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ABSTRACT 

 Navigation systems of unmanned aircraft systems (UAS) are heavily dependent 

on the availability of Global Positioning Systems (GPS) or other Global Navigation 

Satellite Systems (GNSS). Although inertial navigation systems (INS) can provide 

position and velocity of an aircraft based on acceleration measurements, the information 

degrades over time and reduces the capability of the system. In a GPS-denied 

environment, a UAS must utilize alternative sensor sources for navigating. This thesis 

presents preliminary evaluation results on the usage of onboard down-looking 

electro-optical sensors and image matching techniques to assist in GPS-free navigation of 

aerial platforms. Following the presentation of the fundamental mathematics behind the 

proposed concept, the thesis analyzes the key results from three flight campaign 

experiments that use different sets of sensors to collect data. Each of the flight 

experiments explores different sensor setups, assesses a variety of image processing 

methods, looks at different terrain environments, and reveals limitations related to the 

proposed approach. In addition, an attempt to incorporate navigational aid solutions into a 

navigation system using a Kalman filter is demonstrated. The thesis concludes with 

recommendations for future research on developing an integrated navigation system that 

relies on inertial measurement unit data complemented by the positional fixes from the 

image-matching technique. 
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EXECUTIVE SUMMARY 

Navigation systems of unmanned aircraft systems (UAS) are heavily dependent on 

the availability of Global Positioning Systems (GPS) or other Global Navigation Satellite 

Systems (GNSS) to enable beyond line-of-sight autonomous operations. With global 

positioning information provided by GPS signals, human operators of UAS can track, 

apply flight profile corrections, and steer the UAS to its intended aera of operations. 

In the event of a GPS-denied scenario, a UAS will have to depend on its inertial 

navigation system (INS) as the only source of information for navigation (Cole 2017). 

Although the INS and its inertial measurement unit (IMU) can continue to provide position 

and velocity of the aircraft based on acceleration measurements, the information degrades 

over time and reduces the navigation capability of the UAS. This is undesirable for a UAS 

conducting long-endurance (long-range) missions. While sensors such as barometers, 

magnetometers, and air data systems can augment GPS in providing UAS position and 

attitude information, this thesis seeks to study the feasibility of using a vision-based sensor 

as a navigation aid (NAVAID) solution. 

The key aspects of the proposed image-matching technique for manned and 

unmanned aerial vehicles operating in GPS-denied environments have been evaluated 

previously by Han (2017), and Yakimenko and Decker (2017, 2019). In these studies, the 

matching was done between the imagery obtained by the aerial vehicle and previously 

stored satellite imagery. Nevertheless, the risk of a map database being inaccurate is high, 

particularly for disaster areas with terrain deformation. In addition, for UASs flying at 

faster speeds over unknown territory, vision-based mapless navigation methods may 

appear more attractive. Hence, this thesis aims to study the feasibility of a mapless 

navigation solution, where pose estimation is computed from imagery acquired from 

onboard downward-looking electro-optical (EO) sensors. 

To address the feasibility of adopting a vision-based NAVAID for UAS navigation, 

this thesis aims to fulfill the following objectives: 



xviii 

• Viability of real-time application. Different image processing methods are 

investigated and recommended based on their computational execution 

time. 

• Imagery resolution and frame rate requirements. A range of EO sensors, 

ranging from dedicated high-resolution aerial mapping sensors to 

relatively cheaper commercial off-the-shelf (COTS) camera sensors, are 

used. 

• Comparison against reference GPS data. Pose estimation results from 

different flight altitudes and flight maneuvers are compared against 

reference GPS data to understand vision-based NAVAID performance and 

limitations. 

• Implementation of NAVAID pose estimations into UAS navigation. 

The position of a feature or any target point of interest in a local tangent coordinate 

plane was derived from its position in the camera coordinate plane, by transforming it to 

the body coordinate frame and subsequently to the normal tangent plane. The proposed 

approach assumed that target points with known geolocations were not available. By 

processing two consecutive images, the change of position of the target point was 

determined, which is used in place of GPS signals by the UAS navigation system. 

To facilitate real-time implementation on the UAS, feature detection algorithms 

were selected based on computing processing unit (CPU) time and number of features 

detected. Acquired images were also preprocessed into grayscale format to leverage on the 

benefits of faster processing speed and eliminate any sensitivity issues of color images 

(Ebner 2007).  Features from the Accelerated Segment Test (FAST), Oriented FAST and 

rotated BRIEF (ORB), and Speeded-Up Robust Features (SURF) were identified for 

subsequent NAVAID feasibility studies due to their low processing time per feature 

detected, indicating better efficiency and superior performance among detection methods 

investigated. 
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 With the assumption of low image distortion at high flight altitudes, similarity 

geometric transformation was adopted for pose estimation. Decomposition of the 

transformation matrix allowed determination of pixel displacement, rotation, and scale 

factor of matched feature points between consecutive images. It was shown that low 

resolution imagery over a feature-poor landscape did not hinder the performance of the 

proposed solution, as long as there was an adequate number of feature matches across 

images. 

The proposed NAVAID solution was executed on three flight campaigns, on 

different flying platforms and sensor suites. The preliminary image matching feasibility 

study was conducted on images acquired from the Trinity F90+ mapping drone, equipped 

with an ultra-high resolution (UHR) camera payload. Subsequent image matching attempts 

on imagery from the TASE 200 sensor flight campaign required preprocessing to crop out 

perspective distortion due to the forward looking EO sensor. The third flight campaign 

featured a self-built sensor suite, consisting of a high-resolution GoPro Hero 4 camera and 

an iPhone 7 running the Sensor Log application, mounted on a manned Cessna-172 aircraft. 

The self-built sensor suite offered more flexibility in both data acquisition rate and quality 

of imagery collected, compared to the previous two flight campaigns. 

The current assumption of using similarity transformation for pose estimation 

showed promising results for straight level flight profiles. The segmented flight profile 

analysis approach was able to estimate straight level flight trajectories with good accuracy, 

even with non-periodic or low fps rate video feed. However, it was noted that similarity 

transformation may not be sufficiently robust to handle perspective distorted imagery due 

to a forward-looking sensor or bank maneuvers. Image preprocessing may need to be 

executed to correct distortions before proceeding with the image matching and pose 

estimation. 

Implementation of the NAVAID solution was successfully demonstrated in 

MATLAB, using a Kalman filter. INS-NAVAID integrated pose results showed better 

performance compared to INS-only pose calculations, with lower RMS position errors 

from the proposed solution. This further illustrates the potential of using a vision-based 

NAVAID for UAS operating in GPS-denied environments. 
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I. INTRODUCTION 

Autonomous vehicles have become increasingly popular and are employed in 

civilian and commercial applications, as well as military operations. They are attractive as 

a supplement to the human workforce (Liew 2019) and have become effective force 

multipliers, replacing humans to perform dull, dirty, and dangerous work. Not only are they 

economical to develop, but they can also greatly increase a user’s strategic advantage over 

near-peer competitors (Department of the Navy 2021). 

A. BACKGROUND 

Unmanned aerial systems (UAS), a category of autonomous vehicles, are equipped 

with an inertial navigation system (INS) and Global Positioning System (GPS) or 

equivalent Global Navigation Satellite System (GNSS) receivers, to enable beyond line-

of-sight autonomous operations. Specifically, UASs depend on the GPS to provide global 

positioning, navigation, and synchronized timing based on data received from multiple 

GPS satellites in orbit. At any point in time, there needs to be a minimum of four satellites 

in line-of-sight (LoS), shown in  Figure 1, to solve for latitude, longitude, altitude, and time 

(PNT). With knowledge of the current UAS position information, the human operator can 

track, apply flight profile corrections, and steer the UAS to its intended area of operations 

at various flight altitudes. 



2 

 
Figure 1. GPS trilateration of four satellites. 

Source: Gilliland (2019). 

B. MOTIVATION AND PROBLEM DEFINITION 

In the event of a GPS-denied scenario, due to either natural phenomena or human 

intervention, the UAS will have to depend on its INS as the only source of information for 

navigation (Cole 2017). Particularly for military operations, the ease of access to GPS 

spoofing and jamming technologies has made the GPS signal very vulnerable, adversely 

affecting mission success. Without the GPS, the INS and its inertial measurement unit 

(IMU) can still provide pose information, but it degrades rapidly due to the accumulation 

of integration drift over time. This is undesirable especially for long-endurance (long-

range) UASs. Periodic corrections should be applied on the INS positioning data to 

improve its fidelity, using a reference source such as GPS signals. While sensors such as 

barometers, magnetometers, and air data systems can augment a GPS in providing UAS 

position and attitude information, this thesis seeks to study the feasibility of using a vision-

based sensor as a navigation solution. 

Vision-based navigation has been extensively researched in robotics. Desouza and 

Kak (2002) presented a literature survey on robotic vision-based navigation, while Lu et 

al. (2018) summarized navigation solutions for unmanned aerial vehicles (UAV) using 

onboard optical sensors with CV techniques. Autonomous robots have used map building 
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methods to generate virtual representations of the surrounding environment to execute path 

planning and obstacle avoidance (Courbon et al. 2010). An internal model of the 

environment was generated during the first fly past on the intended flight path. As the UAV 

revisited the same path, due to persistent surveillance requirements, the platform would be 

able to execute image matching between its current image and its internal database of key 

images. Localization of the UAV could then be established when high correlation was 

achieved between matching images. The UAV would steer towards the desired end state 

image should its current image appear distorted with reference to the database, facilitating 

autonomous navigation. 

Stereo cameras are preferred over monocular cameras for map-based navigation 

due to improved depth perception, facilitating precise routing and internal model 

generation. As illustrated in Figure 2, features extracted from images are transformed into 

the 3D point clouds depicting the exact location of physical objects. Mallet, Lacroix, and 

Gallo (2000) demonstrated that the 3D point cloud produced from images acquired from 

stereovision enabled pose estimation with small error magnitudes over several meters of 

displacement. While it is known that visual odometry suffers from cumulative errors, 

Perez-Grau et al. (2018) adopted a key-framing approach, where reference key frames 

containing the UAV’s pose information were generated when feature tracking flow 

exceeded an allowable threshold. 
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Figure 2. 3D point cloud map generated from stereovision sensors. 

Source: Perez-Grau et al. (2018). 

Preloaded digital models of the environment are also used in map-based navigation 

when UASs do not have the opportunity to create their own environment models. Digital 

models, such as a digital elevation map (DEM) or digital maps, acquired from satellite or 

other UAS sources are uploaded onto the UAS platform before flight. Image matching will 

then be performed during flight to determine the correlation between the observed scene 

and the preloaded database (Zhang, Liu and Wu 2011; Kaniewski and Grzywacz 2017).  

Reference beacons, such as an infrared (IR) lamp or a light-emitting diode (LED), 

implemented at known coordinate positions have also been shown to enable precision 

navigation. These reference beacons are less sophisticated and have relatively few features 

as compared to digital models. Gui et al. (2013) utilized IR lamps for precision recovery 

and landing for UAVs, using optical filters to improve sensitivity of electro-optics (EO) to 

specific electromagnetic wavelengths. Yakimenko et al. (2002) leveraged on a ship’s 

smokestack as a reference point for shipboard landing and successfully demonstrated real-

time flight implementation. In 2005, Valasek et al. proved that LEDs installed on an air 

refueling drogue basket, used in conjunction with optical sensors, can provide a feasible 

solution for autonomous air refueling operations. 

For UASs flying at faster speeds over unknown territory, vision-based mapless 

navigation methods may be more attractive. Using computer vision (CV) and image 
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processing techniques, the mapless navigation system could execute image-matching 

techniques on imagery acquired by an onboard optical sensor commonly found on UASs 

conducting aerial surveillance. Instead of conducting image matching with a map model, 

this method matches detected features across sequential images to determine the 

corresponding transformations. Since optical sensors are passive devices, they are less 

susceptible to disruptions, unlike GPS signals, making vision-based UAS navigation a 

promising area for further development. In fact, some progress in this area has already been 

demonstrated by Miller et al. (2010), Madison et al. (2007), as well as Sasiadek and Walker 

(2008). Kong, Egan, and Cornall (2006) successfully demonstrated the concept of using 

the Canny edge detection algorithm to perform feature matching of consecutive images. 

The concept was able to track the position of the UAV for a flight time of 20 seconds, 

within acceptable error tolerances. It was identified that a more advanced feature-matching 

algorithm be developed to cater for real-time flight applications, which this thesis research 

aims to achieve. Indeed, many challenges still remain. For example, one on the most recent 

publications exploring visual inertial odometry (VIO) for an outdoor UAS flight 

highlighted the challenges of varying lighting conditions and camera pitch orientation on 

trajectory estimation performance (Bednář et al. 2022). 

The key aspects of the proposed image-matching technique for manned and 

unmanned aerial vehicles operating in GPS-denied environments have been evaluated 

previously by Han (2017), and Yakimenko and Decker (2017, 2019). In these studies, the 

matching was done between the imagery obtained by the aerial vehicle and previously 

stored satellite imagery. As shown in Figure 3, adapted from Yakimenko and Decker 

(2017), the a) in-flight acquired image was matched with b) the corresponding satellite 

reference view image (RVI) to generate c) where the flight image was imposed on the RVI. 

This thesis continues the aforementioned line of efforts by investigating an image-matching 

technique based on the imagery coming from an onboard EO sensor only. 
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a)  b)  c) 

Figure 3. Example of image matching. 
Adapted from Yakimenko and Decker (2017). 

Specifically, the work presented in this thesis aims to assess the feasibility of using 

onboard EO sensors as a vision-based navigational aid (NAVAID) when the GPS becomes 

unavailable during UAS operations. In order to establish the viability of real-time 

application, different image processing methods are investigated and recommended based 

on their computational execution time. Imagery resolution requirements are also 

determined using various EO sensors, ranging from dedicated high-resolution aerial 

mapping sensors to relatively cheaper commercial off-the-shelf (COTS) camera sensors. 

Lastly, pose estimation results from different flight altitudes and flight maneuvers are 

compared against reference GPS data to understand vision-based NAVAID performance 

and limitations. 

C. THESIS STRUCTURE

To address the problem formulated in Part B of this chapter, the subsequent

chapters of this thesis are organized as follows: 

Chapter II introduces the basics of visual-based odometry. The chapter presents the 

derivation of change in UAS position, followed by an overview of the feature detection 

algorithms available and geometric transformations. 

Chapter III details the image processing procedure, which includes feature 

detection, matching, outlier rejection, and eventual geometric transformation 

decomposition to obtain pose estimation. 

The experiment performed using the Quantum Systems Trinity F90+ mapping 

UAS, featuring an ultra-high resolution (UHR) Sony RX1R II 42.4 MP camera is described 
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in Chapter IV. While the UAS is a good mapping drone in the industry, it does not 

necessarily support research work as time synchronized telemetry and imagery data are not 

available. 

In Chapter V a description of the experiment conducted using a manned aircraft 

equipped with a TASE 200 sensor is described. This sensor does provide telemetry 

synchronized with the imagery but of a lower resolution quality. 

Chapter VI recounts the attempt to prototype a cheap sensor-telemetry suite 

featuring high-resolution imagery and high-rate telemetry data, built using COTS parts. 

Then, the attempts to implement NAVAID estimations into UAS navigation 

architecture in the MATLAB environment are described in Chapter VII. 

Finally, Chapter VIII provides concluding remarks about the work completed in 

this thesis and offers recommendations for further research. 
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II. MATHEMATICAL FOUNDATION OF VISION-BASED
ODOMETERY 

A. DERIVATION OF CHANGE IN UAS POSITION

The position of a target point of interest on a local tangent coordinate plane { }n ,

{ }n
TP , is represented on an image plane shown in Figure 4. This target point position can be 

derived from its position in the camera coordinate frame { }c , { }c
Tp , through a series of 

transformations; firstly by rotating and translating it to the body coordinate frame { }b  via 

{ }
{ }

b
c R  and { }b

cp , and subsequently rotating and translating it to the normal tangent plane { }n  

via { }
{ }

n
b R  and { }

/
n

a cP

}{ } { } { }
}

{{ { }
{/ }

}
{( )bn n b c

T a c c T
n
b cP P R p Rp= + +   (1) 

Figure 4. Relationship between UAS state, camera orientation, and target 
point of interest during transit 

By rearranging terms in Equation (1) with the known positions of the target point 

in { }n  and { }c , an unknown UAS position can be expressed as 

}{ } { } { }
}

{ }{ { }
{/ { }( )bn n b c

a c T c T
n
b cP P R p Rp+= −  (2)
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The rotation matrix { }
{ }

n
b R  can be generated from Euler angles, provided by INS 

measurements, with the rotation order of “ ZYX ”; the rotation order is critical as it will 

affect the result of matrix multiplication (Yakimenko and Slegers 2015, 267). 

{ }
{ } ( ) ( ) ( )n
b z y xR R R Rψ θ ϕ=  (3) 

{ }
{ }

cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

n
b R

ψ ψ θ θ
ψ ψ ϕ ϕ

θ θ ϕ ϕ

−   
   = −   
   −   

 

{ }
{ }

cos cos sin sin cos cos sin cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

n
b R

θ ψ ϕ θ ψ ϕ ψ ϕ θ ψ ϕ ψ
θ ψ ϕ θ ψ ϕ ψ ϕ θ ψ ϕ ψ

θ ϕ θ ϕ θ

− + 
 = + − 
 − 

 

The location of the camera on the UAS, represented by { }b
cp , is fixed, and its 

orientation, { }
{ }

b
c R , can be defined with the gimbal’s known pan and tilt angle values 

{ }
{ } ( ) ( )b
c y zR R Tilt R Pan= (4) 

Unlike other map-based navigation research presented earlier in Chapter I, which 

relies on known reference target points on visual images, the current proposed approach 

assumes that there is no available target point with a known geolocation; { }n
TP  is therefore 

unknown. Fortunately, by post-processing two consecutive images, it can be inferred that 

any change in view captured in the images will be due to the difference in position and 

orientation of the camera when the two images were captured. Revisiting Equation (2), 

after including differences in position and orientation, the following is obtained: 

{ } { } { }{ } { } { } { }
{

{
} {

} { } { }
/ / { } } { })[ ( )( )]( n n b b

b b c c
n n n b c c

a c a c T c T TP P P R R p R R p p+ ∆ + +− + ∆∆+ ∆ =  (5) 

The change in the target point position { }c
Tp∆  could have been produced by the 

change in UAS position { }
/
n

a cp∆  and attitude { }
{ }

n
b R∆ , as well as gimbal orientation { }

{ }
b
c R∆ . 

Subtracting Equation (5) from Equation (2) and ignoring any second order terms yields 

{
{ } { }{ } { } { } { } { } { }

{ } {
}

}
{ } {

} { } { }
}

/ { }
{( )n b n b n b

b c b
n b c c c

a c c T T Tc b cP R p Rp R Rp R R p∆ = − ∆∆ −+ − ∆ (6)
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It is interesting to note that the term { }n
TP  is no longer present, indicating that there 

is no requirement to know the geolocation of the target point and that only the change of 

the target point’s position { }c
TP∆  is the unknown term to resolve. Equation (6) can be further 

rearranged to obtain 

{ }
{ } { } { } { } { }

/ {
}

}
{ } { } {

{ } { } {
{ } } {

}{ }
{ }

/ ( )
n
b n b n bc

a c b b
n n n c

a c T Tc cn
b

T

R
P R Rp R RP pP

R
∆ = − − − ∆

∆
− ∆ (7) 

Using the expression for the change of the direction cosine matrix caused by 

rotation of { }b  with respect to { }n  (where p , q , and r  are the components of the 

corresponding angular velocity vector) 

{ } { } { } { }
{ } { } { } { } { } { }

0
[ ( ) ], ( ) 0

0

n n b b
b b b wrt n b wrt n

r q
R R I S t S r p

q p
ω ω

− 
 ∆ = + ∆ = − 
 − 

(8) 

Equation (7) can then be rearranged and eventually expressed as 

{ } { } { } { } { }
/ { } { }

{ } { } { } { } { }
{ } { {/ { } } }( )[ ( )]n n b n b n b

a c b wrt n b c b c
n c c

a c T T TP P SP R Rp R pI Rω∆ + ∆= − − − − ∆  (9) 

B. FEATURE EXTRACTION

If the camera is displaced when acquiring two consecutive images, it can be safely

assumed that some features are present in both images, and the features can be correlated 

from one image frame to the other through geometric transformations. In order to utilize 

Equation (6) to determine the change in UAS position, all corresponding parameters of the 

UAS and its gimbal need to be known, as well as the detection of displaced target points 

represented by { }c
Tp∆ . 

Image matching or image registration is fundamentally based on matching features 

in images, using computer vision algorithms. These algorithms find specific combinations 

of pixels, such as corners, blobs, and edges within the image, which can also be referred to 

as local features. The local features differ from their immediate surrounding pixels by 

texture, color, or intensity and can be distinctively identified. It is important that these 
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features remain locally invariant, so that feature detection can be executed even when the 

image is rotated or altered in scale. The identification of a correct match of target points 

between two images can be made using the Hamming-distanced-based metric to facilitate 

the similarity matching. 

The corner detection algorithm works specifically on the intersection of two edges; 

when a small survey window is placed at a corner on an image, there will be a great change 

in intensity when the survey window is displaced in any direction. Figure 5 illustrates the 

corner detector at the corner in the image. This detection algorithm is applicable for point 

tracking and image registration with little or no scale change. Examples of corner detection 

algorithms include the Features from Accelerate Segment Test (FAST) (Rosten and 

Drummond 2005), Minimum Eigenvalue algorithm (MinEigen) (Shi and Tomasi 1994), 

and the Harris-Stephen corner detector (Harris) (Harris and Stephens 1988). 

Figure 5. Image with corner detector 

Improved corner detectors subsequently created to handle scale and rotation changes 

provide robustness in the image matching process. Oriented FAST and rotated BRIEF (ORB) 

(Rublee et al. 2011) is a multiscale corner detector that can handle rotated images, while 

Binary Robust Invariant Scalable Keypoints (BRISK) (Leutenegger, Chli and Siegwart 2011) 

is another multiscale corner detector that can also handle scale variations. 

Blob detection algorithms are designed to detect regions in the image that are of the 

same properties when compared to surrounding pixels, illustrated in Figure 6. These region 

properties include brightness and color. Blob detection algorithms are also multiscale 

detectors, with the ability to handle changes in scale and rotation of images. Examples of blob 

detection algorithms include Speeded-Up Robust Features (SURF) (Bay et al. 2008) and 
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KAZE (Alcantarilla, Bartoli and Davison 2012). MSER (Nistér and Stewénius 2008) is also 

a blob detection method, but it is more robust to affine transformation than SURF and KAZE. 

 
Figure 6. Image with blob detector 

Table 1 provides the summary of the different detector algorithms analyzed for 

feature extraction, emphasizing their invariance to scale and rotation, which is a necessary 

attribute for the vision-based UAS navigation concept. 

Table 1. Summary of feature extraction methods 

Detector Feature 
Type 

Invariance Typical Use 

Scale Rotation Finding Point 
Correspondences Classification 

Corner 
Detector 
(FAST, 
MinEig, 
Harris) 

Corner No No Yes No 

ORB Corner No Yes Yes No 
BRISK Corner Yes Yes Yes No 
SURF Blob Yes Yes Yes Yes 
KAZE Blob Yes Yes Yes Yes 

MSER 

Blob 
(Region 

with 
uniform 

intensity) 

Yes Yes Yes No 
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Good features in images are desired for feature extraction algorithms to work 

effectively. They shall be distinctive from neighboring pixels, uniquely localizable, and 

robust to changes in viewing conditions and presence of noise. 

After good features are identified across two images, they are matched and labeled 

as inliers. Elimination of outliers is facilitated by the M-estimator Sample Consensus 

(MSAC) algorithm. The MSAC algorithm is a variant of the Random Sample Consensus 

(RANSAC) algorithm but known to be more accurate with the use of a loss function (Choi, 

Kim, and Yu 2009). Due to the randomized nature of the MSAC algorithm, the exclusion 

of outliers will differ across multiple runs and is not repeatable. Fortunately, the high 

number of matched inliers in feature-rich images can mitigate the issue of handling outliers 

that are not excluded. 

C. HOMOGRAPHY AND TRANSFORMATIONS 

With a set of inliers identified across two images, a matching 2D geometric 

transformation to determine transformation matrix { 2}
{ 1}
i
i R  can be executed. Through the 

geometric transformation, u v−  coordinates of the points in the first image 1i  can be 

expressed in the coordinate system of the second image 2i , as follows: 

 { 2}
{ 1}

2 1
1 1

i
i

i i

u u
v R v
   
   =   
      

 (10) 

Table 2 summarizes the elementary geometric transformations, which will be used 

in combination for subsequent transformation methods. 
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Table 2. Elementary transformations 

Transformation Geometric 
Interpretation Transformation Matrix Notes 

Translation 
 

1 0
0 1
0 0 1

x
t

y

t
R t

 
 =  
 
 

 

xt     specifies the 
displacement 
along the u-axis 

yt     specifies the 
displacement 
along the v-axis 

Scaling (non-
proportional) 

 

0 0
0 0
0 0 1

x
s

y

s
R s

 
 =  
 
 

 

xs    specifies the 
scale factor 
along the u-axis 

ys    specifies the 
scale factor 
along the v-axis 

Shear 

 

1 0
1 0

0 0 1

x
sh

y

sh
R sh

 
 =  
 
 

 

xsh   specifies the 
shear factor 
along the u-axis 

ysh  specifies the 
shear factor 
along the v-axis 

Rotation 

 

cos sin 0
sin cos 0

0 0 1
Rθ

θ θ
θ θ

− 
 =  
 
 

 θ     specifies the 
angle of rotation 

 

A transformation that preserves shapes, such as ratios of length, angles, and ratio 

of areas and parallel lines, is called a similarity transformation. A similarity transformation 

includes translation, proportional scaling, rotation, or combinations. The transformation 

matrix of similarity type is expressed as 

 { 2}
{ 1}

cos sin
sin cos
0 0 1

x
i t s
i s y

s s t
R R R R s s tθ

θ θ
θ θ

− 
 = =  
 
 

 (11) 
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The transformation matrix { 2}
{ 1}
i
i R , expressed in four unknown parameters xt , yt , s , 

and θ , can be obtained through optimization. Thereafter, these parameters can be 

decomposed from the transformation matrix by expressing them as elements of the matrix, 

generating 

 2 2 1
31 32 11 21 21 11, , , tan ( / )x yt r t r s r r r rθ −= = = + =  (12) 

An affine transformation is one that preserves lines and parallelism, which includes 

non-proportional scaling and shear transformations in addition to those in similarity 

transformation. The transformation matrix of affine type is expressed as 

 
( ) ( )
( ) ( ){ 2}

{ 1}

cos sin sin cos

sin cos cos sin

0 0 1

x x x x x

i t s sh
i a y y y y y

s sh s sh t

R R R R R s sh s sh tθ

θ θ θ θ

θ θ θ θ

+ − − 
 

= = + − 
 
 

 (13) 

The affine transformation matrix { 2}
{ 1}
i
i R  is expressed in seven unknown parameters 

xt , yt , xs , ys , xsh , ysh , and θ . While xt , yt  can be found using Equation (12) that was 

established previously, the remaining five unknown parameters cannot be defined 

independently with only four equations. By assuming proportional scaling, where

x ys ss= = , the other parameters can be deduced using 

( ) ( )
( ) ( ) ( )

( )

2 2
11 22 21 12 21 12111 12 12 22

2 2
11 2211 22 21 12

2 2 2 2
11 22 11 12 21 12 21 12 21 22 11 22

11 21 12 22 11 21 12 22

, 2 tan

,x y

r r r r r rr r r rs
r rr r r r

r r r r r r r r r r r rsh sh
r r r r r r r r

θ −
 − + + − ++  = =
 −− + +  

− + + + + −
= =

+ +

 (14) 

A projective transformation is one that maps lines to lines but does not necessarily 

preserve parallelism. An example of a projective transformation is a perspective 

transformation, where parallel lines intersect toward infinity and circles distort to become 

ellipses. In a 2D projective transformation, unlike in the affine transformation shown in 

Equation (15), there are no restrictions on the last row of the transformation matrix. 

Equation represents how u v−  coordinates of the points in the first image 1i  can be 
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expressed in the coordinate system of the second image 2i  through a projective transition 

matrix. 

 

1
11 12 13

1
21 22 23

31 32 12
1 1

ii

u r r r u
v r r r v

r r

λ
λ
λ

−

−

     
     = =     

         

 (15) 

Figure 7 provides graphical representations of similarity, affine, and projective 

geometric transformations of a checkerboard. 

 
Figure 7. Geometric transformations of checkerboard. 

Source: MathWorks (n.d.) 

Indisputably, having a greater number of matched pairs of points will increase the 

accuracy of the estimated transformation matrix. However, depending on the quality of the 

images acquired, the possibility exists that the detection algorithm returns a small number 

of matched points. Therefore, it is crucial to be aware of the minimum number of matched 

pairs of points for each transformation type, which are summarized in Table 3. 

Table 3. Minimum requirements for geometric transformations 

Transformation Type Number of Unknown 
Parameters 

Minimum Number of 
Matched Pairs of Points 

Similarity 4 2 
Affine 6 3 

Projective 8 4 
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III. IMAGE PROCESSING 

Image processing for a vision-based NAVAID can be broadly categorized into four 

phases: feature detection, feature matching, outlier rejection, and transformation 

decomposition. The four phases, illustrated in Figure 8, were executed in the specified 

order on every pair of consecutive images that are acquired. All NAVAID image 

processing was executed in MATLAB. 

 
Figure 8. Vision-based NAVAID image processing sequence 

A. FEATURE DETECTION 

While color images provide a wider range of enhanced features for feature detectors 

(Van de Weijer, Gevers, and Bagdanov 2006; Burghouts and Geusebroek 2009), they are 

also known to be sensitive to noise, exposure, and quality of the camera sensor (Ebner 

2007). To overcome these issues and take advantage of faster processing speed, grayscale 

images are preferred and are explored for applicability of the identified feature detection 

algorithms. Figure 9 shows aerial views of the same grass field in a) EO RGB and b) 

grayscale formats. Near infrared (NIR) format image was available, illustrated in Figure 9 

c), and also included for subsequent performance comparison of detection algorithms. 
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Figure 9. Grass field aerial views 

It was observed that even for a featureless landscape, the detection algorithms were 

proven effective, with a substantial number of features detected, as shown in Figure 10. 

Analysis of feature detection results reveals that a) the ORB method found 558,273 feature 

points, consuming just 0.585 s of central processing unit (CPU) time in the MATLAB 

interpretative environment; b) the BRISK method found 21,289 features in 0.358 s; c) the 

FAST method found 15,088 features in 0.118 s; d) the Harris method found 25,109 features 

in 1.77 s; e) the KAZE method found 188,643 features in 21.8 s; f) the MSER method 

found 3,804 features in 1.85 s; g) the MinEig method found 221,381 features in 21.8 s; and 

h) the SURF method found 11,706 features in 0.316 s.
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Figure 10. Visualization of feature points detected using different methods 
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The performance of the various detection algorithms was relatively consistent, 

regardless of image format, between EO and NIR. As seen in Figure 11, the ORB method 

was able to detect the greatest number of features among methods invariant to scale and 

rotation changes. While the Harris, KAZE, and MinEig methods do not pale in comparison 

in terms of number of features detected, they require more processing time than the ORB 

method to find features in images, as illustrated in Figure 12. It is also interesting to note 

that the FAST method outclassed all other methods, having the least processing time 

required, with the SURF method not far behind. 

Figure 11. Number of features detected with respect to detection algorithms 

Figure 12. CPU execution time to extract features with respect to detection 
algorithms 
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For the vision-based NAVAID to be useful in real-time applications, it is crucial 

for the processing time to be short. By normalizing the results from Figure 11 and Figure 

12, representing them in terms of processing time required per feature detected, as 

illustrated in Figure 13, the performance of various detection methods can be better 

appreciated. Having a low processing time per feature detected highlights the feasibility of 

implementation for real-time flight application. Clearly, the ORB method surpassed the 

other detection methods. In addition, Figure 14 depicts an alternative interpretation of the 

performance of detection methods. An efficient detection algorithm can be found at the 

lower right corner of Figure 14, which translates to having found more features in less time. 

Considering only results from processing the EO image, it can be observed that both the 

ORB and the FAST detection methods have superior performance over other algorithms, 

and so, they are selected for subsequent image processing. The SURF detection method 

shall also be included in subsequent analysis to explore the feasibility of using a blob 

feature detection method. 

Figure 13. Average CPU time required for feature detection with respect to 
detection methods 
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Figure 14. CPU execution time with respect to number of features detected 

B. FEATURE MATCHING

Extracted features from two consecutive images will be processed for matching to

pair similar features observed in both images. Figure 15 shows a sample of two consecutive 

aerial images of a grass field that was used to illustrate feature matching. After features 

were detected on each image, Hamming distance was used to compute the similarity metric 

and lines were drawn between each pair of matched features, shown in Figure 16. It was 

observed that the lines consisted of both inliers and outliers matches, which indicated a 

need to apply MSAC to exclude outliers before subsequent transformation decomposition. 
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Two consecutive grayscale images captured sequentially: a) Reference image and b) Target 
image taken some time unit after. 

Figure 15. Two consecutive aerial images of grass field 

Figure 16. All feature matchings between two consecutive images from SURF 
detection method 

C. OUTLIER REJECTION

Removal of outlier feature matchings was executed using the MSAC algorithm,

with the remaining inliers shown in Figure 17. Similar to the RANSAC algorithm, the 

MSAC algorithm is an iterative method to detect outliers, such that remaining inliers are 
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coherent to estimate the transformation matrix. Although the percentage of matched 

features at 2.12% seemed low, it had 248 matched features and fulfilled the minimum 

requirements for geometric transformation stated in Table 3.  

Figure 17. Matched inliers between two consecutive images from SURF 
detection method 

D. TRANSFORMATION DECOMPOSITION

While affine and projective transformations consider non-proportional scaling and

shear transformations, similarity transformation was assumed sufficient for aerial imagery 

captured at high cruise altitude. The geometric transformation matrix { 2}
{ 1}
i
i R  was estimated 

by using the remaining matched inliers in MATLAB. Using similarity transformation 

matrix decomposition, reflected in Equation (12), translation, scaling, and rotation 

parameters were determined by mapping to elements of the matrix. Results of the 

transformation decomposition are summarized in Table 4, with the transformed image 

illustrated in Figure 18. 
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Table 4. Summary of estimated transformation parameters 

Transformation Parameter Value 

xt -896.361 pix
yt -647.977 pix
s 1.407 
θ -0.946˚

Figure 18. Recovered target image 

-0.946 
o

 turn
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IV. EXPERIMENTING WITH QUANTUM TRINITY F90+
MAPPING UAS 

This chapter describes the experiments involving the Quantum Systems Trinity 

F90+ mapping UAS equipped with an UHR EO sensor. While it is ideal to have 

synchronized time-stamped EO imagery and telemetry data, the following work 

investigates the feasibility of generating a vision-based NAVAID solution using 

unsynchronized data collected from other flight missions.  

A. TEST SETUP

The Trinity F90+ mapping drone in Figure 19 is an electric vertical take-off and

landing (eVTOL) fixed-wing mapping drone developed by Quantum Systems GmbH, 

Germany. It was primarily designed for geographical mapping purposes, combining both 

the eVTOL feature of a classic multicopter and the long range of a fixed-wing UAV. Its 

robust design also allows multiple payload configurations to be implemented, quickly and 

interchangeably. For the flight campaign over Camp Roberts, the Sony RX1R II payload 

configuration was selected, which provided high resolution aerial photographs. A summary 

of the Trinity F90+ mapping drone technical data and image metadata is presented in Table 

5 and Table 6, respectively. 

a) b) 

Figure 19. a) Trinity F90+ mapping drone with b) Sony RX1R II camera. 
Source: Quantum Systems (n.d.). 
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Table 5. Technical data of Trinity F90+ mapping drone. Adapted from 
Quantum Systems (n.d.). 

“Max. Take-off Weight” “5.0 kg (11.0 lb)” 

“Max. Flight Time” “90+ min” 
“60 min (locked)” 

“Max. Range (Area Coverage)” “100 km = 700 ha” 
“(62 mi = 1730 ac)” 

“Maximum Flight Altitude (MSL)” “4500 m (14,763.8 ft)” 
“Command and Control Range” “5 – 7.5 km (3.1 – 4.7 mi)” 

“Payload (with compartment)” 
“max. 700 g (1.54 lbs)” 

Sony RX1R II 
35 mm CMOS sensor with 42.4 megapixels 

“Optimal Cruise Speed” “17 m/s (33 kn)” 

“Wind Tolerance (ground)” 

“up to 9 m/s (17.5 kn) < 1500 m MSL” 
“up to 7 m/s / (13,6 kn) 1500 m – 3000 m 

MSL” 
“up to 5 m/s / (9.7 kn) > 3000 m MSL” 

“Wind Tolerance (cruise)” “up to 12 m/s (23.3 kn)” 
“Battery Weight” “1.5 kg (3.3 lb)” 
“Telemetry Link & RC Transmitter 
Frequency” “2.4 GHz” 

Table 6. Metadata of images captured by Sony RX1R II 

Dimensions (width by height) 7,952 pix by 5,304 pix 
Horizontal/Vertical Resolution 350 dpi 
F-stop f/4 
Exposure Time 1/2000 s 
ISO Speed ISO-250 
Focal Length 35 mm 

 

Flight planning for the Trinity F90+ drone was handled entirely by its proprietary 

software QBase 3D. Users do not have the option to define a fixed image acquisition rate. 

Instead, the acquisition rate was governed by the percentage of surveillance overlap setting 

prescribed in QBASE 3D and the drone’s autopilot would decide the instance to trigger the 

camera shutter. The image acquisition time interval was also affected by in-flight wind 
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conditions, which caused variations in flight speeds. There were several options for the 

drone to fly over waypoints, depicted in green, catered for various aerial mapping 

requirements, illustrated in Figure 20.  

Figure 20. Trinity F90+ flight over waypoint options. 
Source: Quantum Systems (n.d.). 

B. DATA PROCESSING

For the feasibility study of generating a vision-based NAVAID solution, the Trinity

F90+ mapping drone executed a flight over Camp Roberts, San Miguel, California. A 

completed set of telemetry data with corresponding imagery files was obtained post flight 

for the development of a vision odometry algorithm. 

The flight campaign commenced from Camp Roberts, transiting over mountainous 

and open grazing land, before returning to base. An overview of the flight trajectory, 

plotted using post-flight telemetry data in Google Earth, is illustrated in Figure 21. The star 

icon in Figure 21 depicts the start and end points of the flight campaign. The flight began 

with a transition to the west, turned north, and followed a clockwise profile before returning 

to ground. Due to frequent terrain elevation changes, shown in Figure 22 and Figure 23, 
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the drone had to make frequent altitude alterations, which proved to be a challenge in 

subsequent trajectory matching. Telemetry data, containing the corresponding GPS 

coordinates, altitude, and attitude of the UAS when each image was acquired, was stored 

in KML and CSV files. 

 
Figure 21. Trajectory overview of Camp Roberts flight campaign 

 
Figure 22. 3D flight profile of Camp Roberts flight campaign 
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Figure 23. Terrain elevation (gray) and preplanned flight altitude (blue) 

Reference flight telemetry data, recorded by Trinity F90+ drone, is plotted in Figure 

24. As the drone is a COTS product, it does not support the customization of the recorded 

flight parameters. Fortunately, it did record crucial parameters such as corresponding GPS 

coordinates, drone altitude, and attitude (Euler angles) at each trigger instance of the 

camera payload. With GPS coordinates tagged to every image frame, the distance travelled 

by the drone between two image frames was computed. By correlating the translation 

transformation from the transformation matrix to the distance travelled across two 

consecutive frames, its corresponding displacement was obtained. 
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Figure 24. Flight telemetry plots of Camp Roberts flight campaign 

For a flight over varying terrains and vegetation, shown in Figure 25, one can 

expect a large magnitude of features to be extracted by the detection algorithms. The 

number of features detected by the ORB, SURF, and FAST algorithms in every image are 

illustrated in Figure 26. It was observed that the minimum average number of features 

extracted across all three algorithms exceeded 20,000. This was more than sufficient to 

fulfill the minimum requirements for finding proper geometric transformations. Time 
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duration required to process all images by the FAST detection method was also noted to 

be the fastest among the three algorithms investigated. This observation is consistent with 

the summary of the CPU execution time presented earlier in Figure 12.  

Figure 25. Sample images from Camp Roberts flight campaign 

Figure 26. Number of features detected in Camp Roberts flight imagery using 
ORB, SURF, and FAST methods 

C. KEY OBSERVATIONS

For real-time in-flight applications, the number of features that need to be processed

ought to be reduced, without affecting the accuracy of the visual odometry. A sensitivity 
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analysis on the number of features available and their impact on estimation error was 

conducted. Varying the number of strongest feature points, selected based on their 

respective detection metrics, was analyzed and their error with reference flight telemetry 

data computed. Results of the sensitivity analysis are presented in Table 7, Table 8, and 

Table 9. It was observed that the SURF detection method performs relatively well with 

5,000 strongest feature points, providing a fairly accurate estimation in a short computation 

time. Both ORB and FAST required at least 8,000 strongest features to be available before 

they were able to facilitate any trajectory estimation. 

Table 7. Sensitivity analysis results for SURF detection method 

Number of 
Strongest 

Feature Points 

Average 
Number of 
Matched 

Points 

Mean Yaw 
Error (deg) 

Standard 
Deviation of 
Mean Yaw 
Error (deg) 

CPU Time (s) 

1000 137 7.08 42.99 6811 
5000 618 5.80 41.33 6958 
8000 947 6.16 44.47 7267 
10000 1159 6.09 43.48 7640 
15000 1660 5.86 42.29 10602 
20000 2132 6.04 43.28 12225 

Table 8. Sensitivity analysis results for ORB detection method 

Number of 
Strongest 

Feature Points 

Average 
Number of 
Matched 

Points 

Mean Yaw 
Error (deg) 

Standard 
Deviation of 
Mean Yaw 
Error (deg) 

CPU Time (s) 

1000 N.A. N.A. N.A. N.A. 
5000 N.A. N.A. N.A. N.A. 
8000 202 6.63 43.65 3070 
10000 257 6.59 43.67 3301 
15000 399 6.57 43.67 3816 
20000 545 6.50 43.62 5049 
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Table 9. Sensitivity analysis results for FAST detection method 

Number of 
Strongest 

Feature Points 

Average 
Number of 
Matched 

Points 

Mean Yaw 
Error (deg) 

Standard 
Deviation of 
Mean Yaw 
Error (deg) 

CPU Time (s) 

1000 N.A. N.A. N.A. N.A. 
5000 N.A. N.A. N.A. N.A. 
8000 97 7.22 43.08 1594 
10000 115 6.88 42.14 1764 
15000 151 6.89 44.73 2394 
20000 178 6.40 41.74 3076 

Estimated yaw angles extracted from the transformation matrix were assessed and 

plotted against reference GPS telemetry data to provide visual comparison. Figure 27, 

Figure 28, and Figure 29, show the estimation results for the SURF, ORB, and FAST 

detection methods, respectively. It was also observed that although large numbers of 

features were detected across all image frames, the number of matches across consecutive 

frames was significantly less. From the SURF detection results in Figure 27, 5,000 points 

were consistently detected but only an average of 618 matched features were discovered. 

Similarly for the ORB method an average of 7,956 features were detected but only an 

average of 202 matched features, shown in Figure 28, while the FAST method, shown in 

Figure 29, detected an average of 7,035 features but discovered only an average of 97 

matched features. 
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Figure 27. Estimated yaw comparison with reference GPS, for SURF 
strongest 5,000 points 

Figure 28. Estimated yaw comparison with reference GPS, for ORB strongest 
8,000 points 
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Figure 29. Estimated yaw comparison with reference GPS, for FAST 
strongest 8,000 points 

Deviations were observed in the yaw angle comparison plots across all three 

detection methods, beginning at about the 300th image frame. Due to cumulative 

computation of yaw angles, small deviations resulted in huge magnitude differences as 

estimation errors accumulated with increasing image frames. An assessment of estimated 

yaw angles for the SURF method, illustrated in Figure 30, suggested that these deviations 

were likely to be caused by changes in aircraft altitude, roll, and pitch angles. 
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Figure 30. Compiled flight telemetry data with estimated yaw for SURF 
strongest 5,000 points 

Flight over waypoints, illustrated earlier in Figure 20, was also a contributing factor 

to erroneous yaw estimation due to the large change in yaw heading whenever the drone 

executed turn maneuvers using fly over or loiter over waypoints. Figure 31 shows the 

attempt to overlay the flight trajectory estimated from visual odometry, plotted in blue, on 

the actual flight profile over Camp Roberts. Numbering in the figure indicates instances of 

camera trigger and their respective numeric labels. Large deviations in displacement were 

observed, particularly near the halfway mark where there were numerous turn maneuvers 

over waypoints. 
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Figure 31. Estimated flight trajectory overlaid on flight profile 

In order to overcome the challenge of accumulating estimation errors, a segmented 

computation approach was adopted. It was hypothesized that by treating flight segments in 

between flight over waypoints as straight and level flight with relatively small change in 

yaw heading, estimation errors would be reduced. For instance, Figure 32 shows a flight 

section where the segmented flight analysis approach was implemented. Image frames 19 

to 37 before the turning waypoint would be considered as one segment, whereas image 

frame 38 onwards after the turn would be considered as another flight segment. Table 10 

shows the flight segments with their corresponding start and end image frame index. Every 

start index frame then serves as the initialization point for each flight segment, providing 

reference telemetry data for computation. 
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Figure 32. Example of segmented flight analysis 

Table 10. Flight segments with corresponding start and end frame index 

S/N Start Index End Index  S/N Start Index End Index 
1 1 37  14 411 424 
2 38 96  15 425 433 
3 97 125  16 434 444 
4 126 224  17 445 461 
5 225 258  18 462 512 
6 259 274  19 513 527 
7 275 292  20 528 541 
8 293 308  21 542 558 
9 309 332  22 559 619 
10 333 358  23 620 637 
11 359 380  24 638 695 
12 381 397  25 696 710 
13 398 410  26 711 725 

 

It was observed that trajectory estimations deviate from reference flight telemetry 

data, even after executing segmented flight analysis. Flight segments with large deviations 

were highlighted and labeled in Figure 33, indicating the need to further minimize 

estimation errors. An optimization approach to minimize distance RMS error for each flight 

segment was explored to improve the estimation results. Corrections to initializing yaw 

angles at each start index were introduced, with the goal to minimize overall distance RMS 
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error. Table 11 presents the summary of angle corrections applied to initializing yaw angles 

required to minimize the distance RMS error. It was observed that correction angles of 

various magnitudes were required for all the flight segments. This could be due to the 

latency and unsynchronized properties between the recorded telemetry and acquired 

imagery files. In some flight segments, corrective magnitudes above 100 degrees were 

seen. Nonetheless, estimated flight trajectory showed encouraging results. The final 

improved segmented flight trajectory estimation, illustrated in Figure 34, had most flight 

segments tracing over the actual flight trajectory from the reference GPS source. 

 
Figure 33. Segmented flight trajectory estimation using SURF strongest 5,000 

points 

Table 11. Summary of corrections applied on initializing yaw angles 

 SURF ORB FAST 
S/N ΔYaw (deg) 

1 -35.3 -27.7 -175.7 
2 6.1 4.9 4.5 
3 -0.8 -3.0 -6.2 
4 16.6 20.6 17.0 
5 14.5 8.9 11.1 
6 3.7 8.0 10.4 
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7 -2.6 -5.6 -3.4 
8 -2.2 0.4 -168.7 
9 -8.5 -12.0 -11.0 
10 -14.0 -12.7 -16.4 
11 -15.1 -15.8 -14.2 
12 -2.5 -5.6 -3.0 
13 16.5 16.3 12.9 
14 11.3 10.3 11.6 
15 6.2 1.2 5.2 
16 -8.1 -7.7 -9.3 
17 -21.4 -20.0 -21.1 
18 -30.8 28.8 58.0 
19 1.3 -1.0 2.6 
20 -10.5 -7.2 -10.7 
21 -8.2 -7.3 -7.3 
22 0.4 7.8 3.7 
23 146.8 -43.1 -43.6 
24 -26.2 -24.7 -35 
25 25.3 25.8 18.8 
26 25.8 22.1 27.3 

 

 
Figure 34. Improved segmented flight trajectory estimation, SURF strongest 

5,000 points 



45 

Improved flight trajectory estimations for the ORB and FAST detection methods 

are illustrated in Figure 35 and Figure 36, respectively. While estimation results from all 

three detection methods were largely similar, inferior estimates were observed from the 

ORB and FAST methods in some flight segments, in particular flight segment 18. 

 
Figure 35. Improved segmented flight trajectory estimation, ORB strongest 

8,000 points 
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Figure 36. Improved segmented flight trajectory estimation, FAST strongest 

8,000 points 
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V. PROCESSING TASE 200 DATA 

The TASE 200 EO system was developed and utilized on a variety of UASs, 

featuring both daylight and infrared camera sensors. The TASE 200 comes with an 

integrated GPS/INS function that allows time-synchronized capturing and recording 

ground truth information during flight.  

A. TEST SETUP 

The TASE 200 sensor used to collect flight telemetry and imagery data has the 

specifications presented in Table 12. Figure 37 shows the enclosure developed by SkyIMD 

to enable the usage of this sensor on a manned aircraft, with the GPS receiver visible on 

top of the enclosure. 

Table 12. Pertinent specifications of TASE 200 sensor 

Image Dimension 640 pix by 480 pix 
Horizontal Field-of-view Variable, from 10.5˚ to 25.26˚ 
Ground Sampling Distance at 137 m 71 cm/pix 
Recording Rate 30 Hz 
Storage Media Laptop 

 
Figure 37. TASE 200 sensor in SkyIMD enclosure 

The TASE 200 system outputs data using a proprietary format in a series of files. 

Each file contains about 30 frames, each preceded by the corresponding telemetry data. 
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The super header for each file determines the size and format of the telemetry as well as 

the size of the images. The variability of the size of each file is dictated by the real-time 

operations requirement. Table 13 shows specific parameters captured and embedded into 

the meta-data file for each image frame.  

Table 13. TASE 200 meta data format specification 

# Parameter Byte(s) # Parameter Byte(s) 
1 GPS Day 41 25 Mount Roll 260-263 
2 GPS Hour 42 26 Mount Pitch 264-267 
3 GPS Minute 43 27 Mount Yaw 268-271 
4 GPS Second 44-47 28 VN 76-79 
5 Second since reset 136-139 29 VE 80-83 
6 Second since midnight 12-15 30 VD 84-87 
7 Gimbal Lat 56-63 31 Heading 316-319 
8 Gimbal Lon 65-71 32 HFOV 168-171 
9 Gimbal Alt 72-75 33 VFOV 172-175 
10 Gimbal Pan 24-271 34 HFOVmax 176-179 
11 Gimbal Tilt 28-31 35 HFOVmin 180-183 
12 Gimbal Roll 32-35 36 Zoom 186-187 
13 Image Lat 192-199 37 HFOVmaxC2 212-215 
14 Image Lon 200-207 38 HFOVminC2 216-219 
15 Image Alt 208-211 39 Transx  
16 Axis Pan Rate 140-143 40 Transy  
17 Axis Tilt Rate 144-147 41 GPS Satellites 48-49 
18 Axis Roll Rate 148-151 42 GPS Status 50-51 
19 Mount Pan Rate 152-155 43 GPS PDOP 52-55 
20 Mount Tilt Rate 156-159 44 Magx 310-311 
21 Mount Roll Rate 160-163 45 Magy 312-313 
22 Roll 88-91 46 Magz 314-315 
23 Pitch 92-95 47 Focus 256-257 
24 Yaw 96-99    

 
Facilitating proof of concept of image-matching techniques in a previous research, 

the TASE 200 was flown west of King City, California, in the standard holding patterns at 

altitudes 2,000 ft, 4,000 ft, and 6,000 ft MSL, shown in both Figure 38 and Figure 39. 
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Figure 38. Overview of flown trajectory with TASE 200 system 

 
Figure 39. 3D flight profile of flown trajectory with TASE 200 system 

B. DATA PROCESSING 

The 30 Hz (30 fps) video recorded by the TASE 200 sensor was down sampled to 

0.5 Hz to explore the practicality of using less frequently updated images for image 

matching. Assuming there are sufficient feature matches across down sampled image 

frames, processing time can be saved from skipped images, facilitating real-time 
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implementation. Figure 40 illustrates sample TASE 200 imagery output, in grayscale 

format. Similar to the images returned from the flight over Camp Roberts, agricultural 

fields were observed in all of the images. The number of features detected from a straight 

level flight segment at 2,000 ft, shown in Figure 41, was still significant to produce the 

required geometric transformations. 

 
Figure 40. Sample TASE 200 images 

 
Figure 41. Number of features detected using FAST, ORB, and SURF 

methods from TASE 200 imagery files 

Categorization of straight level flight segments into groups of largely similar 

altitude were executed to assess the performance of the NAVAID at different altitudes. 
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Due to the camera mean pitch angle of 45˚, acquired images were seen to undergo shearing, 

likely due to projective transformation. This phenomenon greatly affected the 

transformation results, which were based on similarity transformations. In order to 

overcome this, images were cropped at the sides, leaving the center sections which were 

less distorted. Figure 42 illustrates the matched inliers between two consecutive images 

acquired at 2,000 ft, with clear indication of shearing as the trace lines converged toward 

the top of the image frame. Figure 43 shows the trace lines preserving parallelism after the 

image was cropped at the sides. Table 14 provides a summary of the estimated results of 

transformation parameters, with the most significant difference observed in transformation 

matrices xt  and 
yt . Results presented in the following Part C are processed using cropped

images. 

Figure 42. Matched inliers on raw TASE 200 images 

matched points 1

matched points 2



Figure 43. Matched inliers on cropped TASE 200 images 

Table 14. Comparison of estimated transformation parameters 

Transformation Parameter Before Crop After Crop 

xt -140.566pix -86.273 pix
yt 178.558 pix 124.559 pix 
s 1.1139 1.174 
θ 0.9969˚ -1.694˚

C. KEY OBSERVATIONS

Similar to the analysis approach for the Camp Roberts flight campaign presented 

in Chapter III, the three feature detection methods were utilized to analyze the TASE 200 

imagery. Yaw angle refinements were not introduced since the flight telemetry and imagery 

were time-synchronized. Cropped images were used to overcome the shear distortion 

effects on the images while using the similarity geometric transformation approach. 

Figure 44 illustrates the estimated trajectory of using raw and cropped images acquired at 

2,000 ft, with the trajectory from cropped images matching closer to actual flight 

trajectory from the reference GPS. 

52 

matched points 1

matched points 2
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Figure 44. Comparison of SURF method trajectory estimations between raw 
and cropped imagery at 2,000 ft 

At flight altitude of 2,000 ft, estimation performance of both the FAST and SURF 

methods was relatively similar for the down leg flight segment, shown in Figure 45. For 

the up leg flight segment, the SURF method was observed to trace over the actual flight 

trajectory for some waypoints, seen in Figure 46. Estimated positions of flight segment end 

points were observed to be less than 400 m from the true end point for most detection 

methods. 
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Figure 45. Trajectory estimations for down leg segment at 2,000 ft 

Figure 46. Trajectory estimations for up leg segment at 2,000 ft 

For both the down and up leg flight segments at 4,000 ft, the SURF method had 

superior performance over the other two detection methods, tracing close to the actual 

flight trajectory. The respective trajectory estimations are illustrated in Figure 47 and 
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Figure 48. Estimated positions of flight segment end points were observed to be more than 

400 m from the true end point for all detection methods. 

 
Figure 47. Trajectory estimations for down leg segment at 4,000 ft 

 
Figure 48. Trajectory estimations for up leg segment at 4,000 ft 
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At the highest flight altitude of 6,000 ft, all three detection methods seemed to 

underperform, showing large deviations from the actual flight trajectory. Estimated 

positions of flight segment end points were observed to be more than 700 m from the true 

end point for all detection methods. Trajectory estimations for the up leg flight segment at 

6,000 ft are illustrated in Figure 49. 

 
Figure 49. Trajectory estimations for up leg segment at 6,000 ft 

From the results, it was observed that estimation performance deteriorates with 

increasing altitude. This could be due to poor image resolution at higher altitudes, while 

representing higher distance per pixel. Inaccuracies in estimated pixel displacement from 

the geometric transformation of a sheared image also contributed to the large deviations in 

trajectory matching. While the SURF method compared better with actual flight trajectory, 

it should be noted that its required computation time was the highest among the three 

detection methods. 
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VI. DATA FROM SELF-BUILT SENSOR SUITE 

The third and final set of flight telemetry and imagery data was collected from a 

self-built sensor suite. The self-built sensor suite was made up of COTS sensors, featuring 

a high-resolution GoPro Hero 4 camera and a standard iPhone 7 running a telemetry 

recording application. The sensor suite was mounted on a manned Cessna-172 aircraft, 

which offered flexibility and manual control over synchronization of data acquisition. 

A. TEST SETUP 

The manned aircraft Cessna-172, shown in Figure 50, was equipped with a GoPro 

and an iPhone to provide an alternate source of data set to further establish the applicability 

of the NAVAID. An overview of the Cessna aircraft flight trajectory, plotted using post-

flight telemetry data, is illustrated in Figure 51 and Figure 52. 

 
Figure 50. Cessna-172 aircraft 
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Figure 51. Trajectory overview of Cessna flight campaign 

 
Figure 52. 3D flight profile of Cessna flight campaign 

Like the Trinity F90+ drone flight, the Cessna flight aims to acquire in-flight aerial 

videos with corresponding flight telemetry recording. A typical flight can be categorized 

into five segments, illustrated in Figure 53. Considering potential GPS-denial scenarios 

that a UAS will encounter, straight level (cruise) and loitering flight segments were the 

focus for assessing performance of visual odometry. 
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Figure 53. Typical UAS flight profile 

The GoPro Hero 4 camera, collecting 1,920 pix × 1,080 pix images at 30 Hz rate, 

were the sole source of aerial imagery. An iPhone 7, equipped with micro-

electromechanical system (MEMS) accelerometers, barometer, and GPS receivers, as well 

as installed with the SensorLog application, were utilized to record in-flight telemetry data. 

The telemetry data can be recorded at a rate of up to 100 Hz and saved as a CSV file. Both 

the GoPro and the iPhone were installed on the Cessna wing strut, using 3D printed 

adapters fitted on the Airfilm Camera Systems’ wing strut mount. The mounting setup is 

illustrated in Figure 54. 

 
Figure 54. Mounting setup of acquisition equipment on Cessna wing strut 



60 

Along with the setup shown in Figure 54, a secondary telemetry recorder QStarz 

BT-Q1000eX GPS data logger with a 10 Hz log rate was also used to provide redundancy. 

The list of recorded parameters included GPS coordinates, speed, and distance. This data 

logger features a battery life of 42 hours and can log up to 400,000 data points. Other 

specifications of the data logger are presented in Table 15. 

Table 15. QStarz BT-Q1000eX sensor specifications. Adapted from QStarz 
International Co. Ltd. (n.d.) 

Device size, mm “72.2(L) × 46.5(W) × 20(H)” 
GPS Chip MTK II GPS Module 
Frequency, MHz L1, 1575.42 

Antenna “Built-in patch antenna with low 
noise amplifier (LNA)” 

Acquisition rate (cold start/hot start), s 33/1 
Accuracy (CEP), m < 3 
Memory size, Mb 8 
Interface Bluetooth 

 

B. DATA PROCESSING 

Flight telemetry data recorded by the iPhone SensorLog application was post-

processed using MATLAB and plotted in Figure 55. Sample images acquired by the GoPro 

are illustrated in Figure 56. In contrast to the data from the flight campaign with the Trinity 

F90+ drone and its proprietary QBase 3D software, the telemetry data in this campaign had 

to be manually synchronized to the imagery captured by the GoPro. 
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Figure 55. Flight telemetry plots of Cessna flight campaign 
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Figure 56. Sample images acquired from GoPro Hero 4 

Similar to the Trinity F90+ flight presented earlier, the minimum average numbers 

of features extracted across all three algorithms, shown in Figure 57, were more than 

sufficient to fulfill the minimum requirements for proper geometric transformations. 

 
Figure 57. Number of features detected in Cessna flight imagery using ORB, 

SURF, and FAST methods 
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rolling shutter effect. Nevertheless, enough features were still detected despite multiple 

image frames being skipped, even when using the 1 fps video. 

C. KEY OBSERVATIONS 

With lessons learnt from Trinity F90+ and TASE 200 imagery analysis, the 

segmented approach was adopted for the Cessna flight imagery analysis. Flight segments 

were categorized into straight level, left-bank, and right-bank maneuvers at altitudes of 

2,000 ft, 3,000 ft and 4,000 ft MSL. The categorization facilitated the ease of estimation 

comparison and assessment across various flight altitudes for the same maneuver. 

Flight trajectory matchings for straight level flight legs were relatively good across 

all altitudes. With appropriate initialization of time-synchronized telemetry, image 

matching enabled executing pose estimation with a good level of accuracy. Figure 58, 

Figure 59, and Figure 60 show the trajectory estimations and matching with actual flight 

trajectories for 2,000 ft, 3,000 ft and 4,000 ft, respectively. It was noted that as flight 

altitude increases, trajectory matchings deteriorate, with large deviations observed amid 

the 4,000 ft straight level flight segment. Similar to pose estimations of TASE 200 imagery 

at high altitudes, poor accuracy in estimated pixel displacement may have caused the 

increasing deviations at higher altitudes. The impact of poor estimation results between a 

single pair of images could be seen in the FAST detection method shown in Figure 49. Due 

to its cumulative properties, poor estimation accumulates and its performance declines over 

time. 
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Figure 58. Trajectory estimations for straight level flight at 2,000 ft 

 
Figure 59. Trajectory estimations for straight level flight at 3,000 ft 
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Figure 60. Trajectory estimations for straight level flight at 4,000 ft 

On the other hand, flight trajectory matching results were not satisfactory for the 

bank maneuvers. Although the pilot tried to maintain the pitch and roll angles constant 

during the bank turns, images perceived by the EO sensor have sheared, meaning that the 

similarity geometric transformation no longer applied. In addition, all bank maneuvers 

consisted of two full turns, but estimation results revealed less than one turn in some cases. 

The preliminary results of the left-bank maneuvers at 2,000 ft, 3,000 ft, and 4,000 ft are 

illustrated in Figure 62, Figure 64, and Figure 66, respectively, with corresponding flight 

telemetry plots in Figure 61, Figure 63, and Figure 65. 
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Figure 61. Flight telemetry for left-bank maneuver at 2,000 ft 
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Figure 62. Trajectory estimations for left-bank maneuver at 2,000 ft 
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Figure 63. Flight telemetry for left-bank maneuver at 3,000 ft 
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Figure 64. Trajectory estimations for left-bank maneuver at 3,000 ft 
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Figure 65. Flight telemetry for left-bank maneuver at 4,000 ft 
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Figure 66. Trajectory estimations for left-bank maneuver at 4,000 ft 

Similarly, for the right-bank maneuver, visual-based odometry results showed poor 

accuracy and were inadequate for the navigation system. The preliminary results of the 

right-bank maneuvers at 2,000 ft, 3,000 ft, and 4,000 ft are illustrated in Figure 67, Figure 

68, and Figure 69, respectively. 

 
Figure 67. Trajectory estimations for right-bank maneuver at 2,000 ft 
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Figure 68. Trajectory estimations for right-bank maneuver at 3,000 ft 

 
Figure 69. Trajectory estimations for right-bank maneuver at 4,000 ft 

 
  

-5000 -4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0

disp
x

 (m)

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

di
sp

y
 (m

)

  

Actual Flt Trajectory

Flt Seg Start

Flt Seg End

FAST8000

ORB8000

SURF5000

-500 0 500 1000 1500 2000 2500 3000 3500 4000

disp
x

 (m)

-500

0

500

1000

1500

2000

2500

3000

di
sp

y
 (m

)

  

Actual Flt Trajectory

Flt Seg Start

Flt Seg End

FAST8000

ORB8000

SURF5000



73 

VII. INCORPORATING DEVELOPED NAVAID SOLUTION ON 
UAS 

The navigation system typically found on a UAS consists of an IMU and a GPS or 

equivalent GNSS receiver. A simplified block diagram of such a navigation system is 

shown in Figure 70, where INS and GPS position and velocity differences are processed 

by the Kalman filter. The function of the Kalman filter is to estimate the INS errors with 

reference to GPS signals, which will be used for INS correction. 

 
Figure 70. Block diagram of INS and GPS integration 

In the event that GPS signals are unavailable, the NAVAID solution augments the 

navigation system, illustrated in Figure 71. With the proof of feasibility presented in earlier 

chapter, the NAVAID solution provides position estimates and ensures that the UAS can 

continue and successfully complete its mission. 

 
Figure 71. Block diagram of INS and NAVAID integration 
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The insfilterErrorState object from MATLAB (MathWorks n.d.) was utilized to 

demonstrate the integration of the NAVAID solution to obtain corrected UAS position. 

This object facilitates the fusion of measurements from both IMU and GPS, estimating 

UAS pose in the North-East-Down (NED) reference frame. The filter employs a 17-

element state vector to track the quaternion orientation, velocity, and position of the UAS, 

while using an error-state Kalman filter to execute estimation of system state quantities. 

Either the GPS or the NAVAID position values will be incorporated into the Kalman filter 

to provide periodic INS error corrections and generated corrected pose results. The 

NAVAID implementation script is documented in the Appendix. 
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Straight level flight telemetry acquired at 2,000 ft from the Cessna self-built sensor 

suite was used for to demonstrate the integration of the NAVAID solution into the 

navigation system. Measurements from accelerometers and gyroscope, embedded in the 

iPhone device, will be used as the IMU source for the UAS state estimation, with their axes 

convention defined in Figure 72. 
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Figure 72. Axes convention definition relative to iPhone device 

Comparison of trajectory results revealed that NAVAID solution performance was 

superior to that of INS-only pose estimation. Position estimation results from the INS-

NAVAID using the FAST method performed the best against INS-only, shown in Figure 

73. The RMS error between INS-GPS (true reference) and INS-NAVAID was [285.57 m 

(X, East), 117.88 m (Y, North)], while the RMS error between INS-GPS and INS-only was 

[610.95, 180.48] m. The SURF method performance was slightly inferior, as illustrated in 

Figure 75, with an RMS error of [96.91, 357.39] m. The ORB method had an RMS error 

of [478.46, 208.30] m, shown in Figure 74. In summary, the demonstration of incorporating 

the NAVAID solution, in place of GPS signals during GPS-denied situations, into a UAS 

navigation system was promising and provided better pose estimation than the INS-only 

option. 
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Figure 73. Trajectory comparison of INS-GPS reference, INS-only, and INS-

NAVAID FAST 

 
Figure 74. Trajectory comparison of INS-GPS reference, INS-only, and INS-

NAVAID ORB 
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Figure 75. Trajectory comparison of INS-GPS reference, INS-only, and INS-

NAVAID SURF 
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VIII. CONCLUSION 

A. SUMMARY OF WORK DONE 

This thesis has demonstrated the feasibility of using on-board electro-optical 

sensors to provide a vision-based NAVAID solution for a UAS in a GPS-denied 

environment. The proposed method utilized feature detection algorithms and image 

matching techniques to deduce geometric transformations across consecutive images 

and generate pose estimates. A successful attempt incorporating the NAVAID solution, 

in place of GPS signals, into the navigation system demonstrated the potential for 

implementing image-matching navigation onto UASs. 

The FAST, ORB, and SURF detection methods were selected over other 

detection algorithms for their short computation time per feature detected. This 

parameter is crucial for UAS implementation as frequent updates on UAS state are 

required for the flight computer and mission planner. The number of features detected 

by the three selected methods were deemed sufficient even when flying over a feature-

poor landscape. Low resolution imagery did not hinder the performance of the proposed 

solution, provided there was an adequate number of feature matches across consecutive 

image frames.  

Furthermore, the current assumption of using similarity transformation for pose 

estimation showed promising results for straight level flight profiles. The segmented 

flight profile analysis approach was successful in estimating straight level flight 

trajectories with good accuracy, as observed in results from all three flight campaigns. 

Additional image preprocessing was required for the TASE 200 sensor flight campaign, 

to crop out perspective distortion caused by the forward-looking EO sensor. This 

indicates that similarity transformation may not be sufficiently robust to handle 

uncorrected imagery. 

In addition, image matching was effective in handling non-periodic imagery 

acquired from Trinity F90+ and low fps rate video feed from the TASE 200 sensor. This 

provides a basis for implementing vision-based navigation at a reduced sampling rate to 
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decrease computation load. Although a 30 fps video was acquired from the self-built 

sensor suite, it was down sampled to 1 fps to overcome the issue of insufficient and 

incorrect pixel movement due to rolling shutter effect. Nevertheless, the 1 Hz update 

rate of the NAVAID solution is adequate for flight and similar to the GPS update rate. 

On the other hand, the preliminary results for pose estimation on bank maneuvers 

performed poorly when compared to reference flight telemetry. This was probably due 

to large changes in aircraft altitude and attitude distorting image perception. These 

changes will have to be considered for image preprocessing before proceeding with the 

analysis of the image-matching navigation. 

INS-NAVAID integrated pose results were shown to be better performing than 

INS-only pose calculations. The proposed INS-NAVAID architecture was executed in 

MATLAB environment, using a Kalman filter, to provide periodic INS corrections for 

more accurate pose estimates. As anticipated, the RMS position errors from the INS-

NAVAID solution were fewer than for INS-only. 

In conclusion, this thesis demonstrated the feasibility of using on-board electro-

optical sensors to enhance pose estimation accuracy during GPS-denied situations due 

to unavailability, degradation, or spoofing. Ongoing improvements to mobile computing 

also reduce the processing requirements and execution duration for UAS 

implementation. Hence, UASs will be more resilient as they become less reliant on GPS 

signals, increasing their mission success rates. 

B. RECOMMENDATIONS FOR FUTURE WORK 

Results from the analysis conducted in this study highlighted the limitations of 

using similarity geometric transformation to handle perspective distorted imagery. In 

consideration of typical UAS missions, which often involve persistent surveillance over 

the intended area of operations, changes to EO gimbal orientation and bank maneuvers 

cannot be avoided. With this is mind, future research areas can involve: 
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• Pose estimation using projective geometric transformations to account 

for image distortion due to flight maneuvers and changing gimbal 

orientation. 

• Exploration and development of new feature detection algorithms which 

may offer more feature detections in a shorter computing time. 

• Flight demonstrations of real-time NAVAID implementation on a 

research-oriented UAS platform. 
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APPENDIX. NAVAID IMPLEMENTATION SCRIPT 

Script for implementing the NAVAID using the Kalman Filter 

close all, clear all, clc 

 

load CF090622_Data.mat 

SN_num = 1; % Refer to FltSeg.txt for SN label & description 

 

data_list = {'_Data_SURF5000_dN30'}; % To change name 

% _ORB8000_dN30.mat 

% _FAST8000_dN30.mat 

% _SURF5000_dN30.mat 

 

eval(sprintf('load SN%d%s.mat',SN_num,data_list{1})) 

 

stime = SN_Seg(find(SN_Seg(:,1)==SN_num),2); % start time in sec 

etime = SN_Seg(find(SN_Seg(:,1)==SN_num),3); % end time in sec 

 

% Pose Estimation in Flight Segments 

[val1,ind1] = min(abs(Ref2(:,1)-stime)); %Ref2 - Ext iPhone 

[val2,ind2] = min(abs(Ref2(:,1)-etime)); 

raw_Ref_data = Ref2(ind1:ind2,:); 

 

origin = Ref_data(1,2:4); 

[xEast,yNorth] = latlon2local(Ref_data(:,2),Ref_data(:,3),0,origin); 

Convert XY Distance into GPS Position. Replace null entries with last known value. 

if find(compiled(:,3)==0) 

    rep_data = compiled(find(compiled(:,3)==0,1)-1,:); 

    compiled(find(compiled(:,3)==0),:) = repmat(rep_data,size(find(compiled(:,3)==0))); 

end 

 

theta = compiled(:,3)/180*pi(); 

tx = compiled(:,4); ty = compiled(:,5); 

dist_ppix = compiled(:,7); 

 

temp_yaw = [0; theta/pi()*180]; 

temp_tx = [0; tx]; temp_ty = [0; ty]; 

dist_ppix = [0; dist_ppix]; 

 

temp_yaw(1) = temp_yaw(1) + Ref_data(1,6); 

temp_tx(1) = temp_tx(1); 

temp_ty(1) = temp_ty(1); 

cTheta = wrapTo180(cumsum(temp_yaw)); 

temp_Xt = temp_tx.*dist_ppix.*cosd(-cTheta)-temp_ty.*dist_ppix.*sind(-cTheta); 

temp_Yt = temp_tx.*dist_ppix.*sind(-cTheta)+temp_ty.*dist_ppix.*cosd(-cTheta); 
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if ~(size(Ref_data(1:10:end,1),1)==size(temp_Xt,1)) 

    temp_Xt = interp1(1:size(temp_Xt,1),temp_Xt,1:size(Ref_data(1:10:end,1),1))'; 

    temp_Yt = interp1(1:size(temp_Yt,1),temp_Yt,1:size(Ref_data(1:10:end,1),1))'; 

end 

 

Xt = cumsum(temp_Xt); %xEast 

Yt = cumsum(temp_Yt); %yNorth 

 

new_T_Alt  = [Ref_data(1:10:end,[1,4])]; 

 

new_del_T_Alt = new_T_Alt - new_T_Alt(1,:); 

 

[lat,lon,alt] = local2latlon(Xt,Yt,new_del_T_Alt(:,2),origin); 

 

navaid_data = [lat lon new_T_Alt(:,2)]; % Use origianl altitude data, to replace GPS 

new_navaid_data = interp1(new_T_Alt(:,1),navaid_data,raw_Ref_data(:,1)); 

Initialization of logged data 

eul = raw_Ref_data(1,[13:15])-Ref2(1,[13:15]); %yaw pitch roll 

trueOrient = eul2quat(eul); % in quaternion, compact form 

truePos = [0 0 new_T_Alt(1,2)]; %XYZ, starting position as (0,0) 

initialStateCovariance = (1e-09)*eye(16); 

accelData = [raw_Ref_data(:,8) raw_Ref_data(:,9) (raw_Ref_data(:,7))]*-9.81; %AccX, AccY, 

AccZ 

gyroData = raw_Ref_data(:,[11 12 10]); %Rot_X, Rot_Y, Rot_Z 

gpsLLA = Ref_data(:,2:4); % Lat Lon Alt 

imuFs = 30; % IMU acquisition rate 

gpsFs = 10; % GPS acquisition rate 

navaidFs = 1; % NAVAID update rate 

Rpos = eye(3); 

 

% Create INS filter to fuse IMU and GPS data using an error-state Kalman filter. 

initialState = 

[trueOrient,truePos,raw_Ref_data(1,5)*cos(deg2rad(Ref_data(1,6))),raw_Ref_data(1,5)*sin(d

eg2rad(Ref_data(1,6))),0,zeros(1,6),1].'; 

filt_INS_GPS = insfilterErrorState; 

filt_INS_GPS.IMUSampleRate = imuFs; 

filt_INS_GPS.ReferenceLocation = origin; 

filt_INS_GPS.State = initialState; 

filt_INS_GPS.StateCovariance = initialStateCovariance; 

 

% Preallocate variables for position and orientation. 

% Allocate a variable for indexing into the GPS data. 

numIMUSamples = size(accelData,1); % accX, accY, accZ 

estOrient = ones(numIMUSamples,1,'quaternion'); 

estPos = zeros(numIMUSamples,3); 

estOrient_INS_GPS = estOrient; estPos_INS_GPS = estPos; 

estOrient_INS = estOrient; estPos_INS = estPos; 

estOrient_INS_NAVAID = estOrient; estPos_INS_NAVAID = estPos; 

gpsIdx = 1; navaidIdx = 1; 
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Fuse accelerometer, gyroscope, and GPS data. The outer loop predicts the filter forward at 

the fastest sample rate (the IMU sample rate). 

for idx = 1:numIMUSamples 

 

    % Use predict to estimate the filter state based on the accelData and 

    % gyroData arrays. 

    predict(filt_INS_GPS,accelData(idx,:),gyroData(idx,:)); 

 

    % GPS data is collected at a lower sample rate than IMU data. 

    % Fuse GPS data at the lower rate. 

    if mod(idx, imuFs / gpsFs) == 0 

        % Correct the filter states based on the GPS data. 

        fusegps(filt_INS_GPS,gpsLLA(gpsIdx,:),Rpos); 

        gpsIdx = gpsIdx + 1; 

    end 

 

    % Log the current pose estimate 

    [estPos_INS_GPS(idx,:), estOrient_INS_GPS(idx,:)] = pose(filt_INS_GPS); 

end 

Fuse only INS data, no GPS 

filt_INS = insfilterErrorState; 

filt_INS.IMUSampleRate = imuFs; 

filt_INS.ReferenceLocation = origin; 

filt_INS.State = initialState; 

filt_INS.StateCovariance = initialStateCovariance; 

 

for idx = 1:numIMUSamples 

 

    % Use predict to estimate the filter state based on the accelData and 

    % gyroData arrays. 

    predict(filt_INS,accelData(idx,:),gyroData(idx,:)); 

 

    % Log the current pose estimate 

    [estPos_INS(idx,:), estOrient_INS(idx,:)] = pose(filt_INS); 

end 

Replace GPS with NAVAID, fuse accelerometer, gyroscope, and NAVAID data 

filt_INS_NAVAID = insfilterErrorState; 

filt_INS_NAVAID.IMUSampleRate = imuFs; 

filt_INS_NAVAID.ReferenceLocation = origin; 

filt_INS_NAVAID.State = initialState; 

filt_INS_NAVAID.StateCovariance = initialStateCovariance; 

 

for idx = 1:numIMUSamples 
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    % Use predict to estimate the filter state based on the accelData and 

    % gyroData arrays. 

    predict(filt_INS_NAVAID,accelData(idx,:),gyroData(idx,:)); 

 

    % GPS data is collected at a lower sample rate than IMU data. 

    % Fuse GPS data at the lower rate. 

    if mod(idx, imuFs / navaidFs) == 0 

        % Correct the filter states based on the GPS data. 

        fusegps(filt_INS_NAVAID,navaid_data(navaidIdx,:),Rpos); 

        navaidIdx = navaidIdx + 1; 

    end 

 

    % Log the current pose estimate 

    [estPos_INS_NAVAID(idx,:), estOrient_INS_NAVAID(idx,:)] = pose(filt_INS_NAVAID); 

end 

Calculate the RMS errors between the known true position and the output from the error-

state filter 

pErr1 = estPos_INS_GPS(:,[1 2]) - estPos_INS(:,[1 2]); % Error between INS+GPS & INS 

pRMS1 = sqrt(mean(pErr1.^2)); 

fprintf('Position RMS Error, between INS+GPS & INS-only:\n'); 

pRMS1str = sprintf('\tX: %.2f, Y: %.2f (meters)\n\n',pRMS1(1),pRMS1(2)); 

fprintf(pRMS1str) 

 

pErr2 = estPos_INS_GPS(:,[1 2]) - estPos_INS_NAVAID(:,[1 2]); % Error between INS+GPS & 

INS 

pRMS2 = sqrt(mean(pErr2.^2)); 

fprintf('Position RMS Error, between INS+GPS & INS+NAVAID:\n'); 

pRMS2str = sprintf('\tX: %.2f, Y: %.2f (meters)\n\n',pRMS2(1),pRMS2(2)); 

fprintf(pRMS2str) 

 

% Visualize the true position and the estimated position 

figure 

plot(xEast,yNorth,'r*','LineWidth',2) % GPS only 

hold on; grid on; axis equal; 

plot(estPos_INS_GPS(:,2),estPos_INS_GPS(:,1),'k.-.') %,'LineWidth',2 

plot(estPos_INS(:,2),estPos_INS(:,1),'b--','LineWidth',2); %,'LineWidth',2 

plot(estPos_INS_NAVAID(:,2),estPos_INS_NAVAID(:,1),'m:','LineWidth',2); %,'LineWidth',2 

 

xlabel('disp_x (m)'); ylabel('disp_y (m)'); 

legend('GPS','INS+GPS','INS','INS+NAVAID','Location','best') % 

 

str = { 

    'Position RMS Error, between INS+GPS & INS-only:' 

    pRMS1str 

    'Position RMS Error, between INS+GPS & INS+NAVAID:' 

    pRMS2str 

    }; 
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gtext(str) % Manual insert text in figure 

Published with MATLAB® R2022a 
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