure that the FOV center and orientation are the same as for the DWI scan. 
Normally, if you imported the full protocol, the FOV should be copied automatically from 
the DWI scan. If not, please do “copy parameters” (center of FOV and orientation).  

27. Adjust shim box so that it follows the spine as closely as possible (see Figure 8).  
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Figure 8. Positioning of the FOV, shim box and saturation bands for the GRE-ME scan. 

Siemens and GE users: the saturation band is already automatically positioned. Philips users: the 
saturation bands are “invisible” on this sequence, but they are nevertheless applied. 

28. GE users: To avoid confusion with regards to the slice orientation, the protocol is saved 
as “axial”. Please click on “oblique” to be able to rotate the slice in the sagittal and 
coronal planes. 

29. GE users: To have the images reconstructed at the proper matrix size, click on “Save Rx 

→ “Scan”, then click on “Research” → “Download”. Then Click on “Research” → “Display 

CVs”. Then, modify the following CVs accordingly: rhimsize=448, rhrcxres=224, 

rhrcyres=224. 

30. Acquire the GRE-ME scan. Further details of interest about the parameters used in the 
GRE-ME scan can be found in Box 5. 

 

Box 5: Additional details about the parameters for GRE-ME Scan 

● Optimization: The chosen parameters for this sequence result from a consensus which 
arose from the “Gray Matter Acquisition Challenge”, which was organized during the 5th 
Spinal Cord MRI workshop 91. 

● 2D vs. 3D: While 3D acquisitions are more SNR efficient, we recommend using 2D 
acquisitions as they produce “cleaner” images: no aliasing along the 2nd phase encoding 
direction when using 3D, more homogeneous B1+ profile than 3D acquisition, less sensitive 
to motion. 

● Spatial resolution: 0.5 x 0.5 x 5 mm (no interpolation) 
● Saturation band: adds a slight MT effect due to the off-resonance pulse, which has the 

effect of slightly increasing white/gray matter contrast. A corollary benefit of this saturation 
band, positioned coronal and anteriorly (Figure 8), is that it also removes signal from a 
region prone to motion (swallowing and vessel pulsatility in the neck). 

● Monopolar vs. bipolar: This concerns the filling of k-space across the different echoes. It 
is more time-efficient to fill the k-space by alternating polarities across echoes, however this 
leads to a slight inter-echo shift caused by field inhomogeneities. For this reason we 
recommend using monopolar encoding, with the downside of slightly longer TE and TR.   

● Multiecho combined: If individual echo images are available; they should be combined 
during post-processing for more transparency on the aggregation method. MEDIC 
(Siemens), and MERGE (GE) automatically combine all echoes. The Philips mFFE 
sequence outputs all the echoes with the option to also output an “accumulated” image, 
which corresponds to the sum of all echoes. Depending on the version, the MEDIC 
sequence does not feature the phase stabilization option (navigator-based phase correction 
which minimizes ghosting), whereas the FLASH does (this depends on the version, e.g.: 
VE11C does not). 

https://paperpile.com/c/eZ4cGE/GIRNm
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Troubleshooting 

Troubleshooting advice can be found in Table 4. 
 

Table 4. Troubleshooting table 

STEP  PROBLEM POSSIBLE REASON SOLUTION 

Step 1 Insufficient signal in some 
parts of the image (Figure 

S1) 

Wrong coil selection: For each region in 
the FOV, the proper coil needs to be 
selected (Table 3). For example, if you are 
planning to cover the head and neck region, 
then the head/neck coil should be used. In 
addition, for each sequence, the proper coil 
elements need to be selected. 

If you notice such artifacts in the image, 
make sure to check those coil parameters. 

Steps 2-5 Blurry images ( Figure S2 
and Figure S3)  

Improper subject positioning:  Proper 
subject positioning is important both for the 
subject’s comfort (which has an indirect 
positive impact on image quality) and for the 
reduction of some artifacts. For example, 
excessive lordosis can create more 
pronounced CSF flow and SC motion.  
  
Subject motion: Subject motion can 
negatively affect all sequences, with some 
sequences being particularly sensitive: T1w 
(step 10), GRE-MT0/MT1/T1w (step 25) and 
GRE-ME (step 30). 

 
Reposition the subject. 
 
 
 
 
 
 
 
 
 
 
 
 
Talk to the subject, ask them to not move for 
the rest of the imaging session. If there is 
still time before the end of the imaging 
session, it is recommended to re-acquire the 
problematic image(s). 
 

Step 3  Misaligned images (Figure 

S4) 
 

Improper subject/FOV positioning: If the 
medial plane of the spine and head is not 
aligned with the MRI bore, it could lead to 
subject discomfort and image misalignment 
when the FOV is not properly rotated about 
the antero-posterior axis. 

 
Reposition the subject. 

Steps 10 
(T1w) & 13 
(T2w) 

Artifact: multiple fine 
parallel lines adjacent to 
high-contrast interfaces. 

Gibbs ringing Can be reduced with an apodization filter, 
e.g. “Raw filter” (Siemens), “Image filter” 
(Philips). 
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Step 13 (T2w) Signal drops in the CSF 
(Figure S5). 
 

Incorrect acquisition parameter: Changes 
to the acquisition parameters can result in 
undesired artifacts. In the example shown in 
Figure S5, the flip angle was increased, 
causing the CSF signal to not recover fully 
(hypointense signal). Other changes in 
sequence parameters (TR, TE, matrix size, 
etc.) could also lead to undesired artifacts or 
biases in the computed qMRI metrics. 

 
Keep the protocol parameters as close as 
possible to what is prescribed in the spine 
generic protocol.  

Steps 8, 11, 
15, 21 & 26 

Variable coverage across 
the studied population. 
 

Wrong FOV placement: It is important to 
follow the prescribed FOV placement, as 
failure to do so could result in variable 
coverage across the studied population, and 
be a source of inconsistencies and biases. 
Figure S6 shows an example of wrong FOV 
placement for a GRE-MT scan. 

 
Keep the FOV as close as possible to what 
is prescribed in the spine generic protocol. 

Step 20 (DWI) Artifacts on DWI scans 
(Figure S7). 

The DWI scan is based on an EPI sequence, 
which is prone to susceptibility artifacts 
manifesting as image distortions. Other 
effects can lead to artifacts when using this 
sequence, including poor fat saturation and 
excessive subject or pulsatile motion.  

Poor fat saturation: This can cause fat to 
overlay on the SC (see Figure 3f in 33): The 
cause is likely related to poor shimming. In 
this case, try to move the table, re-shim, 
and/or try other fat saturation methods (e.g. 
frequency-selective, inversion-recovery). If 
saturation bands are used, look for poorly 
saturated signals in the saturation band 
region by prescribing full FOV and looking at 
the area where saturation bands are 
located. If the signal outside the FOV is too 
high, causing it to alias over the SC, try to 
increase the number of phase encode lines 
(this will cause slightly more distortions) or 
to unselect coil elements if they are not 
necessary (e.g., switching off the anterior 
neck element). 

Step 25 (MT) Blurry slice edges. The 3D excitation does not have a sharp 
profile at the edges.  

Discard 2-3 slices at each edge. 

Step 30 (GRE-
ME)  

Signal dropout. Signal dropout can be caused by intravoxel 
dephasing.  

If you notice substantial signal dropout, try: 
reshimming, using thinner slices, or 
reducing the TE (and/or number of echoes). 
 

 

https://paperpile.com/c/eZ4cGE/5All


30/43 

Anticipated Results 

In this section we show images of the same subject acquired across the three manufacturers. 
Additional examples of good quality data with interactive 3D visualization are shown in the spine 
generic website (https://spine-generic.rtfd.io/en/latest/data-acquisition.html#example-of-
datasets). The interactive embedding in the website is powered by Brainsprite 
(https://brainsprite.github.io/). 

 

Good quality T1w scans (steps 8-10) 

Figure 9 illustrates what good quality T1w scans for all three manufacturers look like. All scans 
are devoid of any motion artifacts and the signal is homogeneous throughout the SC. The SC is 
nicely visible in the medial sagittal plane.  

 
Figure 9. Sagittal views of good quality T1w scans for each manufacturer.  

 

  

https://spine-generic.rtfd.io/en/latest/data-acquisition.html#example-of-datasets
https://spine-generic.rtfd.io/en/latest/data-acquisition.html#example-of-datasets
https://brainsprite.github.io/
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Good quality T2w scans (steps 11-13) 

In Figure 10, we show good quality T2w scans for all three manufacturers. All scans are devoid 
of any motion artifacts and the signal is homogeneous throughout the SC. Like for the T1w scans, 
the SC is nicely visible in the medial sagittal plane. 

 
Figure 10. Sagittal views of good quality T2w scans for each manufacturer.  

 

  



32/43 

Good quality DWI scans (steps 14-20) 

In Figure 11 we show good quality DW scans for all three manufacturers. These DW images 
correspond to a diffusion gradient vector fairly orthogonal to the cord axis, hence the visible spinal 
cord. When the diffusion gradient is oriented quasi-parallel to the cord, the signal in the cord 
almost vanishes. Notice the different noise patterns across the manufacturers, which is due to the 
different types of filters applied. These filters were present in the old version of the protocol but 
removed in the latest version. 

 
Figure 11. Axial views of good quality data for DWI scans at b=0 s/mm2 (top row) and b=800 
s/mm2 (bottom row). The DW image corresponds to a diffusion gradient vector fairly orthogonal 
to the cord axis, hence the visible spinal cord. Notice the different noise patterns across the 
manufacturers, which is due to the different types of filters applied across manufacturers; these 
filters were present in an older version of the protocol, but have been removed in the latest version 
of the protocol in order to minimize differences across manufacturers. 
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Good quality MT scans (steps 21-25) 

Figure 12 illustrates good quality MT0, MT1 and T1w scans for all three manufacturers. Notice 
the slight motion artifact on the Philips MT0 scan. Also notice the strong signal intensity at the 
periphery of the tissue on the Siemens scans, which is due to the inactivation of the intensity bias 
filter. This filter is not relevant when computing qMRI metrics such as MTR or MTsat. 

 
Figure 12. Axial views of good quality data for MT0, MT1 and T1w scans. Notice the slight motion 
artifact on the Philips MT0 scan. Also notice the strong signal intensity at the periphery of the 
tissue on the Siemens scans, which is due to the inactivation of the intensity bias filter. This filter 
is not relevant when computing qMRI metrics such as MTR or MTsat. 
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Good quality ME-GRE scans (steps 26-30) 

In Figure 13, we show good quality ME-GRE scans for the three manufacturers. The contrast 
between GM and WM is good and there is no visible ghosting or signal dropout. 

 
Figure 13. Axial views of good quality ME-GRE scans for each manufacturer.  
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