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iii     ABSTRACT 

Abstract 
Chinese hamster ovary (CHO) cells are the workhorse of the multibillion-dollar biopharmaceuticals 

industry. They have been extensively harnessed for recombinant protein synthesis, as they exhibit 

high titres and human-like post translational modifications (PTM), such as protein N-linked 

glycosylation. More specifically, N-linked glycosylation is a crucial PTM that includes the addition of 

an oligosaccharide in the backbone of the protein and strongly affects therapeutic efficacy and 

immunogenicity. In addition, the Quality by Design (QbD) paradigm that is broadly applied in academic 

research, necessitates a comprehensive understanding of the underlying biological relationships 

between the process parameters and the product quality attributes. To that end, computational tools 

have been vastly employed to elucidate cellular functions and predict the effect of process parameters 

on cell growth, product synthesis and quality.  

This thesis reports several advancements in the use of mathematical models for describing and 

optimizing bioprocesses. Firstly, a kinetic mathematical model describing CHO cell growth, 

metabolism, antibody synthesis and N-linked glycosylation was proposed, in order to capture the 

effect of galactose and uridine supplementation on cell growth and monoclonal antibody (mAb) 

glycosylation. Subsequently, the model was utilized to optimize galactosylation, a desired quality 

attribute of therapeutic mAbs. Following the QbD paradigm for ensuring product titre and quality, the 

kinetic model was subsequently used to identify an in silico Design Space (DS) that was also 

experimentally verified. An elaborate parameter estimation methodology was also developed in order 

to adapt the existing model to data from a newly introduced CHO cell line, without altering model 

structure. 

In an effort to reduce the burden of parameter estimation, the N-linked glycosylation submodel was 

replaced with an artificial neural network that was used as a standalone machine learning algorithm 

to predict the effect of feeding alterations and genetic engineering on the glycan distribution of 

several therapeutic proteins. In addition, a hybrid model configuration (HyGlycoM) incorporating the 

ANN-glycosylation model was also formulated to link extracellular process conditions to glycan 

distribution. The latter was found to outperform its fully kinetic equivalent when compared to 

experimental data.   

Finally, a comprehensive investigation of mAb galactosylation bottlenecks was carried out. Five fed-

batch experiments with different concentrations of galactose and uridine supplemented throughout 

the culturing period, were carried out and were found to present similar mAb galactosylation. In order 

to identify the bottlenecks that limit galactosylation, further experimental analysis, including the 

investigation of glycans microheterogeneity of CHO host cell proteins (HCPs), was conducted. The 
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experimental results were used to parameterize a novel and significant extension of the kinetic 

glycosylation model that simultaneously describes the N-linked glycosylation of both HCPs and the 

mAb product. Flux balance analysis was also used to analyse carbon and nitrogen metabolism using 

the experimental amino acid concentration profiles. In addition to the expression levels of the beta-

1,4-galactosyltransferase enzyme, constraints imposed by the transport of the galactosylation sugar 

donor in the Golgi compartments and the consumption of resources towards HCPs glycosylation, were 

found to considerably influence mAb galactosylation. 
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Nomenclature 
Symbol  

mAb Monoclonal antibody 

CHO Chinese hamster ovary 

HEK Human Embryonic Kidney 

EMA European Medicines Agency 

FDA Food and Drug Administration 

ANN Artificial neural network 

PTM Post translational modification 

ER Endoplasmic reticulum 
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GDP Guanosine-diphosphate 
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ADP Adenosine-diphosphate  

AMP Adenosine-monophosphate 

PP-Dol Dolichyl pyrophosphate  

MSX Methionine sulfoximine 

Man Mannose 

NSD Nucleotide sugar donor 

Glc Glucose 

ERAD Endoplasmic reticulum-associated degradation 

CM Cisternal maturation 

VT Vesicular transport 

GalNAc N-Acetylgalactosamine 

GlcNAc N-Acetylglucosamine 
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LacNAc N-Acetyllactosamine 

ManNAc N-Acetylmannosamine 

GlcN Glucosamine 

GDPMan Guanosine-diphosphate mannose 

GDPFuc Guanosine-diphosphate fucose 

UDPGlc Uridine-diphosphate glucose 

UDPGal Uridine-diphosphate galactose 

UDPGlcNAc Uridine-diphosphate N-Acetylglucosamine 

UDPGalNAc Uridine-diphosphate N-Acetylgalactosamine 

CMPNeu5Ac Cytidine-monophosphate N-Acetylneuraminic  

EPO Erythropoietin 

Fc Crystallizable fragment 

Fab Antigen-binding fragment  

CDR Complementarity determining regions 

CDC Complement-Dependent Cellular Cytotoxicity  

ADCC Antibody-Dependent Cellular-Mediated Cytotoxicity 

FcR Fc receptor 

FcγR Fcγ receptor  

NK Natural-killer  

PK Pharmacokinetic 

HM High mannose 

MR Mannose receptor 

ICH International Conference on Harmonization  

QTPP Quality target product profile  

CPP Critical process parameters  

QbD Quality by Design 

CQA Critical quality attribute 

DS Design Space 

TCA Tricarboxylic acid 

DO Dissolved oxygen 

CBM Constraint-based models  

GeM Genome scale model 

FBA Flux balance analysis 

MFA Metabolic flux analysis 
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EFM Elementary flux mode 

KMM Kinetic metabolic model 

DDM Data-driven model 

ML Machine learning 

PCA Principal component analysis 

PLS Partial least squares regression 

PAT Process analytical technology 

CSTR Continuous stirred-tank reactor 

PFR Plug and flow reactor 

ODE Ordinary differential equation 

PDE Partial differential equation 

PCC Pearson correlation coefficient 

CCC Concordance Correlation Coefficient  

R2 Coefficient of determination  

PE Parameter estimation 

TSI Total sensitivity index 

SIT Sensitivity index threshold 

GSA Global sensitivity analysis 

cGSA  Constraint global sensitivity analysis 

Gal Galactose 

Urd Uridine 

HL Hidden layer 

AAE Average absolute error 

DAO Diamine-oxidase  

PD  Parameter deviation 

CI  Confidence interval 

HCP Host cell protein 

IVCD Integral viable cell density 

GU Galactose & uridine 

MS Mass spectrometry 

HPLC High-performance liquid chromatography 

LC Liquid chromatography 

HPAEC High-performance anion exchange chromatography 

CE Capillary electrophoresis 
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NMR Nuclear magnetic resonance 

MALDI-TOF Matrix-assisted laser desorption/ionization 

CGE-LIF Capillary gel electrophoresis – laser induced fluorescence 

Enzymes 

GS Glutamine synthetase 

OST Oligosaccharyltransferase 

ERManI Endoplasmic reticulum mannosidase I 

UGGT UDP-glucose/glycoprotein glucosyl transferase  

GnTI Αlpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase 

GnTII Αlpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase 

ManI Mannosyl-Oligosaccharide 1,2-Alpha-Mannosidase I 

ManII Mannosyl-Oligosaccharide 1,3-1,6-Alpha-Mannosidase 

GnTIII Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase 

GnTIV Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase 

GnTV Alpha-1,6-mannosyl-glycoprotein 6-beta-N-acetylglucosaminyltransferase 

a6FucT Alpha-1,6-fucosyltransferase 

a3FucT Alpha-1,3-fucosyltransferase 

b4GalT Beta-N-Acetylglucosaminylglycopeptide beta-1,4-galactosyltransferase 

a3GalT N-Acetyllactosaminide alpha-1,3-galactosyltransferase 

iGnT N-Acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 

a3SiaT N-Acetyllactosaminide alpha-2,3-sialyltransferase 

a6SiaT Beta-galactoside alpha-2,6-sialyltransferase 

NST Nucleotide sugar transporter 

LDH Lactate dehydrogenase  

Model parameters and variables 

𝑉 Culture volume (L) 

𝐹𝑖𝑛 Feeding flowrate (L·h-1) 

𝐹𝑜𝑢𝑡 Sampling/outlet flowrate (L·h-1) 

𝑋𝑣  Viable cell density (cell·L-1) 

µ Specific cell growth rate (h-1) 

μdeath Specific cell death rate (h-1) 

µ𝑚𝑎𝑥 Maximum specific cell growth rate (h-1) 

µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥 Maximum specific cell death rate (h-1) 

[𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒] Extracellular concentration of metabolites (mM) 
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𝑚𝐺𝑙𝑐 Maintenance coefficient of glucose (mmol·cell-1·h-1) 

𝑐𝐺𝑎𝑙 Regulating concentration of galactose (mM) 

𝑛𝐺𝑎𝑙 Factor of glucose/galactose specific consumption rate (-) 

𝑓𝐺𝑎𝑙 Factor of glucose/galactose specific consumption rate (-) 

𝐿𝑎𝑐𝑚𝑎𝑥1 Kinetic constant for lactate consumption (mM) 

𝐿𝑎𝑐𝑚𝑎𝑥2 Kinetic constant for lactate consumption (mM) 

𝑓𝐺𝑙𝑛  Glutamine secretion factor (-) 

𝐾𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟  Regulating factor for galactose consumption (mM) 

[𝐺𝑙𝑛𝑖𝑛𝑡𝑟𝑎] Intracellular concentration of glutamine (mM) 

[𝑚𝐴𝑏] Concentration of secreted monoclonal antibody (mg·L-1) 

𝑚𝐺𝑎𝑙 Mab galactosylation (mg·L-1) 

𝑉𝑜𝑙𝐷𝑆 Volume of the Design Space (-) 

[𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑓𝑒𝑒𝑑] Metabolite concentration in the feed (mM) 

𝑞𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒  Specific uptake/synthesis rate for each metabolite (mmol·cell-1·h-1) 

𝑞𝑚𝐴𝑏 MAb specific productivity (mg·cell-1·h-1) 

𝑌𝑋𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒
 Yield of cell biomass for each metabolite (cell·mmol-1) 

𝑌𝑀𝑒𝑡1/𝑀𝑒𝑡2 Yield of one metabolite (Met1) from another (Met2) (mmolMet1·mmolMet2
-1) 

𝐾𝑀𝑒𝑡  Monod-type saturation constant for each metabolite (mM) 

𝐾𝐼𝑀𝑒𝑡 Inhibition constant for each metabolite (mM) 

𝐾𝑑,𝑀𝑒𝑡 Monod-type constants for cell death (mM) 

𝑉𝑚𝑎𝑥,𝑖 Maximum turnover rate of ith reaction (mmolNSD·Lcell
-1·h-1) 

𝐾𝑀𝑖𝑁𝑆𝐷
 Saturation constant for the examined NSD on ith reaction (mM) 

[𝑁𝑆𝐷] Intracellular NSD concentration (mM) 

𝑟𝑖 Reaction in the NSD pathway (mmol·Lcell
-1·h-1) 

𝑟𝑖𝑠𝑖𝑛𝑘
 NSD sinking reactions (mmol·Lcell

-1·h-1) 

𝑌𝑚𝐴𝑏𝑋
 Yield of mAb from cell growth (mg·cell-1) 

𝑚𝑚𝐴𝑏 Non-growth associated term for mAb synthesis (mg·cell-1·h-1) 

𝐾𝐼𝑖 Inhibition constant in the ith reaction (mM) 

𝐹𝑜𝑢𝑡𝑁𝑆𝐷 
 Flux of each NSD towards the Golgi compartment (mmolNSD·L-1·h-1) 

𝐾𝑇𝑃𝑁𝑆𝐷
 Saturation constant for the examined NSD transport (mM) 

𝑉𝑐𝑒𝑙𝑙  Cellular volume (L) 

𝑉𝐺𝑜𝑙𝑔𝑖 Golgi volume (L) 

𝑟𝑁𝑆𝐷𝑘

𝑚𝐴𝑏,𝑔𝑙𝑦𝑐
 Uptake rate of the 𝑘𝑡ℎ NSD towards mAb glycosylation (mmolNSD·L-1·h-1) 

𝑟𝐺,𝑗  Rate of the jth glycosylation reaction (mmolglycan·L-1·h-1) 
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[𝑂𝑆𝑖] Oligosaccharide concentration (μM) 

𝑉𝑒𝑙𝐺𝑜𝑙𝑔𝑖 Velocity of protein transport in the Golgi (Golgi length·min-1) 

[𝐸𝑛𝑧𝑘] kth glycosyltransferase concentration in the Golgi (μM) 

[𝑁𝑆𝐷𝐺,𝑘] NSD concentration in the Golgi (μM) 

𝐾𝑑,𝑖 Dissociation constant of the complex between the OS and the enzyme (μΜ) 

𝐾𝑑,𝑘 Dissociation constant between theyougttgt NSD and the enzyme (μΜ) 

𝐺𝐼 Galactosylation Index 

𝐹𝑖𝑛𝑁𝑆𝐷(𝑐) Transport rate of each NSD in each Golgi compartment (c) (min-1) 

𝑘𝑓  Rate-limiting turnover rate for each enzyme (min-1) 

𝑑𝑖𝑠𝑡𝑟𝑁𝑆𝑇(𝑐) NST distribution in each Golgi compartment 

[𝑁𝑆𝐷]𝑐𝑦𝑡𝑜𝑠𝑜𝑙  NSD concentration in the cytosol (μM) 

𝐾𝑚
𝑁𝑆𝑇 Monod-type saturation constant for each NST-catalysed reaction (μM) 

 

Conventions 

• Whilst capital letters are mainly used to describe human genes in literature, gene names were 

represented with capital letters throughout this thesis for all mammalian cells to avoid 

confusion. 

• The terms glycoform, glycan and oligosaccharide are interchangeably used throughout the 

text. 

• The terms GnGn/G0, GnGnF/G0F, AGn/G1, AGnF/G1F, AA/G2 and AAF/G2F are 

interchangeably used throughout the text. 
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Introduction 
The last two decades have witnessed a rapid growth of biopharmaceuticals development for tackling 

severe human diseases, such as cancer and autoimmune disorders. Biopharmaceuticals (also known 

as biotherapeutics or biologics) are complex natural molecules synthesized in living systems, such as 

proteins and nucleic acids, that exhibit in vivo therapeutic properties when administrated to patients. 

In contrast to the chemically synthesized therapeutics, biopharmaceuticals are usually large 

macromolecules. The reports of biopharmaceutical benchmarks published every four years by Gary 

Walsh, showcase the extraordinary growth of biologics and the various diseases that they are able to 

tackle1-4. As of 2018, there are 316 active licenses of biopharmaceuticals in the European Union (EU) 

and the United States (US)4. Interestingly, slightly more than 50% of the biopharmaceuticals approved 

between January 2014 and July 2018 (129 in total) were monoclonal antibodies (mAbs), nearly double 

the respective percentage for the previously examined period between 2010 and 20144. The year of 

2018 also marked the approval, both in the EU and US, of the first gene-silencing small interfering RNA 

- based (siRNA) biologic for the treatment of polyneuropathy caused by hereditary transthyretin 

(hATTR) amyloidosis5-6.  

Whilst the current thesis examines the synthesis and quality profile of several proteins, both 

recombinant and naturally produced, the main focus of the research presented herein is placed on 

mAbs. Monoclonal antibodies are large proteins with high molecular weight that have been found to 

exhibit therapeutic properties for several human diseases, such as cancer and rheumatoid arthritis7. 

As the approval rates demonstrate, mAbs currently consist the most popular group of biologics, with 

adalimumab (Humira®) constantly holding the position of the top-selling biotherapeutic and 

pembrolizumab (Keytruda®) exhibiting a rapid growth in sales4, 8. Another important element of the 

biopharmaceutical industry is the use of mammalian cells for the production of the recombinant 

products. The rationale behind the extensive use of mammalian hosts lies within their ability to 

achieve high titres and undertake human-like post translational modifications, ensuring that way the 

correct molecular structure and activity of the biologic, while at the same time minimizing 

immunogenicity9. Non-mammalian systems account only for a mere portion of biologics production, 

especially in the industrial level. While the use of bacteria (i.e. Escherichia coli), insect cells (i.e. 

baculovirus expression system) and yeast (i.e. Saccharomyces cerevisiae, Pichia pastoris) is gaining 

momentum in the area of biopharmaceuticals production, these cell lines are still a long way from 

becoming the dominant hosts10-12. 

Among the mammalian systems utilized for recombinant protein production, several hosts have been 

proposed, employed and studied through the years, such as murine myeloma cells (NS0 and Sp2/0)13-
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14, human embryonic kidney cells (HEK293)15, mouse hybridoma16 and Chinese hamster ovary (CHO) 

cells 17. Undoubtedly, CHO cells have been harnessed the most for biotherapeutics production, due to 

their remarkable ability of simultaneously achieving high titres (up to 10 g·L-1) and ensuring human-

like protein quality attributes, such as N-linked glycosylation18. Recombinant tissue plasmogen 

activator (tPA) was the first biologic synthesized in CHO cells to be approved in 198719. Since then, 

CHO cells have quickly become the major host cell line for the production of recombinant proteins 

and more specifically mAbs20, employed as host platforms for approximately 84% of the antibodies 

approved between 2014 and 20184. While several CHO clonal cell lines have been developed through 

the years, the three most common are CHO-K1, CHO-S and CHO-DG44, each one of which exhibits 

unique genotypic and phenotypic characteristics21.  

In addition, the genomic sequence of the CHO-K1 cell line was published in 201122, paving the way for 

a deeper understanding of the cell line mechanisms and offering many opportunities for harnessing 

the potential of CHO cells within the biopharmaceutical context. Follow-up studies elaborating on the 

sequence of individual chromosomes and the discrepancies between different CHO clones have 

further enriched our knowledge on the CHO genome23-25. The analysis of CHO cell proteome26-27 and 

the reconstruction of its metabolic pathways28, alongside with the several efforts to systematically 

identify differences between clones in the proteomic29 and transcriptomic level30-32 have led to the 

establishment of a hardly replaceable background knowledge for these hosts. In addition, all 

information around CHO genome, transcriptome and proteome is easily accessible on the 

CHOgenome.org platform33. Moreover, the development of selection systems, like the dihydrofolate 

reductase deficiency (DHFR-/-) and glutamine synthetase (GS) systems, has enabled the establishment 

of robust frameworks for identifying high-producers during cell line development34. 

It is important to note that biotherapeutics are usually associated with high costs, expensive price-

tags and long approval procedures due to the use of cellular platforms for drug production and the 

extensive clinical trials required for approval. However, with patents of several reference 

biotherapeutics expiring, there is a rapid increase in the use and development of biosimilars, meaning 

the new products that exhibit statistically similar therapeutic properties, safety and efficacy with the 

reference molecule35. Biosimilars require extensive analytical comparative studies for ensuring 

satisfactory biosimilarity with the original therapeutic, but at the same time undergo shorter clinical 

trials, reducing that way the overall cost of the final product and offering considerable economic 

benefits on the biopharma market36. The European Medicines Agency (EMA) has already approved 55 

biosimilars, with the US Food and Drug Administration (FDA) following with 26 approvals, including 

that of several therapeutic proteins and targeting a range of severe diseases such as rheumatoid 

arthritis and cancer37-38. In addition, clinical studies have demonstrated the equivalent safety and 
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efficacy between biosimilars and the original products for both cancer37, 39 and autoimmune diseases40-

42. During biosimilars development, several protein and process parameters are considered in order 

to ensure the desired quality and potency of the product, with a major emphasis placed on the 

glycosylation profile of the new product and its similarity to the reference therapeutic43-46. 

However, both reference and similar biotherapeutics are produced in living organisms and therefore, 

variabilities in the quality attributes are expected. In an effort to ensure product safety and efficacy, 

both the industrial and academic sectors are actively exploring the Quality by Design (QbD) paradigm 

during product development and manufacturing. The QbD principle ensures the establishment of 

acceptable ranges within which the critical quality attributes (CQAs) of the product, such as protein N-

linked glycosylation, can vary47. Additionally, QbD strongly encourages the comprehensive 

investigation of the underlying mechanisms that relate process and material parameters to the final 

product. As the complexity and the multi-interdependencies of cellular processes can result in 

unexpected product profiles, the deep understanding of such relations is of great worth for the 

biopharmaceutical industry. Another side benefit of this necessity for comprehension of pure 

biological functions that is often neglected, is the inevitable bridging between academic research and 

the industrial sector. Both parts are interested in improving their understanding on fundamental 

cellular processes, in order to, eventually, design safer, cheaper and more efficient pharmaceutical 

products. 

Whilst QbD offers a structured framework for ensuring product quality, the experimentation required 

for an exhaustive investigation of the relationship between process variables and product targets is 

considerably costly and time-consuming. For that reason, several computational tools have emerged 

for approximating cellular behaviour and in silico predicting the cellular response to altered process 

conditions48. The aforementioned computational tools are based on several different forms of 

mathematical models, including kinetic, constraint-based and data-driven approaches, with all models 

aiming to describe cell metabolism. Kinetic models align well with the QbD principle as they are based 

on mechanistic principles and relationships between the examined variables, and have therefore been 

extensively utilized to optimize titre49 and control protein N-linked glycosylation50 by designing 

optimal feeding strategies. Constraint-based models are primarily employed for guiding cell line 

engineering as they successfully capture the detailed intracellular metabolism, and correctly evaluate 

the effect of gene modifications on cell growth and productivity51-52. Finally, data-driven, statistical 

and machine learning approaches are constantly gaining more and more attention for describing the 

cell metabolism, as the automation and utilization of deep omics analyses such as metabolomics, 

transcriptomics, glycomics and proteomics is becoming increasingly accessible, especially for microbial 

hosts53-54. Overall, the use of mathematical models to optimize bioprocess parameters, the genome 
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of the cell line in use or product quality attributes such as glycosylation, immensely contributes to 

expediting product and process development, while at the same time requiring minimal 

experimentation and reducing costs. 

In this thesis we harness various mathematical tools in order to optimize the culturing process and, 

ultimately achieve the desired final titre and N-linked glycosylation profile. Firstly, the literature 

review sets the basis for the rest of the thesis, describing in detail key aspects of the thesis and 

demonstrating the importance of the work presented herein (Chapter 1). The materials and methods 

were integrated with the respective results in each chapter, to enable a better understanding of each 

study in a paper-like format. Initially, a mechanistic mathematical model was developed (Chapter 2) 

that holistically described CHO cell metabolism and mAb glycosylation in fed-batch experiments, in 

which galactose and uridine were supplemented in order to manipulate product glycosylation. 

Following training, the model was utilized for designing an optimal feeding strategy for achieving 

maximum galactosylation. Subsequently, the model was employed for in silico identifying a Design 

Space (DS) of feeding regimes within the QbD principle, that would ensure the desired final titre and 

glycosylation profile (Chapter 3). The model-based DS was successfully validated against experimental 

data, indicating that, indeed, kinetic mechanistic models can be utilized for applying the QbD 

paradigm, while at the same time minimizing experimentation. The metabolic part of the mechanistic 

model was then subjected to sensitivity analysis in order to identify the significant parameters that, 

when re-estimated, capture the variability between different batches. Utilizing the developed 

sensitivity analysis framework, the metabolic model was adapted to successfully describe the 

metabolism of a different CHO cell line that achieves considerably higher cell densities and titre, 

without introducing any changes to the equations and structure of the model. The model adaptation 

to the new cell line paves the way towards the development of a global mechanistic model for 

describing the cellular metabolism of various CHO cell lines with minor modifications in its parameter 

values. 

In order to tackle the non-linearities that are encountered in the glycosylation process, a machine 

learning framework, based on feedforward artificial neural networks (ANNs), was developed (Chapter 

4). The ANN model was validated against several in-house experiments and data from literature, and 

was found capable of describing the glycosylation of four different recombinant proteins and within 

different process conditions and gene engineering experiments. A hybrid model configuration, 

including a mechanistic metabolism and the ANN glycosylation model, was also found to outperform 

the respective holistically mechanistic model. Following the modelling work, five fed-batch 

experiments with feeding concentrations derived from the in silico Design Space were performed, in 

order to further investigate the effect of galactose and uridine addition on cell metabolism and 
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glycosylation (Chapter 5). More specifically, the experimental work, combined with an updated 

mechanistic glycosylation model including additional parts of the secretory pathway, and flux balance 

analysis, enabled the elucidation of the reasons behind the observed limitations in mAb 

galactosylation and the investigation of metabolic differences between the feeding and the control 

experiments. Finally, all results presented herein were summarized in the final chapter, alongside with 

the limitations and the future perspectives as derived from this thesis (Chapter 6). 
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Chapter 1 Literature review 
 

1.1   Glycosylation 
Glycosylation is a post-translational modification (PTM) that initiates in the Endoplasmic Reticulum 

(ER) and further occurs in the Golgi apparatus, holding a significant role in immune system efficiency 

and antigen recognition55-57. As a principle, glycosylation includes the enzymatic covalent attachment 

(glycosidic bond) of a carbohydrate (glycan or glycoconjugate) to the backbone of proteins or lipids, 

and mainly appears in eukaryotic cells. An early estimation has identified that approximately 50% of 

human proteins are glycosylated58. Glycosylation of mammalian small non-coding RNA has also been 

recently reported59. There is a variety of different types of glycosylation, including: N-linked, O-linked, 

phosphoglycosylation, C-mannosylation and glycosylphosphatidylinositol-anchor (GPI-anchor) 

synthesis. Additionally, it has been identified that N-linked and O-linked glycosylation occur in both 

bacteria and archaea60-65. Bacterial glycosylation follows a significantly different pathway compared 

to eukaryotic glycosylation and can considerably influence a microorganism’s capability to invade 

cells66. Interestingly, human glycoproteins can be further modified by extracellular 

glycosyltransferases circulated in blood and platelets, through a process called extrinsic 

glycosylation67-69. 

Moreover, glycosylation is not template-driven. The extent of lipid and protein glycosylation depends 

on several factors; from the structure of the synthesized macromolecule, to the availability of 

substrates and the expression levels of glycosylation enzymes. The variety of enzymes catalysing 

glycan synthesis, conventionally and collectively referred to as glycosidases and glycosyltransferases 

(GTases), constitute only a small part of the enzymatic system that determines the extent of 

processing. Enzymes responsible for co-substrate synthesis and transport to the organelles’ lumen, 

are an additional part of the extensive network that affects glycosylation. Once the strong dependence 

of sugar-donor synthesis (glycosylation co-substrates) on the central carbon metabolism is considered, 

the extent of glycosylation dependence on other cellular processes becomes immense. Due to the 

multiple dependencies of glycosylation and the different levels of cellular control over its extent, 

glycosylation is considered the most diverse category of PTMs70-71. 

Whilst deficiencies in any glycosylation type can have a significant impact on macromolecule structure 

and result in abnormal cellular behaviour56, the major focus of this Literature Review is placed on 

protein N-linked glycosylation, due to its paramount importance for therapeutic protein synthesis, and 

relevance to the rest of this thesis.  
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1.1.1   Protein N-linked Glycosylation 
Protein glycosylation includes the covalent attachment of a glycan in the nitrogen atom of an 

asparagine (N-linked) or in the oxygen atom of a serine/threonine (O-linked) amino acid residue of the 

polypeptide backbone. Extensive amounts of O-linked glycans are observed in specific proteins, such 

as mucins72. More specifically, mucin-type O-linked glycosylation initiates with the addition of a N-

Acetylgalactosamine (GalNAc) molecule in the serine/threonine residue73-74. Although O-linked 

oligosaccharides have been observed in human immunoglobulin A (IgA) antibodies 75-80, this post-

translational modification is not common in antibody molecules.  

The effects and importance of N-linked glycosylation have been better characterized compared to O-

linked glycosylation, partly because of the improved accessibility on N-linked glycans analysis80. The 

fundamental steps of N-linked glycosylation, which is part of the cellular secretory pathway81, include: 

1) the formation of a dolichyl pyrophosphate (PP-Dol) membrane precursor oligosaccharide 

(Glc3Man9GlcNAc2); 2) the transfer and attachment of the PP-Dol oligosaccharide precursor, through 

enzymes called oligosaccharyltransferases (OSTs), in the polypeptide backbone of the protein; and 3) 

the further modification of the attached precursor in the ER and Golgi apparatus, through several 

glycosidases and glycosyltransferases82. Commonly encountered N-linked glycans and the adopted 

symbol nomenclature for graphical representation used in the entirety of this thesis can be found in 

Fig. 1.183. In addition, throughout the glycosylation process, several nucleotide phosphates are utilized 

by the cells, including: uridine-triphosphate (UTP), uridine-diphosphate (UDP), uridine-

monophosphate (UMP), cytidine-triphosphate (CTP), cytidine-monophosphate (CMP), guanosine-

triphosphate (GTP), guanosine-diphosphate (GDP), adenosine-triphosphate (ATP), adenosine-

diphosphate (ADP) and adenosine-monophosphate (AMP).
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Figure 1.1: Graphical representation of glycan structures that are commonly observed in N-linked glycosylation, including 

the precursor oligosaccharide. The major glycosyltransferases involved in N-linked glycosylation are also reported. Note that 

sialic acid can be attached with both α-2,3 and α-2,6 bonds without any structural restrictions or preference.  The 

nomenclature used throughout this thesis and presented in this graph for the graphical representation of glycan structures, 

can be found in Varki et al.83.The abbreviation of the depicted glycosyltransferases can be found in Table 1.1. 

The oligosaccharide precursor is synthesized through the sequential processing of the PP-Dol anchor. 

Initially, two N-Acetylglucosamine (GlcNAc) residues bind through a pyrophosphate linkage to PP-Dol 

that is located in the cytoplasmic side of the ER-membrane. The addition of the two GlcNAc molecules 

is followed by the further attachment of five mannose (Man) residues in the forming oligosaccharide. 

The energy for catalyzing the aforementioned reactions is provided by the saccharide-phosphate bond 

of the nucleotide sugar donors (NSDs) UDPGlcNAc and GDP-mannose (GDPMan). NSDs are co-

substrates of glycosylation, offering the monosaccharide molecule and the required energy for the 

enzymatic reactions to take place. Subsequently, the formed dolichol-Man5GlcNAc2 residue is 

translocated, facing the luminal side of the ER, and becomes accessible to the ER-resident enzymes. 

Four additional mannose and three glucose (Glc) residues are added to the dolichol-Man5GlcNAc2, 

forming the dolichol-Glc3Man9GlcNAc2 precursor.  

Several, alpha-mannosyltransferases (ALG1, ALG2, ALG3, ALG9, ALG11 and ALG12) and alpha-

glucosyltransferases (ALG6, ALG8 and ALG10) are involved in precursor synthesis, as shown in Fig. 1.2. 

The crystal structure of the yeast ALG6 glucosyltransferase, recently described in Bloch et al.84, 
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revealed a catalytic asparagine residue conserved between all eukaryotic ER-luminal 

glycosyltransferases. Initially, the monosaccharide mannose and glucose residues are bound to a lipid 

dolichol in the cytoplasmic side of the ER-membrane. It is important to note that the mechanism 

behind the translocation (or flipping) for both the dolichol-monosaccharides and dolichol-

Man5GlcNAc2 molecules is not yet well understood and characterized. ER- resident flippases have been 

attributed for carrying out the ATP-fueled transbilayer translocation of the dolichol-bound 

molecules85-88. Finally, OSTs transfer the Glc3Man9GlcNAc2 oligosaccharide in the asparagine residue 

of the polypeptide backbone, initiating that way the core process of protein N-linked glycosylation. 

More specifically, the Glc3Man9GlcNAc2 oligosaccharide covalently binds in an amino acid sequence of 

asparagine/X/serine or asparagine/X/threonine, with X being any amino acid apart from proline. PP-

Dol, formed as a by-product of OST activity, is subsequently recycled for new precursor assembly. 

Identification of potential N-linked glycosylation sites through computational tools and the 

investigation of the extend of site occupation, have been subjects of several research studies89-92. 

Petrescu et al.93 identified an approximate 65% occupation rate over 2592 sequons in 506 

glycoproteins, 70% of which were of asparagine/X/threonine type and the remaining 30% of 

asparagine/X/serine.  

 

Figure 1.2: Precursor synthesis in the cytosol and the ER lumen. The precursor glycan (Glc3Man9GlcNAc2) is synthesized while 

attached to PP-Dol and is then transferred to the polypeptide backbone through the OSTs activity.  
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The synthesis of the Glc3Man9GlcNAc2-protein precursor initiates several protein quality control steps 

in the ER, part of the rigorous and complex ER quality control (ERQC) process94-96. Sequentially, ER-

resident glucosidases I and II remove the glucose molecules, followed by the partial trimming of a 

single mannose molecule from the ER-alpha-1,2-mannosidase I (ERManI) enzyme97. GlcMan9GlcNAc2-

protein, an intermediate of the aforementioned sequential steps, is recognized by ER-resident 

chaperones, namely binding immunoglobulin protein (BiP), calnexin (CNX) and calreticulin (CRT), 

that ensure proper oxidative folding and protein maturation98-100. Prior to ERManI activity and Golgi 

transport, UDP-glucose/glycoprotein glucosyl transferase (UGGT) evaluates protein conformation. If 

the glycoprotein is misfolded, UGGT triggers the re-glucosylation of the glycan, re-initiating that way 

the ERQC and the activity of BiP, CNX and CRT enzymes. Interestingly, ERManI has been identified as 

a critical enzyme for the regulation of the ER-associated degradation (ERAD) of misfolded proteins, 

further trimming the oligosaccharide for the formation of the degradation-signaling Man5GlcNAc2 or 

Man6GlcNAc2 glycans101-105. Researchers have recently partially reconstructed the in vitro synthesis of 

the precursor glycan, in an effort to in vitro assemble the Man9GlcNac2 structures106. 

Following the partial trimming from ERManI, both Man9GlcNAc2- and Man8GlcNAc2-protein complexes 

are transported from the ER to the Golgi environment. Whilst precursor synthesis and transit to the 

Golgi apparatus is a common process for all eukaryotic cells, glycosylation follows a remarkably 

different pathway in yeast, when compared to mammalian cells. Yeast glycosylation includes an 

extensive addition of mannose residues in the Man8GlcNAc2 sugar, leading to the synthesis of hyper-

mannosylated glycans107. In mammalian cells, Golgi-residing alpha-1,2-mannosidase I (ManI) 

catabolizes several mannose molecules of the Man8GlcNAc2 glycan for the formation of Man5GlcNAc2. 

Subsequently, N-Acetylglucosaminyltransferase I (GnTI) initiates glycan rebuilding by attaching a 

GlcNAc molecule to the alpha-1,3-arm of the Man5GlcNAc2 glycan (Fig. 1.3). Following the first glycan 

elongation step, alpha-1,3-1,6-mannosidase II (ManII) further trims the glycan for the formation of 

Man3GlcNAc3. The latter consists the fundamental building block for the synthesis of more complex 

glycoforms. The remaining part of the glycosylation pathway includes the activity of several GTases, 

as shown in Table 1.1. GTases exhibit an unparallel enzymatic promiscuity, being able to catalyze 

various substrates during the elongation process. To that end, protein glycosylation carries high 

degrees of heterogeneity, with identical proteins carrying different glycans on the same N-linked 

glycosylation site (microheterogeneity). Therefore, glycoproteins display a diverse distribution of 

differentially processed glycans in their backbone. Upon glycosylation completion, proteins are 

secreted to the cytosol for appropriate localization. 



Page | 11 LITERATURE REVIEW 

 

Figure 1.3: Schematic representation of N-linked glycosylation. Correctly folded and matured proteins carrying Man9GlcNAc2 

and Man8GlcNAc2 glycans transverse towards the Golgi-cisternae where Golgi-resident glycosidases and glycosyltransferases 

further modify the N-linked oligosaccharide prior to secretion.  
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Table 1.1: Major enzymes and isoforms involved in protein N-linked glycosylation.  

Enzyme Symbol Expasy entry 
(EC) 

Function Human Gene(s) Substrate/ 
Donor 

Mannosyl-oligosaccharide α-glucosidase I αGluI 3.2.1.106 Hydrolysis of the first α-1,2-glucose molecule in the Glc3Man9GlcNAc2 
glycan 

MOGS H2O 

Glucan 1,3-alpha-glucosidase αGluII 3.2.1.84 Sequential hydrolysis of two α-1,3-glucose molecules of the 
Glc2Man9GlcNAc2 glycan   

GANAB H2O 

UDP-glucose:glycoprotein glucosyltransferase UGGT 2.4.1.- Reglucosylation of misfolded proteins in the ER UGT1A, 
UGT1A1 

UDPGlc 

ER mannosyl-oligosaccharide 1,2-alpha-

mannosidase 

ER-ManI 3.2.1.209 Hydrolysis of a single α-1,2-mannose molecule from the Man9GlcNAc2 

glycan 

MAN1B1 H2O 

Mannosyl-Oligosaccharide 1,2-Alpha-
Mannosidase I 

ManI 3.2.1.113 Sequential hydrolysis of α-1,2-mannose molecules MAN1A1, MAN1A2, 
MAN1C1 

H2O 

Mannosyl-Oligosaccharide 1,3-1,6-Alpha-
Mannosidase 

ManII 3.2.1.114 Hydrolysis of α-1,3-mannose and α-1,6-mannose molecules MAN2A1, MAN2A2 H2O 

Αlpha-1,3-mannosyl-glycoprotein 2-beta-N-
acetylglucosaminyltransferase 

GnTI 2.4.1.101 Transfer of a β-1,2-GlcNAc residue in the α-1,3-branch of the glycan MGAT1 UDPGlcNAc 

Αlpha-1,6-mannosyl-glycoprotein 2-beta-N-
acetylglucosaminyltransferase 

GnTII 2.4.1.143 
 

Transfer of a β-1,2-GlcNAc residue in the α-1,6-branch of the glycan MGAT2 UDPGlcNAc 

Beta-1,4-mannosyl-glycoprotein 4-beta-N-
acetylglucosaminyltransferase 

GnTIII 2.4.1.144 Transfer of a β-1,4-GlcNAc residue in the bisecting β-1,4-branch of the 
glycan 

MGAT3 UDPGlcNAc 

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-
acetylglucosaminyltransferase 

GnTIV 2.4.1.145 Transfer of a β-1,4-GlcNAc residue in the α-1,3-branch of the glycan MGAT4A, MGAT4B UDPGlcNAc 

Alpha-1,6-mannosyl-glycoprotein 6-beta-N-
acetylglucosaminyltransferase 

GnTV 2.4.1.155 Transfer of a β-1,6-GlcNAc residue in the α-1,6-branch of the glycan MGAT5, MGAT5B UDPGlcNAc 

N-Acetyllactosaminide beta-1,3-N-
acetylglucosaminyltransferase 

iGnT 2.4.1.149 Transfer of a β-1,3-GlcNAc residue on a terminal β-1,4-Gal molecule of 
the glycan 

B3GNT2 UDPGlcNAc 

Beta-N-Acetylglucosaminylglycopeptide beta-
1,4-galactosyltransferase 

b4GalT 2.4.1.38 Transfer of a β-1,4-Gal residue on any terminal GlcNAc glycan molecule B4GALT1-7 UDPGal 

N-Acetyllactosaminide alpha-1,3-
galactosyltransferase 

a3GalT 2.4.1.87 Transfer of an α-1,3-Gal residue on a β-1,4-Gal glycan molecule GGTA1* UDPGal 

Alpha-1,6-fucosyltransferase a6FucT 2.4.1.168 Transfer of an α-1,6-Fuc residue to the core GlcNAc glycan molecule FUT8 GDPFuc 

Alpha-1,3-fucosyltransferase a3FucT 2.4.1.214 Transfer of an α-1,3-Fuc residue to a GlcNAc glycan molecule FUT4, FUT7, FUT9 GDPFuc 

Beta-galactoside alpha-2,6-sialyltransferase a6SiaT 2.4.99.1 Transfer of an α-2,6-Neu5Ac residue to a terminal galactose molecule ST6GAL1 CMPNeu5Ac 

N-Acetyllactosaminide alpha-2,3-
sialyltransferase 

a3SiaT 2.4.99.6 Transfer of an α-2,3-Neu5Ac residue to a terminal galactose molecule ST3GAL3, ST3GAL4, ST3GAL6 CMPNeu5Ac 

*Inactive in humans but not all mammals. 
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Whilst mannose trimming mainly occurs in the cis-Golgi compartment (cisterna) and glycan elongation 

in the median-, trans- and TGN-Golgi compartments108-110 mannosidases and GTases overlapping 

localization is evident and shows considerable diversity between different cell systems111-116. Recycling 

of the glycosylation enzymes between discrete Golgi compartments has also been reported117-118. 

Additionally, it is important to note that several complexes between different GTases and between 

GTases and nucleotide sugar transporters (NSTs) have been observed119-120. Conventionally, secreted 

Man5-9GlcNAc2 oligosaccharides are called high-mannose (HM) glycans, whilst sugars that carry five or 

four mannose molecules and are products of the GnTI activity and any downstream GTase, are called 

hybrid. 

1.1.2   Nucleotide sugar donors 
Nucleotide sugar donors are activated forms of monosaccharides, acting as co-substrates and 

monosaccharide-donors for GTase activity.  NSDs consist of a nucleotide phosphate and a sugar 

molecule and are synthesised in the cytosolic environment, with the exception of CMP-sialic acid that 

is produced in the nucleus. The most common NSDs involved in N-linked glycosylation include: 

UDPGlc, UDPGal (UDP-galactose), UDPGlcNAc, CMPNeu5Ac (CMP-N-Acetylneuraminic or -sialic acid), 

GDPMan and GDPFuc (GDP-fucose). The NSD synthesis pathway is a complex metabolic network that 

includes several intermediate structures (Fig. 1.4) and is strongly dependent on the extracellular 

environment121-122. UDPGal and UDPGlc synthesis is also closely related to glycolysis. NSDs are 

translocated in the ER and Golgi lumens through the energy-independent activity of the nucleotide 

sugar transporters (NSTs). The NSTs act as antiporters for the exchange of nucleotide phosphates and 

NSDs between the cytosolic and lumen environments. NSTs can demonstrate a diverse specificity on 

the NSDs transported between the cytosolic and lumen environment123-125. In addition, NSD transport 

can be inhibited by the competitive transport of nucleotide-phosphates. NSD availability in the Golgi 

environment depends on the cytosolic NSD pools and the activity of the respective NSTs. Low NSD 

levels in the Golgi environment can directly affect the final structure of the N-linked oligosaccharide 

by becoming a limiting step towards GTase activity.  
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Figure 1.4: The pathway of NSD synthesis. Adapted from Jedrzejewski et al.121. G1P: glucose-1-phosphate, G6P: glucose-6-

phosphate, Gal1P: galactose-1-phosphate, Fuc6P: fucose-6-phosphate, Fuc1P: fucose-6-phosphate, Man6P: mannose-6-

phosphate, Man1P: mannose-1-phosphate, GlcN6P: glucosamine-6-phosphate, GlcNAc6P: GlcNAc-6-phosphate, GlcNAc1P: 

GlcNAc-1-phosphate, ManNAc6P: N-Acetylmannosamine-6-phosphate, Neu5Ac9P: Neu5Ac-9-phosphate. 

1.1.3   Models for protein traffic in the Golgi 
Whilst several aspects of protein glycosylation have been exhaustively studied, the mechanisms of 

glycan-protein complex transport within the Golgi apparatus, and its subsequent secretion, remain 

under intense debate126-129. Several theories around Golgi traffic have been developed over the years, 

with two prevailing models defining the fundamental principles for the rest: 1) the cisternal 

maturation (CM) and 2) the vesicular transport (VT) models130. In the CM model, Golgi morphology 

and structure change dynamically during protein trafficking. For that reason, Golgi 

compartmentalization in the CM model is blurry; the cis-cisterna gradually transforms into the 

median-cisterna that follows the same fate until the formation of the TGN compartment. The maturing 

cisterna carries all the necessary enzymes for protein PTM modifications, such as glycosylation. Finally, 

the TGN-cisterna scatters to smaller secretory vesicles to assist in the localization of the secreted 

proteins128, 130-131. COPII vesicles ensure the re-distribution of the Golgi enzymes to the newly formed 

cisternae. On the contrary, the VT model suggests that Golgi compartments are distinct and remain 

static throughout the secretion process. Protein trafficking is carried out by COPI and COPII vesicles 

that carry the modified proteins from one compartment to the next. Enzymes localization, i.e. 

glycosidases and GTases, are assumed to remain fixed to specific compartments132. Whilst both 

models present significant evidence that would accommodate their approval, there are several 

experimental observations that each of the two cannot sufficiently explain112, 128, 133. 



Page | 15 LITERATURE REVIEW 

1.2   Importance of glycosylation in biopharmaceuticals production 
Glycosylation has been established as one of the most crucial cellular processes, playing a convoluted 

role in several human disorders56. However, another scientific and research sector, within which 

glycosylation holds a pivotal role, is the synthesis of biopharmaceuticals. A previously estimated 40% 

of licensed biopharmaceuticals are reportedly recombinant glycoproteins134, with the aforementioned 

number only expected to have risen during the last few years with the approval of several monoclonal 

antibodies as biotherapeutics3-4. As previously mentioned, the covalently attached glycan can 

significantly affect the conformation135-136, stability137, function and immunogenicity138 of the 

synthesized therapeutic glycoprotein.  

1.2.1   The role of monoclonal antibodies in the biopharmaceutical sector  
It is important to note that there is a significant diversity on the number of glycosites and the structure 

of the attached glycans in each site, between the different therapeutic glycoproteins. For example, 

erythropoietin (EPO), a small in size but heavily glycosylated hormone that is regularly used for the 

treatment of anemia, contains three N-linked glycosylation sites on the Asn24, Asn38 and Asn83 

residues of the backbone, and a single O-linked site in Ser126 residue139-140. Impressively, the occupied 

glycosylation sites contribute up to 40% of the total molecular weight of EPO (~34-38 kDa), with each 

site affecting in vivo protein synthesis and secretion in a unique way139. On the other hand, 

immunoglobulin G (IgG) antibodies, the most harnessed and common mAbs,  are large molecules 

(~150 kDa) that carry two N-linked glycosylation sites in the crystallizable fragment (Fc) region (Fc-

glycosylation) and potentially (~15-25% for IgG molecules) additional N-linked sites in the variable Fab 

(Fab-glycosylation) region141. The glycans occupying the Fc sites are normally less processed than the 

structures of the Fab region, and the glycans in both sites are considerably less complex when 

compared to the EPO glycans. The differences on the glycosylation profiles between the two 

glycoproteins and also between the sites of the same protein, showcase the strong influence that 

protein structure and amino acid sequence has on glycosylation. The following paragraphs present an 

overview of the importance of N-linked glycosylation on mAbs’ properties and activity, in order to 

further demonstrate the significance of glycosylation in the biopharmaceutical sector. 

Monoclonal antibody structure and function 

Monoclonal antibodies are large protein molecules produced by B cells and that specifically target a 

single antigen. MAbs where first introduced by Paul Ehrlich early in the 20th century, as ‘’magic bullets’’ 

that could selectively target an antigen while at the same time cause no harm to the exposed 

organism142. One of the first successful attempts to efficiently produce mAbs was presented in 1975, 

through the fusion of mouse spleen and myeloma cells143. Since the first approval of a mAb 
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biotherapeutic in 1986 from US-FDA, mAbs have been the leading treatment for severe human 

diseases144-145. Mammalian cells produce five different subclasses of antibodies: IgA, IgD, IgE, IgG and 

IgM. The structural differences between the five subclasses of the monoclonal antibodies occur due 

to the variation of the amino acid sequence in the heavy chains. Among the subclasses, IgGs are the 

most common mAbs, accounting for approximately 75% of the total human antibody secretion and 

10-20% of the total plasma protein concentration146. In addition, fully human or humanized IgGs hold 

the lion’s share in the licensed147 and developing mAbs that are currently in late-stage clinical trials4.  

IgGs are further classified to four categories which show 95% homology: IgG1, IgG2, IgG3 and IgG4. 

IgGs consist of two identical light (L) and two identical heavy (H) polypeptide chains, forming a Y-

shaped polypeptide backbone. Each IgG molecule includes one variable domain (VH and VL, 

respectively for the heavy and light chains) and three constant domains (CH and CL, respectively). The 

polypeptide chains are linked through disulphide bonds in the hinge region of the IgG. In addition, the 

differences between the IgG subclasses are mainly identified in the conformation of the hinge region 

and more specifically in the disulphide bonds structures148. The latter exhibit significant influence in 

the stability of the IgG molecules149. Moreover, the molecular weights of the chains usually range 

between 50-77 kDa for the heavy and approximately 25 kDa for the light chains150.  The binding region 

of the molecules is all or part of the antigen-binding fragment (Fab) region. The antigen-specificity of 

each antibody is identified by the complementarity determining regions (CDR), parts of the Fab 

fragment that are hypervariable segments of 110 amino acids151. The rest of the IgG molecule, namely 

the Fc-region, is responsible for the function, safety, efficacy and the pharmacokinetic properties of 

the monoclonal antibody. Each light chain has a variable and a constant domain, while the heavy 

chains include three constant domains. All aforementioned structural conformations are shown in Fig 

1.5. 
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Figure 1.5: Schematic representation of the structure of an IgG1 molecule, including the N-linked glycans structures that are 

commonly found in the CH2 domain. Note that the N-linked glycans are found in the inner part of the Fc fragment but are 

shown on the external for illustrative reasons. Also, the glycan structures are not necessarily identical between the two 

chains as illustrated. 

The IgG mechanism of action is a direct function of the molecule’s structure. As previously described, 

the Fab-region is responsible for the antigen-binding, while the Fc-region initiates the cell response 

for the neutralization of the intruding cell. The antibody, through the Fc fragment, can either 

neutralize the target or provoke an immune response in order to protect the host against infection. 

Two important mechanisms of action (effector functions) for IgG antibodies have been described: 

Complement-Dependent Cellular Cytotoxicity (CDC) and Antibody-Dependent Cellular-Mediated 

Cytotoxicity (ADCC). In CDC, the antibody firstly binds to the antigen through the CDR fragments. Then, 

C1q proteins bind to the glycosylated Fc-region of the antibody and provoke a complementary action 

that leads to the disruption of the cell membrane and consequently to its death. On the other hand, 

in ADCC response, the antibody binds through the Fab-region to the antigen while also binding 

through the Fc-region with a Fcγ receptor (FcγR) of a natural-killer (NK) cell of the immune system 

that, in its turn, releases cytotoxic granules and consequently kills the intruding cell152.  FcγRs are 

glycoproteins that belong to the immunoglobulin superfamily and are a vital part of the host immune 

system, expressed in the membrane of macrophages and NK cells, among others153.  Major receptors 

in humans include FcγRI, FcγRIIa, FcγRIIc and FcγRIIIa154. 



Page | 18 LITERATURE REVIEW 

Moreover, a highly conserved N-linked glycosylation site is normally identified in the Asn297 residue 

of each of the CH2 domains of the IgG molecules155. Due to steric hinderance that IgG structure imposes 

on the GTases activity, the glycosylation profile of the N-linked sites usually ranges over around ten 

possible structures, with the vast majority being core-fucosylated biantennary, non sialylated glycans. 

Interestingly, the glycans attached in the two distinct CH2 domains (Fc glycans) of the same molecule 

are not necessarily identical. Fig. 1.6 demonstrates the most commonly encountered glycan structures 

in IgG molecules. It is important to highlight that the nature of the glycan structures attached in the 

Fc-region significantly influences the folding and pharmacokinetic (PK) properties of the molecule156-

157. To that end, the complete in vitro removal of Fc-glycosylation from IgG1 molecules has been found 

to result in reduced thermal stability158 and lack of CDC and ADCC activity159. However, the extent to 

which deglycosylation affects antibody half-life and PK properties varies and might be dependent on 

the IgG subclass43. The effect of each designated glycosylation part is further discussed in the next few 

paragraphs, while Table 1.2 presents the outcome of several important studies in the field. 

 

Figure 1.6: Schematic representation of the most common glycan structures encountered in therapeutic IgGs. (*) indicates 

the most abundant glycan (G0F), (**) the second most abundant glycan (G1F) and (***) the third most abundant glycans. 

The proposed abundancy does not apply to all IgGs. The shown abbreviation for glycans is used throughout the text, unless 

otherwise stated. G: stands for galactose, F: for fucose, S: for sialic acid and Man: for mannose. Bisecting glycosylation can 

also be observed in human serum IgG, but was not included in the current schematic representation, as a focus on the 

biopharmaceutical context of IgG glycosylation (where bisecting glycosylation is rare due to MGAT3 low expression levels in 

CHO cells) was placed. 
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Core-fucosylation 

Moreover, specific parts of IgG Fc-glycosylation have been found to significantly influence the ADCC 

activity of the IgG molecules, through the regulation of the affinity between the Fc-region and the 

FcγRs160. Most importantly, core-fucosylation has been found to inhibit IgG binding with the FcγRIIIa 

receptor, as the removal of the core-fucose molecule leads to a 50-fold increase in the IgG-FcγRIIIa 

binding161 and therefore to elevated ADCC activity162. However, lack of core-fucose has been found to 

result in no improvements in IgG binding to the neonatal Fc receptors, FcγRI or the C1q protein, while 

showing moderate improvements in the FcγRII binding, and therefore showcasing the specificity of 

glycosylation on designated parts of IgG function161-162. The effect of core-fucose on ADCC has been 

determined as independent of the IgG subclass, while core-fucosylation has been found to show no 

influence on the CDC activity of the IgG163. Interestingly, core-fucosylation has also been found to 

regulate the effect of sialylation on antibody ADCC efficiency, as terminal sialylation can decrease 

ADCC mediated IgG function in the presence of core-fucose, but without exhibiting any effects in non-

fucosylated IgGs164. Finally, Kanda et al.165 reported no impact of core-fucose on serum half-life and 

PK properties of IgG1.  

Bisecting branching and terminal sialylation 

Contrary to the adverse effect of core-fucose on ADCC activity that has been well characterized, the 

role of bisecting GlcNAcs and sialic acids on the aforementioned IgG function remains unclear. Early 

studies have identified that bisecting GlcNAc, the product of GnTIII activity, results in higher ADCC 

activity166-168. However, when the effect of bisecting branching was simultaneously studied with core-

fucosylation, the latter was found to exhibit a significantly stronger effect on IgG activity, 

overshadowing the impact of bisected glycoforms169. In addition, the activity of the GnTIII enzyme has 

been found to inhibit core-fucosylation, indicating that possible improvements on ADCC mediated 

response could indirectly originate from reduced content in core-fucose caused by the increased levels 

of bisecting branching170. Elaborating on the effect of bisecting GlcNAc, Hodoniczky et al.171 identified 

a ~10-fold increase in ADCC activity in the presence of bisected and core-fucosylated IgG, eventually 

demonstrating a direct effect of branching GlcNAc on ADCC. 

Whilst the Fc sialylation levels of IgG are usually below 10%, terminal sialic acid has been found to 

increase serum half-life of several proteins172-173 and, more specifically, of therapeutic antibodies for 

up to 9 times174. On the other hand, the decoration of the Fc glycans with sialic acid, has been strongly 

correlated to a decrease in the ADCC activity of the antibody molecule due to low binding affinity with 

the FcγRIIIa receptors175-177. In an interesting study, Zhang et al.178 identified that the alpha-2,3-sialic 

acid in the 6-arm of IgG1, destabilizes the CH2 domain of the protein, while the alpha-2,3- and the 
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alpha-2,6-sialic acid in the 6-arm of the glycan cause no destabilization, demonstrating that way the 

linkage specific effects of sialylation. Moreover, Kaneko et al.179 have identified that the presence of 

sialic acid is critical for the anti-inflammatory properties of tintravenous immunoglobulin G (IVIG). IVIG 

is administered in several autoimmune diseases and antibody-deficiency disorders. To that end, 

Anthony et al.180 utilized a recombinant IgG to demonstrate that the anti-inflammatory properties of 

the protein are entirely dependent on alpha-2,6-sialylation. Contrary to the aforementioned reports, 

Boyd et al.159 have reported no effect of terminal sialylation on CDC, ADCC or antigen binding activity. 

Terminal galactosylation 

Unlike most glycan attributes that exhibit a multi-level influence on ADCC activity through the 

regulation of FcγRIIIa receptor binding, the majority of studies around IgG beta-1,4-galactosylation of 

the Fc fragment, have identified a neutral or sometimes positive role in ADCC and antigen binding159, 

169, 171, 177, 181. Thomann et al.182 have argued that Fc glycan decoration with terminal galactose residues 

consistently improves ADCC activity of the IgG1 molecule but is unable to provide further 

improvements in the afucosylated variation of the antibody. However, antibody galactosylation has a 

more direct and explicit effect on CDC activity, due to an increase in IgG-C1q binding159, 171, 183. Whilst 

galactose content has been of great interest among the available therapeutic IgGs184, a recent study 

has indicated that protein serum half-life can be negatively affected by the presence of galactose, 

which can only be inverted by the further addition of sialic acid185. Contrary to the aforementioned 

observations, Wright & Morrison156 identified no changes in galactose deficient IgG1 regarding in vivo 

protein half-life or binding affinity towards the FcγRI receptor.  

Cetuximab, a commercial therapeutic epidermal growth factor receptor (EGFR), exhibits high ADCC 

activity against several cancer types. However, the agalactosylated variation of the antibody showed 

dramatically reduced levels of ADCC activation due to weaker binding to both FcγRI and FcγRIIIa 

receptors186. Finally, the effect of terminal galactosylation on antibody clearance is probably 

dependent on the nature of the examined mAb187-189. Unlike beta-1,4-galactosylation, the extension 

of the glycan through the addition of an alpha-1,3-galactose has been characterized as highly 

immunogenic, probably due to the lack of GGTA1 (gene expressing the a3GalT enzyme) expression in 

humans190. 
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Table 1.2: Effect of each glycosylation attribute on several functions of the IgG. Note that the effect of exposed terminal GlcNAcs is incorporated in the “Terminal galactose” section. 

Glycosylation 

attribute 

Study Half- 

life 

CDC ADCC C1q 

binding 

FcγRI 

binding 

FcγRII 

binding 

FcγRIII 

binding 

Other/Comments 

Core-Fucose Shields et al.161   ↑ (-) (-)  ↑ (50x) Neonatal FcR binding unaffected 

Shinkawa et al.169   ↑(~100x)     Examined human IgG1 & chimeric anti-CD20 IgG1 

Niwa et al.163  (-) ↑     Examined all IgG subclasses 

Chung et al.162  (-) ↑ (8x) (-) (-) ↑ ↑ Linear correlation between ADCC and FcγRIII binding 

Kanda et al.165 (-) (-) ↑ (-)   ↑ No effect on PK properties 

Terminal sialic 

acid 

Boyd et al.159  (-) (-)     Antigen binding unaffected 

Scallon et al.175   ↓   ↓  Antigen binding reduced 

Naso et al.176   ↓     Unaffected antigen-binding and PK properties 

Higel et al.185 ↑       Examined receptor glycosylation of Fc-fusion drugs 

Millward et al.191 (-)       Examined Fab-sialylation 

Bas et al.174 ↑       Sialylation increases half-life between 6-9x in IgG 

Terminal 

galactose 

Boyd et al.159  ↑ (-)     Antigen binding unaffected 

Hodoniczky et al.171  ↑(2x) (-) ↑    Examined commeriacl Rituxan® and Herceptin® 

Thomann et al.182   ↑     ADCC ↑only in fucosylated substrate 

Shinkawa et al.169   ↑     The effect in ADCC is overshadowed by core-fucose 

Kumpel et al.181   ↑  ↑  ↑ Examined an IgG3 molecule 

Patel et al.186   ↑  ↑  ↑ Examined the IgG1 cetuximab 

Bheemareddy et al.183  ↑      Examined anti CD-20 IgG1  

Newkirk et al.188 ↓       Examined anti CD-20 IgG2 
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Malhotra et al.192  ↓      CDC ↓ due to reduced MRs binding 

Jones et al.193 ↑       Result of reduced MRs binding 

Huang et al.194 ↓       Examined Fab-glycosylation 

Bisecting 

branching 

 

Lifely et al.166   ↑     First study to relate bisecting glycans with ADCC 

Umana et al.167   ↑     Examined a chimeric IgG1 

Shinkawa et al.169   ↑     ADCC effect observed on highly-fucosylated glycans 

Davies et al.168   ↑    ↑ Estimated 10-20x increase of both 

Hodoniczky et al.171  (-) ↑(10x) (-)    No influence on antigen-binding 

High-mannose 

structures 

Wright & Morrison156 ↓ ↓   ↓   Review reporting results on IgG1 

Goetze et al.195 ↓       Examined Man5-decorated IgG1 & IgG2 

Alessandri et al.196 ↓       40% increased clearance in Man5-7 glycans 

Zhou et al.197  ↓ ↑ ↓   ↑ Examined Man9- & Man8-decorated IgG1  

Kanda et al.165 ↓ ↓ ↑ ↓   ↑ HM glycans are not core-fucosylated 

Millward et al.191 (-)       PK properties of IgG1 not affected 

Liu et al.198 ↓       2-3x faster clearance 

Yu et al.199 ↓(3x) ↓ ↑(5-7x)  ↓ ↓ ↑(4-8x) Compared to normally glycosylated mAb 
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High-mannose structures 

Whilst human serum IgG contains negligible traces of HM glycans, recombinant antibodies produced 

in CHO cells normally carry 1-5% of Man5 structures attached in the Fc-region. While IgG molecules 

carrying HM glycans are not native to humans, no cases of immunogenicity have been reported200 

despite earlier contradictive indications201. While Chen et al.202 have reported minor effects of 

glycosylation on antibody clearance, HM structures can result in elevated serum clearance of IgG195-

196 and shorter half-life198, due to the excessive specificity of mannose receptors (MRs) on glycans with 

exposed mannose residues203. The study performed by Wright & Morrison156 was one of the first to 

identify the adverse effect of HM glycans on IgG1 CDC activity. Further investigations verified the 

negatively monotonous relationship between HM glycans and CDC efficiency, due to a reduction in 

the binding affinity between the IgG molecule and the C1q protein165, 197. Moreover, IgGs decorated 

with HM glycans exhibit enhanced FcγRIIIa binding and, consequently, elevated ADCC activity165, 197, 

199. However, HM glycans, such as the Man5, Man8 and Man9 structures, are not core-fucosylated and 

therefore, any improvement in the ADCC activity could be an indirect effect of the lack of core-

fucosylation. 

Terminal N-Acetylglucosamine 

In contrast to human serum IgG that presents considerable amounts of galactosylation and 

sialylation204, recombinantly produced antibody normally exhibits high distributions of glycan 

structures decorated with terminal GlcNAc molecules, as shown in Fig. 1.7, mainly in the form of the 

bi-antennary G0, G0F and G1F (the agalactosylated branch of the glycan) structures. In general, 

terminal GlcNAc can be recognized by mannose receptors of the immune cells, indicating that reduced 

serum half-life of glycans exposed with terminal GlcNAc molecules is possible205. However, mannose 

receptors have been reported to resemble the structure and function the C1q proteins and initiate 

the CDC activity of IgGs193, 206. To that end, elevated levels of agalactosylated bi-antennary glycans in 

IgG molecules have been corelated with increased CDC activity in rheumatoid arthritis192. However, 

the evidence indicating that galactosylated mAb results in stronger C1q binding and therefore, in 

higher CDC activity, is significantly more abundant, and therefore, terminal GlcNAc molecules are not 

generally considered a desired attribute for recombinantly produced IgG. 

N-linked glycosylation of the Fab fragment 

To date, the impact of Fab-glycosylation on IgG activity has not been studied as comprehensively as 

the respective effect of Fc-glycosylation. However, Fab-glycosylation is currently of emerging interest 

due to its plausible impact on IgG conformation and Fab-antigen binding207-208. The glycans attached 
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to the Fab region (Fab glycans) of the antibody are normally less core-fucosylated, present higher 

heterogeneity and are normally more processed than the Fc glycans, presenting higher levels of 

bisecting branching and elevated terminal sialylation or galactosylation209-210. However, they can also 

present high-mannose structures and terminally fucosylated (a3FucT) or alpha-1,3-galactose (a3GalT) 

elongated glycans211. The observed discrepancies between Fc and Fab glycans are mostly attributed 

to the IgG conformation that exhibits a more exposed Fab region208.  

To that end, Chung et al.212 reported that the presence of alpha-1,3-galactose in the Fab glycans of 

cetuximab resulted in severe immunogenic responses such as anaphylactic reactions. Fab glycans 

decorated with terminal beta-1,4-galactose molecules have been associated with marginally increased 

IgG clearance rates194. However, further processing with the addition of sialic acid has not been found 

to influence serum half-life191. Despite the fact that the binding between an Fc-receptor and the IgG 

molecule is strongly dependent on Fc conformation, Fab glycosylation has been found to influence the 

stability of the binding between the IgG and neonatal FcRs213 and the PK properties of the antibody214. 

As elaborating on the importance of Fab glycosylation would fall out of the context of this thesis, an 

interested reader is encouraged to read the excellent reviews of Zhang et al.138 and van de 

Bovenkamp141 for more relevant information. 

1.2.2   Glycosylation role within Quality by Design  
The pharmaceutical industry is currently reconsidering the methods employed for determining 

product quality and controlling the manufacturing process. Quality by Testing (QbT) and Quality by 

Design are amongst the most popular quality-control and evaluation methods applied in the 

biopharmaceutical industry. QbT involves comprehensive testing of the effect that different 

configurations of raw materials and process conditions have on the end-product quality. Therefore, 

QbT usually results in costly and inefficient testing procedures215 without providing any mechanistic 

insights between process parameters and the end-product. In order to compensate for the associated 

costs, the examined process conditions and input specifications are usually constrained within a 

narrow range, potentially limiting drug safety and in-process adjustability. 

According to the International Conference on Harmonization (ICH) Q8(R2) document216, QbD is a 

“systematic, risk-based and holistic approach to development that begins with predefined objectives 

and emphasizes on the product and process understanding with the knowledge that is gained over 

the product lifecycle”. QbD is heavily based on several in-process quality measurements that, 

combined with the manufacturing process itself, are designed to ensure the quality target product 

profile (QTPP)217-218. A crucial attribute of QbD is the elucidation of the qualitative relationship 

between critical process parameters (CPPs) and CQAs. CQAs of the end-product are identified during 
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the early steps of product and process development, therefore directing the final steps of the 

development process47.  

 

Figure 1.7: Fundamental steps of the Quality by Design paradigm as applied in the biopharmaceutical industry. Abbreviations: 

CQA for critical quality attribute, CPP for critical process parameter, DoE for design of experiments and DS for design space. 

CQA is a property or a characteristic of the drug that is constrained within specific boundaries in order 

to ensure the desired product quality and thus, its safety and efficacy. Therefore, defining CQA 

boundaries demands extensive experimental characterizations of the drug. The identification of CQAs 

is performed through a risk assessment that incorporates data from similar molecules and identifies 

parameters that affect the end-product quality216. Following CQA identification, the investigation of 

the mechanistic relationships between process parameters and the designated CQAs is of vital 

importance within the QbD paradigm. CQAs that affect safety and immunogenicity usually lead to 

narrow boundaries that are strongly based on relevant clinical data219. On the other hand, the CQAs 

that influence product efficacy are acceptable within wider ranges, enabling a more flexible 

manufacturing process220.  

However, it is not only the CQAs that require acceptable ranges; the same holds true for the Design 

Space. DS is the multidimensional range within which the process variables and CPPs ensure that the 

CQA acceptance criteria are met216, 221. Interestingly, the DS can be based on mechanistic, empirical or 
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hybrid models222-223 and can be distinguished into product- and process-related DS47. DS identification 

is considered to be the final stage of the QbD method for process understanding but can be re-

informed and restructured if additional knowledge for the product is obtained through process 

validation224. The product-DS incorporates the acceptable ranges of the therapeutic physicochemical 

CQAs that lead to the desired product quality. On the other hand, the identification of the process-DS 

is achieved through risk analysis and design of experiments (DoE) for investigating the effect of each 

CPP and evaluating the importance of the chosen parameters47. An overview of the main steps 

followed in the QbD paradigm can be found in Fig. 1.7. 

Within the biopharmaceutical context and the manufacturing of therapeutic mAbs, N-linked 

glycosylation is considered one of the most crucial CQAs for evaluating both the potency and the 

immunogenicity of the product due to its apparent heterogeneity and multi-dependencies225-227. 

According to the mAb-product effector function, the extent of Fc galactosylation or Fc core-

fucosylation is commonly considered a glycosylation-related CQA (gCQA) for the CDC- and ADCC-

mediated molecules, respectively138. With regards to immunogenicity, as mentioned in section 1.2.1, 

the attachment of alpha-1,3-galactose molecules on Fab glycans can result in severe anaphylactic 

shocks212. Therefore, the aforementioned glycan conformation should be considered a relevant gCQA. 

In a seminal study, Schiestl et al.228 examined the variations in the N-linked glycosylation profile of 

three licensed biopharmaceutical products, namely MabThera® (rituximab), Aranesp® (darbepoetin 

alpha) and Enbrel® (etanercept), over several batches manufactured between 2007 and 2011. All 

three biotherapeutics are glycosylated proteins, with rituximab being a chimeric IgG1, darbepoetin 

alpha being an engineered EPO to include two additional N-linked glycosylation sites that improve its 

in vivo half-life, and etanercept being a dimeric fusion protein, combining the receptor of the tumour 

necrosis factor (TNF) and the Fc fragment of an IgG1 antibody. In all three products, significant changes 

were observed in the proteins’ glycoprofile at some point within the examined period, probably 

caused by alterations in the manufacturing process. The most notable changes included a reduction 

of the G2F distribution in the Enbrel® product from ~50% to ~30%, a 3-fold increase (albeit still 

remaining in low levels) of G0 distribution in MabThera® and a 10% reduction in the distribution of 

highly sialylated structures in Aranesp®. Similarly, monitoring of the Herceptin® (trastuzumab) over a 

course of 4.5 years and several lots in both the EU and the US, indicated that a drift towards increasing 

antibody fucosylation resulted in supressed ADCC activity of the drug229. The results of the studies 

showcase the importance of closely monitoring N-linked glycosylation during manufacturing, far 

beyond the product development process. Additionally, the continuous monitoring of the glycoprofile 

of biotherapeutics potentially enables the refinement of acceptable glycoprofile ranges for each 
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protein, when the altered glycosylation does not trigger immunogenic responses or results in reduced 

potency of the therapeutic.  

N-linked glycosylation is also systematically considered during biosimilars development230-231. 

Glycosimilarity, meaning the chemically assessed comparability of the glycoprofile between the 

biosimilar and the reference therapeutic, is one of the most important biosimilarity characteristics for 

biosimilars development and for demonstrating adequate resemblance to the original drug232. 

Glycosimilarity is considered a Tier 1 biosimilarity CQA, meaning that a narrow acceptable range of 

±1.5% with 95% confidence is required for discrepancies between the reference molecule and the 

similar233. The glycosimilarity index has therefore been introduced in order to evaluate both the 

disagreement between individual glycans of the glycoprofile and between several crucial gCQA 

groups233. 

Finally, it is important to note that the identification of a suitable DS for a bioprocess can be 

considerably time-consuming, even with the utilization of experimental scaled-down models226. Wet-

lab approaches on configuring an appropriate DS of the culturing media composition for manipulating 

IgG glycosylation, have demonstrated the importance, but also the demanding nature, of 

experimental DS identification234-237. For that reason, the use of computational tools and models in 

order to assist and expedite DS characterization, especially within the biopharmaceutical sector, is 

highly encouraged238. Model-assisted DoE has been proposed for narrowing the boundaries of 

experimentation required for understanding CHO cell growth and IgG1 productivity. More specifically, 

Möller et al.239 utilized an unstructured Monod-type mechanistic model within an iterative exercise, 

in order to describe the culturing process and, ultimately, simulate and constrain the suggested DoE 

experiments.  In a similar manner, model-based optimizations of the DS boundaries have recently 

been proposed for additionally controlling the N-linked glycoprofile of recombinant proteins, by 

employing either fully mechanistic240 or statistical241 models. 

1.3   Investigation of mammalian cell growth and recombinant protein 
glycosylation 
The importance of protein N-linked glycosylation was demonstrated in sections 1.1 and 1.2. In the 

biopharmaceutical sector, glycoproteins are produced in mammalian hosts, with CHO cells being the 

longstanding workhorse of recombinant glycoprotein production in both academia and industry4. The 

main objective of recombinant protein production is the maximization of titre and the optimization of 

product quality attributes for achieving the desired efficacy. For that reason, one could identify three 

degrees of freedom for meeting both requirements: 1) the composition of the seeding media and 

feed, 2) the manipulation of the bioprocess operational conditions and 3) the employment of genetic 
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modifications. Cell metabolism has been found to directly affect the glycoprofile of the product242 

through the interlinked metabolic pathways of central carbon metabolism and NSD synthesis (Fig. 1.8). 

For that reason, the following paragraphs describe the main factors that affect mammalian cell 

growth, central carbon metabolism and, ultimately, recombinant protein N-linked glycosylation. 

Methods manipulating the aforementioned factors towards satisfying the desired objectives are also 

discussed. To that end, the studies that specifically target protein glycosylation through genetic 

modifications of the host cells are also presented, regardless of whether the effect of the genetic 

modification on cell growth was reported in the original studies. The main focus of the current section 

is placed on two out of the three approaches described earlier, namely media composition and genetic 

engineering techniques, as they are more relevant to this thesis.  

 

Figure 1.8: Interactions between the central carbon metabolism and the NSD synthesis pathway. The dashed lines are used 

to indicate transport from one cellular compartment to another. Abbreviations: GlcN for glucosamine, GalNAc: N-

Acetylgalactosamine, ManNAc for N-Acetylmannosamine, GA-3-P for glyceraldehyde 3-phosphate, DHAP for 

dihydroxyacetone phosphate and 3-PG for 3-phosphoglycerate. Red colour is used to indicate the main reactions and 

metabolites involved in the glycolysis pathway. The transformation of galactose to galactose-1-phosphate can be ignored if 

galactose is not provided in the culturing media. 
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1.3.1   Metabolic perturbations 
Metabolic by-products, such as ammonia and lactate, have been well-known inhibitors of mammalian 

cell growth and recombinant protein synthesis for several decades243. More specifically, ammonia, 

formed mainly by the glutamine/glutamate interconversion and the chemical decomposition of 

glutamine244, is considered a toxic by-product of cellular metabolism as it can compromise cell growth 

through several mechanisms, including the perturbation of electrochemical gradients and initiation of 

pH shifts in several organelles245. Studies reporting either negligible246 or significant247-248 effects of 

elevated ammonia levels on CHO cell growth and specific productivity have been reported, indicating 

that the impact can be clone-dependent. On the contrary, hybridoma cells have been found to exhibit 

up to 50% reduced cell growth in ammonia concentrations higher than 4 mM due to pH drop249. 

However, ammonia can be utilized as an alternative nitrogen source when glutamine is depleted in a 

cell line-dependent manner250. 

Regarding glycosylation, early studies have indicated that increased ammonia concentrations can 

inhibit the activity of sialyltransferase enzymes (involved in both N-linked and O-linked glycosylation) 

by causing perturbations in the intracellular pH251-253. Additionally, ammonia has been associated with 

elevated pools of UDPGlcNAc that can potentially inhibit CMPNeu5Ac transport253-255. In a study of 

paramount importance, the use of 15N-labelled ammonium chloride (NH4Cl) indicated that ammonia 

is an important resource for UDPGlcNAc and CMPNeu5Ac synthesis. Ammonia transforms to fructose-

6-phosphate through the activity of glucosamine-6-phosphate isomerase (GNPI), which in its turn is a 

substrate for UDPGlcNAc synthesis (Fig. 1.8)256. Moreover, increased ammonia concentration in CHO 

cell cultures can result in reduced expression of the GTases responsible for galactosylation/sialylation 

(B4GALT & ST3GAL genes) and the CMPNeu5Ac transporter (SLC35A1 gene)257. On the other hand, 

Brodsky et al.258 reported no alterations in the expression levels of glycosylation-related genes for up 

to 5 mM of ammonia in NS0 cells, further supporting that the impact of ammonia is cell line-

dependent. Gawlitzek et al.259 have reported a negative correlation between ammonia concentration 

and TNF-IgG galactosylation and sialylation in CHO cells. While the mRNA levels of b4GalT and a3SiaT 

were not affected by ammonium addition, the activity of the enzymes was reduced by 50% in the 

presence of 10-15 mM ammonia, further supporting the theory of GTase inhibition through pH 

changes in the Golgi environment. Moreover, Yang & Butler260 reported that 30 mM of NH4Cl in CHO 

cell cultures could significantly alter secreted EPO glycosylation, by reducing both the degree of 

terminal sialylation and the distribution of tetra-antennary structures. In a similar manner, elevated 

levels of ammonia were found to substantially halt all galactosyltransferase activity in CHO cells261. 

Lactate, or its conjugate lactic acid, is considered an end-product of anaerobic glycolysis and is 

synthesized through the bidirectional conversion activity of the lactate dehydrogenase (LDH) enzyme 
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on cytosolic pyruvate, prior to pyruvate transport to mitochondria for the initiation of the tricarboxylic 

acid (TCA) cycle. In CHO cell cultures, lactate is not supplemented in the seeding media and is rapidly 

produced and secreted by the cells during the exponential phase. Interestingly, a metabolic shift 

usually occurs by the end of the exponential phase, where lactate consumption is initiated towards 

pyruvate synthesis. Lactate is considered an undesired metabolic by-product as it affects the pH and 

osmolality of the cell culture262, consequently reducing the specific growth rate and recombinant 

protein synthesis in mammalian cell cultures263.  

While lactate production is considerably less energetically efficient, producing 2 ATP molecules 

instead of 36 that are synthesized through the complete oxidation of glucose in the TCA cycle248, it has 

been correlated to cell proliferation. The production of lactate during the exponential phase strongly 

resembles the Warburg effect, in which cancer cells are found to over-produce lactate in order to 

proliferate. The mechanism behind the lactate metabolic shift is of great interest but still not fully 

understood264-266. However, the metabolic switch usually occurs under reduced glucose uptake and 

therefore, insufficient pyruvate concentration266-267. Whilst glucose depletion has been found to 

initiate lactate consumption268, the lactate switch occurs even under glucose abundance in the 

culture269. Alternatively, the shift in lactate metabolism has been correlated with the levels of 

mitochondrial oxidative activity in CHO cells270. Interestingly, Templeton et al.271 demonstrated that 

lactate consumption presented a positive correlation with increasing IgG specific production rate. The 

energy-expensive nature of recombinant protein synthesis and the inefficient energy generation 

during lactate synthesis were assumed as the underlying mechanisms that support the observation. 

Similar observations associating high IgG specific productivity with the initiation of the lactate 

consumption phase in CHO cell cultures have been proposed by a big-data study examining over 200 

culture runs272. Martínez et al.273 used stoichiometric modelling to identify that during lactate 

production phase in CHO cell cultures, a mere 3% of the acetyl-CoA formed by pyruvate was utilized 

in the TCA cycle. After the shift in lactate metabolism, the rate of pyruvate entering the TCA cycle 

through its transformation to acetyl-CoA increased to 68%.  

As a result, the control of both ammonia and lactate is crucial for cell growth and protein synthesis. 

Early data suggested that the partial replacement of glutamine with glutamate in the media can 

reduce ammonia accumulation in mammalian cell cultures274. The generation of the GS-CHO cell line, 

overexpressing the glutamine synthetase enzyme, has established the conversion of glutamate to 

glutamine as the major source of the latter. Therefore, the genetically modified cells do not require 

glutamine in the seeding media reducing that way the production of ammonia from both the chemical 

decomposition of glutamine and the conversion of glutamine to glutamate275. In a similar manner, a 

common target for the reduction of lactate synthesis is the downregulation of the LDH-A gene and the 
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enhancement of recombinant protein production276-277. Introduction of the LDH-A downregulation in 

GS-CHO cells resulted in further reduction of ammonia accumulation and improved mAb 

galactosylation278. Overexpression of BCL2, an anti-apoptotic protein, in combination with LDH-A 

downregulation led to improved cell growth and longevity, in addition to lactate reduction279. The 

overexpression of anti-apoptotic genes has been previously shown to increase the demands on lactate 

consumption, and when combined with lactate feeding can result in enhanced cell growth and 

longevity280. Knocking down both pyruvate dehydrogenase (PDH), the enzyme responsible for acetyl-

CoA synthesis from pyruvate, and LDH-A resulted in increased cell growth and antibody production in 

CHO cell cultures, by forcing the pyruvate to enter the TCA cycle281. Expression of the yeast pyruvate 

carboxylase (PYC2) enzyme in CHO cells led to enhanced cell growth and longevity, reduced lactate 

accumulation and improved IgG synthesis and galactosylation282. 

The use of alternative feeding strategies in order to regulate cell metabolism and more specifically 

lactate and ammonia concentration in mammalian cell cultures, has been one of the most popular 

methods for process control used for several decades now263, 283. To that end, the inclusion of lactate 

and pyruvate in the feed resulted in reduced ammonia accumulation but elevated lactate 

concentrations284. The replacement of glucose and glutamine with galactose and glutamate, 

respectively, resulted in significantly reduced levels of lactate and ammonia accumulation, but also 

halted growth and recombinant protein synthesis285. In a follow-up study, the partial replacement of 

glucose with galactose resulted in a moderately improved growth and final titre concentration in CHO 

cell cultures, while at the same time initiating an almost complete consumption of lactate produced 

in early-stage culture268. Building on previous studies that demonstrate the positive effect of lactate 

feeding on reducing lactate and ammonia accumulation284, 286, Freund & Croughan287 demonstrated 

that the supplementation of ~35 mM sodium lactate was adequate to eliminate lactate production in 

batch cultures. In addition, the authors demonstrated that the supplementation of lactate resulted in 

considerably reduced ammonia production, alongside with significantly increased cell growth. 

Precursors of nucleotide sugar donors 

The amino acid and metabolite composition of the seeding media is known to affect recombinant 

protein glycosylation by influencing cellular metabolism and, therefore, NSD synthesis288-289. One of 

the most widely applied practices in controlling N-linked glycosylation of recombinant glycoproteins 

is the manipulation of targeted intracellular NSD pools290-291. In order to achieve the desired regulation 

of NSD concentrations in the Golgi, one can supplement the metabolic precursors or inhibitors of the 

NSD synthesis reactions.  
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However, altering media composition for the optimisation of the glycosylation process could inhibit 

cell growth and recombinant protein synthesis236. Addition of galactose, uridine and manganese 

chloride is usually employed for improving and controlling the terminal mAb galactosylation292-295. The 

availability of uridine and galactose leads to enhanced UDPGal synthesis, the NSD responsible for the 

addition of galactose residues to the N-linked glycan. Manganese is a co-factor of several GTases and 

its supplementation has been found to enhance the activity of the b4GalT enzyme in mammalian cell 

cultures296. Wong et al.297 conducted one of the earliest studies to examine the effect of multiple NSD 

precursors on human interferon-gamma (IFNγ) glycosylation produced in CHO cells. The authors 

elaborated on results from previous studies259-260, 298-304 in order to design a series of experiments 

including the addition of galactose, uridine, N-Acetylmannosamine (ManNAc), cytidine and GlcN. 

ManNAc and cytidine feeding, targeting the increase of CMPNeu5Ac pools and, consequently, 

sialylation, did not inhibit growth and resulted in improved recombinant protein yields. The addition 

of ManNAc and cytidine resulted in up to a ~120-fold elevation of intracellular CMPNeu5Ac levels and 

a 37% increase in IFNγ sialylation. GlcN and uridine addition, targeting the UDPGlcNAc pools, resulted 

in reduced cell growth and productivity. The authors postulated that the halt of cell growth originated 

from reduced glucose uptake, as GlcN is a competitive substrate for glucose transport to the 

intracellular environment through the glucose transporters (GLUT1)305. As expected, the feed resulted 

in elevated UDP-HexNAc and UDP-Hex concentration and, ultimately, in a surprising 30% increase in 

sialylation. Galactose and uridine feeding showed negligible effects on growth and productivity, but 

resulted in a general reduction of IFNγ galactosylation, an observation that directly contradicts several 

similar studies292-293, 306. 

In a similar manner, Cha et al.307 optimised the sialylation of albumin-EPO produced in CHO cells, by 

supplementing the nucleotide sugar precursors GlcN, galactose and ManNAc on day 0 and day 3 of 

the culture. Moreover, mannose is usually fed as an additional carbon source to increase the 

formation of HM glycans in mAbs308-309.  However, replacement of glucose with mannose can 

additionally lead to a moderate increase in total sialylation, alongside with improved cell growth and 

titre concentration310. The increase in sialylation is attributed to the intervention of mannose to the 

UDPGlcNAc synthesis pathway, and therefore the pathway of CMPNeu5Ac, through its conversion to 

mannose-6-phosphate and subsequently to fructose-6-phosphate. On the basis of the synergistic 

effect of nucleotide and sugar precursor additions on NSD intracellular concentrations297, 299, 

Jedrzejewski311 studied the effects of combined guanosine and mannose addition on IgG production 

and glycosylation in GS-CHO cultures. The feeding strategy resulted in considerably reduced growth 

and viability, but significantly increased specific antibody productivity without presenting any major 

changes in the N-linked glycoprofile. In a comprehensive study investigating the effect of mannose, 
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galactose, fructose, uridine, GlcNAc, asparagine and manganese on IgG-producing CHO cells, Villiger 

et al.261 reported the impact of several feeding strategies on cell growth, productivity, intracellular 

NSD levels and IgG glycosylation. Interestingly, addition of up to 8 mM GlcNAc did not affect the UDP-

HexNAc and UDP-Hex concentration but resulted in increased G0F distribution and therefore reduced 

galactosylation and HM distribution. Similarly, in GlcNAc and uridine feeding experiments, GlcNAc 

addition exhibited a negative correlation with IgG galactosylation. Fucose and manganese addition 

resulted in enhanced GDPFuc levels, considerably elevated galactosylation, a moderate reduction in 

HM structures and, consequently, in a slight increase of total fucosylation. Galactose and manganese 

presented a synergistic effect, indicating that both b4GalT activity and intracellular UDPGal levels are 

limiting steps of IgG galactosylation for the utilized cell line. Asparagine addition exhibited no direct 

effect on NSD intracellular pools and IgG glycosylation. However, the conversion of asparagine to 

ammonia and the consequent pH increase can inhibit galactosylation261, 295. 

In another large-scale study, Kildegaard et al.312 identified non-significant effects of GlcNAc, mannose, 

fucose, galactose, cytidine, uridine and Neu5Ac on cell growth and IgG productivity at the examined 

levels. As expected, galactose addition resulted in considerably elevated IgG galactosylation, while 

GlcNAc exhibited the opposite effect as previously reported. Mannose addition resulted in a slightly 

increased distribution HM glycans, while ManNAc supplementation was found to improve 

fucosylation. However, Neu5Ac feeding did not improve IgG sialylation. In an even more elaborate 

study including three CHO-K1-derived cell lines expressing different IgG1 mAbs and investigating 

feeding strategies of ten additives, Loebrich et al.236 additionally screened the effect of 1 mM copper 

and 1% v/v glycerol on IgG glycosylation. Copper addition resulted in a decrease of the Man5 species 

and a respective increase in bi-antennary glycans, such as G0F. Whilst glycerol supplementation, which 

has been previously utilized to reduce IFNβ aggregation and induce sialylation313, led to improved cell 

viability, it did not impact IgG glycosylation. Iron addition can result in improved OST activity and 

therefore increased glycosylation site occupancy314. Finally, the supplementation of 200-300 μM 1,3,4-

O-Bu3ManNAc, a butyrate-derivatized analogue of ManNAc, was found to increase the sialic acid 

content of EPO by ~8 times in CHO cell cultures, with minor impact on cell growth315-316. 

1.3.2   Process parameters 
 

Operating regime 

Various cell culturing systems are used for the production of therapeutic proteins. Batch and fed-batch 

bioreactors are two of the most utilized operating regimes within academic and industrial research. 

Nutrient depletion or waste-product accumulation is strongly dependent on the chosen culturing 
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configuration. For example, glucose depletion is a common problem of batch cultures that leads to an 

early termination of the exponential phase and consequently, of the culture. Fed-batch cultures 

usually result in higher cell viability and growth, extended cultivation period and enhanced protein 

production compared to the batch systems317. Perfusion, a continuous bioprocessing regime, is 

another emerging operation mode that can significantly extend the fermentation period, achieving 

high cell densities and product cumulative amounts318. 

Extracellular pH and media osmolality 

Much research has been conducted to elucidate the effects of pH on cell growth and protein 

glycosylation. As described in section 1.3.1, by-products of cell culturing, such as ammonia and lactate, 

can significantly perturb extracellular pH, halting cell growth and affecting protein glycosylation. The 

mechanism by which the extracellular pH affects N-linked glycosylation is through destabilizing the pH 

of the Golgi apparatus and hence reducing enzymatic activity253, 319 and causing enzyme mislocalization 

within the Golgi320. Both the specific production rate and glycosylation of the recombinant protein 

have been found to be dependent on the extracellular pH in CHO cell cultures321. For example, pH 

variations between 6.8 and 7.8 have been shown to result in a 50% fluctuation of IgG1 galactosylation 

and sialylation322. Optimal pH ranges can also be identified depending on the desired glycoprofile and 

the recombinantly expressed protein323-324. Finally, a marginal 0.2 increase in Golgi pH was deemed 

enough to inhibit a3SiaT activity and cause its mislocalization in the Golgi apparatus. To that end, 

buffering or CO2 supplementation can be employed for the regulation of extracellular pH in 

mammalian cell cultures325.  

In a similar manner, elevated levels of partial pressure of CO2 (pCO2) and osmolality have been shown 

to inhibit CHO326 and hybridoma327-328 cell specific growth rates. On the contrary, hyperosmotic 

conditions can increase productivity and final titre329-331. Elevated osmolality has also been linked to 

an elevation in Man5 levels across four different CHO cell lines200 and a decrease in IgG fucosylation332.  

Mild hypothermia and dissolved oxygen 

Other parameters affecting cell growth and productivity are the levels of dissolved oxygen234, 333 and 

the culturing temperature334. Mild hypothermia, the switch of temperature to ~31-33 °C, has been 

found to increase CHO cell viability and antibody specific productivity, but also reducing 

galactosylation through the suppression of b4GalT expression and UDPGal synthesis335. Cultivation of 

CHO cells at 33 °C and 30 °C reduces EPO-Fc sialylation by 20 and 40%, respectively336. Similarly, 

introduction of mild hypothermia after the exponential phase can result in ~60% reduction of the 

potentially immunogenic N-glycolylneuraminic acid (Neu5Gc) in the glycoprotein B1337. Many 
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researchers have investigated the role of dissolved oxygen (DO) on cell growth and protein 

glycosylation, as different studies report mixed results for the effects of hypoxia242, 338-339. Increasing 

oxygen availability was found to strongly influence specific productivity and improve the sialylation of 

human follicle stimulating hormone (hFSH) in CHO cells, due to enhanced sialyltransferase activity340. 

Similarly, Kunkel et al.341-342 reported that elevated DO results in improved IgG1 galactosylation. 

Moreover, the specific cell growth of EPO-expressing CHO cells was significantly reduced in cultures 

supplied with 200% DO but was not affected in DO levels below 50%343. Although specific EPO 

productivity was reduced at extreme hypoxia (3%) and hyperoxia (200%) levels, it remained relatively 

constant between 10% and 100% DO levels. The ratio between fucosylated and non-fucosylated 

glycans remained also constant during the experiments.  

1.3.3   Engineering of the glycosylation pathway 
 

Fucosylation 

FUT8, the gene responsible for a6FucT expression, was one of the earliest targets of glycoengineering 

due to its strong effect on the ADCC activity of IgGs. Fig. 1.9 shows the reaction pathways that have 

been engineered for manipulating core-fucosylation. Following the discovery of the relationship 

between core-fucosylation and IgG potency, the complete knockout of the FUT8 gene in an IgG1-

producing CHO-DG44 cell line led to a >100-fold increase of ADCC activity344. Prior to the FUT8 

knockout, overexpression of the MGAT3 gene was employed for reducing IgG fucosylation, as the 

addition of bisecting GlcNAc molecules in the forming oligosaccharide can inhibit core-fucosylation167. 

In a follow-up study, the authors engineered chimeric versions of the GnTIII enzyme, bearing the 

localization sequences of other glycosylation enzymes, including GnTI, GnTII, ManII and a6FucT. 

Interestingly, the chimeric GnTIII enzyme carrying the ManII localization sequence led to the highest 

bisecting glycan levels. When both the aforementioned chimeric GnTIII and ManII were 

simultaneously overexpressed, the majority of the IgG1 glycoprofile consisted of complex bisected 

and non-fucosylated glycans170.  
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Figure 1.9: Different genes that have been manipulated towards inhibiting core-fucosylation and their part in the fucosylation 

pathway. 

An alternative method to supress core-fucosylation is through the disruption of GDPFuc intracellular 

pools. To that end, the early development of the CHO-Lec13 cell line with a deficiency in the GDP-

mannose-4,6-dehydratase (GMD) enzyme responsible for the synthesis of GDPFuc from GDPMan, 

resulted in significantly lower levels of core-fucosylation345, while the knockout of the GMD gene led 

to complete silencing of fucosyltransferase activity165. To that end, double knockdown of both FUT8 

and GMD has been proven an efficient method for disrupting core-fucosylation346. Similarly, the 

knockout of the GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase (FX) 

enzyme that is involved in the GDPMan to GDPFuc conversion too (Fig. 1.9), can significantly halt 

fucosylation347. Alternatively, silencing of the GDPFuc transporter (SLC35C1 gene), responsible for the 

molecule’s translocation to the Golgi apparatus, has been found to effectively disrupt the core-

fucosylation of a recombinant EPO-Fc fusion protein produced in engineered CHO cells348.  

Galactosylation 

As described in section 1.2, terminal galactosylation is a desired IgG quality attribute for enhancing 

CDC activity. In mammalian cells, there are four genes that are primarily responsible for the majority 

of the b4GalT activity, namely B4GALT1, B4GALT2, B4GALT3 and B4GALT4. Whilst the knockout of the 

aforementioned genes has been well studied in order to evaluate the contribution of each individual 

gene towards N-linked galactosylation349-351, the main interest lies in the overexpression of the 

enzyme. To that end, B4GALT1 upregulation has resulted in a homogenous IgG glycoprofile of fully 

galactosylated bi-antennary (G2F) structures352. The authors of the same study identified that the 



Page | 37 LITERATURE REVIEW 

knockout of the signal peptide peptidase-like 3 (SPPL3 gene), a protease responsible for the disruption 

of the bond between several GTases, including b4GalT, and their N-terminal membrane anchors353, 

results in slightly improved IgG galactosylation. For recombinant proteins that present a more complex 

glycoprofile with several sialylated tri- and tetra-antennary glycans, the knockout of the ST3GAL genes 

can increase terminal galactosylation349. Interestingly, the triple knockout of FUT8, ST3GAL4 and 

ST3GAL6 alongside with the substitution of four amino acids in the IgG backbone leads to 80% G2 

content354. The development of the CHO-Lec8 cell line that exhibits a strong deficiency of UDPGal 

transport from the cytosolic environment to the Golgi apparatus, led to a ~90% reduction of 

galactosylation355. However, the deficiency in UDPGal transporter levels (SLC35A2 gene) can be 

partially restored by the overexpression of the UDPGlcNAc transporter (SLC35A3 gene) that shows a 

weak affinity for UDPGal356. 

Sialylation, branching and polyLacNAc elongation 

Unlike native human proteins, recombinant proteins synthesized in CHO cells do not carry alpha-2,6-

sialic acid (a6SA) molecules due to the complete absence of ST6GAL gene expression. Instead, terminal 

sialylation is performed by the a3SiaT enzyme (ST3GAL genes). Whilst the alpha-2,3-sialic acid (a3SA) 

molecules are also present in human proteins and are not considered immunogenic357, rituximab 

carrying a6SA has been found to exhibit increased FcγRIII binding and ADCC activity358. For that reason, 

Raymond et al.359 overexpressed both the a6SiaT and b4GalT enzymes in order to favour a6SA addition 

over a3SA in IgG molecules (~25% total sialylation). Interestingly, the single overexpression of a6SiaT 

resulted in minor improvements on sialic acid content (~5% total sialylation), demonstrating the 

importance of galactosylation for the activity of the sialyltransferases. Moreover, engineering of the 

amino acid sequence in the IgG polypeptide backbone has been proven a reliable method for 

enhancing sialylation, galactosylation and even tri-antennary branching360. Substitution of the 

phenylalanine 243 amino acid in the backbone of an IgG3 antibody with an alanine molecule, has been 

found to result in conformational changes that increase the a3SiaT activity (~50% sialylation)361. 

Subsequent a6SiaT overexpression led to a further increase of sialylation at 60%, with an almost equal 

ratio between a3SA and a6SA molecules. Chung et al.362 employed a double knockout of ST3GAL4 and 

ST3GAL6, followed by the overexpression of the ST6GAL1 gene. The authors achieved a depletion of 

a3SiaT activity and a considerable elevation the a6SA content in IgG molecules. Complete silencing or 

suppression of ST3GAL3, ST3GAL4 and ST3GAL6 has been also employed for investigating the 

contribution of each gene towards protein sialylation349, 363. Moreover, CHO-Lec2 cells that lack 

CMPNeu5Ac transporter (SLC35A1 gene) expression are unable to perform sialylation364. However, 

the phenotype can be completely reversed when the transporter is overexpressed365. Similarly, further 
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upregulation of CMPNeu5Ac transporter levels in CHO cells can result in ~15% increase in IFNγ 

sialylation366. 

Indirect methods, such as the knockout of sialidase genes367 or suppression of glycosphingolipids 

synthesis368, have been found to effectively improve recombinant EPO sialylation. Interestingly, 

CMPNeu5Ac synthesis is controlled by feedback inhibition as a function of the molecule concentration. 

When the function of the feedback inhibition was silenced, CHO cells exhibited considerably improved 

sialylation369 that was significantly higher than the sialylation levels achieved through the 

overexpression of the CMPNeu5Ac synthetase enzyme370. In an effort to maximize EPO sialylation by 

increasing the complexity of the glycan structure, Yin et al.371 investigated the effect of MGAT4, 

MGAT5 and ST6GAL1 overexpression. The authors identified that the aforementioned upregulation 

resulted in a considerably more complex glycoprofile with increased branching, sialylation and LacNAc 

(N-Acetyllactosamine) elongations (LacNAc is the Gal-GlcNAc disaccharide). In a recent study, the 

same group identified that sialyltransferase knockout or b4GalT1 overexpression can induce 

polyLacNAc elongation in an EPO molecule372. Surprisingly, upregulation of the iGnT enzyme 

(B3GNT2), responsible for LacNAc formation349, resulted in reduced sialylation, galactosylation and 

polyLacNAc elongation of the EPO protein, indicating that a more elaborate investigation is required 

for further extending the glycan structures. 

1.4   Metabolic and glycosylation mathematical modelling 
A big part of this thesis evolves around the application of mathematical models for the representation, 

description and simulation of various metabolic parts of mammalian cells, including protein N-linked 

glycosylation. The emerging use of computational models for expanding our understanding of cellular 

metabolism and predicting cellular behaviour under alternative culture conditions or post the 

application of genetic modifications, has established mathematical modelling as a very powerful tool 

in metabolic engineering and process optimization373. The final section of the literature review 

includes a description of the main approaches employed for describing cellular metabolism, with an 

emphasis on mammalian and, more specifically, CHO cell metabolism. Finally, the evolution of N-

linked glycosylation modelling through the years and its various applications on biotherapeutics 

development and control is described. 

1.4.1   Constraint-based metabolic models 
Development of constraint-based models (CBMs) is one of the most popular approaches on describing 

mammalian cell metabolism, especially for steady state scenarios374. Steady state assumes no changes 

in the system and, therefore, no changes in the value of each of the included variables (state variables) 

within the considered timeframe (Eq. 1.1).  
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𝑑𝑓

𝑑𝑡
= 0   (1.1) 

where, 𝑓 is a state variable of the examined system. 

Importantly, CBMs are strongly dependent on the vector of stoichiometric matrices (𝑆) that represents 

the involvement of each metabolite ( 𝑖 ) on each reaction ( 𝑗 ) of the examined network. The 

fundamental variable in CBMs is the flux of the reaction ( 𝑣 is the vector of fluxes with units: 

mmol·gDCW-1·h-1), that essentially describes the flow of metabolites through the designated 

metabolic pathway. Fluxes are usually constrained between a maximum ( 𝑚𝑎𝑥𝑗 ) and a minimum 

(𝑚𝑖𝑛𝑗 ) value, based on the reversibility of the reaction and the available experimental data, i.e., 

transcriptomics375-376, metabolomics377-378, thermodynamics bounds379-381 or results from 

supplementary computational tools382-384. The solution of CBMs usually involves two main steps: 1) 

the reconstruction of the metabolic network and the estimation of flux constraints and 2) the 

identification of the optimal solution based on an objective function385. The majority of CBMs use 

genome-scale models (GeMs) as the backbone for network reconstruction. GeMs include the entirety 

of known reactions, metabolites and genes involved in the metabolism of the examined cell line, in an 

effort to holistically describe the system. GeMs for CHO cells are systematically updated to include 

missing reactions386 or pathways52, and specific modules for each cell-line28. CBM-based estimation of 

the cellular metabolic profile (𝑐) is usually achieved through linear programming (LP) techniques for 

solving the steady-state formulation of the problem, as described in Eq. 1.2 and Eq. 1.3. The differing 

point between the various categories of CBMs usually lies in the chosen objective function for the 

identification of the optimal solution. With the number of reactions in GeMs being higher than the 

respective number of metabolites, the degrees of freedom can considerably vary, resulting in a major 

dependence of the optimal solution on the chosen objective function. 

𝑑𝑐

𝑑𝑡
= 𝑆 · 𝑣 = 0   (1.2) 

𝑚𝑖𝑛𝑗 ≤ 𝑣𝑗  ≤  𝑚𝑎𝑥𝑗   (1.3) 

Flux balance analysis (FBA) is the most frequently applied category of CBMs in investigating 

intracellular metabolism385. For that reason, there have been numerous attempts to enrich and extend 

the list of objective functions that can be employed for solving an FBA problem387-389. The most 

common amongst them is the maximization of biomass growth, as it has been experimentally proven 

to capture the objective of bacteria cellular behaviour390.  

FBA is commonly employed in order to elucidate the effects of culturing perturbations, such as mild 

hypothermia335, lactate switch273 or cell-size increase391, on intracellular CHO cell metabolism. In a 
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similar manner, flux variability analysis (FVA) is used for the estimation of flux boundaries in scenarios 

of suboptimal conditions and can be applied for the evaluation of model robustness382, 392. For gene 

knockout studies, where the engineered cells do not evolve towards maximal growth, the method of 

minimization of metabolic adjustment (MOMA) has been found to significantly outperform FBA. 

MOMA achieves convergence through the minimization of the distance between the new state and 

the previously (wild-type) identified optimal point393. 

Another application of CBMs is metabolic flux analysis (MFA). Unlike FBA problems, MFA’s objective 

function is the minimization of the difference between experimental data and model simulations. 

Whilst MFA is usually focused on describing the fluxes of central carbon metabolism394-395, it has also 

been used for investigating the E. coli GeM396. MFA can be performed either by using 13C-labelled 

substrates (13C-MFA), such as glucose, or through the calculation of the intracellular fluxes based on 

the agreement between the stoichiometric model and the extracellular concentrations of measured 

metabolites397-398. In CHO cells, MFA has been used, among other applications, to investigate the 

effects of mild hypothermia399 and copper supplementation400 on cellular metabolism and to 

demonstrate the divergence of fluxes between the growth and stationary phases401. 

Dynamic versions of both FBA (dFBA) and MFA (dMFA) have been developed in order to describe flux 

variation during the cell culturing period and overcome the limitations of the steady-state 

assumption402-403. Lastly, another approach on CBMs, namely elementary flux modes analysis (EFMA), 

identifies all the minimal pathways (elementary flux modes, EFMs) that collectively construct the 

considered metabolic network and within which all reactions are necessary for maintaining the 

steady-state assumption (non-decomposable)404-405. Importantly, the number of EFMs 

disproportionally increases with the complexity of the network, as several possible minimal pathways 

can be potentially identified for each set of additional reactions406. In order to reduce the number of 

plausible EFMs within a given network, several algorithms that incorporate criteria such as biological 

relevance and thermodynamic feasibility have been developed407-409. As EFMA identifies all the 

possible pathways through which a product of interest can be synthesized, EFMs are considered an 

important tool for metabolic engineering405.  

Whilst CBMs do not require the estimation of kinetic parameters, they are heavily based on the chosen 

objective function and solution approach, and they are usually constrained by the steady-state 

assumption. The high inherent variability of the analysis, the requirement for high-accuracy 

measurements and existence of multiple solutions for the same system, introduce additional 

limitations on CBMs applicability. The mathematical formulation for the aforementioned CBM 
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approaches is described in Table 1.3. An interested reader can find further information on CBMs in 

the excellent reviews of Llaneras & Picó410 and Zomorrodi et al.411. 

Table 1.3: Main characteristics and formulations of the major CBM approaches. The mathematical formulations for each 

method were derived from: FBA385, MOMA393, MFA412 and EFMA413. 

Method Formulation Comments 

 

FBA 

𝑆 · 𝑣 = 0    

𝑚𝑖𝑛𝑗 ≤ 𝑣𝑗  ≤  𝑚𝑎𝑥𝑗  

𝑍 = 𝑐𝑇 · 𝑣 

max (𝑍) 

𝑍 is the objective function. 

𝑐 is the vector of the weights of each reaction towards 𝑍. 

Note that when the maximization of biomass is set as the objective 

function then 𝑐  is a vector of zeros apart from the reaction of 

biomass synthesis, where 𝑐𝑗 = 1. 

MOMA 

 
𝐷(𝑤, 𝑥) =  √∑ (𝑤𝑖 − 𝑥𝑖)2

𝑁

𝑖=1
 

min (𝐷) 

𝐷(𝑤, 𝑥) is the Euclidian distance between the optimum flux vector 

of the wild-type (𝑤) and the MOMA solution (𝑥). 

 

MFA  min (‖𝑣𝑒𝑥𝑝 − 𝑣𝑀𝐹𝐴‖2) The objective function of the MFA problem includes the 

minimization of the difference between the experimentally 

measured (𝑣𝑒𝑥𝑝) and calculated fluxes (𝑣𝑀𝐹𝐴). 

EFMA  𝑁 · 𝑒 = 0    

𝑒𝑖 ≥ 0 

𝑖𝑓 𝑅(𝑒′) ⊆  𝑅(𝑒) 𝑡ℎ𝑒𝑛  e’=0 or 

|𝑒’|=|𝑒| 

N represents the stoichiometric table of the EFMs’ vector (𝑒). 

Each reaction is considered irreversible. Reversible reactions are 

separated to two distinct reactions. 

Elementarity dictates that there is no subset of the e vector that is 

non-zero or unequal to the absolute value of e. 

 

1.4.2   Kinetic metabolic models 
Kinetic metabolic models (KMMs) attempt to describe cellular metabolism with the utilization of 

known underlying biological relationships that govern the system. The vast majority of KMMs employ 

Monod-type equations for describing the relationship between reaction rates and the considered 

metabolites414. Monod-type equations follow the structure of Eq. 1.4: 

𝑓(𝑆) = ∏
𝑆𝑖

𝑆𝑖+𝐾𝑆𝑖
   (1.4) 

where, 𝑓(𝑆) is the Monod-type function, 𝑆𝑖  is the 𝑖𝑡ℎ  substrate concentration (mM) and 𝐾𝑆𝑖  is the 

Monod constant (mM).  

A popular alternative for Monod-type equations regularly employed for describing mammalian 

metabolism is the logistic function415. A common classification of KMMs distinguishes the models as 

structured or unstructured, segregated or non-segregated414, 416. Structured models examine cellular 

metabolism in each organelle of the cell in distinct submodules, in an effort to develop a detailed 

mechanistic representation of the system. On the contrary, unstructured models consider the cell as 
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one entity without investigating the differences in the intracellular level. Moreover, the difference 

between non-segregated and segregated models is that the latter consider the heterogeneity among 

cellular populations, i.e., depending on the phase of the cell cycle, cell age or DNA content. Population 

balance models (PBMs) are one of the most widely applied segregated approaches for modelling 

mammalian cell cultures417-418. Kyriakopoulos et al.414 identified that unstructured and non-segregated 

models are the most frequently utilized kinetic tools for describing the cell culture process in silico. As 

shown in Fig. 1.10, model complexity and, therefore, the challenges in parameter estimation, increase 

as the model structure moves towards segregation and structural identification. Kontoravdi et al.419 

and Jedrzejewski et al.121 developed a semi-structured and non-segregated approach on linking and 

integrating different models for simultaneously describing extracellular metabolism, intracellular 

synthesis of the recombinant antibody, intracellular NSD and nucleotide synthesis (only in 

Jedrzejewski et al.) and Golgi N-linked glycosylation. Due to the frequency that unstructured or semi-

structured and non-segregated models are found in literature and because of their relevance to the 

thesis, the rest of the current section will mainly focus on the aforementioned sub-category.  

 

Figure 1.10: Main characteristics of the different combinations between the KMM categories. 

The metabolic networks considered in KMMs are considerably reduced compared to the entirety of 

cellular metabolism, mainly examining the limiting and inhibiting substrates of cell growth. Limiting 
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are the metabolites or amino acids that are essential for cell metabolism and the depletion of which 

can significantly halt cell growth (i.e., glucose, glutamine). On the other hand, inhibiting are the 

metabolic by-products that hinder growth when accumulated (i.e., lactate). In addition, cell death is 

commonly expressed as a Monod-type function of the toxic by-products that directly induce cell death 

(i.e., ammonia). All aforementioned substrate-categories, alongside the structure of the network, are 

identified prior to model construction, either through the evaluation of experimental or CBM-based 

data416, 420-421, or based on statistical analysis422-423. KMMs can also capture the entirety of cellular 

metabolism through the incorporation of GeM-networks424-425. Khodayari & Maranas426 have 

developed a kinetic model describing the GeM of E.coli with 457 reactions and 337 metabolites. The 

authors found that the KMM-GeM approach considerably outperformed FBA and MOMA results. 

However, the development of KMM-GeMs and the expansion of the kinetic interpretation of genomic 

networks in mammalian cells have not been broadly demonstrated yet, due to the complexity of 

mammalian metabolism, the computational challenges imposed by parameter unidentifiability and 

the extent of experimental work required for model parameterization427.  

The most common building blocks of KMMs are the material balances that govern the examined 

system throughout the culture, commonly defined in the form of ordinary differential equations 

(ODEs). The differential dependence between substrates and time enables the dynamic simulation of 

the model throughout the culturing period and its adjustment for both batch and fed-batch systems428-

429. The dynamic nature of KMMs is considered the primary difference from CBMs that are mostly 

simulated under the steady-state assumption430. However, the calculation of the KMM parameters 

values, a process termed as parameter estimation, is considerably more complex than the 

optimization algorithms employed in CBMs431. Therefore, the estimated parameters rarely represent 

the actual values and the global solution of the system. The aforementioned considerations on 

parameter estimation are attributed to the lack of parameter identifiability in KMMs, meaning that 

different combinations of the kinetic parameter values can result in the same model behaviour432. 

Despite the inability to tightly constrain parameter values of KMMs through model training on 

experimental data, kinetic models can demonstrate strong predictive powers433.  

Sensitivity analysis can be employed for evaluating the significance of model parameters towards the 

designated outputs of interest, or all measured outputs/states, therefore enabling the identification 

of parameters that necessitate precise estimation against relevant experimental data434-436. The non-

significant parameters can be assigned to nominal values based on previous work and literature data. 

However, it is important to note that the assignment of parameters to their in vitro calculated values 

is not always recommended, as enzymatic behaviour can significantly deviate between the in vitro and 

in vivo conditions437. Approaches combining CBMs and KMMs can relieve some of the burden of 
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parameter estimation and incorporate more comprehensive datasets and cellular functionalities, i.e., 

the gene expression regulatory network438-439. Despite all the efforts on simplifying the parameter 

estimation process, the latter remains highly dependent on the structure of the model and cannot be 

easily generalized. In the case of mammalian cell cultures, where the culturing process is considerably 

time-consuming and the cells exhibit high degrees of variability between the different clones, the 

collection of an adequate dataset for fine-tuning the KMM remains a challenging task. 

1.4.3   Data-driven approaches on modelling cellular metabolism 
The use of data-driven models (DDMs) for simulating, controlling and optimizing bioprocesses is 

currently emerging48. Regarded as “black boxes”, DDMs are usually integrated within a “hybrid” 

framework that additionally incorporates a CBM or a KMM module, providing that way a flexibility in 

determining the exact framework configuration based on data availability440.  

Due to the necessity for large and comprehensive datasets in training both DDMs and CBMs, the latter 

two are regularly combined for hybrid applications441. In the majority of applications, ML techniques 

are utilized for incorporating multiomics data towards assisting fluxomic analysis54. Unsupervised 

learning, meaning the training of an algorithm without providing the output values (labels), is mainly 

used for dimensionality reduction442 and data interpretation443, and has also been extensively applied 

in EFMs identification444-447 and FBA assistance and results interpretation448-449. Supervised learning, 

meaning the construction of a regression or classification algorithm between the input (features) and 

output values, has found various applications in CBM-assisted predictions of cell growth and 

metabolism450-451, due to the large availability of well-established supervised techniques. As a further 

elaboration on CBM-DDM applications would fall out of this thesis scope, an interested reader is 

encouraged to find further information in the comprehensive and recent reviews of Antonakoudis et 

al.452, Rana et al.441 and Zampieri et al.54.  

Data-driven approaches have been widely utilized for reinforcement learning and model predictive 

control (MPC) applications towards bioprocess control and optimization453-455. In an interesting study, 

an ANN configuration was found to overperform its mechanistic equivalent in the simulation and 

optimization of microalgal lutein production in a fed-batch regime456. In a second step, the authors 

developed a hybrid framework incorporating a kinetic module for correcting and imputing raw and 

missing data, that were subsequently fed to an ANN for predicting future system behaviour457. The 

kinetic model was then re-trained on the projected data-driven data, resulting in the robust control 

and optimization of the examined bioprocess. Alternatively, a convolutional neural network (CNN) has 

been successfully trained on the results of a computational fluid dynamics (CFD) and a kinetic model 

in order to optimize biomass growth and production458. 
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Amongst mammalian cell cultures, the application of stand-alone DDMs has mainly focused on the 

statistical approaches and multivariate analysis. The applications of DDMs on controlling the cell 

culture process towards optimizing product quality attributes, such as the N-linked glycosylation 

profile of the product, will be discussed in the following section. Multivariate algorithms, such as 

principal component analysis (PCA) and partial least squares regression (PLS) can be used for 

identifying similar batches459, interpreting and grouping early process-development data460-463 and 

monitoring cell culture progress461, 464-465. In general, the use of such multivariate algorithms enables 

the better clustering, filtering, visualization and interpretation of the multidimensional culturing data.  

Whilst DDMs are a valuable tool for process monitoring and implementation of the QbD and process 

analytical technology (PAT) paradigms, they have found limited applications, either as a standalone 

algorithm or within a KMM-hybrid configuration, for directly predicting mammalian cell metabolism. 

This observation can be attributed to the excessive demand for large datasets during DMMs’ training, 

the lengthy and costly experimentation necessary for the generation of such datasets and the already 

satisfactory performance of KMMs in dynamic modelling. In an early effort to integrate ML modules 

within a kinetic framework, 6 parallel ANN models were employed for the estimation of the specific 

growth, product synthesis and metabolite uptake rates466. The parallel ANNs were trained on the same 

inputs, being process parameters such as pH, culture time, nitrogen flow etc., and each one was used 

for the calculation of a single specific rate. In a second step, the ANN-estimated rates were introduced 

to the material balances of a KMM, for the calculation of metabolites concentration, viable cell density 

and titre. However, it was only recently that the Morbidelli group re-established the use of ML for 

describing mammalian cell cultures. Initially, Narayanan et al.467 developed a data-driven algorithm 

incorporating decision trees and PLS models for the prediction of product titre and several process 

CQAs. In a second step, the authors developed a hybrid model incorporating a single feed-forward 

ANN and a mechanistic model for describing CHO cell cultures468. The data-driven algorithm was used 

to calculate the specific growth rate that, in turn, was introduced to the kinetic model for predicting 

process characteristics, such as viable cell density, glucose, lactate concentration and titre. Finally, the 

hybrid model was found to outperform its equivalent PLS-oriented statistical model for all examined 

variables, further demonstrating the power of hybrid configurations towards describing and 

controlling mammalian cell cultures.  

1.4.4   N-linked glycosylation modelling 
Simulation and prediction of recombinant protein glycosylation has been of extensive interest during 

the last two decades, for improving both process control and design. Several frameworks have been 

developed in order to describe N-linked glycosylation and predict the effects of gene engineering and 

culturing alterations, with the vast majority of them being mechanistic models. However, data-driven 
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or statistical approaches are also emerging in order to alleviate the parameter estimation burden and 

expedite model development. The major discrepancy between the proposed mechanistic models lies 

in the choice of the Golgi protein-traffic model. From a model-designing perspective, the CM model is 

usually described through a single or a series of plug and flow reactors (PFRs) in order to represent 

the maturation of the Golgi and therefore, the gradual transformation of the cis-cisterna to the latter 

TGN compartment. On the other hand, the VT model is usually simulated through a series of 

continuous stirred-tank reactors (CSTRs), where each CSTR represents one of the Golgi compartments. 

However, the use of different reactor systems results in considerably altered model complexity. PFRs 

describe the glycan concentration as a function of both the culturing time and the distance in the Golgi 

apparatus, requiring that way partial differential equations (PDEs) for simulating the system. In 

addition, enzyme concentrations usually follow Gaussian distributions within the Golgi organelle. On 

the contrary, well mixed CSTRs assume a homogenous concentration for glycans and glycosylation 

enzymes in each compartment and therefore utilize ordinary differential equations (ODEs) that are 

considerably less complex and easier to solve. The following paragraphs attempt to comprehensively 

describe the gradual evolution of glycosylation modelling through the last, approximately, three 

decades, and showcase the applications of glycosylation models on predicting the effects of gene 

engineering and process manipulation. Fig. 1.11 summarizes and presents the relevant studies in a 

chronological order. It is important to note that the advances in N-linked glycosylation analysis and 

quantification are one of the major drivers for the development of more elaborate and detailed kinetic 

models in the recent years. 

The work by Noe & Delenick469 was one of the earliest to incorporate the glycosylation process in a 

kinetic model. However, the authors only examined the secretion process of newly synthesized 

proteins through the intracellular compartments, including the effect of PTMs on transport rates, and 

therefore, did not investigate the microheterogeneity of protein glycosylation. Shelikoff et al.470, 

developed a mechanistic model to describe glycosylation site occupancy based on factors such as 

mRNA translation rate, protein synthesis rate and precursor oligosaccharide availability. Whilst the 

authors introduced mechanistic and kinetic concepts, such as material balances in the Golgi within a 

PFR representation, that would later be used to define the first complete glycosylation model, the 

study only examined site occupancy and did not simulate glycans distribution. Moving towards a 

mechanistic model describing glycans heterogeneity, Monica et al.471 developed a kinetic framework 

for estimating the sialylation of glycoproteins recombinantly produced in CHO cells, such as CD4 and 

tPA. While the model did not examine the detailed glycosylation profile of the proteins, it introduced 

several considerations that were subsequently re-examined for developing a more holistic 

glycosylation framework, such as: the use of a CSTR for describing Golgi compartments, the NSD 
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availability in the Golgi, the GTase localization and the inhibition of enzymatic activity by competitive 

substrates. 

Working in parallel with Monica et al., Umaña & Bailey472 developed the first mechanistic kinetic 

model (UB1997 model) that could describe glycoforms distribution, based on a glycosylation network 

of 33 reactions and glycan structures. Importantly, the authors assumed that each glycan structure 

could act as substrate for a single enzyme, resulting in a network with an equal number of reactions 

and possible glycoforms. The kinetic parameters of the model were assigned values from literature. 

The reaction network did not include the activity of the a6FucT, iGnT and a3SiaT enzymes, in an effort 

to control the size of the system and following the assumption that the presence of core-fucose would 

not considerably affect the reaction kinetics. The authors employed four CSTRs to describe the 

different compartments of the Golgi and investigated the effect of glycoprotein productivity and gene 

overexpression on specific parts of the glycosylation process.  
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Figure 1.11: The evolution of N-linked glycosylation models and their applications. 
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In a work of major importance, Krambeck & Betenbaugh473 further expanded the UB1997 network to 

account for the activity of the missing enzymes and incorporate 7,565 glycans structures and 22,871 

reactions in total (KB2005 model). The KB2005 model included literature-derived rules to define the 

activity of the involved enzymes on each substrate, in an effort to mechanically reconstruct the 

glycosylation network and extract the values of the kinetic parameters. Importantly, the authors 

demonstrated that by in silico manipulating the concentration of the glycosylation enzymes, the model 

could closely describe the glycoprofile of recombinantly produced human thrombopoietin (hTPO). The 

adjustment of enzymes concentration is a necessary step towards the construction of protein-specific 

models, as it compensates for the discrepancies in the expression levels of the glycosylation enzymes 

between different cell lines and the steric hinderances that each glycoprotein imposes to the 

considered enzymes. However, it is important to note that the aforementioned steric hindrances are 

more accurately described by manipulating the inhibition constants of the reaction rates rather than 

enzyme concentrations. The results of the KB2005 study were the first to demonstrate that a kinetic 

model can accurately describe the detailed glycoform distribution of recombinantly produced 

glycoproteins and exemplify the use of such models for further controlling the glycosylation process. 

In a follow-up study, the authors developed a framework for adjusting the glycosylation model to mass 

spectrometric glyco-data of healthy and leukaemia monocytic cells, therefore, enabling the 

identification of differences in the variety of glycan structures and enzyme concentrations between 

the two cell lines474. The framework has also been utilized to describe the differences in expression 

levels of glycosidases and GTases between various CHO cell lines carrying genetic modifications, based 

on the glycosylation profile of the intracellular proteins475. 

In a very informative study, Hossler et al.476 utilized a single PFR model (H2007 model) to evaluate the 

sensitivity of terminally processed glycans on enzymes concentration, identify the changes of glycans 

distribution within the Golgi and estimate the necessary regulations of enzyme profiles towards the 

maximization of terminal glycans synthesis. Interestingly, the authors assumed a uniform profile for 

enzymes concentration within the reactor, with only glycans distribution being a function of the 

distance within the Golgi. In an effort to achieve complete homogenization for each glycoform, the 

authors developed a 4-PFR model that was found to outperform its 4-CSTR equivalent. Model-based 

investigation indicated that residence time and enzymes localization were the two factors affecting 

glycoprofile homogeneity the most. Kontoravdi et al.419 incorporated the UB1997 model within a 

kinetic framework describing hybridoma cells metabolism and mAb synthesis477. The proposed 

framework was the first modelling approach aiming to connect the extracellular metabolism with mAb 

synthesis and glycosylation, paving the way for the development of feeding strategies to 

simultaneously control and optimize recombinant protein concentration and glycosylation. 
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Del val et al.478 further improved the mechanistic representation developed in Hossler et al.476 by 

assuming a more realistic Gaussian distribution for the enzymes’ concentration in a single PFR model, 

accounting for more detailed kinetic mechanisms for each enzyme, introducing Golgi proteins 

recycling and incorporating NSD transport from the cytosol to the Golgi apparatus (DV2011 model). 

The latter set the basis for the development of a holistic kinetic framework relating central carbon 

metabolism to protein glycosylation through the NSD synthesis and transport. The DV2011 model was 

found to outperform the KB2005 and H2007 equivalents in predicting the effect of a6FucT knockout 

on mAb glycosylation. Towards the development of a holistic framework, Kaveh et al.479 combined the 

H2007 and DV2011 models with discrete cell metabolism and NSD synthesis models, in order to 

describe cell growth, glutamine and galactose concentration, alongside with mAb glycosylation. The 

rationale behind the model’s development was that NSD synthesis depends on glucose and glutamine 

extracellular concentration. In its turn, the NSD profile can influence glycosylation and alter glycans 

distribution. However, the authors did not explicitly present the integration of extracellular glucose 

and glutamine concentrations in the NSD material balances. 

Working towards the development of a holistic kinetic model that could mechanistically connect cell 

metabolism to protein glycosylation through the NSD synthesis pathway, Jedrzejewski et al.121 

integrated the DV2011 model within a framework that included a detailed description of the NSDs and 

nucleotides synthesis pathways. The model of extracellular metabolism was used for describing cell 

growth and metabolism and, more specifically, for the estimation of extracellular glucose, glutamine 

and the specific cell growth and antibody production rates. The aforementioned estimated variables 

were fed to the nucleotide/NSD synthesis model that, in its turn, calculated the fluxes of NSD towards 

the Golgi apparatus and the glycosylation module. The concept of holistically describing the cell 

culture process and relating protein glycosylation to extracellular metabolism through NSD 

metabolism, has subsequently been used to capture the effects of mild hypothermia480, pH fluctuation 

and manganese feeding235, 481 on IgG glycosylation, and optimization of IgG galactosylation through 

galactose and uridine supplementation482. Alternatively, a lumped and significantly reduced semi-

empirical model has also been developed for capturing the effect of mild hypothermia specifically on 

mAb galactosylation without examining the detailed microheterogeneity of the glycans483. Sha et al.484 

employed an FBA model to estimate the NSD synthesis fluxes that were subsequently introduced to 

the DV2011 glycosylation model for calculating glycans distribution. In an effort to alternatively 

describe the dependence of IgG glycosylation to the extracellular levels of the NSD-precursor sugars, 

Zhang et al.485 developed a framework of macro-reactions for calculating glycans distribution as a 

direct function of the respective fed carbon-sources. The authors subsequently applied the model to 
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control the consumption rates of the available carbon sources and manipulate IgG glycosylation in 

CHO cell perfusion cultures50. 

Whilst the major applications of kinetic models have been towards the prediction of recombinant 

product glycosylation, there have also been several efforts to utilize the available computational tools 

for elucidating cellular characteristics and mechanisms. For example, the DV2011 model has been 

used to investigate the effect of CHO cells specific productivity on Golgi volume and linear transport 

velocity of the protein through the Golgi, and, subsequently, on mAb glycosylation486. McDonald et 

al.487 identified, through a model-based methodology, that b4GalT4 expression levels influence 

recombinant human chorionic gonadotropin (hCG) branching in CHO cells. Additionally, the KB2005 

model has been employed for the identification of differences between the transcriptomic and 

proteomic levels of glycosylation-related genes, combining glycomics and transcriptomics data488. The 

KB2005 model has also been applied for glycosylation controllability, meaning the identification of 

input ranges (i.e., enzyme and NSD concentrations) within which the control of specific glycans 

distribution is possible294. Moreover, Kremkow & Lee489 developed a flux-based framework for 

successfully identifying the qualitative glycoprofile of the targeted protein, following gene engineering 

modifications in CHO cells. Similar work has been performed for predicting plausible glycan structures 

based on gene expression data490-491. In a recent study of great importance, Arigoni-Affolter et al.492 

incorporated the DV2011 model within a larger kinetic framework that, in combination with extensive 

experimentation, was employed for exhaustively describing the glycoprotein secretion pathway. 

Application of MFA in the glycosylation reaction network has enabled the development of 

glycosylation flux analysis (GFA)493, which has been used for identifying underlying links between IgG 

galactosylation and process parameters, such as specific IgG productivity rate and extracellular 

ammonia accumulation494. Additionally, site-specific flux analysis in the glycosylation network of a 

protein disulfide isomerase (PDI) molecule has demonstrated that the extent of glycan complexity in 

the designated sites of the glycoprotein is mainly limited from the interaction between specific amino 

acids of the backbone and the glycan, rather than from the steric hindrance imposed by the 

glycoprotein structure495. 

Apart from the kinetic and flux-based approaches on modelling protein N-linked glycosylation, there 

has been an increasing interest in employing data-driven and stochastic algorithms for replacing their 

kinetic counterparts and accelerating model development. One of the most representative works in 

the field has been the development of Markov chain models for predicting the effect of gene 

downregulations on IgG, EPO and secretome glycosylation496. Importantly, Markov models assume 

that the future state of the examined variable depends solely on its current state, ignoring the past 

states of the variable. The aforementioned assumption conveniently matches the glycosylation 



Page | 52 LITERATURE REVIEW 

process, where the future steps of the pathway only depend on the affinity between the available 

enzymes and the current structure of the glycan. However, model compartmentalization according to 

the Golgi structure was found to be of paramount importance for strengthening the predicting 

capabilities of the Markov model. The Markov chain model has also been employed for guiding cell 

line glycoengineering for biosimilar development497 and identifying interactions between GTases and 

isoenzyme specificity498. In a similar manner, Fisher et al.499 developed a stochastic glycosylation 

model for predicting the effects of Golgi trafficking defections and cellular differentiation on the 

distribution of glycosylation enzymes in the Golgi. The model has also been utilized to in silico guide 

the maximization of desired glycoforms500. A probabilistic glycosylation model utilizing the Bayesian 

theorem has also proven useful for predicting antibody glycosylation in both perfusion and fed-batch 

cultures501. Alternatively, Sokolov et al.502 have employed PLS models to utilize designated process 

parameters, based on a genetic algorithm selection, for predicting mAb glycosylation under several 

process conditions. A similar methodology was also deployed for incorporating metabolomics data in 

predicting recombinant protein glycosylation503. Finally, as mentioned in section 1.2.2, glycosylation 

models have been successfully utilized for assisting the implementation of the QbD paradigm240-241. In 

a similar manner, multivariate frameworks combining PCA and decision trees algorithms have been 

extensively utilized for guiding and manipulating biosimilar glycosylation towards the desired target 

profile460, 504-505. 
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Chapter 2 Model-based optimization of 
monoclonal antibody galactosylation 
 

Chapter overview 
Monoclonal antibodies normally carry two sites of N-linked glycosylation in the constant Fc-fragment. 

Whilst the N-linked glycosylation profile of an IgG molecule mainly constitutes of bi-antennary glycan 

structures, the glycoform distribution has been found to be considerably dependent on the bioprocess 

conditions, such as temperature335, nutrient availability288 and catabolite accumulation247. The 

influence of bioprocess conditions on glycoform distribution translates to an effect on the safety and 

potency of the recombinant antibody. More specifically, the presence of terminal galactose 

(galactosylation) has been found to enhance CDC171 and ADCC182 activity of monoclonal antibodies and 

is therefore a desired attribute for biopharmaceutical products. However, galactosylation has been 

identified as a source of mAb structural variability during scale-up and technology transfer 

processes292 and therefore necessitates further control and optimization to avoid potential effects on 

protein structure and efficacy169, 195, 199. Increase of mAb galactosylation has been mainly achieved with 

the supplementation of galactose and uridine, the metabolic precursors of UDPGal, during the cell 

culture period292-293, 297. UDPGal acts as the co-substrate for mAb galactosylation that is catalysed by 

the b4GalT enzyme. However, the inclusion of galactose and uridine in the feed can induce metabolic 

perturbations and inhibit cell growth and productivity293. 

Several kinetic mathematical models have been developed in order to describe CHO cell 

metabolism506-507 and N-linked glycosylation472-473, 476, 478, 485. In addition, a probability-based approach 

employing Markov-chain models has also been employed in order to describe protein glycosylation 

and elucidate isoenzyme specificity496, 498. In an effort to create a link between the extracellular 

concentrations of nutrients and mAb glycosylation, Jedrzejewski et al.121 introduced a modelling 

framework for the description of NSD and nucleotide synthesis pathways as a channel between the 

extracellular and glycosylation profile of mammalian cells.  

Following the concept of Quality by Design that dictates a detailed understanding of the 

interconnections between process conditions and product quality, a mathematical model that 

describes the effect of different feeding scenarios on titre levels and glycosylation would be a valuable 

tool for process monitoring and optimization. To that end, Chapter 2 presents the development of a 

mechanistic mathematical model, based on Monod-type equations, to describe CHO cell metabolism, 

antibody production, NSD synthesis and mAb glycosylation in fed-batch cultures. Particular effort was 

placed on predicting the effect of galactose and uridine addition on cell growth, cell productivity and 



Page | 54 MODEL-BASED OPTIMIZATION OF MONOCLONAL ANTIBODY GALACTOSYLATION  

mAb galactosylation. Following model construction, development and parameterization, the model 

was utilized for the identification of an optimized feeding strategy that would improve mAb 

galactosylation while simultaneously avoiding compromises on cell growth and productivity. Model 

validation was performed through the comparison with the experimental results of the optimized 

feeding strategy. 

The model developed in this chapter sets the basis for the following chapters and the rest of the 

experimental and computational work presented in this thesis. The model has been presented in 

Kotidis et al.482  

Overall, Chapter 2 aims to investigate and provide insights on the following points: 

• Can a Monod-type based kinetic model describe CHO cell metabolism and mAb glycosylation? 

• Can a model-based feeding strategy lead to optimized mAb galactosylation, while maintaining 

cell growth and productivity? 

2.1   Materials & Methods 
2.1.1   Description of experimental data  
The experimental data used for the construction, parameterization and validation of the model were 

taken from Jedrzejewski311. Five experimental datasets, incorporating the addition of galactose and 

uridine in the culture, were used for model development and parameterization: control, 10G, 10G5U, 

10G20U and 50G5U, the details of which are described in Table 2.1. An independent feeding fed-batch 

experiment, the design of which is based on the developed model and targets the optimization of mAb 

galactosylation, was used for external validation (Table 2.1). Briefly, CHO-T127 cells producing an IgG 

antibody were maintained in suspension and passaged every 3 days in CD-CHO medium (Life 

Technologies, Paisley, UK) at 36.5 C, 5% CO2 and 150 rpm. 50 μM of methionine sulfoximine (MSX) 

was added for cell revival and in the first passage. The fed-batch experiments were performed in 500 

mL vented Erlenmeyer flasks (Corning Inc.) with a working volume of 100 mL and a seeding density of 

2 x 105 cell·mL-1. The fed-batch cultures were harvested at 12 days post-seeding or when viability 

dropped below 60%. All fed-batch cultures were supplemented with 1 μM of manganese(II) chloride 

(MnCl2) at seeding and 10% v/v CD EfficientFeed™ C AGT™ Nutrient supplement (Life Technologies, 

Paisley, UK) on days 2, 4, 6, 8 and 10 post-seeding. Manganese (Mn) is a well-known 

glycosyltransferase co-factor that is critical for b4GalT activity508, the enzyme catalysing protein 

galactosylation. Its addition to the cell culture has been found to improve galactosylation rates293. 

Methods used for quantifying viable cell density, viability, metabolites concentration, IgG titre, NSD 

intracellular concentration and IgG glycoprofile can be found in Jedrzejewski311. 



Page | 55 MODEL-BASED OPTIMIZATION OF MONOCLONAL ANTIBODY GALACTOSYLATION  

Table 2.1: Concentrations of galactose and uridine in each experiment that was utilized for model training and validation. 

The (-) symbol indicates that feeding was not considered on that particular day. 

Experiment Galactose in Feed C (mM) Uridine in Feed C (mM) 

Time point Day 4 Day 6 Day 8 Day 10 Day 4 Day 6 Day 8 Day 10 

Control 0 - 0 - 0 - 0 - 

10G 100 - 100 - 0 - 0 - 

10G5U 100 - 100 - 50 - 50 - 

10G20U 100 - 100 - 200 - 200 - 

50G5U 500 - 500 - 50 - 50 - 

Optimization 65 93 90 87 8 13 28 100 

 

2.1.2   Mathematical modelling 
The modelling framework comprises three modules as shown in Fig. 2.1: 

1. Metabolism submodel: A dynamic unstructured cell growth, death, antibody synthesis and 

metabolism model, based on Monod-type equations. The aim of the first module is to 

estimate the specific cell growth rate and the specific cell productivity by utilizing only the 

feeding schedule of the fed-batch experiments, the metabolite concentrations in the feed 

and the concentration of the metabolites in the seeding medium. The model also describes 

the extracellular profile of the examined metabolites and viable cell density through culturing 

time. 

2. NSD submodel: A dynamic kinetic model describing NSD synthesis in the intracellular 

environment and based on Michaelis-Menten kinetics. Inputs to the NSD submodel are the 

specific cell growth and antibody production rates, as calculated by the Metabolism 

submodel. The goal of the module is to estimate the dynamic concentration profile of NSDs 

in the intracellular environment and the fluxes of the NSDs towards the Golgi apparatus. 

3. Glycomodel: A dynamic N-linked glycosylation model describing the synthesis and 

distribution of glycoforms in the Golgi apparatus and the secretion of glycosylated mAb in the 

extracellular environment. The model was taken from del Val et al.478 The model portrays the 

glycosylation process in the Golgi as a PFR reactor. Input to the Glycomodel is the intracellular 

NSDs concentration and the specific antibody production rate. 
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Figure 2.1: Model framework and configuration, consisting of three submodels: 1) Metabolism submodel estimating 

metabolites extracellular concentration, specific growth rate and specific antibody production rate, 2) NSD submodel 

estimating the intracellular concentration of NSDs and the NSD flux towards the Golgi apparatus and 3) Glycomodel 

estimating the glycoform distribution of the secreted mAb. 

Model development and parameterization was performed in gPROMS ModelBuilder v.5.0.1 (Process 

Systems Enterprise, gPROMS, www.psenterprise.com/products/gproms, 1997-2020). The Maximum 

Likelihood formulation in gPROMS was used for parameter estimation. The Maximum Likelihood 

solver identifies the physical (model) and variance parameter values that would maximize the 

probability of correctly predicting the experimental data, assuming normally distributed measurement 

errors and standard deviations. The objective function of the formulation is shown in Eq. 2.1: 

𝛷 =  
𝑁
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𝑁𝑀𝑖𝑗
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𝑁𝑉𝑖
𝑗=1

𝑁𝐸
𝑖=1 ])       (2.1) 

where:  

• 𝛷 is the Maximum Likelihood solver objective function 

• 𝜃 are the physical parameters of the model subject to user-defined lower (𝜃𝐿) and upper (𝜃𝑈) 

bounds (𝜃𝐿 <  𝜃 <  𝜃𝑈) 

• 𝑁 is the total number of experimental points 

• 𝑁𝐸 is the number of experiments considered in the parameter estimation  

• 𝑁𝑉𝑖 is the total number of variables measured in the ith experiment  

• 𝑁𝑀𝑖𝑗  is the total number of measurements for the jth variable in the ith experiment  

• 𝜎𝑖𝑗𝑘
2  is the user-defined variance of the kth measurement for the jth variable in the ith 

experiment  
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• �̃�𝑖𝑗𝑘  is the kth experimentally measured value of the jth variable in the ith experiment  

• 𝑧𝑖𝑗𝑘  is the kth model predicted value of the jth variable in the ith experiment  

2.1.3   Statistical analysis of model results 
The MedCalc Statistical Software v.18.2.1 (MedCalc Software bvba, Ostend, Belgium) was used for the 

calculation of the Concordance Correlation Coefficient (CCC) and the OriginPro 2017 software 

(OriginLab, Northampton, MA) for the estimation of the Pearson Correlation Coefficient (PCC). A 95% 

confidence interval was set for the calculation of both the CCC and the PCC. The PCC was used to 

assess the correlation between the model predicted and the experimentally measured variables. CCC 

was used in addition to the coefficient of determination (R2) to evaluate the agreement between the 

experimental data and model results. The CCC, PCC and R2 values were used to evaluate the fitness of 

the model for viable cell density and extracellular monoclonal antibody concentration for the 

Metabolism submodel and for the intracellular concentrations of UDPGal and UDPGlcNAc for the NSD 

submodel. The aforementioned variables were chosen as representatives of the performance of the 

respective submodels for this set of experiments. 

2.2   Model construction 
Sections 2.2.1, 2.2.2 and 2.2.3 present the development of the three modules that consist the 

proposed modelling framework. The material balances and reaction rates expressions in the 

Metabolism and NSD submodels are based on the reduced networks presented in each section. Finally, 

section 2.2.4 presents the parameterization strategies followed for all three modules. 

2.2.1   Metabolism submodel 
The Metabolism submodel was adapted from previous work on fed-batch hybridoma cell cultures506 

and consists of three discrete but inter-dependent modules: 1) the CHO cell growth and death module, 

2) the CHO cell metabolism module and 3) the mAb synthesis module. The Metabolism submodel is a 

reduced empirical model of CHO cell metabolism (Fig. 2.2) and considers the effect of the following 

metabolites and amino acids on the specific cell growth and antibody production rates: glucose, 

galactose, uridine, glutamine, lactate, ammonia, glutamate, asparagine and aspartate. 
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Figure 2.2: Reduced metabolic network considered in the Metabolism submodel. The enzymes catalysing the non-lumped 

reactions are also shown. The dashed lines show transport reactions. The acronyms used for the enzymes are: PDC for 

pyruvate dehydrogenase complex, LDH for lactate dehydrogenase, GS for glutamine synthetase, ASNS for asparagine 

synthetase and ASRGL1 for L-asparaginase. 

CHO cell growth and death 

The CHO cell growth and death module was based on Monod-type equations that were defined by 

the limiting substrates and the inhibiting metabolites and products of the culture. The material 

balances of the cell culture volume (Eq. 2.2) and the viable cell density (Eq. 2.3) are: 

𝑑𝑉

𝑑𝑡
= 𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡    (2.2) 

where, 𝑉 (L) is the cell culture volume, 𝑡 (h) is the culturing time, 𝐹𝑖𝑛  (L·h-1) is the flow rate of the 

feeding and 𝐹𝑜𝑢𝑡 (L·h-1) is the sampling flow rate. 

𝑑(𝑉𝑋𝑣)

𝑑𝑡
= (𝜇 − 𝜇𝑑𝑒𝑎𝑡ℎ)𝑉𝑋𝑣 −  𝐹𝑜𝑢𝑡𝑋𝑣 (2.3) 

where, 𝑋𝑣 (cell·L-1) is the viable cell density and µ (h-1) and μdeath (h-1) indicate the specific cell growth 

and death rate, respectively. 

Glucose and asparagine were identified as the limiting substrates of the cell culture, while ammonia, 

lactate and uridine were considered as the inhibiting substrates. More specifically, the specific cell 

growth rate is defined by Eq. 2.4, 2.5 and 2.6: 

µ =  µ𝑚𝑎𝑥𝑓lim𝑓𝑖𝑛ℎ    (2.4) 
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where, µ𝑚𝑎𝑥 (h-1) is the maximum specific cell growth rate, 𝑓lim (-) is the substrate limiting factor and 

𝑓inh  (-) is the metabolite and products inhibiting factor. 

𝑓lim =
[𝐺𝑙𝑐]

[𝐺𝑙𝑐]+𝐾𝐺𝑙𝑐

[𝐴𝑠𝑛]

[𝐴𝑠𝑛]+𝐾𝐴𝑠𝑛
   (2.5) 

where, [𝐺𝑙𝑐] (mM) and [𝐴𝑠𝑛] (mM) are the extracellular concentrations of glucose and asparagine, 

respectively. 𝐾𝐺𝑙𝑐  (mM) and 𝐾𝐴𝑠𝑛 (mM) are the Monod constants for glucose and asparagine, 

respectively. 

𝑓inh =
𝐾𝐼𝐴𝑚𝑚

[𝐴𝑚𝑚]+𝐾𝐼𝐴𝑚𝑚

𝐾𝐼𝐿𝑎𝑐

[𝐿𝑎𝑐]+𝐾𝐼𝐿𝑎𝑐

𝐾𝐼𝑈𝑟𝑑

[𝑈𝑟𝑑]+𝐾𝐼𝑈𝑟𝑑
   (2.6) 

where, [𝐴𝑚𝑚] (mM), [𝐿𝑎𝑐] (mM) and [𝑈𝑟𝑑] (mM) are the extracellular concentrations of ammonia, 

lactate and uridine respectively. 𝐾𝐼𝐴𝑚𝑚 (mM), 𝐾𝐼𝐿𝑎𝑐 (mM), 𝐾𝐼𝑈𝑟𝑑 (mM) are the inhibiting constants 

for ammonia, lactate and uridine, respectively. 

In a similar manner, ammonia and uridine were used for defining the specific cell death rate (Eq. 2.7)  

µ𝑑𝑒𝑎𝑡ℎ = µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥 (
[𝐴𝑚𝑚]

[𝐴𝑚𝑚]+𝐾𝑑,𝐴𝑚𝑚
+

[𝑈𝑟𝑑]

[𝑈𝑟𝑑]+𝐾𝑑,𝑈𝑟𝑑
)   (2.7) 

where, µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥  (h-1) is the maximum specific cell death rate and 𝐾𝑑,𝐴𝑚𝑚  (mM) and 𝐾𝑑,𝑈𝑟𝑑  (mM) 

are the ammonia and uridine Monod constants for cell death, respectively. 

CHO cell metabolism 

CHO cell metabolism was described using the material balances of the metabolites and amino acids 

considered in the model. The general material balance is shown in Eq. 2.8: 

𝑑(𝑉[𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒])

𝑑𝑡
= 𝐹𝑖𝑛[𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑓𝑒𝑒𝑑] − 𝐹𝑜𝑢𝑡[𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒] + 𝑞𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑉𝑋𝑣   (2.8) 

where, [𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒] (mM) is the extracellular concentration of the considered metabolite or amino 

acid, [𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑓𝑒𝑒𝑑] (mM) is the concentration of the considered metabolite or amino acid in the 

feed and 𝑞𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒   (mmol·cell-1·h-1) is the specific production or consumption rate of the considered 

metabolite or amino acid. The 𝑞𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒  is based on the intracellular metabolic links of the 

metabolites as further discussed below. The sign convention used for the 𝑞𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒  is positive (+) for 

the production and negative (-) for the consumption rates.  

The specific production/consumption rates are separately examined for each metabolite and amino 

acid. 𝑌𝑋𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒
 (cell·mmol-1) that describes the yield of cell biomass for each metabolite or amino 

acid, is assumed to remain constant during the cell culture to avoid overparameterization. 
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Figure 2.3: A reduced metabolic network that integrates various pathways and reactions like glycolysis and the TCA cycle. 

The proposed metabolic network accounts for only a few of the total reactions and aims to depict the fluxing relations 

between the metabolites and nutrients/amino acids. The blue lines indicate the reactions involved in glycolysis pathway, the 

orange lines indicate the reactions involved in the TCA cycle and the black lines indicate other reactions that interact with 

the previous pathways.  

Glucose 

Glucose consumption initiates the glycolysis pathway (Fig. 2.3) for the synthesis of cytosolic and 

subsequently mitochondrial pyruvate. However, the presence of galactose in the culture can lessen 

the flux of glucose towards the glycolytic pathway, as both glucose and galactose lead to the 

production of the glucose-6-phospate intermediate (Fig. 2.3). Eq. 2.9 and 2.10 attempt to describe this 

inter-dependency between the two metabolites: 

𝑞𝐺𝑙𝑐 = (−
𝜇

𝛶𝑋𝐺𝑙𝑐

−  𝑚𝐺𝑙𝑐) ∙ (
𝐾𝑐𝐺𝑎𝑙

𝐾𝑐𝐺𝑎𝑙+[𝐺𝑎𝑙]
)𝑛𝐺𝑎𝑙    (2.9) 

𝑛𝐺𝑎𝑙 = 1 − 𝑓𝐺𝑎𝑙
𝑞𝐺𝑎𝑙

𝑞𝐺𝑙𝑐
   (2.10) 

where, 𝑞𝐺𝑙𝑐 (mmol·cell-1·h-1) is the specific uptake rate of glucose, 𝑌𝑋𝐺𝑙𝑐
 (cell·mmol-1) is the yield of cell 

biomass on glucose and 𝑚𝐺𝑙𝑐  (mmol·cell-1·h-1) is the maintenance coefficient of glucose for its 

consumption towards other metabolic pathways of the cell. The 
𝐾𝑐𝐺𝑎𝑙

𝐾𝑐𝐺𝑎𝑙+[𝐺𝑎𝑙]
 term is used as a 

regulating factor that is only active when galactose is fed in the culture. The factor is equal to 1 when 
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no galactose is present and <1 when galactose is supplemented in the culturing medium. Therefore, 

when galactose is present the 𝑞𝐺𝑙𝑐 is reduced due to the existence of the 
𝐾𝑐𝐺𝑎𝑙

𝐾𝑐𝐺𝑎𝑙+[𝐺𝑎𝑙]
 term, accounting 

that way for the effect of galactose presence on glucose consumption towards glycolysis. Regarding 

the regulating term: 𝐾𝑐𝐺𝑎𝑙  (mM) is the regulating concentration of galactose, [𝐺𝑎𝑙]  (mM) is the 

extracellular concentration of galactose and  𝑞𝐺𝑎𝑙  (mmol·cell-1·h-1) is the specific uptake rate of 

galactose. 

Finally, 𝑛𝐺𝑎𝑙 (-) and  𝑓𝐺𝑎𝑙 (-) are factors that participate in further regulating the specific consumption 

rate of glucose. Eq. 2.10 accounts for the balance between the specific consumption rates of glucose 

and galactose towards glycolysis. Moreover, the majority of mammalian glucose transporters (GLUTs) 

show affinity to both glucose and galactose and therefore a regulation of the respective uptake rates 

is possible509-510. 

Glutamine 

𝑞𝐺𝑙𝑛 =
𝜇

𝑌𝑋𝐺𝑙𝑛

+ 𝑞𝐴𝑚𝑚𝑌𝐺𝑙𝑛/𝐴𝑚𝑚   (2.11) 

where, 𝑞𝐺𝑙𝑛  (mmol·cell-1·h-1) is the specific production rate of glutamine, 𝑌𝑋𝐺𝑙𝑛
 (cell·mmol-1) is the 

yield of cell biomass on glutamine, 𝑞𝐴𝑚𝑚 (mmol·cell-1·h-1) is the specific production rate of ammonia 

and 𝑌𝐺𝑙𝑛/𝐴𝑚𝑚 (mmolGln·mmolAmm
-1) is the yield of glutamine from ammonia due to the activity of the 

glutamine synthetase enzyme (Fig. 2.2). 

Lactate 

𝑞𝐿𝑎𝑐 = (
𝜇

𝛶𝑋𝐿𝑎𝑐

− 𝑌𝐿𝑎𝑐/𝐺𝑙𝑐𝑞𝐺𝑙𝑐)
(𝐿𝑎𝑐𝑚𝑎𝑥1−[𝐿𝑎𝑐])

𝐿𝑎𝑐𝑚𝑎𝑥1
+ 𝑚𝑙𝑎𝑐

𝐿𝑎𝑐𝑚𝑎𝑥2−[𝐿𝑎𝑐]

𝐿𝑎𝑐𝑚𝑎𝑥2
    (2.12) 

where, 𝑞𝐿𝑎𝑐 (mmol·cell-1·h-1) is the specific production/consumption rate of lactate, 𝛶𝑋𝐿𝑎𝑐
 (cell·mmol-

1) is the yield of cell biomass on lactate, 𝑌𝐿𝑎𝑐/𝐺𝑙𝑐 (mmolLac·mmolGlc
-1) is the yield of lactate from glucose 

consumption towards the glycolysis pathway and through the synthesis of pyruvate, 𝐿𝑎𝑐𝑚𝑎𝑥1 (mM) 

and 𝐿𝑎𝑐𝑚𝑎𝑥2  (mM) are kinetic constants for the activation of lactate consumption during the 

stationary phase of the culture270 and 𝑚𝑙𝑎𝑐  (mmol·cell-1·h-1) is the maintenance coefficient for the 

participation of lactate in other metabolic pathways of the cell. 

Ammonia 

𝑞𝐴𝑚𝑚 =
𝜇

𝑌𝑋𝐴𝑚𝑚

− 𝑌𝐴𝑚𝑚/𝑈𝑟𝑑 𝑞𝑈𝑟𝑑   (2.13) 

where, 𝑌𝑋𝐴𝑚𝑚
 (cell·mmol-1) is the yield of cell biomass on ammonia, 𝑌𝐴𝑚𝑚/𝑈𝑟𝑑 (mmolAmm·mmolUrd

-1) is 

the yield of ammonia from uridine and 𝑞𝑈𝑟𝑑  (mmol·cell-1·h-1) is the specific consumption rate of 
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uridine. In Eq. 2.13 the term 𝑌𝐴𝑚𝑚/𝑈𝑟𝑑 𝑞𝑈𝑟𝑑 is deduced from the 
𝜇

𝑌𝑋𝐴𝑚𝑚

 as 𝑞𝑈𝑟𝑑 is a consumption rate 

and has a negative value. Thus, the −𝑌𝐴𝑚𝑚/𝑈𝑟𝑑 𝑞𝑈𝑟𝑑 term is always positive, and Eq. 2.13 is practically 

a summation of the two terms. 

Glutamate 

𝑞𝐺𝑙𝑢 = −
𝜇

𝑌𝑋𝐺𝑙𝑢

   (2.14) 

where, 𝑞𝐺𝑙𝑢 (mmol·cell-1·h-1) is the specific uptake rate of glutamate and 𝛶𝑋𝐺𝑙𝑢
 (cell·mmol-1) is the yield 

of cell biomass on glutamate.  

Galactose 

𝑞𝐺𝑎𝑙 = −
𝜇

𝑌𝑋𝐺𝑎𝑙

[𝐺𝑎𝑙]

[𝐺𝑎𝑙]+𝐾𝐺𝑎𝑙
   (2.15) 

where, 𝑌𝑋𝐺𝑎𝑙
 (cell·mmol-1) is the yield of cell biomass on galactose and 𝐾𝐺𝑎𝑙 (mM) is a Monod constant 

for galactose consumption. The 
[𝐺𝑎𝑙]

[𝐺𝑎𝑙]+𝐾𝐺𝑎𝑙
 functions as a regulating factor for the consumption of 

galactose based on the availability of the metabolite in the extracellular environment. 

Uridine 

𝑞𝑈𝑟𝑑 =
𝜇

𝑌𝑋𝑈𝑟𝑑

[𝑈𝑟𝑑]

[𝑈𝑟𝑑]+𝐾𝑈𝑟𝑑
   (2.16) 

where, 𝑌𝑋𝑈𝑟𝑑
 (cell·mmol-1) is the yield of cell biomass on uridine and 𝐾𝑈𝑟𝑑  (mM) is a Monod constant 

for uridine consumption. Similarly to Eq. 2.15, the 
[𝑈𝑟𝑑]

[𝑈𝑟𝑑]+𝐾𝑈𝑟𝑑
 term is a regulating factor for the uptake 

of uridine based on its extracellular concentration. 

Asparagine 

𝑞𝐴𝑠𝑛 = −
𝜇

𝑌𝑋𝐴𝑠𝑛

− 𝑌𝐴𝑠𝑛/𝐴𝑠𝑝𝑞𝐴𝑠𝑝   (2.17) 

where, 𝑞𝐴𝑠𝑛  (mmol·cell-1·h-1) is the specific uptake rate of asparagine, 𝑌𝑋𝐴𝑠𝑛
 (cell·mmol-1) is the yield 

of cell biomass on asparagine, 𝑌𝐴𝑠𝑛/𝐴𝑠𝑝 (mmolAsn·mmolAsp
-1) is the yield of asparagine from aspartate 

and 𝑞𝐴𝑠𝑝  (mmol·cell-1·h-1) is the specific uptake rate of aspartate. Asparagine is synthesized from 

aspartate through the activity of the asparagine synthetase enzyme, encoded by the ASNS gene. 

Aspartate 

𝑞𝐴𝑠𝑝 = −
𝜇

𝑌𝑋𝐴𝑠𝑝

− 𝑌𝐴𝑠𝑝/𝐴𝑠𝑛𝑞𝐴𝑠𝑛   (2.18) 
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where, 𝑌𝑋𝐴𝑠𝑝
 (cell·mmol-1) is the yield of cell biomass on aspartate and 𝑌𝐴𝑠𝑝/𝐴𝑠𝑛  (mmolAsp·mmolAsn

-1) is 

the yield of aspartate from asparagine.  

mAb synthesis 

The module of mAb synthesis includes the material balance of the antibody concentration and the 

respective specific antibody production rate: 

𝑑(𝑉[𝑚𝐴𝑏])

𝑑𝑡
= −𝐹𝑜𝑢𝑡[𝑚𝐴𝑏] + 𝑞𝑚𝐴𝑏𝑉𝑋𝑣    (2.19) 

𝑞𝑚𝐴𝑏 =  𝑌𝑚𝐴𝑏𝑋
𝜇 +  𝑚𝑚𝐴𝑏   (2.20) 

where, [𝑚𝐴𝑏] (mg·L-1) is the concentration of the secreted mAb in the extracellular environment, 

𝑞𝑚𝐴𝑏 (mg·cell-1·h-1) is the specific antibody production rate, 𝑌𝑚𝐴𝑏𝑋
 (mg·cell-1) is the yield of mAb from 

cell growth and 𝑚𝑚𝐴𝑏 (mg·cell-1·h-1) is a non-growth associated term. As shown in the Eq. 2.20, 𝑞𝑚𝐴𝑏 

was considered to be linearly dependent on the specific cell growth rate. Specific production and cell 

growth rates were assumed linearly dependent as the PCC between 𝑞𝑚𝐴𝑏 - 𝜇, that describes the linear 

correlation between two variables, for the experimental data of the control experiment was found 

equal to 0.832.  

2.2.2   NSD submodel 
The NSD submodel describes the intracellular metabolism that leads to the synthesis of the NSDs, that 

act as co-substrates in N-linked glycosylation. The module includes 7 material balances and 16 

reactions. The dependencies between the NSD and the Metabolic submodels are the specific cell 

growth rate (Eq. 2.4), the specific antibody production rate (Eq. 2.20) and the extracellular 

concentrations of glucose, galactose, glutamine and uridine. The NSD synthesis and consumption 

reaction rates are based on simple Monod type saturation kinetics. The nucleotides are assumed to 

be in excess based on our experimental data (Appendix – Fig. A1) and are therefore not included in 

the reaction rates. With the exception of glutamine, the intracellular concentrations of the remaining 

metabolites and amino acids were not calculated in order to avoid unnecessary overparameterization 

and oversimplifications. More specifically, the intracellular concentration of glutamine was calculated 

based on Eq. 2.21 assuming linear dependency between the intra- and extracellular concentrations of 

the amino acid: 

[𝐺𝑙𝑛𝑖𝑛𝑡𝑟𝑎] = 𝑓𝐺𝑙𝑛[𝐺𝑙𝑛]   (2.21) 

where, [𝐺𝑙𝑛𝑖𝑛𝑡𝑟𝑎] (mM) is the intracellular concentration of glutamine and 𝑓𝐺𝑙𝑛  (-) is the secretion 

factor of glutamine to the extracellular environment. 
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Figure 2.4: Simplified NSD metabolic pathway considered in the NSD submodel. The reactions are indicated by solid lines and 

the transport rates by dotted lines. Taken with permission from Kotidis et al.482 

Whilst a detailed network of the NSD synthesis pathway has been reported for mouse hybridoma 

HNF7.1 cells121, a reduced version of the network is considered in this study, as shown in Fig. 2.4. The 

material balances describe the inter-dependencies between the NSD species as shown in Fig. 2.4, and 

the rates are based on the reported mechanisms of the enzymes511-512.  

Eq. 2.22 to 2.32 describe the rates of the reactions shown in Fig. 2.4: 

𝑟1 = 𝑉𝑚𝑎𝑥1
[𝐺𝑙𝑛𝑖𝑛𝑡𝑟𝑎]

𝐾𝑀1𝐺𝑙𝑛
+[𝐺𝑙𝑛𝑖𝑛𝑡𝑟𝑎]

   (2.22) 

𝑟1𝑠𝑖𝑛𝑘
= 𝑉𝑚𝑎𝑥1𝑠𝑖𝑛𝑘

[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

(𝐾𝑀1𝑠𝑖𝑛𝑘
+[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐])(1+

[𝐶𝑀𝑃𝑁𝑒𝑢5𝐴𝑐]

𝐾𝐼1𝑠𝑖𝑛𝑘
)

   (2.23) 

𝑟2 = 𝑉𝑚𝑎𝑥2
[𝐺𝑙𝑐]

𝐾𝑀2𝐺𝑙𝑐
+[𝐺𝑙𝑐]

   (2.24) 

𝑟2𝑏 = 𝑉𝑚𝑎𝑥2𝑏
[𝑈𝐷𝑃𝐺𝑎𝑙]

𝐾𝑀2𝑏𝑈𝐷𝑃𝐺𝑎𝑙
(1+

[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

𝐾𝐼2𝐴
+

[𝑈𝐷𝑃𝐺𝑎𝑙𝑁𝐴𝑐]

𝐾𝐼2𝐵
+

[𝑈𝐷𝑃𝐺𝑙𝑐]

𝐾𝐼2𝐶
+

[𝑈𝐷𝑃𝐺𝑎𝑙]

𝐾𝐼2𝐷
)+[𝑈𝐷𝑃𝐺𝑎𝑙]

   (2.25) 

𝑟3 = 𝑉𝑚𝑎𝑥3
[𝐺𝑙𝑐]

𝐾𝑀3𝐺𝑙𝑐
+[𝐺𝑙𝑐]

   (2.26) 

𝑟4 = 𝑉𝑚𝑎𝑥4
[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

𝐾𝑀4𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐
+[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

   (2.27) 

𝑟5 = 𝑉𝑚𝑎𝑥5
[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

𝐾𝑀5𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐
(1+

[𝐶𝑀𝑃𝑁𝑒𝑢5𝐴𝑐]

𝐾𝐼5
)+[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

   (2.28) 

Golgi

Glc Glc UDPGlc GalGalUDPGal
r2 r6 r6Gal

r2b

FoutUDPGlc FoutUDPGal

Glnintra UDPGlcNAc
r1

UDPGalNAc

r4
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r3

GDPFuc

r7

FoutGDPFuc

FoutGDPMan

FoutUDPGalNAc

FoutUDPGlcNAc

CMPNeu5Ac
r5

FoutCMPNeu5Ac

intracellular

extracellular

UrdUrd

Urd Urd
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r1Urd

r2Urd
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𝑟6 =  𝑉𝑚𝑎𝑥6
[𝑈𝐷𝑃𝐺𝑙𝑐]

𝐾𝑀6𝑈𝐷𝑃𝐺𝑙𝑐
(1+

[𝑈𝐷𝑃𝐺𝑙𝑐𝑁𝐴𝑐]

𝐾𝐼6𝐴
+

[𝑈𝐷𝑃𝐺𝑎𝑙𝑁𝐴𝑐]

𝐾𝐼6𝐵
+

[𝑈𝐷𝑃𝐺𝑎𝑙]

𝐾𝐼6𝐶
)+[𝑈𝐷𝑃𝐺𝑙𝑐]

   (2.29) 

𝑟6𝑠𝑖𝑛𝑘
= 𝑉𝑚𝑎𝑥6𝑠𝑖𝑛𝑘

[𝑈𝐷𝑃𝐺𝑎𝑙]

𝐾6𝑠𝑖𝑛𝑘
(1+

[𝑈𝐷𝑃𝐺𝑙𝑐]

𝐾𝐼6𝑠𝑖𝑛𝑘
)+[𝑈𝐷𝑃𝐺𝑎𝑙]

[𝐺𝑎𝑙]

[𝐺𝑎𝑙]+𝐾𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟
   (2.30) 

  𝑟7 = 𝑉𝑚𝑎𝑥7
[𝐺𝐷𝑃𝑀𝑎𝑛]

(𝐾𝑀7𝐺𝐷𝑃𝑀𝑎𝑛
+[𝐺𝐷𝑃𝑀𝑎𝑛])(1+

[𝐺𝐷𝑃𝐹𝑢𝑐]

𝐾𝐼7
)
 (2.31) 

𝑟7𝑠𝑖𝑛𝑘
= 𝑉𝑚𝑎𝑥7𝑠𝑖𝑛𝑘

[𝐺𝐷𝑃𝐹𝑢𝑐]

𝐾𝑀7𝑠𝑖𝑛𝑘
+[𝐺𝐷𝑃𝐹𝑢𝑐]

   (2.32) 

where, 𝑉𝑚𝑎𝑥, 𝑖  (mmolNSD·Lcell
-1·h-1) is the maximum turnover rate of reaction 𝑖 . Moreover, 𝐾𝑀𝑖𝑁𝑆𝐷

 

(mM) is the saturation constant of the examined NSD in reaction 𝑖, 𝐾𝐼𝑖 (mM) is the inhibition constant 

of reaction 𝑖  and 𝐾𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟  (mM) is a fixed parameter for the activation of the 
[𝐺𝑎𝑙]

[𝐺𝑎𝑙]+𝐾𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟
 

regulation term when galactose is present. 

Moreover, the  𝑟𝑖𝑠𝑖𝑛𝑘
 terms (not shown in Fig. 2.4) demonstrate the fluxes towards pathways that were 

not considered in the designated reduced network and were found to affect the cytosolic levels of 

UDPGlcNAc (𝑟1𝑠𝑖𝑛𝑘
), UDPGal (𝑟6𝑠𝑖𝑛𝑘

) and GDPFuc (𝑟7𝑠𝑖𝑛𝑘
). In addition to the reaction rates described in 

Eq. 2.22 to 2.32, the contribution of galactose and uridine towards the NSDs concentration was 

quantified with separate reaction rates as shown in Eq. 2.33 and 2.34: 

𝑟𝑖𝑈𝑟𝑑
= 𝑉𝑚𝑎𝑥,𝑖𝑈𝑟𝑑

[𝑈𝑟𝑑]

𝐾𝑀,𝑖𝑈𝑟𝑑
+[𝑈𝑟𝑑]

   (2.33) 

𝑟6𝐺𝑎𝑙
= 𝑉𝑚𝑎𝑥6𝐺𝑎𝑙

[𝐺𝑎𝑙]

𝐾𝑀6𝐺𝑎𝑙
(1+

[𝑈𝐷𝑃𝐺𝑎𝑙]

𝐾𝐼6𝐷
+

[𝐺𝑎𝑙]

𝐾𝐼6𝐸
+

[𝑈𝑟𝑑]

𝐾𝐼6𝐹
)+[𝐺𝑎𝑙]

   (2.34) 

where, 𝑟𝑖𝑈𝑟𝑑
 (mmol·Lcell

-1·h-1) is the rate of reaction 𝑖 due to uridine addition, 𝑉𝑚𝑎𝑥,𝑖𝑈𝑟𝑑
(mmol·Lcell

-1·h-1) 

is the maximum turnover rate of reaction 𝑖 and 𝐾𝑀,𝑖𝑈𝑟𝑑
 (mM) are the saturation constants of reaction 

𝑖. As shown in Fig. 2.4, an effect of uridine addition on the intracellular levels of the NSDs is observed, 

the synthesis of which requires UTP as a co-substrate: UDPGlcNAc (𝑟1𝑈𝑟𝑑
), UDPGlc (𝑟2𝑈𝑟𝑑

), UDPGalNAc 

(𝑟4𝑈𝑟𝑑
) and UDPGal (𝑟6𝑈𝑟𝑑

). In a similar manner, galactose addition enhances the synthesis of UDPGal, 

as shown in Eq. 2.34 where, 𝑟6𝐺𝑎𝑙
 (mmol·Lcell

-1·h-1) is the reaction rate, 𝑉𝑚𝑎𝑥6𝐺𝑎𝑙
 (mmol·Lcell

-1·h-1) is the 

maximum turnover rate of 𝑟6𝐺𝑎𝑙
, 𝐾𝑀6𝐺𝑎𝑙

 (mM) is a saturation constant and 𝐾𝐼6𝐷  (mM), 𝐾𝐼6𝐸  (mM) 

and 𝐾𝐼6𝐹 (mM) are the inhibition constants of UDPGal, galactose and uridine, respectively. 

The material balance of each NSD is based on Eq. 2.35: 

𝑑([𝑁𝑆𝐷])

𝑑𝑡
= ∑ 𝑣𝑖𝑟𝑖𝑖 − 𝐹𝑜𝑢𝑡𝑁𝑆𝐷

   (2.35) 
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where, [𝑁𝑆𝐷]  (mM) are the intracellular NSD concentrations for UDPGal, UDPGlc, UDPGalNAc, 

UDPGlcNAc, GDPFuc, GDPMan and CMPNeu5Ac. Moreover, 𝑣𝑖 (-) is the stoichiometric coefficient for 

reaction 𝑖 for the examined NSD that is equal to -1 if the NSD is consumed, equal to 0 if the NSD is not 

participating in the reaction and equal to +1 if the NSD is a product of the reaction. 𝐹𝑜𝑢𝑡𝑁𝑆𝐷
 (mmolNSD·L-

1·h-1) represents the flux of each cytosolic NSD towards the Golgi apparatus where N-linked 

glycosylation occurs. The flux describes the transport rate of the NSDs that is necessary for the 

glycosylation of host cell proteins (HCPs), glycolipids and the recombinant IgG, as shown in Eq. 2.36: 

𝐹𝑜𝑢𝑡𝑁𝑆𝐷  =
[𝑁𝑆𝐷]

𝐾𝑇𝑃𝑁𝑆𝐷
+[𝑁𝑆𝐷]

(
𝑁𝐻𝐶𝑃/𝐿𝑖𝑝𝑖𝑑𝑠𝑁𝑆𝐷

𝜇

𝑉𝑐𝑒𝑙𝑙
+   

𝑁𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟𝑁𝑆𝐷
𝑞𝑚𝐴𝑏

𝑉𝑐𝑒𝑙𝑙
  +  𝑟𝑁𝑆𝐷𝑘

𝑚𝐴𝑏,𝑔𝑙𝑦𝑐)   (2.36) 

where, 𝐾𝑇𝑃𝑁𝑆𝐷
 (mM) is a saturation constant for the examined NSD transport and 𝑉𝑐𝑒𝑙𝑙  (L) is the 

cellular volume. The first term of the summation of Eq. 2.36, represents the flux of the examined NSD 

towards the O- and N-linked glycosylation of HCPs and the synthesis of glycolipids. More specifically, 

𝑁𝐻𝐶𝑃/𝐿𝑖𝑝𝑖𝑑𝑠𝑁𝑆𝐷
 (mmolNSD·cell-1) is the stoichiometric coefficient of NSD consumption for HCPs and 

lipids glycosylation, as described in del Val et al.513 The second term describes the demands of each 

NSD for the synthesis of the oligosaccharide precursor molecule (Glc3Man9GlcNAc2) for the antibody 

glycosylation, through the 𝑁𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟𝑁𝑆𝐷
 (mmolNSD·cell-1) stoichiometric coefficient. Finally, 𝑟𝑁𝑆𝐷𝑘

𝑚𝐴𝑏,𝑔𝑙𝑦𝑐 

(mmolNSD·L-1·h-1) is the uptake rate of the 𝑘𝑡ℎ  NSD towards mAb glycosylation and is calculated 

through Eq. 2.37: 

𝑟𝑁𝑆𝐷𝑘

𝑚𝐴𝑏,𝑔𝑙𝑦𝑐
= (

𝑉𝐺𝑜𝑙𝑔𝑖

𝑉𝑐𝑒𝑙𝑙
) ∫ ∑ 𝜈𝑘,𝑗 ∙ 𝑟𝐺,𝑗(𝑧)𝑁.𝑅.

𝑗=1 𝑑𝑧
𝑧=1

𝑧=0
   (2.37) 

where, 𝑉𝐺𝑜𝑙𝑔𝑖 (L) is the volume of the Golgi apparatus, 𝜈𝑘,𝑗 (mmolNSD·mmolglycan
 -1) is the stoichiometric 

coefficient of the 𝑘𝑡ℎ NSD in the  𝑗𝑡ℎ glycosylation reaction, 𝑟𝐺,𝑗(𝑧) (mmolglycan·L-1·h-1) is the rate of the 

𝑗𝑡ℎ  glycosylation reaction along the normalized length of the Golgi apparatus (𝑧) that is calculated in 

the Glycomodel.  

However, the inclusion of Eq. 2.37 in the calculation of 𝐹𝑜𝑢𝑡𝑁𝑆𝐷   requires the convergence between 

the  𝐹𝑜𝑢𝑡𝑁𝑆𝐷 
 and the integral of Eq. 2.37 over the normalized Golgi length, and therefore substantially 

increases the simulation time (~8 min). For that reason, a simplified version of Eq. 2.37 is proposed in 

order to reduce the simulation time (~1.5 min) while maintaining the mechanistic connection between 

the NSD submodel and the Glycomodel. In the simplified version, the flux of the NSDs towards mAb 

glycosylation is assumed to be a function of the glycans concentration in the end of the Golgi 

apparatus ( 𝑧 =1), prior to their secretion to the cytosolic and subsequently to the extracellular 

environment. The validity of the assumption is based on the substantially lower residence time of the 
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glycoprotein in the Golgi apparatus (22 min)472, 478, compared to the time scale within which changes 

in the NSD concentration are experimentally observed. The simplified function is shown in Eq. 2.38: 

𝑟𝑁𝑆𝐷𝑘

𝑚𝐴𝑏,𝑔𝑙𝑦𝑐 =  𝑉𝑒𝑙𝐺𝑜𝑙𝑔𝑖 (
𝑉𝐺𝑜𝑙𝑔𝑖

𝑉𝑐𝑒𝑙𝑙
) ∑ 𝜈𝑘,𝑖 ∙ [𝑂𝑆𝑖](1)𝑁.𝑂𝑆

𝑖=1    (2.38) 

where, 𝑉𝑒𝑙𝐺𝑜𝑙𝑔𝑖 (Golgi length·min-1) is the linear velocity with which the glycoprotein molecules travel 

through the Golgi apparatus, 𝜈𝑘,𝑖  (mmolNSD·mmolglycan
-1) is the stoichiometric coefficient of the 𝑘𝑡ℎ 

NSD required for the synthesis of the 𝑖𝑡ℎ  oligosaccharide and [ 𝑂𝑆𝑖](1)  (mmolglycan ∙ L-1) is the 

concentration of the 𝑖𝑡ℎ  oligosaccharide in the end of the Golgi apparatus (𝑧=1), as calculated by the 

Glycomodel. Finally, 𝑁. 𝑂𝑆 (-) is the number of oligosaccharides considered in the model, which in the 

current model is 77. 

2.2.3   Glycomodel 
The Glycomodel, adapted from del Val et al.478, assumes that protein trafficking in the Golgi apparatus 

occurs through the cisternal maturation model. The reaction network of the model includes 95 

reactions and 77 oligosaccharides. Therefore, the Golgi apparatus is represented as a single PFR, 

where the concentration profile of mannosidases and glycosyltransferases follows a Gaussian 

distribution. The NSD concentrations, as calculated in the NSD submodel, and the specific antibody 

production rate, as calculated in the Metabolism submodel, are the inputs in the Glycomodel that is 

employed for the estimation of the glycans distribution in the secreted mAb. More specifically, the 

Glycomodel assumes that the intra-Golgi concentration of the NSDs is 20 times greater than the 

concentration in the cytosol473, 514. The volume of the Golgi apparatus is assumed to remain constant 

during the cell culturing process and the linear velocity of protein trafficking within the Golgi apparatus 

is considered a function of the specific antibody production rate486, 515. Eq. 2.39 presents the material 

balance of the oligosaccharides in the Golgi, defined by partial differential equations due to the nature 

of the PFR model: 

𝜕[𝑂𝑆𝑖](𝑡,𝑧)

𝜕𝑡
= −𝑉𝑒𝑙𝐺𝑜𝑙𝑔𝑖

𝜕[𝑂𝑆𝑖](𝑡,𝑧)

𝜕𝑧
− ∑ 𝜈𝑖,𝑗 ∙ 𝑟𝐺,𝑗

𝑁.𝑂𝑆
𝑖=1    (2.39) 

where, 𝜈𝑖,𝑗  (-) is the stoichiometric coefficient of the 𝑖𝑡ℎ  oligosaccharide in the 𝑗𝑡ℎ  reaction of 

glycosylation. The variable linear velocity of the Golgi is further defined by Eq. 2.40: 

𝑉𝑒𝑙𝐺𝑜𝑙𝑔𝑖 =
𝑞𝑚𝐴𝑏 𝐺𝑙𝑦𝑐𝑜𝑠𝑖𝑡𝑒𝑠

𝑀𝑊𝑚𝐴𝑏  𝑉𝐺𝑜𝑙𝑔𝑖 [𝑂𝑆1
𝑧=0]

   (2.40) 

where, 𝑀𝑊𝑚𝐴𝑏  (Da) is the molecular weight of the IgG that is assumed to be equal to 150kDa, 

𝐺𝑙𝑦𝑐𝑜𝑠𝑖𝑡𝑒𝑠  (μmolglycan·μmolmAb
 -1) is the number of N-linked glycosylation sites available in the 

glycoprotein, which for the examined IgG is equal to 2, and [𝑂𝑆1
𝑧=0] (μM) is the concentration of the 

initial glycoform (Man9) in the entering point of the Golgi apparatus, after transferring from the ER. 
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The [𝑂𝑆1
𝑧=0] is assumed to remain constant throughout the culturing process and for its calculation 

the Eq. 2.40 was appropriately rearranged. For [𝑂𝑆1
𝑧=0] calculation, 𝑞𝑚𝐴𝑏 was set equal to the highest 

experimentally observed value and 𝑉𝑒𝑙𝐺𝑜𝑙𝑔𝑖 was set equal to 0.045 Golgi length·min-1, calculated from 

the reverse average residence time in the Golgi (22 min), as mentioned earlier. Therefore, [𝑂𝑆1
𝑧=0] 

was calculated as 94 μΜ. The distribution of the enzymes in the Golgi apparatus is calculated from Eq. 

2.41: 

[𝐸𝑛𝑧𝑘](𝑧) =  𝐸𝑛𝑧𝑘
𝑚𝑎𝑥𝑒

−
1

2
(

𝑧− 𝑧𝑘
𝑚𝑎𝑥

𝑤𝑘
)

2

    (2.41) 

where, [𝐸𝑛𝑧𝑘](𝑧) (μM) is the concentration of the 𝑘𝑡ℎ enzyme in the Golgi apparatus, 𝐸𝑛𝑧𝑘
𝑚𝑎𝑥  (μΜ) 

is the maximum concentration of the 𝑘𝑡ℎ enzyme in the Golgi apparatus, 𝑧𝑘
𝑚𝑎𝑥  (Golgi length) is the 

normalized Golgi length at which the 𝐸𝑛𝑧𝑘
𝑚𝑎𝑥  is observed and 𝑤𝑘 (Golgi length) is the width of the 

Gaussian distribution of the 𝑘𝑡ℎ enzyme.  

Eq. 2.42 is an example of the reaction rates kinetics (sequential-order Bi-Bi) used in the Glycomodel as 

reported in del Val et al.478 

𝑟𝐺,𝑗(𝑡, 𝑧) =  
𝑘𝑓,𝑧 [𝐸𝑛𝑧𝑧] [𝑁𝑆𝐷𝐺,𝑘][𝑂𝑆𝑖]

𝐾𝑑,𝑖𝐾𝑑,𝑘(1+
[𝑂𝑆𝑖]

𝐾𝑑,𝑖

[𝑁𝑆𝐷𝐺,𝑘]

𝐾𝑑,𝑘
+

[𝑁𝑆𝐷𝐺,𝑘]

𝐾𝑑,𝑘
+ 

[𝑁𝑆𝐷𝐺,𝑘]

𝐾𝑑,𝑘
∑

[𝑂𝑆𝑛]

𝐾𝑑,𝑛

𝑛=𝑁𝑆
𝑛=1 )

   (2.42) 

where, 𝑘𝑓,𝑧  (min-1) is the rate-limiting turnover rate of the reaction as defined by the  𝑧𝑡ℎ  enzyme 

involved in the 𝑗𝑡ℎ  reaction, [𝑁𝑆𝐷𝐺,𝑗] (μM) is the intra-Golgi concentration of the 𝑘𝑡ℎ NSD utilized in 

the 𝑗𝑡ℎ  reaction, 𝐾𝑑,𝑖 (μΜ) is the dissociation constant of the complex between the 𝑖𝑡ℎ  substrate and 

the enzyme, [𝑂𝑆𝑛]  (μΜ) is any plausible alternative substrate of the enzyme utilized in the 𝑗𝑡ℎ  

reaction, 𝐾𝑑,𝑛 (μΜ) is the dissociation constant of the complex between the [𝑂𝑆𝑛] substrate and the 

enzyme, 𝐾𝑑,𝑘 (μΜ) is the dissociation constant of the complex between the 𝑘𝑡ℎ NSD and the enzyme, 

𝑁𝑆 (-) is the number of substrates in the reaction network and 𝑛 (-) represents the different substrates 

of the reaction network and can take all values apart from 𝑖.  

2.2.4   Parameter estimation  
Metabolism and NSD submodels 

A parameter estimation (PE) process, common for both the Metabolism and NSD submodels, was 

utilized. The two submodels combined include 102 unknown parameters, 17 of which were assigned 

to fixed values according to literature (Appendix-Table A1). The remaining 85 parameters were 

estimated using the Parameter Estimation (now Model Validation) entity in gPROMS v.5.0.1. PE was 

based on the minimization of the Maximum Likelihood solver objective function, as shown in Eq. 2.1. 
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For that reason, the 85 parameters were estimated by fitting the model equations to the available 

experimental data (~900 data points in total). As a first step and in order to achieve reasonable 

confidence intervals for the estimated parameters, the parameters that were not involved in the 

galactose and uridine metabolism were estimated based solely on the control experiment. Using the 

estimated values for the aforementioned parameters, the parameters that were part of equations 

relevant to galactose and uridine metabolism were estimated based on the feeding experiments (10G, 

10G5U, 10G20U and 50G5U). The variance model necessary for the PE, was calculated based on the 

standard deviation of each experimental measurement used in the estimation of the unknown 

parameters. 

Regarding the reaction rates, both the maximum turnover rates (𝑉𝑚𝑎𝑥) and the Monod saturation 

constants (𝐾𝑚) of each reaction were estimated during PE. Therefore, the problem was structurally 

unidentifiable due to the linear dependence between the reaction rate and the substrate 

concentration, when the latter is below the saturation point. As the linear dependence only allows for 

an estimation of the ratio between the 𝑉𝑚𝑎𝑥 and 𝐾𝑚 and in an effort to estimate more realistic values 

for the parameters, the majority of the 𝐾𝑚 values were hypothesized to not differ more than one 

order of magnitude from the experimentally observed range of the substrate concentration. However, 

the estimated values should not be regarded as an accurate representation of the physical parameters 

due to the aforementioned problems of structural and numerical identifiability. 

Glycomodel 

As a final step, 18 unknown parameters of the Glycomodel were estimated by adapting a strategy 

previously presented in del Val et al.486 The objective function in all estimations was the minimization 

of the enzyme total concentration. The parameters of the enzyme distributions were estimated only 

based on the control experiment, while the feeding experiments were used for the estimation of the 

𝐾𝑑,𝑖 and 𝐾𝑑,𝑘 parameters. The parameterization strategy included the following steps: 

• Step 1: Calculation of the secreted mAb fraction for each glycoform and for each time interval, 

as shown in Eq. 2.43. Eq. 2.43 was taken from Fan et al.289: 

𝑓𝑖
𝛥𝑡 =  

([𝑂𝑆𝑖]𝑡𝑛+1
−  [𝑂𝑆𝑖]𝑡𝑛)

([𝑚𝐴𝑏]𝑡𝑛+1−  [𝑚𝐴𝑏]𝑡𝑛)
   (2.43) 

• Step 2: The parameters of ManI distribution (𝐸𝑛𝑧𝑘
𝑚𝑎𝑥and 𝑤𝑘) were estimated by knocking-

out all the downstream enzymes and assigning the distribution to the high-mannose glycans 

(Man9 – Man5) based on the expected experimental profile. For example and for the IgG 

examined in this study, no high-mannose glycans apart from Man5 were experimentally 
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observed in the wild type. Therefore, a knockout of all the enzymes downstream the ManI 

would result in a glycoprofile with 100% Man5. 

• Step 3: The parameters of GnTI, GnTII, ManII and a6FucT distribution were estimated while 

the parameters of ManI were fixed to the estimated values from Step 2. The b4GalT enzyme 

remained knocked out. Similarly to step 1, the distribution of the galactosylated substrates 

was redirected to the respective fucosylated and non-fucosylated substrates. 

• Step 4: The b4GalT distribution parameters were estimated while the parameters of the rest 

of the enzymes were fixed to the values calculated in Step 2 and Step 3. The estimation of the 

b4GalT parameters was based on achieving the experimentally observed Galactosylation 

Index (GI) as described in Eq. 2.44: 

 

𝐺𝐼 =  
0.5∗𝛥[𝑚𝑜𝑛𝑜𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑂𝑆]+1∗𝛥[𝑑𝑖𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑂𝑆]

𝛥[𝑚𝐴𝑏]
   (2.44) 

where, 𝛥[𝑚𝑜𝑛𝑜𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑂𝑆] (mg·L-1) and 𝛥[𝑑𝑖𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑂𝑆] (mg·L-1) are the 

mAb glycoforms bearing one and two galactose molecules, respectively, that are secreted 

during the examined interval and 𝛥[𝑚𝐴𝑏]  (mg·L-1) is the total secreted antibody 

concentration during the same interval. 

• Step 5: Finally, the data points from the interval of each experiment that presented the highest 

𝑞𝑚𝐴𝑏  were employed for the estimation of the six 𝐾𝑑,𝑖  and 𝐾𝑑,𝑘  values. The estimated 

parameters included: two 𝐾𝑑,𝑖  and two 𝐾𝑑,𝑘  values for b4GalT and one 𝐾𝑑,𝑖  parameter for 

a6FucT and GnTI, respectively. The aforementioned dissociation constants were chosen due 

to the variable levels of galactosylation and the high accumulation of UDPGal in the 

experimental data, the very low concentrations of Man5 and the very high fucosylation levels 

of the IgG. 

Overall, the estimated parameters included the sets of 𝐸𝑛𝑧𝑘
𝑚𝑎𝑥 and 𝑤𝑘 for each of the considered 

enzymes: ManI, ManII, GnTI, GnTII, a6FucT and b4GalT. Six 𝐾𝑑,𝑖  and 𝐾𝑑,𝑘  parameters were also 

estimated as described in Step 5. The remaining 𝐾𝑑,𝑖 and 𝐾𝑑,𝑘 parameters and the 𝑧𝑘
𝑚𝑎𝑥  values were 

fixed to their nominal values478. The glycosyltransferases: GnTIII, GnTIV, GnTV, iGnT and a3SiaT were 

not considered in the estimation (GnTIII and a3SiaT) or the model (GnTIV, GnTV and iGnT) as no 

relevant glycans were observed. For the tuning of enzymes distribution parameters, the Optimisations 

entity of gPROMS v.5.0.1 was utilized, while a Parameter Estimation (now Model Validation) entity 

was utilized for the estimation of the 𝐾𝑑,𝑖 and 𝐾𝑑,𝑘 parameters. 
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2.3   Results 
This section includes the results of model fitting to the experimental data used for parameter 

estimation in all three modules, and also showcases the predictive capabilities of the model against 

an independent feeding experiment that was not used during parameter estimation. In order to 

enable an easier understanding of the results, the model fitting of each experiment was examined 

separately, and the results are sequentially presented. The conditions of the independent experiment 

were determined by dynamic model-based optimisation, where mAb galactosylation was set as the 

objective function, and the concentration of galactose and uridine on feeding days 2, 4, 6, 8 and 10 

was allowed to vary (decision variables).  

2.3.1   Evaluation of Metabolism submodel fitting 
A number of selected estimated parameters for the Metabolism submodel are presented in Table 2.2. 

The rest of estimated submodel parameters can be found in the Appendix-Table A1. 

Table 2.2: Selected estimated parameters for the Metabolism submodel. Taken with permission from Kotidis et al.482. 

Estimated parameter Value Units 95% Confidence 

Interval 

μmax 6.50×10-2 h-1 7.44×10-4 

μdeath,max 1.50×10-2 h-1 2.56×10-3 

KGlc 14.04 mM 5.05×10-1 

KAsn 2.62 mM 7.18×10-2 

KIAmm 3.17 mM 2.49×10-1 

KILac 1×103 mM N/A 

KIUrd 41.09 mM 2.42 

Kd,Amm 14.28 mM 3.00 

Kd,Urd 27.86 mM 3.71 

YmAb,X 3.39 (pg·cell-1)  3.21×10-1 

mmAb 4.10×10-1 (pg·cell-1·h-1) 6.57×10-3 

 

Control experiment 

As presented in Fig. 2.5, the model achieves a very good fitting to the measured variables. Additionally, 

the high CCC, PCC and R2 values shown in Table 2.3 indicate that the simulation results are very close 

to the experimentally measured values. 
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Table 2.3: Concordance correlation coefficients, Pearson correlation coefficients and R2 for the evaluation of the agreement 

between experimental measurements and model results for viable cell density and extracellular monoclonal antibody 

concentration. Adapted from Kotidis et al.482. 

Experiment CCCXv CCCmAb PCCXv PCCmAb R2
Xv R2

mAb 

Control 0.986 0.998 0.990 0.999 0.992 0.999 

10G 0.892 0.958 0.971 0.970 0.979 0.968 

10G5U 0.960 0.990 0.978 0.994 0.984 0.995 

10G20U 0.741 0.974 0.946 0.988 0.970 0.988 

50G5U 0.971 0.986 0.975 0.991 0.980 0.992 

 

Viable cell density is accurately described throughout the cell culturing period, indicating a correct 

identification of the limiting and inhibiting substrates. Moreover, the experimentally measured mAb 

concentration is closely matched from the simulation results as suggested both by Fig. 2.5 and the 

high CCCmAb and R2
mAb values that are particularly close to 1 (Table 2.3). Glucose follows a similar trend, 

with only the points at 48h and 288h slightly deviating from the experimental measurements. 

Glutamine, glutamate and ammonia are also closely described by the model, with a few points 

presenting slight deviation from the experimental measurements towards the end of the cell culture. 

Importantly, the model captures the metabolic shift from the production to the consumption phase 

of lactate. Whilst the model closely monitors the lactate concentration, the point of metabolic shift is 

simulated earlier when compared to the experimental measurements, that additionally present a 

steeper decrease in lactate concentration. 
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Figure 2.5: Metabolism submodel fitting to the experimental data for the control experiment following model 

parameterization. Galactose and uridine are not reported as they were not included in the feeding of the control experiment. 

The red lines show the model simulation results while the black squares present the experimental data. Taken with 

permission from Kotidis et al.482. 

10G experiment 

The 10G experiment includes the addition of 10 mM galactose on days 4 and 8 of the cell culture. As 

discussed in section 2.2.1 and shown in Fig. 2.3, galactose can replace glucose towards the synthesis 

of glucose-6-phosphate in the glycolysis pathway and therefore can result in a reduced glucose uptake 

rate. Considering the aforementioned relationship between glucose and galactose, the model 

accurately describes the halted consumption rate of glucose while closely describing the dynamic 

profile of galactose, as shown in Fig. 2.6. The capture of the reduction of glucose uptake is attributed 

to Eq. 2.9 and 2.10 as discussed earlier in section 2.2.1. Whilst viable cell density and mAb 

concentration are closely monitored, the model deviates from the experimental results towards the 

end of the culture, indicating that the effect of the second galactose feeding (day 8) caused cell toxicity 

that was not expected and captured by the model. Viable cell density accounts for a CCC of 0.892 and 

R2 of 0.979 (Table 2.3) that are considerably lower when compared to the control experiment. 
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Similarly, the CCC and R2 values for mAb concentration are 0.958 and 0.968, respectively, indicating a 

good fitting but less accurate than the fitting of the control experiment.  

In a similar trend, the model-simulated glutamine profile shows a substantial deviation from the 

experimental data towards the death phase of the cell culture. In the current modelling configuration, 

glutamine is assumed to be produced only from the activity of the GS enzyme and the utilization of 

ammonia and glutamate. The ammonia and glutamate levels of the 10G experiment were very close 

to the control experiment, indicating that glutamine was produced through a secondary pathway not 

considered in the model. On the other hand, model simulation of lactate, glutamate and ammonia 

present good fitting with the experimental data throughout the cell culture, as shown in Fig. 2.6. 

 

Figure 2.6: Metabolism submodel fitting to the experimental data for the 10G experiment following model parameterization. 

Uridine is not reported as it was not included in the feeding of the 10G experiment. The red lines show the model simulation 

results while the black squares present the experimental data. Taken with permission from Kotidis et al.482. 

10G5U experiment 

The 10G5U experiment includes the feeding of 10mM galactose and 5mM uridine on days 4 and 8 of 

the cell culture. Whilst the inclusion of uridine in the feed is expected to increase the galactosylation 
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levels of the produced mAb, it is also expected to halt cell growth and productivity. The reduction of 

viable cell density and mAb concentration is closely matched by the model simulation, as shown in 

Fig. 2.7, and the CCC and R2 values of 0.960 and 0.984 for viable cell density and 0.990 and 0.995 for 

mAb concentration, respectively, as shown in Table 2.3. Glucose concentration is well described for 

the first 192h of the culture, and then is progressively overpredicted until the end of the culturing 

period. The 10G5U experiment showed an unexpectedly higher consumption (both in terms of 

concentration levels and uptake rates) of glucose when compared to the 10G experiment, in which 

the same amount of galactose was added. Such an effect of uridine addition on glucose uptake is not 

included in the model. On the other hand, galactose consumption was similar between the two 

experiments and is well captured by the model. Uridine concentration is also well monitored apart 

from the measurements at 168h and 192h. Glutamine, lactate, glutamate and ammonia are closely 

matched from the model simulation and indicate a good overall fitting of the model. 

 

Figure 2.7: Metabolism submodel fitting to the experimental data for the 10G5U experiment following model 

parameterization. The red lines show the model simulation results while the black squares present the experimental data. 

Taken with permission from Kotidis et al.482. 
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10G20U experiment 

The 10G20U experiment includes the addition of 10 mM galactose and 20 mM uridine on day 4 of the 

culture. As the viability of the cell culture dropped below the 60% threshold at 192h, the culture was 

terminated and the feeding of galactose and uridine of day 8 did not occur. The increased 

concentration of uridine addition results in reduced cell growth and induced cell toxicity. Whilst the 

model correctly captures the effect of the elevated uridine concentration on viable cell density, the 

simulated values of viable cell density are considerably overpredicted at 168h and 192h of the cell 

culture period. The CCC and R2 values (Table 2.3) for viable cell density, 0.741 and 0.970, respectively, 

confirm that the model overestimates the viable cell density when compared to the experimental 

data. On the other hand, the CCC and R2 values of 0.974 and 0.988 (Table 2.3) confirm the trend 

presented in Fig. 2.8 indicating that the simulated mAb concentration shows only marginal differences 

from the experimentally measured values. Glucose, lactate, glutamate and ammonia are accurately 

matched by the model, with only slight deviations observed in the cell death phase. Glutamine was 

slightly underestimated, while both galactose and uridine showed a very good matching with the 

experimental data, with the exception of the measurement at 144h. 
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Figure 2.8: Metabolism submodel fitting to the experimental data for the 10G20U experiment following model 

parameterization. The red lines show the model simulation results while the black squares present the experimental data. 

Taken with permission from Kotidis et al.482. 

50G5U experiment 

The 50G5U experiment includes the addition of 50 mM galactose and 5 mM uridine on days 4 and 8 

of the culture. As shown in Fig. 2.9 and Table 2.3, the model accurately simulates the dynamic profile 

of both viable cell density and mAb concentration. The CCC and R2 values for viable cell density are 

0.971 and 0.980, respectively, and for mAb concentration are 0.986 and 0.992, respectively, 

confirming the trend observed in Fig. 2.9. Moreover, the model accurately matches the dynamic 

profiles of glucose, glutamine, lactate, glutamate and ammonia, with only a slight deviation observed 

in the glutamate concentration. Galactose and uridine concentrations were also, overall, closely 

described by the model simulations. 
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Figure 2.9: Metabolism submodel fitting to the experimental data for the 50G5U experiment following model 

parameterization. The red lines show the model simulation results while the black squares present the experimental data. 

Taken with permission from Kotidis et al.482. 

2.3.2   Evaluation of NSD submodel fitting 
The aim of galactose and uridine addition is the build-up of the UDPGal intracellular concentration 

that can eventually lead to elevated mAb galactosylation levels. However, the inclusion of uridine in 

the feed also leads to increased intracellular UTP concentrations (Appendix-Fig. A1) and consequently 

to higher levels of all the UDP-sugars. For that reason, the main focus of the NSD submodel 

parameterization is placed on the fitting of primarily the UDPGal and secondarily the UDPGalNAc, 

UDPGlcNAc and UDPGlc profiles that are directly dependent to changes in the feed. GDPMan, GDPFuc 

and CMPNeu5Ac are not significantly affected from the galactose and uridine addition and are 

therefore less relevant to the performance of the model in the current context. However, as the latter 

NSDs are significant for the first steps of N-linked glycosylation (GDPMan and GDPFuc) and for HCPs 

or more complex recombinant proteins glycosylation (CMPNeu5Ac), a good fitting of the model for 

the respective concentration profiles was ensured (Fig. 2.10-2.14) in order to broaden the applicability 

of the model. Selected estimated parameters (maximum turnover rates) for the NSD submodel are 
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presented in Table 2.4. The rest of the estimated submodel parameters can be found in the Appendix-

Table A1. 

Table 2.4: Maximum turnover rates as estimated for the NSD submodel. Taken with permission from Kotidis et al.482. 

Estimated parameter Value Units 95% Confidence 

Interval 

Vmax1 9.22×10-1 (mmolNSD·Lcell
-1·h-1) 1.24×10-2 

Vmax2 1.70×10-2 (mmolNSD·Lcell
-1·h-1) 9.78×10-4 

Vmax2b 59.48 (mmolNSD·Lcell
-1·h-1) 6.10 

Vmax3 5.50×10-2 (mmolNSD·Lcell
-1·h-1) 2.60×10-3 

Vmax4 2.65×10-2 (mmolNSD·Lcell
-1·h-1) 2.12×10-3 

Vmax5 1×10-4 (mmolNSD·Lcell
-1·h-1) 7.80×10-6 

Vmax6 5.13 (mmolNSD·Lcell
-1·h-1) 1.95×10-1 

Vmax7 4.60 (mmolNSD·Lcell
-1·h-1) 4.78×10-1 

 

Control Experiment 

As described in section 2.2.2 the model parameters that were not related to the galactose and uridine 

addition were trained on the control experiment. Therefore, the fitting of the model to the control 

experimental data sets the basis for the model performance. 

Table 2.5: Concordance correlation coefficients, Pearson correlation coefficients and R2 values for the evaluation of the 

agreement between experimental measurements and model results for the intracellular concentration of UDPGal and 

UDPGlcNAc. Adapted from Kotidis et al.482. 

Experiment CCCUDPGal CCCUDPGlcNAc PCCUDPGal PCCUDPGlcNAc R2
UDPGal R2

UDPGlcNAc 

Control 0.965 0.973 0.971 0.985 0.998 0.968 

10G 0.897 0.919 0.930 0.983 0.963 0.922 

10G5U 0.942 0.968 0.949 0.982 0.961 0.976 

10G20U 0.982 0.941 0.989 0.965 0.998 0.952 

50G5U 0.995 0.990 0.997 0.992 0.990 0.985 

 

As shown in Table 2.5, the CCC and R2 values for UDPGal and UDPGlcNAc are high enough to indicate 

a good fitting of the model. Indeed, the model achieves to closely describe all the intracellular profiles 

of the examined NSDs, as shown in Fig. 2.10. Whilst the model successfully tracks the steep increase 

of UDPGalNAc and UDPGlcNAc from 168h and until the harvest of the cell culture, the simulation 
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results present a significant deviation from the experimental data of the UDPGlcNAc up to the 120h 

time point. The discrepancy can be attributed to the imbalance between the synthesis and uptake 

reactions of UDPGlcNAc considered in the reduced NSD synthesis network, as presented in Fig. 2.4. As 

the fitting of the control experiment sets the basis for the fitting of feeding experiments, this 

phenomenon is encountered in the feeding experiments as well and its discussion will not be 

repeated. 

 

Figure 2.10: NSD submodel fitting to the experimental data for the control experiment following model parameterization. 

The red lines show the model simulation results while the black squares present the experimental data. Taken with 

permission from Kotidis et al.482. 

10G experiment 

The inclusion of 10 mM galactose in the feed on days 4 and 8 of the culture results in the accumulation 

of UDPGal in the intracellular environment, as shown in Fig. 2.11. The CCC and R2 values for UDPGal 

are 0.897 and 0.963, respectively, while the values for UDPGlcNAc are 0.919 and 0.922, respectively 

(Table 2.5). As presented in Fig. 2.11, the model accurately describes all the NSD dynamic profiles. 

Notably, the model is found to overestimate the concentration of UDPGlc after the 144h time point 
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of the cell culture period, possibly due to the elevated levels of UDPGal that acts as a substrate in the 

r2b epimerase reaction, catalysed by the UDP-glucose-4-epimerase enzyme (GALE gene). Within the 

modelling framework, the accumulation of UDPGal is expected to increase the flux of the reaction 

towards the synthesis of UDPGlc, a phenomenon that is not observed in the experimental data.  

 

Figure 2.11: NSD submodel fitting to the experimental data for the 10G experiment following model parameterization. The 

red lines show the model simulation results while the black squares present the experimental data. Taken with permission 

from Kotidis et al.482. 

10G5U experiment 

The addition of 10 mM galactose and 5 mM uridine is expected to increase the levels of all the UDP-

sugars. As shown in Fig. 2.12, the model correctly captures the trend of increasing intracellular levels 

for all UDP-sugars. More specifically, the CCC and R2 values for UDPGal are 0.942 and 0.961 (Table 

2.5), respectively, showcasing the high levels of accuracy achieved through model fitting, with the 

exception of the measurement at 288h in which the model underestimates the UDPGal concentration. 

Moreover, the CCC and R2 values for UDPGlcNAc are 0.968 and 0.976 (Table 2.5), respectively, 

supporting the close description of the UDPGlcNAc profile, as shown in Fig. 2.12. The model shows 

marginal differences from the experimental data, with the exception of UDPGlc that is underestimated 
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throughout the cell culture. The underestimation of the UDPGlc profile was also observed in the 

simulation of the remaining feeding experiments that included uridine addition, and its discussion is 

therefore not repeated. Whilst UDPGlc is an important NSD for the synthesis of the N-linked 

oligosaccharide precursor (Glc3Man9GlcNAc2), glucose is trimmed from the precursor oligosaccharide 

immediately after its attachment to the glycoprotein backbone and is not added to the forming glycan 

in any of the steps of N-linked glycosylation that occur in the Golgi apparatus.  

 

Figure 2.12: NSD submodel fitting to the experimental data for the 10G5U experiment following model parameterization. 

The red lines show the model simulation results while the black squares present the experimental data. Taken with 

permission from Kotidis et al.482. 

10G20U experiment 

The inclusion of 10 mM galactose and 20 mM uridine results to even higher, when compared to the 

10G5U experiment, UDP-sugar levels due to the increased uridine concentration in the feed. The 

model manages to accurately capture (Fig. 2.13) the effect of the elevated uridine levels on the UDP-

sugars and for all time-points examined prior to cell culture harvest. As shown in Table 2.5, the CCC 

and R2 values for UDPGal are 0.982 and 0.998, respectively, and for UDPGlcNAc are 0.941 and 0.952, 
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respectively, confirming the accurate fitting of the model to the experimental data, as suggested in 

Fig. 2.13. 

 

Figure 2.13: NSD submodel fitting to the experimental data for the 10G20U experiment following model parameterization. 

The red lines show the model simulation results while the black squares present the experimental data. Taken with 

permission from Kotidis et al.482. 

50G5U experiment 

Similarly to the previous experiments, the model very accurately matches the UDPGal intracellular 

profile (Fig. 2.14) with the addition of 50 mM galactose and 5 mM uridine in the feed. The good fitting 

to the UDPGal profile is also confirmed from the CCC and R2 values of 0.995 and 0.990 (Table 2.5), 

respectively. The CCC and R2 values for UDPGlcNAc are 0.990 and 0.985 (Table 2.5), respectively, 

suggesting a successful fitting to the UDPGlcNAc profile.  
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Figure 2.14: NSD submodel fitting to the experimental data for the 50G5U experiment following model parameterization. 

The red lines show the model simulation results while the black squares present the experimental data. Taken with 

permission from Kotidis et al.482. 

2.3.3   Evaluation of the Glycomodel fitting 
The glycans that were experimentally measured and considered in the analysis are G0, G0F, G1F, G2, 

G2F and Man5 and were quantified at 168h, 216h, 264h and 288h of the cell culture period. For the 

cell cultures that were harvested earlier due to a viability below the 60% threshold, the model was 

used to predict the mAb glycoprofile for the remaining time points. As shown in Fig. 2.15 the vast 

majority of glycans distribution, estimated by the Glycomodel, is within a ±5% range of the 

experimental data. The only exception is the distribution of the G1F glycoform at 168h in the 50G5U 

experiment, in which the model underestimates the experimental value by 6.8%. 
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Figure 2.15: Glycomodel fitting to the experimental data for all the experiments considered during model parameterization. 

Taken with permission from Kotidis et al.482. 

In most cases of disagreement between model results and the experimental measurements, the 

model simulation presented an underestimation of the experimental data. The underestimation can 

be attributed to three reasons: 1) to insufficient estimated concentration of glycosyltransferases, 2) 

to the assumption that enzyme concentrations remain constant throughout the culturing process and 

3) to the experimental quantification of only specific glycans. The enzyme concentrations of the 

Glycomodel were estimated based solely on the control experiment and therefore regulation effects 

of the glycosyltransferases due to the addition of galactose and uridine, as reported in literature297, 
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304, could not be captured. Additionally, the experimental analysis included the quantification of glycan 

distribution for certain targeted glycans and their normalization to account for 100% of the 

distribution. However, the model considers and calculates the formation of, in total, 77 potential 

glycan structures, the existence of which, even in small levels, can lead to reduced distribution of the 

targeted glycans. For example, the formation of G1 in detectable levels, the non-fucosylated version 

of G1F, is inevitable according to the suggested kinetics and mechanisms of the b4GalT enzyme and is 

calculated (by the model) to account for ~3.5% of the total distribution for the control and ~4.1% for 

the feeding experiments at harvest. The model-estimated distribution of the glycans was not 

normalized to only account for the G0, G0F, G1F, G2, G2F and Man5 glycans, as the model description 

is considered more realistic than the experimental analysis. Importantly, the simulated depletion of 

the intracellular UDPGlcNAc (discussed in section 2.3.2) in the early steps of the cell culture is not 

considered a possible factor for causing the observed underestimations, as the Man5 levels are 

accurately matched by the Glycomodel. Man5 is the substrate of GnTI, the first enzyme that utilizes 

UDPGlcNAc, and therefore the effect of low UDPGlcNAc levels would result in Man5 accumulation, 

something that is not observed in the model simulations. Finally, another contributing factor could be 

the effect of galactose and uridine addition in HCPs glycosylation that is not included in the current 

model configuration, and can indirectly, through the consumption of NSDs and as competitive 

substrates, influence mAb glycoform distribution. 

Overall, the Glycomodel correctly identifies the increase of the galactosylated species (G1F, G2 and 

G2F) due to the addition of galactose and uridine in the feed, and closely describes most of the 

experimental data points. Glycoform distribution was not subjected to statistical analysis due to the 

relatively small number (4) of measurements for each experiment. The estimated parameters for the 

enzyme distributions and dissociation constants are reported in Table 2.6. 

Table 2.6: Obtained enzyme distribution parameters and dissociation constants for the Glycomodel. Taken with permission 

from Kotidis et al.482. 

Estimated parameter Value Units 95% Confidence 

Intervala 

ManImax 1.034 μM N/A 

wManI 1.160 - N/A 

ManIImax 0.854 μM N/A 

wManII 0.953 - N/A 

GnTImax 1.870 μM N/A 

wGnTI 0.300 - N/A 
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GnTIImax 1.566 μM N/A 

wGnTII 0.912 - N/A 

GalTmax 0.464 μM N/A 

wGalT 0.109 - N/A 

FucTmax 0.349 μM N/A 

wFucT 0.470 - N/A 

KdiFucTB 11.2 μM 0.404 

KdiGalTa1A 96.4 μM 2.653 

KdiGalTa1B 345.8 μM 37.75 

KdiGnTI 234.4 μM 7.15 

KdkGalTa1A 1805.0 μM 213.2 

KdkGalTa1B 1827.1 μM 1591 

a The values have been obtained via the gPROMS Optimisation entity that does not report 95% confidence intervals. 

2.3.4   Evaluation of model predictive capabilities 
The validation of the model and the assessment of its predictive capabilities was performed against a 

model-based independent experiment aiming to maximize mAb galactosylation (mg·L-1), as described 

in Eq. 2.45. The control variables of the optimization problem were the time points at which the model 

could include galactose and uridine in the feed and the concentrations of galactose and uridine in the 

feedings. The possible time points of galactose and uridine feeding started 48h post culture 

inoculation and was allowed every 48h thereafter. 

𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑖𝑜𝑛 =  

1 × [𝑚𝑜𝑛𝑜𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑚𝐴𝑏] + 2 × [𝑑𝑖𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑚𝐴𝑏]   (2.45) 

where, [𝑚𝑜𝑛𝑜𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑚𝐴𝑏]  (mg·L-1) and [𝑑𝑖𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑚𝐴𝑏]  (mg·L-1) is the 

concentration of the secreted mAb that carry glycans with one or two galactose molecules, 

respectively. 

Fig. 2.16 and Table 2.7 show a good fitting between model prediction data and the experimental 

measurements for both the viable cell density and the extracellular mAb concentration. Whilst the 

model accurately captures the effect of the added galactose and uridine concentrations on viable cell 

density and for all time points, the experimental measurements for the secreted mAb concentration 

are underestimated by the model prediction for the last three time points of the culture period. The 

reported elevated mAb concentration is not expected, as the final mAb concentration of the optimized 

experiment is higher than the respective concentration in the control (Fig. 2.5). Galactose and uridine 

are expected (both experimentally and in the model) to, even slightly, reduce the growth and 
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productivity of the cells, based on the trends of the training data. The aforementioned discrepancy 

can be attributed to batch-to-batch variations and to unknown metabolic effects that galactose and 

uridine can potentially show on cell growth and productivity. The CCC, PCC and R2 values for both 

variables are above 0.95, indicating an, overall, accurate description of both viable cell density and 

mAb concentration. 

 

Figure 2.16: Model predictions (red line) compared to the experimental data (black squares) for viable cell density and 

secreted mAb concentration. Taken with permission from Kotidis et al.482. 

Similarly to the experimental datasets used for model training, the glycan analysis was performed at 

168h, 216h, 264h and 288h of the cell culture period. As shown in Fig. 2.17, model accuracy was within 

a ±3.5% error range when compared to the experimental data, apart from the G0F distribution at 288h 

that was overpredicted by 5.3%.  Interestingly, the experimentally observed mAb galactosylation (Eq. 

2.45) exceeds by 33% the respective model-predicted value, mainly due to the underestimation of the 

final mAb concentration and G1F distribution from the model.  

Table 2.7: Statistics for the evaluation of model predictions compared to the experimental data. Adapted from Kotidis et 

al.482. 

Concordance correlation coefficients 

Experiment CCCXv CCCmAb 

Optimization experiment 0.959 0.968 

Pearson correlation coefficients 

Experiment PCCXv PCCmAb 

Optimization experiment 0.972 0.996 

R squared (R2) 

Experiment R2
Xv R2

mAb 

Optimization experiment 0.984 0.984 
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As discussed in section 2.3.3, a regulation of the b4GalT enzyme due to galactose and uridine addition 

in the culture is highly expected but cannot be monitored through the current model configuration. 

Indeed, if the b4GalT concentration in the model is upregulated by 15% (Fig. 2.17), the agreement 

between the model and the experimental data is notably improved, specifically for the most abundant 

G0F and G1F glycans. 

 

Figure 2.17: Model predictions for mAb glycosylation during the examined points of the cell culture period compared to the 

experimental data. A scenario of b4GalT upregulation by 15% is also examined. Taken with permission from Kotidis et al.482. 

The model-based optimized feeding experiment resulted in up to 64% increase of the absolute 

galactosylation (%) (Eq. 2.46), as shown in Fig. 2.18A. Moreover, the mAb galactosylation (Eq. 2.45) 

showed an even greater level of increase (Fig. 2.18B) due to the simultaneous elevation of the secreted 

mAb concentration when compared to the control experiment, overperforming the latter by 93% at 

the harvest point. 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑖𝑜𝑛 = 

1 × %𝑚𝑜𝑛𝑜𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑚𝐴𝑏 + 2 × %𝑑𝑖𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑒𝑑 𝑚𝐴𝑏   (2.46) 

where, the right term of the equation describes the percentages of the distribution for the mAb that 

carries one or two glycans respectively. The difference between Eq. 2.45 and 2.46 is that the 

concentration of the secreted mAb is only included in the first. Qualitatively, Eq. 2.45 describes the 

concentration of the secreted mAb that is galactosylated (taking also into account the molecules of 
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galactose that are attached to the glycans), while Eq. 2.46 calculates the total and absolute value of 

the distribution of the secreted mAb that carries at least one galactose molecule in the N-linked 

glycans. 

 

Figure 2.18: Comparison between the model-based optimization experiment and the control for the: (A) absolute 

galactosylation (%) and (B) mAb galactosylation (mg·L-1). Taken with permission from Kotidis et al.482. 

2.4   Discussion 
In Chapter 2, the development of a mechanistic mathematical modelling framework was described. 

The proposed framework includes three interconnected modules, namely: Metabolism, NSD and the 

Glycomodel (Fig. 2.1). The Metabolism submodel is a dynamic system that describes CHO cell growth, 

extracellular metabolism, cell death and antibody synthesis. The NSD submodel uses selected variables 

estimated in the Metabolism submodel in order to calculate the intracellular concentrations of the 

NSDs and their flux towards the Golgi apparatus where N-linked glycosylation occurs. Finally, the 

Glycomodel estimates the glycan distribution in the secreted mAb, using the NSD concentrations and 

fluxes from the NSD submodel. 

The modelling framework was trained in a wide range of data from fed-batch experiments with various 

concentrations of galactose and uridine in the feed, and attempted to capture the effect of the 

aforementioned additions on the examined extracellular and intracellular pathways. Overall, model 

training achieved a very good agreement between the simulations and the experimental data, as 

expressed from CCC, PCC and R2 values presented in the Table 2.3 and Table 2.5. Moreover, the model 

was able to describe the response of mAb glycosylation to the different feeding scenarios within a 

±5% error range. Importantly, the structure of the proposed modelling framework enabled the 

prediction of mAb glycosylation solely based on the concentration of metabolites the culture media 

and feed.  
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In order to accurately capture the effect of galactose on CHO cell metabolism, the model assumes a 

regulation of the glucose uptake rate towards the glycolysis pathway, based on the ratio between the 

galactose and glucose specific consumption rates (Eq. 2.10). Galactose intervenes in the glycolysis 

pathway, as shown in Fig. 2.3, and can lead to reduced consumption levels of glucose292, 297. In order 

to avoid overparameterization, the model assumes a linear relationship between the specific growth 

and antibody production rates (Eq. 2.20) and manages to closely describe the secreted mAb 

concentration throughout the cell culture and for all training experiments. The Metabolism submodel 

is limited to a small range of metabolites and amino acids that can be easily monitored and controlled 

but can also be expanded to incorporate more amino acids and intermediates of the TCA cycle. 

Similarly, the NSD submodel considers a reduced synthesis network in order to calculate the 

intracellular dynamic profiles of the NSDs (Fig. 2.4). When compared to a detailed NSD network that 

includes 34 material balances and 60 reactions121, the current NSD submodel attempts to describe the 

dynamic profile of the same variables with a network reduced by ~75%, accounting for 7 material 

balances and 16 reactions. Additionally, the NSD submodel describes the effect of galactose and 

uridine addition on the directly affected NSDs, such as UDPGal, UDPGlcNAc, UDPGlc and UDPGalNAc, 

achieving a very good agreement with the experimental data, as shown in Table 2.5. However, due to 

the complex nature of the NSD network and the necessity for the estimation of both the maximum 

turnover rates and the saturation constants, the system suffers from structural unidentifiability. 

Whilst an effort to control the values of the saturation 𝐾𝑚 constants and appropriately constrain them 

was undertaken, the estimated values of both parameters do not attempt to represent their actual 

physical values. 

The Glycomodel (adapted from del Val et al.478) uses a PFR representation of the Golgi apparatus in 

order to describe the effects of Golgi maturation on protein N-linked glycosylation. The estimation of 

the Glycomodel parameters is based on the sequential steps proposed in section 2.2.3 and results in 

an overall good agreement with the experimental data. The limitations of the Glycomodel arise from 

the consideration of a constant concentration for the mannosidases, glycosyltransferases and NSD-

transport proteins throughout the cell culturing period, not accounting the effect of different feeds, 

such as galactose and uridine, on the levels of the aforementioned enzymes297, 304. 

Following training completion, the model was validated against an independent experiment that was 

designed in a model-based manner in order to maximize mAb galactosylation. The model showed a 

very good agreement with the experimental data, closely describing the viable cell density and 

secreted mAb concentration (Table 2.7, Fig. 2.16). Importantly, the model-based experiment 

minimized the effect of galactose and uridine addition on viable cell density and mAb concentration. 
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The majority of reported glycans were described within a ±3.5% error range, while a 15% upregulation 

of the b4GalT concentration was proven enough to cover the differences between the experimental 

and model-predicted data (Fig. 2.17). Therefore, the model can be successfully used to describe both 

the intra- and extra-cellular dynamics and can be utilized as a designing tool for the identification of 

optimal feeding strategies, such as the optimal experiment that led to the 93% increase of mAb 

galactosylation reported in the model-based designed experiment of this study (Fig. 2.18).  

Whilst the model can successfully describe the effect of galactose and uridine feeding on CHO cell 

metabolism and be used for designing optimal experiments, it is specific to the cell line used for 

training. A sensitivity analysis for the identification of the critical model parameters and their re-

estimation based on data from a different cell line can broaden the applicability of the model and 

enable its use in a different system. 
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Chapter 3 Model applications within the Quality by 
Design paradigm 
 

Chapter overview 
A key challenge within the manufacturing context of biopharmaceuticals production is the control of 

protein glycosylation and the optimization towards a homogenous glycoform profile. Currently, the 

vast majority of bioprocesses lead to a vastly heterogeneous mix of glycosylated proteins516. As 

described in Chapter 2, mAb galactosylation is a desired attribute that enhances antibody CDC and 

ADCC activity171, 182 and can be set as an objective for process optimization. However, the specific 

growth and protein production rates are two additional factors that are of paramount interest for 

evaluating cells’ performance and bioprocess efficiency. It has been previously shown that both 

aforementioned variables affect recombinant protein glycosylation. The specific growth rate 

influences HCPs synthesis and therefore the NSD resources that are consumed towards HCPs 

glycosylation. Thus, a significant part of NSD pools is channelled to cellular glycosylation, and 

especially at high specific growth rates513, indirectly affecting mAb glycosylation. On the other hand, 

specific protein production rate determines the residence time of the recombinant protein in the Golgi 

and, therefore, its availability for further processing by the GTases486.  

Adding another level of complexity between the aforementioned variables, and as described in 

Chapter 2, an attempt to manipulate protein glycosylation can hinder cell growth and productivity. 

Whilst several efforts have been made in order to assist the implementation of Quality of Design in 

biopharmaceuticals production using statistical tools460, 467, 502, a mechanistic model can offer valuable 

insights on the underlying dependencies between process inputs and outputs235, 240. The utilization of 

mechanistic models enables the greedy exploration of optimal bioprocess conditions, such as feeding 

scenarios, that can ensure the implementation of the QbD paradigm and satisfy the CQA and KPIs 

constraints, such as mAb glycosylation and titre. The necessity for mechanistic models is strengthened 

by the fact that recombinant protein glycosylation shows a dynamic profile during the cell culture 

period, with significant discrepancies observed in the glycoform distribution between the early and 

the late stages of the culture. Thus, mechanistic models can assist in the understanding of how 

perturbations occurring early in the culture period can have an effect on growth, productivity and 

protein glycosylation towards the harvest point. Finally, a model-assisted implementation of Quality 

by Design can accelerate process development and reduce costs. 

However, the tuning of mechanistic models includes the estimation of several kinetic parameters; a 

time-consuming process that is inextricably linked to model configuration and demands a 
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considerable amount of work that can significantly outweigh the effort put on the construction of 

model equations. For that reason, Global Sensitivity Analysis is commonly employed, for the 

identification and designation of parameters that significantly contribute towards the determination 

of the model variables, and the subsequent reduction of the parameter estimation burden435-436. 

Additionally, mechanistic models are usually specific to the training cell line and are sensitive to 

process variabilities. Thus, it is essential to develop a framework for the adaption of the mechanistic 

models to new process conditions and cell lines, enhancing that way their robustness for a use within 

the QbD methodology. 

In Chapter 3 we examine two applications of the kinetic model proposed in Chapter 2, that fit within 

the Quality by Design paradigm. Firstly, we examine whether the model can be used as a trustworthy 

tool for identifying a Design Space of galactose and uridine feeding in fed-batch cultures, in order to 

satisfy inequality constraints, set for both the mAb concentration at harvest (quantity constraint) and 

the levels of mAb galactosylation (quality constraint). In order to examine the aforementioned 

scenario, we use the modelling framework in combination with constrained Global Sensitivity Analysis 

(cGSA) for the identification and dimensionality reduction of the Design Space, and then validate the 

results against the experimental data of a number of different feeding scenarios in fed-batch 

experiments. Secondly, using GSA we perform a strategic search for the identification of the minimum 

number of the Metabolism submodel parameters that are essential for ensuring model performance, 

and that, if correctly calibrated using data from a new cell line, can efficiently capture the metabolic 

activity using the same mechanistic equations and relationships. The proposed adaptation of the 

model to a different cell line widens the applicability of the model and enables the introduction of 

reduced kinetic models in describing multiple CHO cell lines metabolism.  

The results of this work have been presented in two manuscripts: 1) Design Space identification in 

Kotidis et al.517 and 2) Metabolsim submodel sensitivity analysis and adaptation in Kotidis & 

Kontoravdi518.  

The aim of this chapter is to provide answers to the following questions: 

• Can the modelling framework proposed in Chapter 2 be utilized as a tool for the identification 

of a process Design Space, within which we can ensure product quantity and quality? 

• Can the Metabolism submodel be calibrated to account for batch-to-batch variability? 

• What are the significant parameters of the Metabolism submodel? 

• Is it possible to adapt the Metabolism submodel to a new CHO cell line by only tuning the 

significant parameters? 
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3.1   Materials & Methods 
3.1.1   Experimental data 
Several experimental data of fed-batch cultures, including galactose and uridine addition, were 

utilized in Chapter 3. The experimental datasets are split between those used for: 1) Design Space 

identification and 2) Metabolism submodel sensitivity analysis and adaptation.  

Design Space identification 

The experiments used for the Design Space identification are presented in Kotidis et al.517 and were 

performed by the members of the group: Dr. Cher H. Goey and Ms. Elisa Correa. The cultures followed 

an identical schedule to the experimental setup described in section 2.1.1 and 5.1.2. The viable cell 

density and viability of the cultures were monitored daily, whist mAb quantification and glycan 

analysis were performed on day 12 (harvest). Glycan analysis was performed by Dr. Calum McIntosh, 

former member of the group, as described in Kotidis et al.517. Briefly, mAb samples were diluted at 3 

g·L-1 in 100 mM Tris pH 7.6 and 8 M urea and denatured with 10 mM DTT (Sigma-Aldrich, Dorset, UK) 

at 50 °C for 10 min. The samples were incubated at 37 °C for 4 h with mass spectrometry grade trypsin 

(Sigma-Aldrich, Dorset, UK) in 100 mM Tris pH 7.6, at a 1:20 trypsin to antibody ratio. Following trypsin 

digestion, samples were analysed using a triple quadrupole mass spectrometer (Waters, Milford, 

Massachusetts, USA). The only difference when compared to the experiments presented in Chapter 2 

is regarding the concentration of galactose and uridine added in the culture, as shown in Table 3.1. 

Experiments were carried out in biological triplicates. The feeding strategies were chosen in order to 

explore the model-generated Design Space (Fig. 3.5). 

Table 3.1: Concentration of galactose and uridine added in the feed for each feeding strategy and for each time point. FS1 is 

the control experiment where no galactose and uridine were added in the feed. Taken with permission from Kotidis et al.517. 

Feeding 
Strategy 

Galactose concentration in Feed C 
(mM) 

Uridine concentration in Feed C  
(mM) 

Time 
point 

Day 4 Day 6 Day 8 Day 10 Day 4 Day 6 Day 8 Day 10 

FS1 0 0 0 0 0 0 0 0 

FS2 189.3 219.9 198.4 190.6 33.9 1.7 18.8 12.8 

FS3 267.5 47.0 89.0 487.4 30.8 17.4 40.6 28.4 

FS4 10.1 194.0 67.0 172.5 7.3 13.0 71.4 13.7 

FS5 446.9 306.0 233.3 45.8 23.3 0.1 21.5 55.1 

FS6 22.8 27.0 407.8 230.1 1.6 9.3 44.7 66.2 

FS7 203.9 266.4 52.0 374.3 1.8 6.6 6.1 23.6 
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Metabolism submodel sensitivity analysis and adaptation 

For the identification of the optimal sensitivity analysis, a set of five fed-batch experiments using the 

CHO-T127 cell line and each one following a different feeding strategy were performed. The detailed 

methodology used for cell culturing and analysis can be found in section 5.1.2 and is similar to the one 

described in section 2.1.1. The feeding strategies followed for these experiments were extracted from 

the boundaries of the Design Space and attempted to test model performance in the limits of the 

identified DS (Fig. 3.9). 

The data for adapting the Metabolism submodel to a different cell line were taken from Kyriakopoulos 

& Kontoravdi519. Briefly, a CHO-GS46 cell line was cultured in fed-batch experiments using the same 

basal medium (CD-CHO) and fed with 10% v/v CD EfficientFeedTM C AGTTM Nutrient Supplement (same 

with the T127 cell line) every other day starting on day 2. No galactose or uridine were added to the 

culture. Cells were cultured at 36.5 °C, 140 rpm and 8% CO2. 

3.1.2   Model simulation and parameter estimation 
All model simulations were performed using gPROMS ModelBuilder v.5.1.1 (Process Systems 

Enterprise, gPROMS, www.psenterprise.com/products/gproms, 1997-2020). For the re-estimation of 

parameter values, the Maximum Likelihood formulation in gPROMS was employed, as described in 

Eq. 2.1, utilizing the Parameter Estimation (now Model Validation) entity of gPROMS. R2 values were 

estimated using the Regression function in the Data Analysis toolkit of Microsoft Excel for Office 365. 

3.1.3   Global Sensitivity Analysis 
The SobolGSA software520 was used for performing Global Sensitivity Analysis. The Random Sampling-

High Dimensional Model Representation (RS-HDMR) technique was used for metamodel 

construction521, while three different sampling strategies were utilized for input generation and 

sensitivity analysis: Sobol’, Pseudo-random and Scrambled-Sobol’. The number of generated inputs 

was set to 16,384 or 214. Moreover, the number of generated samples used for constructing the 

metamodel was set to 4,096 or 212, which was the maximum that the software could utilize 

considering the complexity of the Metabolism submodel. The maximum number of alphas (α) and 

betas (β) was set to 4 and 2, respectively, and the examined significance index thresholds (SIT) for 

evaluating model parameter significance were set as 0.05, 0.1 or 0.2. 

3.1.4   Workflow for significant parameter identification 
The strategic framework that was followed for identifying the significant parameters of the 

Metabolism submodel is shown in Fig. 3.1 and includes four main steps: 
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Step 1: GSA is performed for the model under consideration. The examined parameters are: 1) the 

sampling strategy for metamodel construction and parameter space (Sobol’, Pseudo-random, 

Scrambled-Sobol’) and 2) the deviation of parameters’ value within which sampling occurs (10%, 30% 

and 50%). 

Step 2: The constructed metamodels that exhibit high agreement (R2 > 0.9) are used in the post-

sensitivity analysis where three different SITs (0.05, 0.1 and 0.2) are examined in order to identify the 

significant parameters of the model. 

Step 3: Each of the designated significant parameters is then included in a parameter estimation for 

adapting the model in use to new experimental data from the same cell line. 

Step 4: The results of parameter estimation that indirectly indicate the efficiency of the sensitivity 

analysis, are subsequently evaluated in terms of goodness of fit with the experimental data and the 

optimum method is chosen.  

 

Figure 3.1: The strategic framework that was followed for the evaluation of different sensitivity analysis methods and 

identification of significant parameters. Taken with permission from Kotidis & Kontoravdi518.  

Fig. 3.2 shows the strategy used for examining the effect of: 1) the sampling method for input 

generation, 2) the chosen parameter deviation range and 3) the selected SIT. As a first step, any of the 

three sampling methods can be utilized and any of the parameter deviation (PD) ranges can be 

examined. The sampling methods are used in order to generate 16,384 (214) groups of parameter 

values within the constrained – by the PD range – values space, as shown in Eq. 3.1. Following the 

generation of the groups of parameter values, the model is simulated 16,384 (214) times using each 

time a different group of the generated parameter values.  

𝑥 ∈ [(100% − 𝑃𝐷)𝑃𝑣𝑛𝑜𝑚𝑖𝑛𝑎𝑙 , (100% + 𝑃𝐷)𝑃𝑣𝑛𝑜𝑚𝑖𝑛𝑎𝑙]   (3.1) 

where, 𝑥 is any of the values that the examined parameter can take, 𝑃𝐷 is parameters’ deviation and 

𝑃𝑣𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal value of the parameter. 

The results of the multiple model simulations are used for sensitivity analysis, including the 

construction of the individual RS-HDMR metamodels. The same sampling methods are used for the 

construction of the metamodel and the sensitivity analysis. Finally, the significant parameters for each 

SIT and for metamodels that achieve a R2 > 0.9 are re-estimated based on experimental data, and the 
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model fitting results are evaluated. The significant parameters identified using the optimum method 

that results from the strategic framework described in Fig. 3.1 and Fig. 3.2, are finally used for the 

adaptation of the model to experimental data of a new cell line (GS46). 

 

Figure 3.2: Workflow showcasing the methods used for evaluating the significant parameters of the Metabolism submodel. 

Taken with permission from Kotidis & Kontoravdi518.  

Importantly, sensitivity analysis was performed for each day of the culture. However, the importance 

of the parameters dynamically changes as the culture period progresses, with parameters related to 

cell growth accounting for the highest importance during the lag and exponential phase, and 

parameters related to cell death presenting a higher total sensitivity index (TSI) during the stationary 

and death phases of the cell culture. Therefore, due to the large aforementioned discrepancies of the 

TSI value for each parameter within the cell culturing period and in order to capture the importance 

of each parameter for the entire duration of the cell culture, the TSI significance was based on the 

inequality shown in Eq. 3.2: 

∫ 𝑓𝑃(𝑡)𝑑𝑡
288ℎ

0ℎ
 ≥  ∫ 𝑆𝐼𝑇 𝑑𝑡

288ℎ

0ℎ
   (3.2) 

where, 𝑓𝑃(𝑡) is the function that describes the TSI of the parameter P as a function of cell culture time 

and SIT is the threshold chosen by the workflow shown in Fig. 3.2. When Eq. 3.2 is satisfied, the 

examined parameter P is considered significant for the chosen SIT. 

An additional factor that could significantly influence the results of sensitivity analysis is the 

considered outputs, meaning the variables that are affected by the variation of the examined 

parameters and the response of which is the criterion for calculating the SIT. In the study presented 
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herein and for the CHO-T127 cell line, the viable cell density and the mAb concentration were 

considered as the set of outputs for all the analyses presented in Fig. 3.2. The chosen output variables 

are, to a great extent, affected by the rest of the model variables, such as the extracellular 

concentration of metabolites and amino acids, and therefore globally capture the effect of each 

parameter variation. Viable cell density was chosen over specific cell growth and cell death rates, as it 

captures the effect of both cell culture phases. On the other hand, all measured variables were 

included in the sensitivity analysis process used for model calibration to the GS46 cell line, in order to 

ensure the appropriate adaptation of all important model parameters. 

3.1.5   Constrained Global Sensitivity Analysis 
When compared to unconstrained GSA, the cGSA algorithm522 utilized for the study presented in this 

chapter, accounts for inequality constraints, such as those imposed for product quality. The product 

quality constraints are defined by minimum thresholds for the values of mAb concentration and 

galactosylation at harvest. The examined process parameters in the cGSA are the concentrations of 

galactose and uridine in the feed on days 4, 6, 8 and 10 of the culture. The imposed quality constraints 

can be utilized for identifying parameters of the process (in this case the feeding concentrations of 

galactose and uridine) that significantly affect the constrained outputs (mAb concentration and 

galactosylation), and for identifying a model-generated Design Space. 

Dimensionality reduction and Design Space identification through cGSA 

The process examined herein accounts for 8 feeding concentrations of galactose and uridine in 4 

feeding intervals. In order to reduce the dimensionality of the system and therefore expedite 

downstream analysis (DS identification) and enable the visualization of the results, the total sensitivity 

indices resulting from cGSA were used for the designation of the significant feeding parameters based 

on a predefined minimum threshold.  

cGSA was also employed for the in silico identification of the DS, based on model prediction results. 

The code for DS identification has been developed by Dr. Oleksiy Klymenko and Mr. Panagiotis Demis 

and the equations of the system can be found in Kotidis et al. 2019517. Briefly, the code comprises an 

optimization problem which identifies the minimum amount and the nature of linear constraints that 

are adequate for constructing a DS that accounts for the maximum number of model-predicted 

feasible points while ensuring the exclusion of infeasible experiments. 

Setting the constraints for cGSA 

Secreted mAb concentration and mAb galactosylation were constrained based on the control 

experiment (FS1) where no galactose and uridine were added. The inclusion of the two compounds in 
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the feed is expected to lead to a reduction in cell growth and productivity. Thus, a reasonable 5% 

reduction of the final mAb concentration, when compared to the control experiment, was assumed 

as the minimum acceptable mAb concentration for the feeding experiments that would satisfy the 

requirements for inclusion in the DS. Therefore, the lower constraint for mAb at harvest day was set 

at 430 mg·L-1. 𝑚𝐺𝑎𝑙, as calculated by Eq. 2.45, was constrained based on the maximum observed 

absolute galactosylation, as calculated by Eq. 2.46, in the control experiments and as shown in Eq. 3.3: 

𝑚𝐺𝑎𝑙𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 =  𝑀𝐴𝑋(𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙) 𝑚𝐴𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡    (3.3) 

where, 𝑀𝐴𝑋(𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙) is the maximum absolute galactosylation observed 

in the control experiment and that was 42%, and 𝑚𝐴𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  is the previously defined lower bound 

for the mAb concentration, set at 430 mg·L-1. Therefore, the minimum 𝑚𝐺𝑎𝑙𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is set at 180 

mg·L-1. No upper bound was set for both mAb concentration and 𝑚𝐺𝑎𝑙 as they are both desired 

attributes. 

3.2   Results 
This section includes the results of the cGSA for Design Space identification. The model-based 

predictions that are supposed to fall within the DS are compared with the respective experimental 

data, while two cases of experiments violating at least one of the DS constraints are also 

experimentally examined. Moreover, the results of various GSAs on the Metabolism submodel are 

evaluated in order to, eventually, choose the optimal method for adapting the model to experimental 

data from another cell line.  

3.2.1   Design Space description 
Collectively, the quality constraints for both model inputs (galactose and uridine concentration on 

days 4, 6, 8 and 10) and outputs (mAb galactosylation and mAb concentration) considered in the cGSA, 

are shown in Eq. 3.4-3.7: 

 [𝑚𝐴𝑏] ≥ 430 𝑚𝑔 · 𝐿−1   (3.4) 

 𝑚𝐺𝑎𝑙 ≥ 180 𝑚𝑔 · 𝐿−1   (3.5) 

 0 ≤ [𝑈𝑟𝑑]𝑖 ≤ [𝑈𝑟𝑑]𝑚𝑎𝑥    (3.6) 

 0 ≤ [𝐺𝑎𝑙]𝑖 ≤ [𝐺𝑎𝑙]𝑚𝑎𝑥    (3.7)  

where, [𝑈𝑟𝑑]𝑖 and [𝐺𝑎𝑙]𝑖  are the concentrations (mM) of uridine and galactose on days 𝑖 = 4, 6, 8 or 

10 in the feed and [𝑈𝑟𝑑]𝑚𝑎𝑥 and [𝐺𝑎𝑙]𝑚𝑎𝑥  are the maximum possible concentrations (mM) of uridine 

and galactose in the feed, respectively.  
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The constraints for [𝑚𝐴𝑏] and 𝑚𝐺𝑎𝑙 were set based on the analysis presented in section 3.1.5. The 

upper limits for the feeding concentrations were set at [𝑈𝑟𝑑]𝑚𝑎𝑥 = 100 mM and [𝐺𝑎𝑙]𝑚𝑎𝑥 = 500 

mM. The maximum concentration for uridine was based on previous reports identifying the growth 

inhibitory levels of uridine293, while for galactose the threshold was based on the compound’s 

solubility in aqueous media. 

The representation and identification of the Design Space suffers from the curse of dimensionality. 

The examined inputs of the system are eight, making the representation of the DS an 8D problem. The 

inclusion of minimum constraints in the sensitivity analysis accommodates the identification of inputs 

that most significantly affect the targeted outputs. In order to reduce the dimensionality of the DS, a 

sample of 8,192 (213) points following uniform distribution in the 8D dimension, was used for the 

implementation of cGSA522-523. The model was therefore simulated for these 8,192 different feeding 

scenarios and the results were used for cGSA. The implementation of cGSA was performed by the 

developers of the code Dr. Oleksiy Klymenko and Mr. Panagiotis Demis. The output of cGSA is similar 

to the SobolGSA software (that is used for unconstrained GSA) and calculates the main and total 

sensitivity index of each parameter (MSI and TSI, respectively). As presented in Fig. 3.3A, the 

unconstrained GSA (no inequalities imposed on the outputs) results in particularly high sensitivity 

indices for uridine concentration on day 4 ([𝑈𝑟𝑑]4) and day 6 ([𝑈𝑟𝑑]6) of the culture. All galactose 

feedings and the remaining uridine additions present low values of both MSI and TSI. The results 

clearly indicate that uridine concentration on the early days of the culturing period has a major effect 

on the unconstrained values of mAb galactosylation and concentration. Also, the almost identical 

values between MSI and TSI for each of the [𝑈𝑟𝑑]4 and [𝑈𝑟𝑑]6 indicate minimal synergistic effect 

between the inputs on the values of the outputs.  
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Figure 3.3: Main and total sensitivity index for each feeding concentration examining the effect on mAb concentration and 

galactosylation at harvest. (A) Results of the unconstrained GSA and (B) results of the cGSA, considering the constraints 

defined in Eq. 3.4 and 3.5. Taken with permission from Kotidis et al.517. 

With the introduction of the output constraints defined in Eq. 3.4 and 3.5, cGSA calculates the updated 

MSI and TSI values, as shown in Fig. 3.3B. Whilst [𝑈𝑟𝑑]4  and [𝑈𝑟𝑑]6  remain the most important 

feeding parameters, [𝑈𝑟𝑑]8  shows a higher TSI value for both [𝑚𝐴𝑏]  and 𝑚𝐺𝑎𝑙 . Therefore, the 

dimensionality of DS description can be reduced to a 3D problem with the use of uridine feedings on 

days 4, 6 and 8. Additionally, cGSA revealed that out of the 8,192 samples, only 556 satisfied both 

constraints (feasible points). Notably, cGSA showed that the 𝑚𝐺𝑎𝑙-constraint, shown in Eq. 3.5, was 

less stringent than the [𝑚𝐴𝑏]-constraint (Eq. 3.4) and was satisfied whenever [𝑚𝐴𝑏] was above the 

minimum accepted concentration. The normalised volume of the DS can be calculated through Eq. 

3.8: 

𝑉𝑜𝑙𝐷𝑆 =  
𝑃𝑜𝑖𝑛𝑡𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
=  

556

8,192
= 0.068   (3.8) 

where, 𝑉𝑜𝑙𝐷𝑆 (-) is the normalized volume of the DS. 

Normalizing the concentrations of [𝑈𝑟𝑑]4 , [𝑈𝑟𝑑]6  and [𝑈𝑟𝑑]8  over [𝑈𝑟𝑑]𝑚𝑎𝑥  results in the 

representation of all feeding concentrations in the [0,1] range and enables the calculation of the 

normalized volume for the DS. Fig. 3.4A shows the clustering of the points that fall within the DS (blue 

dots) against the points that fail to satisfy at least one of the output constraints (red dots). The 

resulting clustering of the successful feeding regimes indicates the accurate representation of the 8D 

problem with the use of only the normalized [𝑈𝑟𝑑]4, [𝑈𝑟𝑑]6 and [𝑈𝑟𝑑]8.  
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Figure 3.4: (A) A 3D representation of the DS using the normalised values of the most significant feeding concentrations as 

identified by the cGSA. Blue dots show the points that satisfy the output criteria of the DS (feasible points) and red dots the 

points that fail to satisfy the constraints. (B) The resulting DS representation after solving the optimization problem of a 

single linear inequality constraint. The blue dots show the feasible points that the DS representation is unable to capture. 

Graphs were plotted by Dr. Oleksiy Klymenko and are taken with permission from Kotidis et al.517. 

In order to represent the DS, the assumption of an additional linear inequality constraint and the 

solution of the optimization problem was found to closely describe the DS, as shown in Fig. 3.4B. Eq. 

3.9 shows the result of the optimization problem for the identification of the linear constraint that 

leads to the DS representation shown in Fig. 3.4B. The resulting DS, defined by Eq. 3.9, exhibits a 

volume of 0.058, which is approximately 14.7% lower than the model-generated DS, as it rejects 83 

out of the 556 feasible feeding regimes. 

0.897[𝑈𝑟𝑑]4 +  0.405[𝑈𝑟𝑑]6 +  0.179[𝑈𝑟𝑑]8  ≤  0.288[𝑈𝑟𝑑]𝑚𝑎𝑥   (3.9) 

Therefore, the single linear inequality constraint approach successfully describes ~85% of the DS, 

whilst remaining a time and computationally efficient optimization problem. Moreover, the 

aforementioned approach outperforms more complex representations of the DS and leads to 

significantly higher accuracy than the comparably simplified ‘box’ shaped approach, in which each of 

the normalized feeding concentrations follows a separate inequality constraint517. 

3.2.2   Experimental validation of model-generated Design Space 
As described in section 3.2.1 the model was used for simulating 8,192 feeding scenarios, 556 of which 

were found to satisfy both constraints defined in Eq. 3.4 and 3.5. In order to evaluate the DS that was 

identified based on model predictions for [𝑚𝐴𝑏] and 𝑚𝐺𝑎𝑙, the model was compared against seven 

experiments that were suggested by the model. Five of the experiments (FS1, FS4, FS5, FS6 and FS7) 

were expected to fall within the DS and two (FS2 and FS3) were expected to violate at least one of the 

constraints and therefore fall out of the DS. All feeding concentrations can be found in Table 3.1. As 
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discussed in section 3.2.1, no points violated the 𝑚𝐺𝑎𝑙-constraint and simultaneously satisfied the 

[𝑚𝐴𝑏]-constraint, indicating that the lower acceptable value set for 𝑚𝐺𝑎𝑙 was not stringent enough. 

Fig. 3.5 shows the location of the experiments around and within the DS, according to their normalised 

values for [𝑈𝑟𝑑]4, [𝑈𝑟𝑑]6 and [𝑈𝑟𝑑]8. 

 

Figure 3.5: The position of the experiments against the Design Space. The blue dots represent the feasible points that satisfy 

both constraints and therefore fall within the Design Space. The red dots show the samples for which at least one of the 

constraints was violated. The graph was plotted by Dr. Oleksiy Klymenko and is taken with permission from Kotidis et al.517. 

Fig. 3.6 presents the agreement between model predictions and experimental data for mAb 

concentration and galactosylation on harvest day (day 12). For an experiment to violate a constraint, 

the average measured value, accounting also for the standard deviation derived from the biological 

triplicates, should not exceed the lower threshold. Model predictions closely describe the mAb 

concentration for all experiments, but FS7. Importantly, the model successfully identified the 

experiments that satisfy the constraint imposed by Eq. 3.4. The experimental measurement for mAb 

concentration at harvest and for the FS7 strategy considerably outperformed model-based 

predictions, as shown in Fig. 3.6A. Notably, the FS7 feeding experiment presented a mAb 

concentration that was notably higher than the respective concentration in the control (FS1). As 

discussed in Chapter 2, the formulation of the proposed modelling framework accounts for the 

inhibiting and toxic effects of galactose and uridine addition to the culture and therefore, an increased 

productivity and growth for a feeding experiment is not expected when compared to the control. 

Whilst the model underestimates the concentration of the produced mAb, FS7 undoubtebly satisfies 

the mAb-constraint as suggested by the model.  
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Figure 3.6: Model predictions (pattern bars) against the experimental data (solid bars) for (A) mAb concentration and (B) 

mAb galactosylation at harvest. The red line shows the minimum threshold that the variable needs to satisfy in order to fall 

within the Design Space. The white bars indicate the experiments that do not satisfy the imposed constraint for the depicted 

variable, while the grey bars show the experiments that exceed the minimum threshold value, when also accounting for the 

standard deviation of the experimental data. Taken with permission from Kotidis et al.517. 

As shown in Fig. 3.6B, all experimentally measured values of 𝑚𝐺𝑎𝑙 satisfy the inequality constraint 

(Eq. 3.5). Although FS2 resulted in a 𝑚𝐺𝑎𝑙 below the imposed threshold, the standard deviation of the 

experimental measurements indicates that there is no significant difference with the lowest accepted 

value. Notably, all feeding strategies resulted in higher values of 𝑚𝐺𝑎𝑙  compared to the control 

experiment, showcasing the improvement of both absolute galactosylation (percentage of glycans 

with at least one galactose molecule) and galactosylated mAb concentration. The improvement of 

absolute mAb galactosylation can be also seen in Fig. 3.7A and 3.7B, which show the agreement 

between model predictions and the experimentally measured mAb glycoform distribution. 
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Figure 3.7: Model predictions (pattern bars) against experimental data (solid bars) for all the experiments and for each 

measured N-linked glycan. (A) Includes the FS1-FS4 experiments and (B) the FS5-FS7. Taken with permission from Kotidis et 

al.517. 

As shown in Fig. 3.7, model predictions very closely follow the experimentally measured glycoform 

distributions for FS1, FS4, FS5, FS6 and FS7 and for all examined glycans. The experimental 

measurements of feeding regimes FS2 and FS3 show considerably high standard deviations for the 

most abundant glycans, such as G0F and G1F. Whilst model predictions fall close to the standard 

deviation range of FS2 and FS3 experimental data, the model overpredicted the distribution of G1F in 

the aforementioned experiments. For that reason, G0F was considerably underpredicted as the 

distributions of G0F and G1F are strongly connected (G0F is the major substrate for G1F synthesis 

through the activity of b4GalT). Whilst the issue of b4GalT upregulation due to galactose and uridine 

addition has been discussed in Chapter 2, the underprediction of 𝑚𝐺𝑎𝑙 in the FS7 experiment is not 

expected to originate from inaccuracies in the description of the galactosylated glycan distribution 

(Fig. 3.7). In fact, the difference between the experimentally measured and model predicted 𝑚𝐺𝑎𝑙 

value for the FS7 experiment is attributed to the respective disagreement in mAb concentration in this 

case.  

As shown in Fig. 3.8, model predictions of viable cell density present an overprediction of the 

experimental values in all feeding regimes, including the control experiment. Surprisingly, the control 

condition in this set of feeding experiments presented a considerably suppressed growth profile 

compared to the results for the same control experiment used for model construction and training as 

presented in Chapter 2. Specifically, the new control experiment (FS1) achieved ~25% lower maximum 

viable cell density compared to the training control experiment. Considering that both control 

experiments were performed under exactly the same culture conditions and with the same cell line, 

the observed discrepancies can only be attributed to the batch-to-batch variability of cell growth, to 
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the inconsistency of Feed C performance and to the accumulation of errors during cell culturing and 

data analysis. Thus, model predictions resulted to an overestimation of the viable cell density for all 

experiments and especially for the exponential phase of the cell culture period.  

 

Figure 3.8: Model predictions (red line) for viable cell density against experimental data (black squares) and for all feeding 

regimes. Taken with permission from Kotidis et al.517. 

3.2.3   Model calibration to updated CHO-T127 experimental data 
As shown in Fig. 3.8 and discussed in section 3.2.2, the CHO-T127 cell line exhibited a different dynamic 

profile of viable cell density, starting from the exponential growth phase, when compared to identical 

experiments that were performed from previous lab members. For that reason and in order to identify 

the parameters that can be quickly tuned for the adaption of the modelling framework to metabolic 

alterations of the cell line or to process variability, we performed an exhaustive GSA with an emphasis 

on viable cell density and mAb concentration. Five new feeding regimes of galactose and uridine 

(including the control experiment) that were extracted from the boundaries of the previously 

identified DS (Fig. 3.9), were carried out experimentally. The experimental performance of these 

experiments is presented in-detail in Chapter 5 of this thesis. The significant parameters were re-

estimated according to the feeding experiment that showed the lowest experimental standard 
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deviation for viable cell density and mAb concentration (P1), and their predictive capabilities were 

evaluated against the four remaining experiments. 

 

Figure 3.9: Coordinates of the new feeding experiments (P1-P5) in the DS. P5 is the control experiment. Note that whilst P3 

and P4 show similar Urd4, Urd6 and Urd8 concentrations, the Urd10 is notably different. 

GSA results for the Metabolism submodel 

Several different configurations of GSA were examined, as shown Fig. 3.2, investigating each time a 

different sampling method (Sobol’, Scrambled-Sobol’ and Pseudo-random) and degree of parameter 

deviation (10%, 30% and 50%). A deviation of parameter values over 50% was proven infeasible, as it 

resulted in multiple crashes (negative values for positive-only variables such as metabolite 

concentrations) during the 16,384 simulations performed for evaluation of parameter significance. 

The Pseudo-random sampling method resulted in R2 << 0.9 of metamodel fitting for all time points of 

the cell culture period and for both variables examined, and was therefore rejected. However, both 

Sobol’ and Scrambled-Sobol’ methods resulted in a fitting of viable cell density and mAb concentration 

with R2 >> 0.95. The accurate metamodel fitting was common for all examined parameter deviation 

values and resulted in a similar calculated TSI for each parameter and for both variables. Moreover, 

the different sampling methods for evaluating metamodel fitting had a minor impact on metamodel 

performance and TSI values. 
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Figure 3.10: TSI values for µ𝒎𝒂𝒙  and µ𝒅𝒆𝒂𝒕𝒉,𝒎𝒂𝒙  on viable cell density, during the cell culture period and for different 

parameter deviation ranges. Sobol’ sequence was used as a sampling method. Taken with permission from Kotidis and 

Kontoravdi518. 

Interestingly, TSI values presented a highly dynamic profile during the cell culture period. Fig. 3.10 

shows the TSI value variation of maximum specific cell growth rate (µ𝑚𝑎𝑥) and maximum specific cell 

death rate (µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥 ) for viable cell density, during the entire culturing period and every 24h. 

Similarly, Fig. 3.11 presents the variation of several additional parameters associated with cell growth 

and death in three different time points of the cell culture. More specifically, µ𝑚𝑎𝑥  retained a 

relatively constant TSI value until day 4 of the cell culture, slightly decreased until day 7 and finally 

presented a steep decline until the termination of the cell culture, with a value between 0.013-0.017 

for the different configurations. On the contrary, µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥  presented an entirely opposite profile 

with negligible TSI values until day 5 and then a rapidly increasing trend until the harvest of the culture, 

at which point the calculated TSI values were between 0.40-0.47. Interestingly, the lower parameter 

deviation range resulted in more extreme values and steep changes for both µ𝑚𝑎𝑥 and µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥  

during the cell culture period. 
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Figure 3.11: TSI values for different parameters with a TSI > 0.05 for at least one of the examined periods and for the effect 

of the parameters on (A) viable cell density and (B) mAb concentration. The parameters’ deviation was set at 10% and the 

Scrambled Sobol’ method was used for sampling. Taken with permission from Kotidis and Kontoravdi518. 

As shown in Fig. 3.11, parameters that are related to cell death, such as 𝐾𝑑,𝐴𝑚𝑚 and 𝑌𝑋𝐴𝑚𝑚
, presented 

a steadily increasing TSI value for viable cell density during the evolvement of the cell culture. On the 

other hand, the TSI of 𝐾𝐴𝑠𝑛  and 𝐾𝐺𝑙𝑐  decreased over time for both viable cell density and mAb 

concentration, probably due to the decreased net cell growth in the late phases of the culture and 

therefore the reduced dependence of cells on asparagine and glucose. Interestingly, the TSI value of 

𝑌𝑋𝐴𝑠𝑛
 for viable cell density increased during the end of the exponential phase and then slightly 

declined towards the end of the culture. The slight decrease of the TSI value during the latter stages 

of cell culture can be attributed to the stabilization of 𝑞𝐴𝑠𝑛 , in combination with the increased 

ammonia contribution ( 𝑌𝑋𝐴𝑚𝑚
). However, the TSI of 𝑌𝑋𝐴𝑠𝑛

 for mAb concentration presented a 

constantly increasing trend during the entire cell culturing period. Similarly to the case of viable cell 

density, the TSI values of µ𝑚𝑎𝑥  and µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥  presented a declining and increasing trend, 

respectively, with the evolvement of the cell culture. Notably, µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥  presented a considerably 

lower TSI value for mAb concentration compared to viable cell density, probably due to the indirect 

effect that cell death has on mAb synthesis and concentration. 

Post-analysis of GSA results and model calibration 

As shown in Fig. 3.10 and 3.11, the TSI values of model parameters were found to significantly 

fluctuate during the cell culturing period. For that reason, Eq. 3.2 was employed for the evaluation of 

parameter significance during the entire experiment. Furthermore, as the identification of significant 

parameters is heavily dependent on the considered SIT and in order to examine the effect of the 

chosen SIT on the identification of significant parameters, we examined three commonly employed 

SIT values: 0.05, 0.1 and 0.2. As mentioned earlier, TSI values between Sobol’ and Scrambled-Sobol’ 
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methods were found to yield comparable results (<1% discrepancy) and therefore, analysis was 

performed based on the Sobol’ sequence. Table 3.2 includes all the parameters that were found to 

exceed the SIT examined in each scenario. As expected, higher SITs resulted in fewer significant 

parameters. Interestingly, despite the influence of parameter deviation on TSI and the metamodeling 

fitting, all examined parameter deviation values eventually resulted to identical sets of significant 

parameters for each examined SIT. 

Table 3.2: Results of parameter estimation for all parameters that were considered significant for each SIT. The dash indicates 

that the parameter was not found to significantly affect the outputs for the examined SIT. CI stands for confidence interval.  

Taken with permission from Kotidis & Kontoravdi518. 

 Set A (SIT=0.05) Set B (SIT=0.1) Set C (SIT=0.2)  

Parameter value 95% CI value 95% CI value 95% CI Units 

𝑲𝑨𝒔𝒏 2.66 0.24 - - - - mM 

𝝁𝒅𝒆𝒂𝒕𝒉,𝒎𝒂𝒙 1.46x10-2 2.92x10-3 1.41x10-2 2.46x10-3 - - h-1 

𝝁𝒎𝒂𝒙 3.89x10-2 1.14x10-3 3.89x10-2 1.14x10-3 3.41x10-2 7.24x10-4 h-1 

𝒎𝒎𝑨𝒃 1.07 5.10x10-2 1.07 5.10x10-2 1.13 5.46x10-2 pg·cell-1·h-1 

𝒀𝑿𝑨𝒔𝒏
 3.46x108 2.79x107 3.46x108 2.79x107 - - cell·mmol-1 

 

For each exercise, the significant parameters were re-estimated to fit the experiment with the lowest 

overall standard deviation for both viable cell density and mAb concentration (P1). Low standard 

deviation was chosen as a criterion because it accommodates more accurate fitting and better 

confidence. The estimated values for each parameter and the respective 95% confidence intervals 

(95% CIs) can be found in Table 3.2. The results were evaluated considering the fitting to the training 

experimental data and the calculated 95% CIs, with better fitting and narrower confidence intervals 

being the desired targets. The use of Set B for model training presented the lowest R2 values (Fig. 3.12) 

and the narrowest 95% CIs overall (Table 3.2), apart from the 95% CI of µ𝑚𝑎𝑥 that presented a lower 

CI in Set C. The strategy for parameter re-estimation included two steps: 1) estimation of µ𝑚𝑎𝑥, 𝑌𝑋𝐴𝑠𝑛
 

and 𝑚𝑚𝐴𝑏 with 𝐾𝐴𝑠𝑛  and µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥 assigned to their nominal values and 2) estimation of 𝐾𝐴𝑠𝑛  and 

µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥.  

The aforementioned strategy was adapted depending on the set of parameters that were included in 

each scenario. As shown in Table 3.2, the absence of 𝐾𝐴𝑠𝑛  in Set B resulted in almost identical values 

compared to Set A, with only µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥  presenting marginal differences. On the other hand, the 

considerably reduced parameter Set C resulted in a lower value for µ𝑚𝑎𝑥 and slightly higher estimated 

value for 𝑚𝑚𝐴𝑏. Also, µ𝑚𝑎𝑥 was calculated with the highest confidence in Set C, when compared with 

the other parameter estimation scenarios. However, the re-estimation of only µ𝑚𝑎𝑥 and 𝑚𝑚𝐴𝑏 was 
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not found adequate to correctly calibrate the model in the experimental data of the P1 experiment 

(Fig. 3.12). In all parameter estimations and for all examined parameters, the lower bound was set 

equal to zero and the upper bound equal to 3-fold the nominal parameter value, to enable a more 

extended search of the parameter value.  

 

Figure 3.12: Fitting of the calibrated model (red line) to the experimental data (black squares) of the P1 experiment and for 

each SIT, over the entire cell culture period. The R2 values of the fitting for viable cell density and mAb concentration are also 

reported. 

Model predictive capabilities post re-calibration 

The parameter values of Set B (Table 3.2) were utilized in order to examine the predictive capabilities 

of the model to the rest of the fed-batch experiments (P2-P5), that were not considered in model 

calibration. As described in section 3.1.1, P2-P5 are four fed-batch experiments that include the 

addition of different galactose and uridine concentrations in the culture from day 4 and every other 

day, with P5 being the control experiment with no feeding of galactose and uridine. In addition to 

galactose and uridine, all fed-batch experiments were supplemented with 10% v/v CD EfficientFeedTM 

C AGTTM Nutrient Supplement on day 2 and every other day. 
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Fig. 3.13 presents the agreement (R2) between the re-calibrated model predictions and experimental 

data for the P1-P5 experiments. All experiments, and for both viable cell density and mAb 

concentration, were closely matched by model predictions that presented an agreement of R2 > 0.9 in 

all cases. Viable cell density of P2 and P3 was slightly underpredicted but fell close to the standard 

deviation of the experimental data. The high R2 values indicate a successful re-calibration of the model 

to the altered metabolic behaviour of the CHO-T127 cells. 

 

Figure 3.13: Accuracy of model predictions (red line) against the experimental data (black squares) for experiments that were 

not considered during model calibration (P2-P5). The fitting of the model to the training experimental data (P1) is also shown. 

The model performance is evaluated for the prediction of viable cell density and mAb concentration over the course of the 

cell culture period. Taken with permission from Kotidis & Kontoravdi518. 

3.2.4   Model training to a different CHO cell line (GS46) 
The Metabolism submodel was subsequently trained on experimental data from the CHO-GS46 cell 

line that expresses a different IgG4 monoclonal antibody. Whilst both cell lines are derived from CHO-

K1 parental cells, the GS46 cells exhibit a significantly higher growth and productivity, achieving a mAb 

concentration of up to ~2.5 g·L-1 at harvest. 

Specifically, the experimental dataset from a fed-batch culture of the GS46 cell line, with the addition 

of 10% v/v CD EfficientFeedTM C AGTTM Nutrient Supplement on day 2 and every other day, was used 

for applying the framework presented in Fig. 3.2 and performing the parameter estimation519. 
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Galactose and uridine were not supplemented during the fed-batch culture. The basal media (CD-CHO) 

and the feed used for the fed-batch experiment were the same with the respective products that were 

used for CHO-T127 culturing. The availability of the complete experimental profile of amino acids and 

metabolites enabled the extension of GSA for the additional inclusion of glucose, glutamine, ammonia, 

lactate, asparagine, aspartate and glutamate as targeted outputs of the analysis. The incorporation of 

metabolites and amino acids led to the exclusion of viable cell density from the analysis due to the 

high correlation that it presents with the latter.  

The optimal GSA settings for model calibration, as identified in section 3.2.3, were used for the 

identification of the significant parameters that are necessary for model calibration to the GS46 

experimental data: Sobol’ sampling method, 50% parameter deviation around the nominal value and 

SIT equal to 0.1. In addition, the GSA results were also processed with SIT equal to 0.05 and 0.2, 

respectively, in order to further explore the dependencies between the metabolites/amino acids and 

the model parameters (Fig. 3.14). Surprisingly, glucose only showed a weak dependency on 𝑌𝑋𝐺𝑙𝑐
 that 

was identified as a significant parameter only when SIT was set equal to 0.05. Moreover, aspartate 

was found to show relatively weak dependencies on parameters such as 𝐾𝐴𝑠𝑛, 𝑌𝐴𝑠𝑝/𝐴𝑠𝑛  and  𝑌𝐺𝑙𝑛/𝐴𝑚𝑚 

that were labelled as significant only in the SIT=0.05 level. All metabolites/amino acids apart from 

lactate were found to be significantly dependent on µ𝑚𝑎𝑥 up to the SIT=0.2 threshold. Interestingly 

and as a result of the exclusion of viable cell density from the analysis, µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥 was not labelled as 

a significant parameter for any of the examined outputs (including the monoclonal antibody 

concentration). The chosen sensitivity analysis identified 10 significant parameters for SIT equal to 0.1 

and reduced the burden of parameter estimation from the original set of 33 parameters. The number 

of significant parameters identified in the current study are more than twice compared to the 4 

significant parameters identified in section 3.2.3 due to the inclusion of more targeted outputs. The 

important parameters, as identified from the sensitivity analysis, can be found in Table 3.3. 
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Figure 3.14: Parameters that were labelled as significant for each SIT and for each examined metabolite and amino acid. Each 

colour identifies the connections between a unique metabolite/amino acid and the identified significant parameters. Orange: 

glucose, blue: glutamine, grey: ammonia, yellow: lactate, green: asparagine, black: aspartate, light blue: glutamate. Taken 

with permission from Kotidis & Kontoravdi518. 

Importantly, due to the identified dependencies between the parameters and the examined model 

variables (outputs), a more structured and targeted parameter estimation strategy was employed. 

More specifically, each parameter was estimated using the experimental data of the variables for 

which it was labelled as significant. Briefly, the steps of parameter estimation are described below: 

• Step 1: µ𝑚𝑎𝑥 , 𝑌𝑋𝐴𝑠𝑛
, 𝑌𝑋𝐴𝑚𝑚

 and 𝑚𝐺𝑙𝑐  were estimated against the experimental 

measurements of asparagine, ammonia and glucose. 

• Step 2: 𝑌𝑋𝐺𝑙𝑛
 was estimated using the experimental measurements of glutamine. 

• Step 3: 𝐿𝑎𝑐𝑚𝑎𝑥,1 and 𝐿𝑎𝑐𝑚𝑎𝑥,2 were estimated against the experimental data of lactate. 

• Step 4: In a second round µ𝑚𝑎𝑥 and 𝑌𝑋𝐴𝑠𝑛
 were re-estimated alongside with the estimation of  

𝑌𝑋𝐺𝑙𝑢
 against the experimental data of glutamate. The estimations from Step 1 were used as 

initial guesses.  

• Step 5: 𝑌𝑋𝐴𝑠𝑝
 was estimated against the experimental data of aspartate. 

• Step 6: Steps 1-6 were repeated using the previously estimated values as initial guesses. In 

Step 1, in addition asparagine, ammonia and glucose, the experimental measurements of 

viable cell density were also included in the analysis. 

• Step 7: Finally, 𝑚𝑚𝐴𝑏  was estimated against the experimental data of the secreted 

monoclonal antibody concentration. 

Glucose Glutamine Ammonia Lactate Asparagine Aspartate Glutamate
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YXGln YXAmm

Lacmax1 Lacmax2
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YXGlu
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YXAsn
YXAsp
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YXGlu

SIT=0.1

Glucose Glutamine Ammonia Lactate Asparagine Aspartate Glutamate

Lacmax1 Lacmax2

YXAsn
YXAsp

μmax

YXGlu

SIT=0.2

Glucose Glutamine Ammonia Lactate Asparagine Aspartate Glutamate
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Whilst the proposed parameter estimation strategy includes several steps that are necessary in order 

to achieve the desirable fitting convergence, the extracted methodology is based on the GSA results 

and offers a well-structured and reproducible framework for estimating the significant parameters 

and adapting the model to a new cell line.  

During parameter estimation, the non-significant parameters were assigned to their nominal values 

as calculated in Chapter 2. Table 3.3 shows the results of parameter estimation including the 

estimated values of the significant parameters and the respective 95% CI. The majority of significant 

parameters are the yields of cell biomass on the examined metabolite/amino acid (𝑌𝑋𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒
), with 

the exception of 𝑌𝑋𝐺𝑙𝑐
 and 𝑌𝑋𝐿𝑎𝑐

 that were not found to significantly influence the respective 

metabolites. Conversely, glucose presented a strong dependence on µ𝑚𝑎𝑥  and 𝑚𝐺𝑙𝑐 , while lactate 

was found to be strongly affected by the values of 𝐿𝑎𝑐𝑚𝑎𝑥,1 and 𝐿𝑎𝑐𝑚𝑎𝑥,2. Surprisingly, 𝑌𝑋𝐴𝑠𝑛
 was 

designated as an important parameter for asparagine, glucose, glutamate, ammonia and glutamine 

concentration, probably due to a correlation between the overall cell metabolism and asparagine 

levels. The latter was rapidly consumed by the cells during all culture phases, indicating a direct 

influence on cell growth and an indirect effect on other metabolites uptake or production. Finally, 

µ𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥 and 𝐾𝐴𝑠𝑛  were not identified as significant parameters for any of the outputs, in contrast 

to the analysis presented in section 3.2.3, indicating that the effect of the aforementioned parameters 

lies directly on viable cell density.  

Table 3.3: Results of parameter estimation for model adaption to the CHO-GS46 cell line. The 95% confidence intervals and 

the nominal values of the parameters for the CHO-T127 cell line, that were used as initial guesses for the GS46 parameter 

estimation, are also reported. Adapted from Kotidis & Kontoravdi518. 

Estimated 

parameter 

CHO-T127 

Nominal Value 

GS46 Estimated 

Value 

95% Confidence 

Interval 

Units 

𝒎𝒎𝑨𝒃 4.10x10-1 1.31 1.15x10-1 pg·cell-1·h-1 

𝒀𝑿𝑨𝒔𝒑
 1.46x1010 1.15x109 6.44x106 cell·mmol-1 

𝒀𝑿𝑮𝒍𝒖
 8.25·107 5.68x109 8.25x107 cell·mmol-1 

𝑳𝒂𝒄𝒎𝒂𝒙𝟏 21.20 18.55 4.02 mM 

𝑳𝒂𝒄𝒎𝒂𝒙𝟐 16 7.14 0.64 mM 

𝒀𝑿𝑮𝒍𝒏
 4.64x109 1.85x1010 3.53x108 cell·mmol-1 

𝒎𝑮𝒍𝒄 3.43·10-11 3.35x10-11 3.35x10-12 mmol·cell-1·h-1 

𝝁𝒎𝒂𝒙 6.50·10-2 6.96x10-2 6.67x10-4 h-1 

𝒀𝑿𝑨𝒎𝒎
 2.36x109 4.66x109 1.67x108 cell·mmol-1 

𝒀𝑿𝑨𝒔𝒏
 7.68x108 8.69x108 2.75x107 cell·mmol-1 
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The use of a common modelling framework for simulating the metabolism of two different CHO cell 

lines, enables the direct comparison between the obtained parameter values, and subsequently, the 

qualitative and comparative evaluation of the metabolic fluxes. Fig. 3.15 shows the fold change for 

the value of each of the parameters between the CHO-T127 and GS46 cell lines. Whilst a further 

statistical analysis (t-test) of the differences between the cell lines is not possible due to the nature of 

the comparison (estimated parameters) and lack of experimental replicates, the 95% confidence 

intervals, as calculated for each of the parameters, are included in Fig. 3.15. Accounting for the 95% 

CI, the cell lines show minor differences for the values of 𝐿𝑎𝑐𝑚𝑎𝑥,1 , 𝑚𝐺𝑙𝑐 , 𝜇𝑚𝑎𝑥  and 𝑌𝑋𝐴𝑠𝑛
. 

Interestingly, an approximately 3-fold higher 𝑚𝑚𝐴𝑏  value is calculated for the GS46 cell line that 

depicts the higher specific productivity rates observed when compared to CHO-T127. Also, 𝑌𝑋𝐴𝑚𝑚
 and 

𝑌𝑋𝐺𝑙𝑛
 are approximately 2-fold and 4-fold higher when compared to the respective values of CHO-

T127, indicating that GS46 cells have a higher yield towards glutamine synthesis and ammonia 

production. On the other hand, 𝑌𝑋𝐴𝑠𝑝
, 𝑌𝑋𝐺𝑙𝑢

 and 𝐿𝑎𝑐𝑚𝑎𝑥,2 were estimated in lower values for the GS46 

cell line indicating a lower flux of aspartate and glutamate towards cellular processes and a shorter 

period of lactate production from the CHO-T127 cells, as also experimentally observed. 

 

Figure 3.15: Comparison between the estimated values for the CHO-T127 and the GS46 cell lines. The values have been 

normalized against the nominal parameter values for the CHO-T127 cells. The error bars represent the 95% confidence 

intervals for each estimated parameter. 

Model fitting to the experimental data for viable cell density, secreted mAb concentration, glucose, 

ammonia and asparagine is presented in Fig. 3.16. Apart from ammonia that showed an R2 equal to 

0.891, all variables presented an R2 > 0.95 indicating a very good agreement between the model 

simulation and the experimental data. Notably, the model was able to adapt to the increased growth 

and productivity of the GS46 cell line. More specifically, the final titre for the GS46 cells was 



Page | 118 MODEL APPLICATIONS WITHIN THE QUALITY BY DESIGN PARADIGM 

approximately 2.5 g·L-1, significantly higher compared to the ~0.5 g·L-1 achieved with the CHO-T127 

cell line. In addition and in agreement with the trend indicated by the estimated value of 𝑚𝑚𝐴𝑏, the 

specific antibody productivity (𝑞𝑚𝐴𝑏) for CHO-T127 and GS46 was experimentally measured at 17.4 

pg·cell-1·day-1 and 27.7 pg·cell-1·day-1, respectively.  The model slightly underestimates the viable cell 

density at the time points of 192h, 216h and 240h of the cell culture period, and the ammonia 

concentration over the course of the experiment. Secreted mAb, glucose and asparagine 

concentrations are closely matched by the model over the entire cell culture period. More specifically, 

the ~3-fold higher value of 𝑚𝑚𝐴𝑏  when compared to the concentration for CHO-T127 cells, in 

combination with the experimentally observed elevated levels of viable cell density, led to the 

accurate description of secreted mAb concentration over the course of the fed-batch culture. 

 

Figure 3.16: Model fitting to the experimental data of the GS46 cell for viable cell density, mAb concentration, glucose, 

asparagine and ammonia. Red line indicates model simulation data and black squares the experimental measurements. The 

black arrows in the graph of viable cell density indicate the time intervals at which 10% v/v CD EfficientFeedTM C AGTTM was 

added to the culture. Taken with permission from Kotidis & Kontoravdi518.  

3.3   Discussion 
In Chapter 3 we attempted to showcase two applications of the proposed modelling framework that 

strengthen the importance of developing mathematical tools for describing bioprocesses, i.e., the 

production of recombinant proteins as described herein, in order to expedite process development, 

ensure that the quality attributes and key performance indicators meet the pre-determined 

requirements and, ultimately, reduce the costs of production and subsequently the price of the 

product.  
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The Quality by Design paradigm requires a deep understanding of the relationship between the inputs 

and outputs of the process. To that end, an integrated computational framework that utilizes 

constraint Global Sensitivity Analysis in combination with mechanistic model simulations, was 

proposed in sections 3.2.1 and 3.2.2, in order to identify an in silico Design Space of galactose and 

uridine concentrations in the feed that satisfy the desired quantity and quality constraints of the 

process outputs. cGSA was employed in order to reduce the dimensionality of the problem from an 

8D to a 3D system by only accounting for the feeding parameters that significantly influence the 

constrained (Eq. 3.4 and 3.5) secreted mAb concentration and mAb galactosylation. The use of cGSA 

was found to outperform the unconstrained GSA with respect to the information provided for the 

effect of each feeding parameter on the outputs (Fig. 3.3). In order to generate data for employing 

the cGSA algorithm, the mechanistic model was simulated for 8,192 (213) scenarios of different 

galactose and uridine feeding concentrations in each interval. The integration of dimensionality 

reduction through cGSA and model simulations enabled the visualization of the process’ Design Space 

(Fig. 3.4) and the further representation of the latter through a linear inequality constraint (Eq. 3.9). 

Five model-based experiments that fall within the DS and two experiments that fail to satisfy at least 

one of the two constraints (Eq. 3.4 and 3.5) were experimentally performed in order to validate the in 

silico DS. Finally, model predictions were verified based on the acquired experimental data, as shown 

in Fig. 3.6, indicating that the proposed mechanistic model can be used in order to define a Design 

Space that can ensure the satisfaction of the CQAs and KPIs, such as mAb concentration and 

galactosylation. The developed methodology contributes towards the utilization of computational 

tools with a minimal experimental dataset for identifying a suitable DS. A hybrid approach combining 

experimental and computational work is of great importance in problems that are characterized by 

multiple degrees of freedom (in this case the feeding concentrations at each interval) and that affect 

several outputs (i.e. cell growth and mAb concentration) in a time-dependent manner. An exhaustive 

exploration of the DS through solely experimental means would significantly increase the time and 

the associated costs. The inclusion of model-based data accelerates the process and offers 

mechanistic insights on the correlations between inputs and outputs. 

Surprisingly, the 𝑚𝐺𝑎𝑙-constraint was satisfied in all experiments, indicating that the chosen threshold 

was not stringent enough and should be increased for future studies. More specifically, the considered 

𝑚𝐺𝑎𝑙  is calculated as the product of mAb concentration and the absolute galactosylation and 

therefore incorporates the effect of process conditions on both variables. However, as mAb 

concentration is already constrained in Eq. 3.4, the 𝑚𝐺𝑎𝑙-constraint can be potentially replaced with 

a constraint on the absolute mAb galactosyation, as calculated by Eq. 2.46. Moreover, the 

discrepancies between model predictions and experimental measurements for 𝑚𝐺𝑎𝑙  are mainly 
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attributed to the underpredictions of the model for the mAb concentration (Fig. 3.6), as the glycoform 

distribution was accurately predicted for the majority of the experiments (Fig. 3.7). The latter 

observation further supports the replacement of the 𝑚𝐺𝑎𝑙 -constraint with the absolute mAb 

galactosylation in relevant future experiments and studies. Another factor that could contribute to 

the discrepancies between the experimental data and model predictions is the regulation of 

glycosyltransferases at a cellular level and during the cell culture process. Whilst model predictions 

show a very good agreement with respect to the experimental mAb glycoform distribution at harvest, 

no measurements are available for the rest of the cell culture period to assess model agreement. 

However, the model has been proven (Chapter 2) to show very good agreement with the experimental 

mAb glycoform distribution for earlier days of the culture and therefore the aforementioned factor is 

not expected to significantly contribute to the observed discrepancies. Finally, mAb concentration is 

closely matched by model predictions with the exception of FS7 that, unexpectedly, considerably 

outperformed the control experiment. As discussed earlier, the model accounts for the inhibiting and 

toxic effects of galactose and uridine addition on cell metabolism and growth and therefore, an 

increase in mAb concentration is not expected. Overall, the model correctly identifies all the 

experiments that satisfy the constraints and fall within and out of the DS. 

Further investigation of model performance against experimental measurements, revealed a 

disagreement with respect to the experimentally measured viable cell density (Fig. 3.8). The 

experimental results showed a considerable deviation between the training dataset (presented in 

Chapter 2) and the dataset used for DS validation (Chapter 3), even for the control experiment that 

was common for both sets of experiments. In order to calibrate the Metabolism submodel that 

simulates the viable cell density, a new set of fed-batch cultures was conducted, with varying 

concentrations of galactose and uridine in the feed. The experiments (P1-P5) were chosen in order to 

investigate the boundaries of the in silico DS.  

The work presented in sections 3.2.3 and 3.2.4 attempts to (a) tackle problems caused in model 

calibration from high deviations in experimental variables of the cell culture and (b) enable the 

adaptation of the modelling framework to new datasets from different cell lines, products or process 

conditions. Initially, a strategic framework for the designation of the model’s significant parameters, 

with respect to viable cell density and mAb concentration, was constructed in section 3.2.3 and shown 

in Fig. 3.1. Initially, the proposed workflow aims to identify the optimal settings for Global Sensitivity 

Analysis and verifies the results through parameter re-estimation against the experiment with the 

lowest experimental variation (P1). The effect of Sobol’, Scrambled-Sobol’ and Pseudo-random 

sampling methods and the deviation in parameter values by 10%, 30% and 50% on the targeted 
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outputs was evaluated. In addition, three values (0.05, 0.1 and 0.2) for the sensitivity index threshold, 

which determines the cut-off between significant and non-significant parameters, were investigated.  

The results indicate that the Sobol’ and Scrambled-Sobol’ methods lead to similar (<1% discrepancy) 

metamodeling fitting and TSI values for the targeted outputs. Whilst parameter deviation was found 

to considerably influence the TSI values, it had minor effect on the resulting sets of significant 

parameters. The GSA settings of Sobol’ sampling, 50% parameter deviation and SIT equal to 0.1 were 

found to identify a set of significant parameters (Table 3.2) that, when re-estimated, result in the 

highest agreement between training data and model simulations (Fig. 3.12). The re-estimated 

significant parameters for the optimal GSA settings were 𝜇𝑚𝑎𝑥, 𝜇𝑑𝑒𝑎𝑡ℎ,𝑚𝑎𝑥, 𝑚𝑚𝐴𝑏and 𝑌𝑋𝐴𝑠𝑛
. Model 

predictions for P2-P5 experiments using the re-estimated parameters, resulted in a very good 

agreement for both viable cell density and mAb concentration with R2 > 0.91 for all experimental 

datasets (Fig. 3.13). 

Following the successful calibration to new experimental profiles of the CHO-T127 cell line, the 

optimal settings for GSA were then applied for model adaptation to experimental data of the GS46 

cell line (presented in Kyriakopoulos & Kontoravdi519). The GS46-dataset included a detailed profiling 

of all metabolites and amino acids of cellular metabolism and, therefore, enabled the extension of the 

targeted outputs and the inclusion of several additional model variables. GSA identified 10 parameters 

(Table 3.3) that significantly influence the targeted outputs, and consequently reduced the burden of 

parameter estimation for model adaptation, as the Metabolism submodel has 33 parameters in total. 

The re-estimation of the designated parameters resulted in a very good overall fitting (Fig. 3.16) 

scoring R2 > 0.95 for both viable cell density and secreted mAb concentration. Moreover, the use of 

the same mechanistic model for simulating both cell lines’ metabolism (CHO-T127 and GS46) enabled 

a more comprehensive understanding of the cellular discrepancies with respect to metabolism, based 

on the estimated parameters (Fig. 3.15). Finally, the insights from GSA also enabled the construction 

of a well-structured methodology for systematizing the parameter estimation process for model 

adaptation to a different cell line. Overall, the work presented in the current chapter successfully 

demonstrates that a single mechanistic modelling framework can be utilized, at least as a common 

platform, for different applications within the QbD and Industry 4.0 paradigms and for describing the 

metabolism of several cell lines and products. Finally, it is important to note that the model could 

require structural modifications if the growth-limiting substrates of the employed cell line are 

different. 
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Chapter 4 Artificial neural networks for predicting 
protein glycosylation 
 

Chapter overview 
As has been extensively discussed in Chapter 1 of this thesis, N-linked glycosylation is a post-

translational modification of paramount importance for protein folding and function135-137, 524, directly 

affecting the CDC and ADCC activity of therapeutic monoclonal antibodies161, 169, 182, 525. However, 

glycosylation is also a process of immense complexity, as it does not follow any genetic template. 

More specifically, the regulation of glycosylation in the cellular environment is dependent on two 

major factors: 1) the glycosylation machinery and 2) the glycoprotein structure. Glycosylation 

machinery includes all the enzymes and proteins associated with the process itself, such as 

glycosidases, GTases and NSTs. On the other hand, glycoprotein structure accounts for the steric 

hindrance that each specific protein imposes on the glycosylation enzymes. Therefore, both the 

cellular environment and the protein itself can strongly influence the resulting glycoprofile and glycans 

distribution.  

The aforementioned multilevel control of the process increases the complexity of glycosylation 

modelling, especially when it is attempted through the use of mechanistic kinetic models. Several 

processes involved in glycosylation, such as the regulation of enzymes’ expression and NSDs transport 

from cytosol to the Golgi compartments, exhibit a highly non-linear profile and complex mechanistic 

relationships. For example, NSTs and glycosyltransferases have been found to form complexes that 

introduce an additional level of complexity regarding the function and localization of these enzymes123, 

526. To that end, low parametric approaches have been proposed in order to reduce the mechanistic 

knowledge necessary for describing the system and simultaneously reduce simulation times, either 

through probabilistic Markov Chain models28, 497, 527, flux balance analysis493 or statistical regression 

methods502. Model advances have been supported by the development of analytical methods for 

sensitive and high-throughput analysis of protein glycosylation using techniques such as nuclear 

magnetic resonance (NMR), liquid chromatography-mass spectrometry (LC-MS), matrix-assisted laser 

desorption/ionization-MS (MALDI-TOF-MS), MS/MS, high-performance liquid chromatography (HPLC) 

and capillary electrophoresis (CE)528-530. 

However, all the aforementioned modelling approaches, including mechanistic models, demand a 

considerable knowledge of both the computational tools and the biological background of 

glycosylation. The use of mechanistic models usually results in extended simulation times531 and 

assumptions for model parameters, such as enzymes’ concentration and distribution in the Golgi or 
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inhibition constants for the considered enzymatic reactions. Nominal values of the aforementioned 

parameters are usually derived from relevant in vitro kinetic studies of the glycosyltransferases. 

However, the in vitro enzymatic behaviour can be proven misleading when compared to the in vivo 

performance of the enzyme532. In addition, the results of parameter estimation during model’s tuning 

are strongly dependent on the chosen initial parameter values and therefore, do not represent the 

global solution of the optimization problem, but just one of the several plausible solutions of the 

system. Consequently, the estimated values do not resemble the actual value of the parameters and 

therefore partially lose their mechanistic meaning. As shown in Chapter 2, an upregulation of the 

b4GalT levels in the optimized galactose and uridine experiment can significantly enhance model 

performance. Mechanistic models use a fixed concentration of the glycosylation enzymes and are 

therefore unable to capture the dynamic regulations of glycosyltransferases levels that are known to 

occur both in the proteomic335 and transcriptomic levels297, 304, 533 during the cell culture period.  

Additionally, the use of mechanistic, flux balance analysis and probabilistic models requires a detailed 

knowledge of the reaction rules and constraints, for the construction of the protein-specific 

glycosylation network. The considered glycosylation network can have a significant effect on the 

predictive performance of the model, especially on genetic engineering experiments, and the 

estimated values of model parameters.  

In this chapter, Artificial Neural Networks are utilized in order to replace the kinetic Glycomodel and 

overcome all the limitations as previously described. In contrast to the previously proposed 

mechanistic473 and probabilistic glycosylation models496, ANNs require minimum knowledge of the 

biological background, no construction of a reaction network and reduced parameterization. Whilst 

the number of parameters remains high due to the existence of weights and biases, the only user-

tunable parameter in the ANN configuration as used herein is the number of hidden layers and 

neurons. There is a limited level of control over the estimated values of weights and biases for the 

user, as the parameters are estimated during training. ANNs have been widely used in order to 

describe biological processes534-536 and can readily adapt to the desired application. Up to date, ANNs 

have been used in order to predict glycosite location based on the amino acid sequence of the 

protein537-539 and to describe cell cultures of mammalian468, 540 and algal cells456-457. However, to the 

best of our knowledge, there have not been any efforts for utilizing ANNs, or alternative machine 

learning (ML) algorithms, for the prediction of protein glycosylation profiles. 

Chapter 4 includes several studies that were carried out in order to identify the applicability and 

limitations of ANNs for predicting the glycoform distribution of several recombinant proteins that 

present increased structural complexity. Initially, ANNs were utilized for reliably describing the 

glycoprofile of a monoclonal antibody, subject to perturbations in cellular metabolism and using the 
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experimentally measured intracellular concentration of NSDs as inputs. The experiments used for this 

study were the same with the feeding regimes presented in Chapter 2, in order to enable the direct 

comparison between the two modelling approaches. Subsequently, an ANN was employed in order to 

describe the effect of manganese addition, a well known co-factor of several glycosyltransferases and 

more specifically of b4GalT, in combination with fucose and galactose on mAb glycosylation. The ANN 

was then incorporated in the mechanistic cell culture framework presented in Chapter 2, replacing 

that way the kinetic Glycomodel. The resulting hybrid (kinetic/ANN) model (HyGlycoM) was found to 

overperform the respective fully kinetic framework, additionally presenting a considerably reduced 

development and parameterization time. Similar to the fully kinetic framework, HyGlycoM utilizes 

only data from the feeding and initial concentration of specific metabolites and amino acids. Finally, a 

tunable configuration of ANNs was used in order to describe the glycoengineering effect of beta-1,4-

galactosyltransferases’ isoforms on the site-specific glycoprofile of complex fusion glycoproteins that 

carry 4-5 N-linked glycosylation sites. Trained on triple knockout experiments, the ANN model was 

able to calculate the effect of quadruple knockouts using the mRNA expression levels of the 

considered glycosyltransferases as inputs. Therefore, either as a standalone model or part of a hybrid 

configuration, ANNs can be proven a useful tool for the utilization of a vast range of inputs for 

accurately predicting protein glycosylation. The results of this chapter have been presented in Kotidis 

and Kontoravdi541. 

Overall, the aim of Chapter 4 is to provide answers to the following questions:  

• Can machine learning algorithms, such as Artificial Neural Networks, be utilized to overcome 

the limitations of kinetic models in protein glycosylation? 

• What are the applications of a machine learning model describing protein glycosylation? 

• Can a hybrid (kinetic/data driven) model predict recombinant protein glycosylation? 

• What are the advantages and disadvantages of using machine learning for describing cellular 

processes according to the results presented herein? 

4.1   Materials & Methods 
4.1.1.  Cell culturing and protein glycosylation data 
All experimental data used for model construction, training and validation were taken from literature 

261, 350, 482. The datasets for the initial ANN development in section 4.2.1, linking NSDs to the glycoprofile 

for an IgG product, are the same as in Chapter 2482. These datasets were also used to compare the 

performance of the ANN and hybrid configurations against the mechanistic model. Additionally, a 

dataset from Villiger et al.261 evaluating the effect of manganese chloride, galactose and fucose 

addition on the NSD pools and the IgG glycoprofile, was utilized in order to evaluate the performance 
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of the ANN model on an alternative cell line and process regime. Finally, the Bydlinski et al.350 dataset 

was employed in order to examine the applicability of ANN configurations on glycoproteins that 

demonstrate multiple glycosylation sites and increased complexity and versatility in their glycoprofile. 

The aforementioned dataset includes the glycoprofile of two fusion proteins: EPO-Fc and Fc-diamine-

oxidase (Fc-DAO), in all glycosylation sites of the recombinant proteins and in several knockout 

scenarios of the b4GalT isoforms. Overall, four different glycoproteins (two different IgG, EPO-Fc and 

Fc-DAO) were considered for the studies presented herein. 

4.1.2   Mechanistic-kinetic mathematical model 
The kinetic model used in this chapter is the same with the one presented in Chapter 2 of this thesis. 

The parameters of the model were set to their nominal values, as estimated in Chapter 2. The model 

was simulated using the gPROMS ModelBuilder v.5.1.1 (Process Systems Enterprise, gPROMS, 

www.psenterprise.com/products/gproms, 1997-2020) and consists of three submodules: 1) 

Metabolism submodel, 2) NSD submodel and 3) Glycomodel. The latter was originally presented in del 

Val et al.478. 

4.1.3   Artificial Neural Network model construction 
Python 3.7 was used for ANN construction, training, validation and testing. A general representation 

of the feedforward ANN used in this study is presented in Fig. 4.1. A typical neural network 542 consists 

of one or more hidden layers (HLs), each of which contains a number of nodes, or alternatively 

neurons. The HLs are normally placed between the layer of inputs and the respective layer of outputs. 

In order to follow the convention used within the machine learning community, the inputs will be 

referred to as features and the outputs as labels. Whilst the number of features and labels depends 

on the problem at hand, the number of HLs and neurons is subject to optimization. The number of HLs 

and neurons are the hyperparameters of the algorithm and the estimation of their optimal number is 

usually referred to as tuning. Each neuron is connected with all the neurons from the previous and 

next HL through the weights. Similarly, the features are connected to the neurons of the first and the 

labels to the neurons of the last HL. Each neuron carries a bias that together with the respective weight 

of each connection is used in order to calculate the contribution from each neuron of the previous HL 

through the activation function.  

The feedforward ANN configuration utilized in the studies of this chapter, optimizes the value of the 

weights and biases through backpropagation. In backpropagation, the value of labels is estimated 

according to the initial value of weights and biases and is compared to the provided actual values. The 

difference between the estimated and actual values is then calculated (loss function) and is used in 

order to update the value of each weight and bias of the system. Each iteration is conventionally called 
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epoch, and the aforementioned iterative process (training) stops when either enough convergence 

has been achieved or a specific number of epochs has been simulated. 

 

Figure 4.1: (A) Schematic representation of a feedforward Artificial Neural Network as used in this study. The depicted ANN 

consists of 3 inputs, 3 outputs, f hidden layers, and a variable number of nodes (neurons) in each of the layers. The outputs 

of the ANN are the distributions of each glycoform that are attached in the examined glycoprotein. The dashed lines are used 

to represent the connections between the nodes that are not shown in the graph. (B) Graphical representation of the N-

linked glycosylation process in the Golgi apparatus. Arrows of different colour indicate the reactions taking place in each of 

the four Golgi compartments: cis (orange), medial (purple), trans (blue) and TGN (green). The dashed lines represent the 

transport of a glycoform from one compartment to another. Note that neither the structure of the ANN nor the reactions 

shown are the actual configurations considered in the current study. The graphs are shown just as a representation of the 

respective systems that were used herein. It is also important to note that the hidden layers of the ANN do not represent 

the Golgi compartments. Taken with permission from Kotidis & Kontoravdi541. 

For the ANN presented herein, the features utilized for each study depend on the dataset in use. The 

examined features in each study are presented in Table 4.1. In all cases, the labels of the ANN 

configuration were the distributions of the glycoforms considered for each examined glycoprotein. 
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Table 4.1: Utilized features for each study. 

Study Features (inputs) 

Galactose and uridine effect on IgG 

glycosylation 

Experimentally measured NSDs and nucleotides 

HyGlycoM Estimations of NSD levels based on mechanistic model 

simulations 

Manganese, galactose and fucose effect 

on IgG glycosylation 

Experimentally measured NSDs and cumulative 

extracellular manganese amount added 

Effect of b4GalT isoforms knockouts on 

EPO-Fc and Fc-DAO glycosylation 

b4GalT isoforms mRNA expression levels 

 

Moreover, the list of glycoforms considered is de novo defined by the user. Regarding the 

configuration of the ANN, the sigmoid function was chosen for all layer connections as it has been 

successfully applied to relevant works for bioprocess modelling543. The Min-Max method was used for 

normalizing the features. The number of epochs was set to 20,000, apart from the configuration used 

for the manganese feeding experiments, where 2,000 epochs were found to be enough. The examined 

ANN configurations included two or three HLs. 

The more the hidden layers and neurons included in the algorithm, the higher the probability of model 

overfitting. In addition, the inclusion of more than three HLs was found to significantly increase the 

network optimization time (hyperparameter tuning) without significantly improving model 

performance. Apart from controlling the number of neurons and HLs, alternative methods to avoid 

overfitting include the dropout, noise introduction, early stopping and weight constraining methods 

(regularization). More specifically, inclusion of dropout in the ANN configuration leads to neurons 

removal in a probabilistic manner during training in order to test the robustness of the model, while 

in noise introduction the user assigns an error distribution to the features and either creates additional 

points or deviates the original value of the existing variables. In early stopping, the model training 

stops when the desired convergence is achieved instead of running through the total number of 

epochs, and in regularization the weights of the configuration are constrained through a penalization 

of the loss function.  

In addition, bias was set to zero for all the configurations presented herein. It is important to note that 

the hidden layers of the ANN do not represent the compartments of the Golgi and a relationship of 

that kind should not be assumed. During training, the hyperparameters of the ANN were tuned in 

order to minimize the error between model simulations and experimental data for the dataset of 
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interest (validation set), based on the strategy proposed in Del-Rio Chanona et al.456. The objective 

function of validation was set as the minimization of the sum of the absolute difference between 

simulation results and experimental measurements for the labels, as shown in Eq. 4.1. 

𝑂𝐹 = 𝑚𝑖𝑛 ∑ |𝐸𝐺𝑖 −  𝑁𝐺𝑖
𝑚,ℎ1,ℎ2,… ,ℎ𝑚|𝑖    (4.1) 

where, 𝑂𝐹 is the objective function, 𝑖 are the different glycans examined in the dataset, 𝐸𝐺𝑖 is the 

experimentally measured distribution value of each glycoform and 𝑁𝐺𝑖
𝑚,ℎ1,ℎ2,…ℎ𝑚 is the simulated 

distribution value of the 𝑖𝑡ℎ  glycoform, for an ANN with 𝑚  hidden layers and with ℎ1, ℎ2, … , ℎ𝑚 

number of neurons for hidden layers 1, 2, … , 𝑚 respectively.  

The average absolute error (𝐴𝐴𝐸) for each set of model predictions was calculated using Eq. 4.2. 

𝐴𝐴𝐸 =  
∑ |𝐸𝐺𝑖,𝑘−𝑁𝐺𝑖,𝑘|𝑖

𝑛
   (4.2) 

where, 𝐸𝐺𝑖,𝑘  is the experimentally measured distribution value of the 𝑖𝑡ℎ  glycoform in the 𝑘𝑡ℎ  set 

considered for training or prediction,  𝑁𝐺𝑖,𝑘 is the simulated or predicted distribution value of the 

model for the 𝑖𝑡ℎ  glycoform in the 𝑘𝑡ℎ  point, and 𝑛  is the total number of points considered, 

calculated as the product of the total number of glycans and the total number of sets. 

The predictive capabilities of each configuration were verified against independent experiments that 

were not used in either training or validation as described in each section of the Results. All the data 

and models that support this study can be found in: https://github.com/PK1617/ANN-glycosylation. 

4.1.4   Multivariate analysis methods 
OriginPro 2020 (OriginLab, Northampton, MA, USA) was used for the implementation of PCA and PLS. 

4.1.5   Convention of glycans nomenclature 
In contrast to the results presented in Chapter 2 and 3 of this thesis, Chapter 4 includes several 

complex glycans found in the examined fusion proteins. For that reason, a more comprehensive 

glycans symbology was applied for this chapter. The convention was adapted from Bydlinski et al.350, 

where the fusion protein datasets were presented. The nomenclature for the involved sugars is 

presented in Table 4.2. Briefly, the abbreviation of each glycan includes the terminal sugars for each 

antenna and the presence or absence of fucose. Excluding fucose, the number of sugars in the glycan 

abbreviation is also an indicator of the antennae number. For example, the “NaGnGnF” glycan is a tri-

antennary fucosylated glycan that carries a terminal N-Acetylneuramic acid and two terminal N-

Acetylglucsamine molecules. The location of each terminal sugar on specific antennae was not 

included in the original study, neither the existence of polyLacNAc elongations, and was therefore not 

https://github.com/PK1617/ANN-glycosylation


Page | 129 ARTIFICIAL NEURAL NETWORKS FOR PREDICTING PROTEIN GLYCOSYLATION  

considered in the symbology of this study unless explicitly mentioned. Finally, the conventional 

symbology does not specify the nature of the glycosidic linkage between sugars. 

Table 4.2: Symbols for each sugar in the conventional symbology used in the study presented in Chapter 4. 

Sugar Conventional Symbol 

Mannose M 

N-Acetylglucosamine (GlcNac) Gn 

Galactose A 

Fucose F 

N-Acetylneuramic acid (Neu5Ac) Na 

 

4.2   Results 
The ANN approach was applied to data from three different studies and four recombinant proteins in 

total. All proteins were produced in CHO cells. The first dataset for IgG-producing cells presented in 

section 4.2.1 was taken from Chapter 2 of this thesis (can be also found in Kotidis et al.482) and was 

used for the construction of the hybrid model. The second dataset presented in section 4.2.2 includes 

the addition of manganese, fucose and galactose in CHO cell culture for the manipulation of IgG 

glycosylation, and was taken from Villiger et al.261 Fucose and galactose are precursors of GDPFuc and 

UDPGal, respectively, that act as co-substrates in protein glycosylation. Manganese is a co-factor of 

several glycosyltransferases and is expected to enhance the activity of b4GalT. The last dataset 

presented in section 4.2.3 was taken from Bydlinski et al.350 and includes the results of several 

knockouts of the four b4GalT isoforms in the glycosylation profile of two fusion proteins: Fc-DAO and 

EPO-Fc. Notably, Fc-DAO carries five N-linked glycosylation sites, whilst EPO-Fc four. Site-specific ANNs 

were developed for each examined glycosylation site. 

4.2.1   A hybrid model describing cell metabolism and N-linked glycosylation 
The hybrid model presented herein, consists of three submodules, similar to the fully mechanistic 

model constructed in Chapter 2. In order to evaluate the performance of ANNs for predicting protein 

N-linked glycosylation, a standalone ANN was first developed. Following ANN validation, the data-

driven model was integrated with the Metabolism and NSD submodels presented in Chapter 2. 

Establishing an ANN model to describe IgG N-linked glycosylation 

The experiments used in this study are described in Table 2.1 and include the addition of galactose 

and uridine to fed-batch CHO cell cultures for the increase of targeted NSD pools, such as UDPGal, in 

the intracellular environment, and consequently the enhancement of IgG galactosylation. Nucleotide 
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and NSD concentrations were considered as features of the ANN. All available time points (days 7, 9, 

11 and 12) were used for model training. The training set includes the control, 10G, 10G20U and 

50G5U experiments. The 10G5U experiment was left out of the training set and was used for 

validation. The latter was chosen for validation as it was the only dataset found within the training 

space defined by the rest of the experiments with respect to the concentration of both galactose and 

uridine. A total of 11 datasets with 12 features (AMP, ADP, ATP, CTP, UTP, GTP, UDPGalNAc, 

UDPGlcNAc, UDPGal, UDPGlc, GDPMan and GDPFuc) was used for model training. CMPNeu5Ac was 

not included as no sialylation was reported for the IgG of this study. The aforementioned variables 

were chosen as features in order to resemble the underlying principles of the mechanistic Glycomodel 

that utilizes the outputs of the NSD submodel to predict glycans distribution. 

Model validation results for all time points of the 10G5U experiment are shown in Fig. 4.2. ANN tuning 

through the validation set resulted in a configuration with 2 HLs and with 22 and 18 neurons in the 

first and second layer, respectively. The inclusion of a third HL was found to only marginally improve 

ANN performance and was therefore dismissed to avoid the risk of overfitting. The configured ANN 

closely describes the validation experiment, with the value of GnGnF on day 11 of the culture 

presenting the highest absolute error of ~4.1%. The AAE, described in Eq. 4.2, was calculated at 0.87%, 

showcasing the close agreement between experimental measurements and ANN results. 

 

Figure 4.2: Comparison between the experimental measurements of the validation dataset (10G5U) and the experimental 

measurements for each day of the cell culture period. Taken with permission from Kotidis and Kontoravdi541. 
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In order to further explore the robustness of the ANN configuration, the ANN was trained on different 

combinations of training sets, following an adapted leave-one-out-cross-validation (LOOCV) 

methodology, and was validated (tuned) against the experiment that was, each time, held out from 

training. The alternative ANN training resulted in good agreement with the independent experiments 

in each case, as shown in Fig. 4.3.  

 

 

Figure 4.3: Results of ANN training to alternative training sets. The ANN results are compared with the validation experiment 

that was held out of the training set in each case: (A) 10G and (B) 50G5U. The experiments used for validation for each 

scenario were replaced with the 10G5U dataset in the training set. Taken with permission from Kotidis and Kontoravdi541. 

The ANN configuration for each case is: (A) 26/5 and (B) 20/7, for the first and second layer respectively. 

In an additional effort to rigorously investigate the effect of each feature on ANN performance and 

whether the algorithm developed strong inadvertent dependencies on specific variables, the features 

were, one-by-one, excluded from the model. The number of neurons remained at 22 and 8 in the first 

and second HL, respectively, for all simulations. The effect of each exclusion on model performance 

against the 10G5U experiment was subsequently recorded. The AAE ranged between 0.87% for the 

full dataset, up to 1.25% when ADP was excluded from the feature-set (Fig. 4.4), indicating no 

excessive dependency of the ANN to any of the utilized features. 
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Figure 4.4: Effect of the one-at-a-time feature exclusion on the AAE of the ANN. The red bar shows the AAE of the scenario 

where no variable was excluded from the ANN. Taken with permission from Kotidis and Kontoravdi541. 

In addition, PLS was employed in order to compare ANN performance with alternative data-driven 

approaches. PLS is a computationally efficient multivariate method that requires minimal parameter 

tuning from the user and has been previously utilized to successfully describe mAb glycosylation based 

on several process parameters502. For that reason, a PLS model was trained on the control, 10G, 

10G20U and 50G5U experiments, similar to the ANN. Fig. 4.5 presents the results of the ANN-PLS 

comparison against the experimental data for the 10G5U. The ANN was found to outperform the PLS 

prediction in the vast majority of data points and for all glycan structures. Exception to the ANN 

outperformance was the distribution of GnGnF on day 11 of the culture, where the PLS presented a 

closer value to the experimental data. The AAE for the PLS model was 1.66%, almost twice compared 

to the respective value for the ANN. 
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Figure 4.5: ANN and PLS performance for the 10G5U dataset compared to the experimental data. Taken with permission 

from Kotidis and Kontoravdi541. 

Hybrid Glycosylation Model (HyGlycoM) 

Following the configuration and validation of the ANN model, the latter was coupled with the kinetic 

Metabolism and NSD submodels. Essentially, the ANN was used in order to replace the Glycomodel 

from the fully mechanistic model. A schematic representation of HyGlycoM is shown in Fig. 4.6. The 

hybrid nature of the model enables the utilization of the metabolites and amino acids concentration 

in the feed and seeding media through the mechanistic submodels that, in turn, calculate the 

intracellular NSD concentrations that are used as inputs for the ANN algorithm.  

 

Figure 4.6: Schematic representation of HyGlycoM that is composed from the Metabolism submodel, NSD submodel and the 

ANN. Adapted with permission from Kotidis and Kontoravdi541. 

Similar to the previous study, the ANN part of HyGlycoM was trained using the estimated NSD 

concentrations for the control, 10G, 10G20U and 50G5U experiments, based on the simulation results 
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of the Metabolism and NSD submodels. The 10G5U experiment was used for ANN tuning during 

validation. The resulting ANN configuration consists of 2 HLs with 18 and 34 neurons in the first and 

second layer, respectively. Fig. 4.7A shows the comparison between the simulated and experimental 

values for the NSDs concentration, as calculated by the mechanistic submodels. HyGlycoM was able 

to absorb the inaccuracies of the mechanistic submodels in the estimation of the NSD concentration 

due to the adaptability of the ANN, therefore achieving a good fitting for the validation experiment 

(10G5U), as shown in Fig. 4.7B. Importantly, due to the nature of data-driven techniques, ANNs can 

show increased tolerance of inaccuracy in features’ values as long as the qualitative differences 

between the data points are correctly described (Fig. 4.7B). The AAE of HyGlycoM was 0.98%, slightly 

higher compared to the standalone ANN (0.87%). It is important to note that the experimental 

quantification of the variables used as inputs for the HyGlycoM model (metabolites and amino acids 

concentrations in the media and feed) is considerably simpler and more high-throughput when 

compared to the inputs of the standalone ANN (intracellular NSD and nucleotide concentrations). 

Therefore, the ease of access to the necessary experimental inputs can compensate for the increased 

AAE of HyGlycoM when compared to the standalone ANN.  
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Figure 4.7: (A) Comparison of the mechanistic submodels simulations with the experimental data for the concentration of 

intracellular NSDs. (B) Comparison between HyGlycoM and experimental measurements for the glycans distribution of the 

10G5U experiment. Taken with permission from Kotidis and Kontoravdi541. 

Comparison between HyGlycoM and the fully mechanistic model 

As a next step, HyGlycoM was compared to the fully mechanistic model. The comparison of model 

performance was based on the predictions for the glycoform distribution of the model-based 
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optimization experiment, presented in Chapter 2 and Table 2.1. Fig. 4.8A demonstrates the results of 

the comparison between the fully kinetic model and HyGlycoM against the experimental 

measurements. With the exception of GnGnF distribution for days 7 and 9 of the cell culture, 

HyGlycoM outperforms the respective kinetic model for the vast majority of glycans species and in all 

time points. Importantly, HyGlycoM describes the galactosylated glycans (AGnF, AA, AAF) with 

considerably higher accuracy when compared to the fully kinetic model. The latter observation is 

attributed to the capability of HyGlycoM to capture, through the ANN part of the model, the non-

linear regulation of glycosyltransferase expression and NSD transport to the intra-Golgi environment, 

which are not explicitly considered in the fully kinetic model. Monoclonal antibody galactosylation is 

of particular interest within this thesis and the aforementioned observations can be considered a 

significant improvement towards overcoming the limitations of kinetic models and extending model 

applicability, as described in Chapter 3. The IgG glycoprofile consists mainly of the fucosylated GnGnF 

and AGnF glycans, as shown in Fig. 4.8A, the abundance of which ranges between 37.6% to 53.7% and 

34% to 44.4%, respectively, within the training set. Overall, HyGlycoM presented an AAE of ~1.25% 

for the independent optimization experiment, improving the results by 30% when compared to the 

fully mechanistic model. HyGlycoM was finally compared to a PLS model trained with the same 

datasets. Comparative PLS predictions for the independent optimization experiment are shown in Fig. 

4.8B. HyGlycoM was found to considerably outperform PLS predictions for all glycan species and 

available time-points. 
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Figure 4.8: Comparison of HyGlycoM with (A) the fully kinetic model and (B) the PLS model, against the experimental 

measurements for the independent optimization experiment. Taken with permission from Kotidis and Kontoravdi541. 

4.2.2   Extending the ANN for predicting the effect of metal ion 
supplementation on IgG glycosylation 
Metal ions are well known co-factors of glycosyltransferases, critically affecting the activity of the 

enzymes 544. Several studies have investigated the effect of manganese chloride (MnCl2) in CHO cell 

culture, identifying a positive correlation with recombinant protein galactosylation 261, 292-293. To that 

end, the extracellular concentration of manganese has been incorporated in mechanistic models for 

the description of protein glycosylation in CHO cell cultures 235, 481. Following a similar approach, the 

cumulative amount of manganese supplemented to the culture was integrated in the standalone ANN 

model proposed in section 4.2.1, in order to capture the effect of manganese on IgG-glycosylation. 

The experimental data utilized for this study are presented in Villiger et al.261. The authors evaluated 

the effect of MnCl2, fucose and galactose addition on an IgG producing CHO-S cell line cultured in 10mL 

bioreactors, with a downwards shift in pH and temperature introduced on day 5 of the cell culture 

period. The IgG glycosylation profile of the Fc-region was analysed on day 17 (harvest point) of the 

culture. More details on the MnCl2, galactose and fucose concentrations added in the culture can be 

found in Table 4.3. The experiments in the current section were performed with CHO-S cells, whereas 

the dataset employed in section 4.2.1 was generated using CHO-T217 cells, which were derived from 

a CHO-K1 parental cell line. In addition, the CHO-S cells were grown under considerably different 
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conditions: 1) pH (from 7.1 to 6.9) and temperature shift (from 36.5 °C to 33 °C) on day 5, 2) total 

cultivation duration of 17 days, 3) total volume of 10mL in bioreactors, 4) pH control through CO2 

supplementation and 5) feed addition on days 3, 5, 7, 10 and 14. Despite the efforts presented in 

Chapter 3 for adapting an established mechanistic model to a different cell line, such discrepancies in 

process conditions could lead to inevitable alterations in the structural backbone of the mechanistic 

model. However, the data-driven ANN enables a more high-throughput and equally reliable approach 

for simulating the new process conditions, as model calibration is automatically performed during 

training of the algorithm and minimal intervention is required from the user. 

Table 4.3: Experimental details as presented in Villiger et al.261. The reported concentrations were supplemented to the cell 

culture on days 3, 5, 7, 10 and 14. Abbreviation: M: manganese; G: galactose; F: fucose. Taken with permission from Kotidis 

and Kontoravdi541.  

Experiment MnCl2 (µM) Galactose (mM) Fucose (mM) 

M0G0F0 0 0 0 

M2.5G0F0 2.5 0 0 

M0G6F0 0 6 0 

M0.25G6F0 0.25 6 0 

M0G12F0 0 12 0 

M0G18F0 0 18 0 

M2.5G18F0 2.5 18 0 

M0G6F1 0 6 1 

M0.25G6F4 0.25 6 4 

M2.5G6F8 2.5 6 8 

 

The ANN configuration was adapted to include the cumulative manganese amount (in the form of 

MnCl2) supplemented to the cell culture, in addition to the intracellular concentration of nucleotides 

and NSDs. The effect of galactose and fucose addition was reflected on UDPGal and GDPFuc 

intracellular levels, respectively, and the sugars’ extracellular concentration was therefore not 

included in the list of features. The M2.5G6F8 experiment was excluded from the training and 

validation analyses and was used for the evaluation of model predictive capabilities (test set). A PCA 

performed on the available data indicated that the M0G6F1 dataset did not cluster with any other 

experiment, based on the measured values of the features (Fig. 4.9D). Thus, M0G6F1 was not used in 

the training process and was used for ANN validation and tuning. ANN tuning resulted in a 

configuration with 2HLs and 8 and 4 neurons in the first and second layer, respectively. 
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Figure 4.9: (A) ANN training results. (B) ANN fitting to the experiment used for model validation. (C) Comparison between 

ANN predictions and the experimental data of the M2.5G6F8 dataset. The experimental data of the control (M0G0F0) dataset 

are also displayed for comparison. (D) PCA performed in the available experiments for the identification of correlations 

between datasets. Taken with permission from Kotidis and Kontoravdi541.  

As shown in Fig. 4.9A, the ANN closely matches the glycosylation profile of all experiments used for 

training. Additionally, the model presents good agreement with both experiments employed for 

validation and prediction, respectively (Fig. 4.9B & 4.9C). Importantly, the effect of manganese and 

galactose addition on GnGnF and AGnF levels is correctly captured by the ANN, as presented in Fig. 

4.9C and the AAE that is calculated at ~0.89%. Moreover, the model correctly identifies the underlying 

relationship between manganese and galactose. Similar to fucose addition, where no significant 

differences between the control and feeding experiments are observed, galactose and manganese 

have minor impact on the formation of AGnF when separately supplemented at the concentration of 

12mM (M0G12F0) and 2.5 μM (M2.5G0F0), respectively. However, the experiment (M2.5G12F8) used 

for the evaluation of ANN predictive capabilities, results in considerably higher AGnF levels when 

compared to the combined increase of the M2.5G0F0 and M0G12F0 experiments. Galactose 

supplementation is expected to build up the intracellular UDPGal concentration and enhance AGnF 

synthesis. Thus, the - even in low levels - increase of AGnF distribution in the M0G12F0 and M0G18F0 

experiments showcases the limitations of IgG galactosylation due to substrate availability. On the 

other hand, manganese acts as a co-factor of b4GalT and positively affects its enzymatic activity. The 

elevation of AGnF distribution in the M2.5G0F0 indicates a further limitation of IgG galactosylation on 

the enzymatic level. Finally, the synergistic effect between manganese and galactose on IgG 
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galactosylation showcases the complex and fine balance that governs protein glycosylation. The ANN 

successfully identifies the aforementioned complex relationship between the two compounds and 

closely describes the IgG glycan distribution for all training, validation and predictive experiments.  

4.2.3   Utilization of ANN for predicting the effect of glycosyltransferases 
isoforms knockout 
Whilst the manipulation of process parameters can lead to improved product quality, radical changes 

in protein characteristics such as glycosylation are usually achieved through gene engineering349, 371, 

545. Bydlinski et al.350 have performed a series of triple and quadruple knockouts of the four isoforms 

of b4GalT in CHO cells transiently producing EPO-Fc or Fc-DAO. In contrast to IgG, both 

aforementioned fusion proteins present multiple N-linked glycosylation sites. The authors 

investigated the profile of each N-linked glycosylation site separately, enabling a more comprehensive 

evaluation of each isoform contribution. 

 

Figure 4.10: Expression levels of each isoform and for each clone, normalized according to the mRNA expression levels of 

the control experiment (REF). Adapted from Bydlinski et al.350 

For that reason, the developed ANN employs the isoforms’ mRNA expression levels as features (Fig. 

4.10), in order to describe the site-specific glycosylation profile (labels) of both fusion proteins. The 

acquired mRNA expression levels are normalized against the relative transcript abundance of the 

GAPDH housekeeping gene350. In order to rigorously evaluate both the fitting and predictive 

capabilities of the ANN model, two studies were conducted: 1) in the fitting study, the triple knockouts 

were used for ANN training and the quadruple knockout for validation and 2) in the predictive study, 

two of the three triple knockouts were used for model training, the third triple knockout for validation 

and the quadruple knockout for the evaluation of ANN predictive capabilities (test set). The fitting 
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study was performed for the glycosites that presented > 18 glycans and the predictive study for the 

profiles with up to 18 glycans. A 3% error following Gaussian distribution was introduced in the 

features to generate an additional 16 artificial point for each experiment and strengthen the 

robustness of the ANN training457, 546. Experimental replicates were considered separately in the ANN, 

in order to account for enzymatic expression variability in different clones. The resulting 

configurations for all site-specific ANNs in both the fitting and predictive studies can be found in Table 

4.4. 

Table 4.4: Resulting configurations for all site-specific ANNs presented in section 4.2.3. The (-) symbol is used when the 

configuration was not examined. The abbreviation used in the glycosylation site indicates whether the site-specific ANN was 

configured for the fitting (F) or predictive (P) study. The x/y/z symbolism of the neurons represent the number of neurons in 

the first (x), second (y) and third (z) hidden layer, respectively. The z value is not included for the 2HLs configurations. For 

the AAE, the values for both the 2HLs and 3HLs configurations are reported when applicable. 

N-linked glycosylation 

site 

Neurons in the 

2HLs configuration 

Neurons in the 3HLs 

configuration 

AAE for 2HLs/3HLs (%) 

Asn168 Fc-DAO (F) 6/16 7/3/19 1.35/1.41 

Asn745 Fc-DAO (F) 20/11 2/7/19 0.75/0.63 

Asn24 EPO-Fc (F) 17/23 2/10/20 0.96/0.83 

Asn38 EPO-Fc (F) 14/23 6/9/10 0.81/0.66 

Asn83 EPO-Fc (F) 17/21 2/11/14 0.92/0.88 

Asn538 Fc-DAO (F) 12/10 4/11/18 1.07/1.06 

Asn538 Fc-DAO (P) 1/5 - 1.39/- 

Fc-site EPO-Fc (P) 17/19 - 0.42/- 

Fc-site Fc-DAO (P) 23/16 - 0.71/- 

Asn110 Fc-DAO (P) 9/7 - 2.02/- 

 

ANN fitting study 

The results of ANN training and validation in the fitting study are presented in Fig. 4.11. With the 

exception of the Asn538 Fc-DAO site (Fig. 4.11F), the rest of the glycosites show a rather complex 

distribution with more than 25 glycans. Despite the wide variety of identified glycans, the ANN is able 

to capture and correctly track the majority of glycan distributions. The highest discrepancies between 

model simulations and experimental measurements are observed for the Asn168 Fc-DAO (Fig. 4.11A) 

and Asn24 EPO-Fc (Fig. 4.11C) sites, and more specifically for the most abundant GnGnF glycan. In 

some cases, the model is unable to capture the depletion of specific structures that are not present in 
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the quadruple knockout experiment but are identified in the training and validation sets. The 

aforementioned inaccuracy for the GnGnF glycan in the Asn168 Fc-DAO and Asn24 EPO-Fc sites can 

be potentially attributed to the overestimation of the depleted glycans. Overall, the inclusion of a third 

HL was not found to significantly improve model results (Table 4.4). For that reason, a third hidden 

layer was not considered for the predictive analysis. 

 

Figure 4.11: (A-F) ANN validation results (fitting) for each N-linked glycosylation site and for both fusion proteins. Both 

scenarios with two and three HLs were examined. The glycans included in the graph and the analysis were present in at least 

three of the knockout clones. Glycans measured in low abundances (<1% distribution) in up to two clones were excluded 

from the analysis. The presented experimental results are the average of the quadruple b4GalT1/2/3/4 knockout (clones: D-

1C3, D-1E1 and D-2E7). Taken with permission from Kotidis and Kontoravdi541.  
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ANN predictive study 

In order to evaluate the predictive capabilities of the ANN configuration, an alternative approach on 

model training, validation and testing was proposed. The ANN was trained on part of the triple 

knockout scenarios, was validated against the remaining triple knockout experiments and tested 

against the quadruple knockouts. ANN predictions for the considered glycosites are shown in Fig. 4.12. 

Model predictions presented an overall AAE of 1.14% for the quadruple experiments, indicating a close 

match between the experimental measurements and ANN results. The Asn110 Fc-DAO glycoprofile 

presented minor differences between the quadruple and control experiments, due to negligible 

galactosylation levels in the latter. On the other hand, all remaining glycosylation sites exhibited 

extensive alterations, compared to the wild type, that were successfully captured by the ANN. Whilst 

the prediction of the quadruple clones glycosylation profile could be considered an extrapolation, the 

ANN was provided with enough data to correctly weigh the contribution of each b4GalT isoform. 

 

Figure 4.12: (A-D) ANN model predictions for the quadruple knockout clones and for the depicted fusion proteins and 

glycosites. The experimental data for the wild type cell lines (REF) are displayed for reference. Taken with permission from 

Kotidis and Kontoravdi541. 

4.3   Discussion 
In Chapter 4, an ANN-based configuration for predicting recombinant protein glycosylation was 

presented. The aim of the current chapter was to showcase that data-driven and hybrid approaches 

can be employed in order to improve predictions, reduce user interference and simulation times and 
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expedite model development. Glycosylation is a highly non-linear cellular function that does not 

follow any known genetic template. Therefore, the use of machine learning tools, such as ANNs, can 

alleviate model parameterization and reduce the burden of mechanistically describing a complex set 

of thousands of reaction rules. 

Initially, an ANN is proposed for reporting IgG glycosylation based on experimentally measured NSD 

and nucleotides intracellular concentrations. The model achieves an AAE of 0.87% during validation, 

as shown in Fig. 4.2. The network of NSDs and nucleotides synthesis has been previously described 

with the use of kinetic models, either in its entirety121 or in reduced versions480, 482. Alternatively, Sha 

et al.484 have attempted to calculate the fluxes of NSDs towards the Golgi apparatus where 

glycosylation occurs. Whilst kinetic models offer informative insights on the underlying mechanisms 

of the process, the Monod-type equations usually assumed, do not account for more complex 

phenomena, such as the regulation of transporters and glycosyltransferases expression that could 

significantly affect  protein glycoprofile293, 297. In addition, the assumption of linear correlation 

between the NSDs flux towards the Golgi484 or the cytosolic NSD levels473 and the intra-Golgi NSD 

concentration, oversights the regulation of NSD transport from NSTs (i.e., SLC35A2). On the other 

hand, the proposed ANN configuration considers a non-linear relationship between the features (NSD 

and nucleotide concentrations) and labels (glycan distribution) with no further assumptions on the 

transport or regulation of the former. Kinetic studies that include NSD transport from cytosol to the 

Golgi demand excessive simulation times478. The low levels of AAE in the validation set and the 

accurate description of glycans distribution, confirm that NSDs and nucleotides structure an 

informative and robust feature set for describing IgG glycosylation. The ANN additionally presented a 

superior performance compared to PLS. 

In contrast to kinetic models that require a major involvement of the user during training (parameter 

estimation), ANNs automatically calculate the weights and biases. Greedy search algorithms can also 

be employed for an automated hyperparameters estimation. Moreover, ANN training and validation 

usually last from minutes to a few hours, contrary to kinetic model parameterization, that additionally 

requires concise understanding of the biological background and the available computational 

techniques and tools. Several elegant and thorough parameterization strategies have been proposed 

for accelerating and standardizing the parameter estimation methods in kinetic models476, 478, 482, 486. 

Unlike ANNs that only require the identification of features and labels, mechanistic and probabilistic 

glycosylation models necessitate the construction of a protein-specific reaction network, tailored to 

specific characteristics (i.e., glycosyltransferase knockout) of the host cell line. Whilst efforts to 

automatically generate glycosylation reaction networks have been undertaken, the definition of 

enzymatic and reaction rules is still necessary28, 474. 
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Following the successful establishment of NSDs and nucleotides concentrations as ANN predictors for 

describing IgG glycosylation, the data-driven model was integrated to the mechanistic framework, 

replacing the function of the Glycomodel. The proposed hybrid model, namely HyGlycoM, was 

employed for predicting glycans distribution utilizing the metabolites and amino acids concentration 

in the feed and seeding media, similar to the fully mechanistic. As shown in Fig. 4.6, the structure of 

the hybrid model consists of two mechanistic submodels describing CHO cell extracellular metabolism 

and intracellular NSD synthesis, and the ANN that utilizes the outcomes of the latter for predicting IgG 

glycosylation. HyGlycoM was configured during validation and was found to result in 30% improved 

predictions when compared to the fully mechanistic model (Fig. 4.8A). HyGlycoM was also found to 

significantly outperform the PLS equivalent (Fig. 4.8B). The use of the kinetic Metabolism and NSD 

submodels for describing the metabolic part of HyGlycoM, extends the applicability of the hybrid 

model to alternative process scenarios, such as altered amino acids concentration in the seeding 

media and feed, where a data-driven approach would require a comprehensive and extended 

experimental dataset. In addition, the reduced sensitivity to process perturbations exhibited by 

mechanistic models, can be proven useful for reliably describing cellular processes, such as 

metabolism, that inherently carry a high degree of variability. Finally, HyGlycoM presented an AAE of 

1.25%, slightly higher than the average experimental deviation which was 0.93%. 

Subsequently, the standalone ANN was reconfigured in order to account for the cumulative MnCl2 

amount added in CHO cell cultures. Manganese is a co-factor of the N-Acetylglucosaminyltransferases 

and beta-1,4-galactosyltransferase. The addition of MnCl2 in the culture, in combination with 

galactose and fucose, is expected to improve IgG galactosylation. Following training and validation, 

the ANN successfully predicts the effect of manganese feeding on glycans distribution of an 

independent experiment (Fig. 4.9C). Finally, an alternative ANN-based approach is proposed for 

predicting the effect of triple and quadruple isoforms knockouts of the b4GalT enzyme. Utilizing the 

mRNA expression levels of isoforms as predictors, the standalone ANN achieves an accurate prediction 

of the quadruple knockout effect on recombinant EPO-Fc and Fc-DAO glycosylation sites, with up to 

18 different glycans attached (Fig. 4.12). The overall AAE for ANN predictions is reported at 1.14%. 

It is important to note that the description of complex glycoprofiles, such as the ones presented in the 

Asn24 and Asn83 glycosites of EPO-Fc, requires the construction of vast reaction networks. The 

complexity of the glycoprofiles presented in Fig. 4.11 approximates the variety of glycans reported for 

the HCPs of CHO cells 547. Reaction networks with up to 15,000 structures and 50,000 reactions have 

been constructed in order to account for the complexity of such profiles475. In Krambeck et al.475, the 

authors coupled the reconstructed network with an underlying mechanistic glycosylation model, 

which was subsequently applied on several datasets of mutant CHO cell lines in order to describe the 
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glycoprofile of intracellular and membrane HCPs. In order to achieve good fitting with the 

experimental measurements, the adjustment of several enzymatic concentrations, for each dataset, 

was found necessary. On the contrary, the ANN application presented herein, required no further 

tuning of the rest of the glycosyltransferases involved in the process. 

ANN limitations and future perspectives 

Whilst the ANN-based configurations presented in the current chapter highlight the wide applicability 

of the ANNs, it is important to also note the limitations of this powerful tool. Being data-driven 

machine learning algorithms, ANNs require an extended dataset for proper training in order to avoid 

overfitting scenarios, in which the model is unable to act as a reliable predictor despite presenting 

excellent training performance. Moreover, when extrapolating outside the training space, ANNs can 

prove to be sensitive to slight changes in the features, resulting in a considerable loss of accuracy. 

Thus, users are advised to be cautious when testing ANNs in unexplored spaces.  

When employing data-driven tools for describing biological processes, it is crucial to carefully consider 

the predictors used as features of the model. The labels need to demonstrate a well-grounded 

dependence on the assigned features in order to improve the applicability and robustness of the 

model. Non-linear regression algorithms, such as the feedforward ANNs used in the study presented 

herein, can achieve a satisfying fitting even between weakly related variables. Thus, testing the ANN 

in independent experiments and evaluating its predictive performance is of paramount importance. 

Similar to mechanistic models, it is important to ensure the consistency of the analytical methods used 

for the labels and features quantification. For example, NSDs/nucleotides can be quantified through 

high-performance anion exchange chromatography (HPAEC) or MALDI-TOF-MS, enzyme expression 

levels through RNA-seq, microarrays, qRT-PCR or western blot (in the protein level) and glycans 

distribution through LC-MS, MALDI-TOF-MS or capillary electrophoresis. Each method introduces a 

unique variability to the measurements and, therefore, the consistency of applied methods between 

datasets ensures the minimization of the analysis effect on algorithm performance. 

The ANN configurations proposed in Chapter 4 of this thesis, demonstrate the importance of 

integrating machine learning tools in bioprocess control and performance prediction. Comprehensive 

analyses routinely performed during cell line development, such as transcriptomics and proteomics, 

can enrich the list of predictors and improve ANN performance and applicability. More specifically, a 

combination of NSD concentrations with quantitative proteomics of glycosyltransferases, NSTs and 

other enzymes relevant to glycosylation, can significantly improve the performance of the models 

presented herein. Deep learning algorithms utilizing complex datasets that can offer unique insights 
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in glycosylation have already become available 548-549 and are paving the way for relevant applications 

to bioprocessing. 
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Chapter 5 Antibody galactosylation bottlenecks 
 

Chapter overview 
The mechanistic model described in Chapter 2, was utilized for the in silico development of a Design 

Space and for ensuring product quality and quantity by manipulating the feeding schedule of galactose 

and uridine (Chapter 3). The identified Design Space was then validated against experimental data 

from seven galactose and uridine feeding experiments. Interestingly, the feeding experiments 

presented a comparable or even improved productivity and growth profile compared to the control. 

In addition, the feeding experiments falling within the Design Space showed a particularly similar 

glycosylation profile (Fig. 3.7), despite the different galactose and uridine amounts added to each 

experiment during the cell culturing period. Whilst all feeding experiments presented higher levels of 

terminally galactosylated glycoforms compared to the control, the distribution of the aforementioned 

glycoforms was surprisingly similar between the feeding experiments, indicating an upper threshold 

in antibody galactosylation, regardless of the amount of galactose and uridine supplemented to the 

culture and, therefore, UDPGal synthesized. Overall, the highest observed antibody galactosylation at 

harvest, for all the experiments presented in the previous chapters of this thesis, was 67%, with the 

galactosylation values of the majority of galactose and uridine feeding experiments varying between 

58% and 67%. 

Five new fed-batch experiments (including the control) with various concentrations of galactose and 

uridine in the feed were performed to determine whether there exists an intracellular bottleneck that 

prevents a further increase in galactosylation levels using precursor feeding alone. The experiments 

were chosen from the edges of the Design Space, in an effort to also examine the performance of the 

Design Space in borderline scenarios. The analysis of the cell cultures presented in the current Chapter 

was considerably more elaborate compared to that in Chapter 3. More specifically, experimental 

analysis included: 1) monitoring of viable cell density and culture viability on a daily basis, 2) 

quantification of extracellular metabolites, including pyruvate, 3) quantification of extracellular amino 

acid concentrations, 4) quantification of intracellular nucleotide and NSD concentrations, 5) 

quantification of antibody titre on a daily basis, 6) IgG glycan analysis and 7) intracellular HCPs glycan 

analysis. In addition, all experimental results were utilized for performing a flux balance analysis for 

several intervals and for each cell culture, in an effort to identify differences between the experiments. 

In order to identify the bottlenecks of antibody galactosylation, the mechanistic model was adapted 

to more holistically describe the protein secretory pathway. Importantly, the adapted model is 

capable of simultaneously describing intracellular HCPs and IgG N-linked glycosylation for the utilized 
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CHO cell line, in both the ER and the Golgi compartments. The model was parameterized against the 

experimental data acquired from the new feeding experiments and was used in order to investigate 

several plausible factors that could limit IgG galactosylation during galactose and uridine addition. 

Overall, the aim of the current chapter is to provide answers to the following questions: 

• What are the bottlenecks of antibody galactosylation? 

• What are the similarities and discrepancies between the different feeding experiments and 

between the feeding and control experiments, in both the extracellular and intracellular level? 

• Is N-linked glycosylation of HCPs affected by galactose and uridine addition? 

5.1   Materials & Methods 
5.1.1   Cell culture maintenance 
CHO-T127 cells (kindly donated by MedImmune, Cambridge, UK) producing an IgG1 antibody were 

used for this study. The cells were maintained in CD-CHO medium (Life Technologies, Paisley, UK) at 

36.5 °C ± 0.5 °C, 150 rpm and 5% CO2 and were passaged every 3 days at a seeding density of 3 x 105 

cell·mL-1. 50 μΜ of MSX was supplemented on cell revival and on the first passage. 

5.1.2   Fed-batch cultures 
Following cell revival and two subsequent passages, fed-batch experiments were set at a working 

volume of 100 mL in 500 mL Erlenmeyer flasks. The seeding density was set at 2 x 105 cell·mL-1. All 

cultures (including the control) were supplemented with 1 μM MnCl2 (Sigma-Aldrich, Dorset, UK) at 

seeding and with CD EfficientFeedTM C AGTTM Nutrient Supplement (Life Technologies, Paisley, UK) on 

day 2 (48h) and every other day at 10% of the working volume. The feed is referred to as Feed C 

throughout this section. For the P1-P4 experiments, the cultures were supplemented with varying 

concentrations of D-(+)-galactose and uridine (both Sigma-Aldrich, Dorset, UK) on day 4 (96h) and 

every other day (Table 5.1). Appropriate galactose and uridine (GU) amounts were diluted in Feed C 

and added as part of its recommended feeding schedule, in an effort to avoid large volume 

perturbations. Experiments were carried out in biological duplicates, with the exception of the control 

that was performed in quadruplicates, and the cell cultures were terminated on day 12. It is important 

to note that the feeding strategies were selected in order to examine the edges of the Design Space 

presented in Chapter 3. The aforementioned DS was developed to ensure the desired levels of mAb 

titre and galactosylation at harvest were achieved, through the feeding of GU. 
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Table 5.1: Concentrations of galactose and uridine in each experiment. The (-) symbol indicates no feeding. Taken from 

Kotidis & Kontoravdi518. 

Experiment Galactose in the feed (mM) Uridine in the feed (mM) 

Feeding 

Point (h) 

96 

(day 4) 

144  

(day 6) 

192 

(day 8) 

240 

(day 10) 

96 144 192 240 

P1 79.35 15.38 10.99 248.29 15.87 3.08 2.20 49.66 

P2 4.27 168.34 37.72 11.35 0.85 33.67 7.54 2.27 

P3 5.19 3.11 235.29 249.94 1.04 0.62 47.06 49.99 

P4 21.91 6.41 233.46 3.97 4.38 1.28 46.69 0.79 

P5 (control) - - - - - - - - 

 

5.1.3   Quantification of viable cell density and antibody titre 
Cell culture viability and viable cell density were determined using the “Viability and Cell Count” assay 

on NucleoCounter NC-250TM (ChemoMetec A/S, Allerod, Denmark). Prior to analysis, cells were 

stained with the DAPI-containing solution 18 (ChemoMetec A/S, Allerod, Denmark). Both variables 

were monitored daily for all experiments and replicates. Extracellular antibody concentration was 

measured daily from 4 μL of the cell culture supernatant using the BLItz system (Pall ForteBio Europe, 

Portsmouth, UK) and the Dip and Read™ Protein A (ProA) Biosensors (Pall ForteBio, Portsmouth, UK). 

5.1.4   Amino acid analysis and metabolites quantification 
The amino acid analysis was performed with HPLC (Alliance, Waters, UK) using the AccQ-Tag method 

(Waters, UK). Cell culture supernatant was isolated through centrifugation for 5 mins at 100 g and was 

further filtered in 0.22 μm centrifuge tube filters (Sigma-Aldrich, Dorset, UK) to remove residual cells 

and debris (5 min, 100 g). Norleucine (Sigma-Aldrich, Dorset, UK), an amino acid that is not present in 

the culturing media and not synthesized through CHO metabolism, was used as an internal standard 

(2.5 mM solution in 0.1M HCl). Filtered samples were spiked with an equal volume of the internal 

standard solution and were diluted 25 times (final dilution) prior to derivatization, using Milli-Q grade 

water. 10 μL of the diluted spiked samples were added to 70 μL of the AccQ Fluor Borate buffer 

(Waters, UK) and 20 μL AccQ Derivatization Reagent (Waters, UK) and mixed immediately. Following 

mixing, the samples were heated at 55 °C for 10 min. The samples were left to reach room 

temperature and were filtered with 0.22 μm centrifuge tube filters for 5 min at 100 g. The Amino Acid 

Standard (Waters, UK) solution (AAS) was used for building the standard curves. Asparagine, 

tryptophan and glutamine (Sigma-Aldrich, Dorset, UK) were separately added to the AAS solution prior 

to analysis. A fluorescence detector (Alliance, Waters, UK) with excitation at 250 nm and emission at 

395 nm was used for amino acids detection. Table 5.2 presents the flow-program for the analysis 
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according to the manufacturer’s instructions, where A is the 1:20 Elution A (Waters, UK) diluted with 

Milli-Q grade water, B is 100% acetonitrile of HPLC-grade (Sigma-Aldrich, Dorset, UK) and C is Milli-Q 

grade water. Flowrate was set constant at 1 mL·min-1. Ammonia was also quantified through the AAA 

(included in the AAS). Amino acids concentration was measured daily for all cultures. 

Table 5.2: The separation flow-schedule used for AAA. 

Time (min) A (%) B (%) C (%) 

0 100 0 0 

0.5 99 1 0 

18 95 5 0 

19 91 9 0 

19.5 83 17 0 

33 0 60 40 

36 100 0 0 

45 69 19 12 

54 100 0 0 

65 100 0 0 

 

The extracellular concentration of glucose and lactate was monitored daily and quantified using the 

BioProfile FLEX (NOVA Biomedical, USA). The extracellular concentration of galactose was quantified 

using the Amplex™ Red Galactose/Galactose Oxidase Assay Kit (Life Technologies, Paisley, UK) and the 

concentration of pyruvate through a pyruvate oxidase-based assay kit (Abcam, UK). Extracellular 

uridine concentration was measured using the method described in section 5.1.5. 

5.1.5   Nucleotide and nucleotide sugar donor analysis 
A cell pellet of 2 x 106 cells was acquired through centrifugation at 100 g for 5 min.  The cell pellet was 

washed with 2 mL ice cold 0.9% w/v sodium chloride and then centrifuged at 100 g for 5 min. Then, 

400 μL of ice cold 50% v/v acetonitrile (Sigma-Aldrich, Dorset, UK) were added to the cell pellet and 

the mixture was incubated for 10 min on ice. Following the incubation step, the samples were 

centrifuged at 4 °C, for 5 min and at 10,000 g. The debris was discarded while the supernatant was 

dried using a SpeedVac (Savant Inc. Laboratory, MI). Then, the samples were resuspended in 150 μL 

distilled water and were filtered through 0.22 μm centrifuge tube filters (Sigma-Aldrich, Dorset, UK) 

for 5 min at 100 g. If not immediately analysed, the samples were stored at -80 °C to avoid nucleotides 

and NSDs degradation. The method used for samples analysis has been previously described in del Val 
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et al.550. Briefly, HPAEC using the Dionex CarboPac PA1 column (Dionex, USA), was employed for the 

analysis of NSDs and nucleotides concentration. The eluents of the HPAEC analysis were: 3 mM sodium 

hydroxide (E1) and 1.5 M sodium acetate in 3 mM sodium hydroxide (E2).  

5.1.6   IgG and host cell proteins glycan analysis 
N-linked glycosylation on the recombinantly produced IgG was analysed using the C100HT capillary 

gel electrophoresis – laser induced fluorescence (CGE-LIF) instrument (SCIEX, NL). For the analysis, 1 

mL of cell culture supernatant (centrifuged at 100 g for 5 min) was purified with the use of Pierce™ 

Protein-A IgG Purification Kit (ThermoFischer Scientific, UK) for each experiment and for each 

examined time point. The eluted IgG was buffer-exchanged to 1 x PBS (ThermoFischer Scientific, UK) 

through multiple centrifugations in filter microcentrifuge tubes with 3 kDa cut-off (Thermo Fisher 

Scientific, UK) and at 14,000 g and 30 min (for each run). The buffer exchange was terminated after 

the samples were diluted 1000x in PBS. The buffer exchange from the elution buffer to PBS is 

necessary to enable optimum performance of the PNGase F enzyme. The final concentration of 

purified IgG in 1 x PBS was 2.5 g·L-1. Glycans were further modified using the C100HT Glycan kit (SCIEX, 

NL). Briefly, 5 μL of the kit’s denaturing solution were added to 40 μL of 2.5 g·L-1 IgG in PBS. The 

samples were then incubated for 8 min at 60 °C for complete protein denaturation. Subsequently, 500 

units of PNGase F (New England Biolabs, Hertfordshire, UK) were added and the samples were 

incubated for 20 min at 60 °C for the complete release of N-linked glycans from the Fc fragment. The 

samples were labelled using 1-aminopyrene-3,6,8-trisulfonic acid (APTS) for 20 min at 60 °C and were 

washed three times with acetonitrile (Sigma Aldrich, Dorset, UK). Magnetic beads supplemented with 

the kit were used for labelling and washing. The labelled-glycans were eluted with 50 μL of distilled 

water and were used for analysis. An injection of 3 kV and for 5 s was used for each measurement. 

The total analysis time was 20 min for each sample. The results were analysed using the 32 Karat 

software (SCIEX, NL). 

The HCP glycan analysis was performed on samples from the harvest day. For the analysis, a pellet of 

1x107 cells was washed with 1 mL PBS and was given to Professor Haslam’s Lab for further analysis. 

The HCPs analysis was kindly performed by PhD student Roberto Donini using an existing protocol for 

glycan analysis of intracellular CHO cell HCPs established by the Haslam group, using MALDI-TOF-

MS547. Peaks were annotated using the GlycoWorkbench software551.  

For measuring the total protein concentration, cells were lysed as previously presented335. Briefly, 1 x 

107 viable cells of the day prior to harvest (day 11) were washed with 1 mL 1 x PBS and were 

subsequently lysed with 200 μL of M-PERTM lysis buffer (ThermoFischer Scientific, UK) supplemented 

with 1% v/v protease inhibitor cocktail (Sigma Aldrich, Dorset, UK). Cells were incubated in the lysis 
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buffer for 10 min with gentle shaking. Following incubation, cells were sonicated on ice, using 3 bursts 

of 5 s, aptitude set at 20 and with intervals of 25 s between each burst. The mixture was centrifuged 

for 15 min at 14,000 g and the cell debris was discarded. The protein concentration was measured on 

the supernatant using the Coomassie PlusTM Protein Assay Reagent, 950 mL (ThermoFischer Scientific, 

UK). 

5.1.7   Flux balance analysis 
The FBA was simulated for all experiments and for three different intervals, namely interval 1: 96h – 

144h, interval 2: 144h - 192h, and interval 3: 192h – 240h. These intervals were chosen for FBA as 

different GU concentrations were added in each experiment and in each feeding point (days 4, 6, 8 

and 10). The interval between 240h – 288h was excluded from the analysis as the cultures were 

approaching the death phase. 

The code was developed and kindly provided by Dr. Ioscani Jimenez del Val (University College Dublin) 

and the reactions included in the FBA model can be found in Appendix-Table A2. Briefly, the FBA is 

based on the minimization of multiple objective functions including: 1) the difference between the 

estimated and the experimental fluxes of the specific production/consumption rates and growth rate, 

2) the conversion of malate to pyruvate that will therefore induce the conversion of malate to 

oxaloacetate and 3) the reverse ATP generation. For all reactions, the upper constraint for the 

estimated fluxes was set at 600 nmol·106cell-1·h-1, while the lower limit was set at 0 for the irreversible, 

and -600 nmol·106cell-1·h-1 for the reversible reactions. 

The backbone of the code was modified to include the following six reactions (F1-F6) that are related 

to GU supplementation in the cell culture: 

𝐺𝑎𝑙𝑒𝑥𝑡𝑟 → 𝐺𝑎𝑙𝑖𝑛𝑡𝑟   (F1) 

𝑈𝑟𝑑𝑒𝑥𝑡𝑟 → 𝑈𝑟𝑑𝑖𝑛𝑡𝑟    (F2) 

𝐺𝑎𝑙𝑖𝑛𝑡𝑟 + 𝐴𝑇𝑃 → 𝐺𝑎𝑙1𝑃 + 𝐴𝐷𝑃   (F3) 

𝐺𝑎𝑙1𝑃 + 𝑈𝐷𝑃𝐺𝑙𝑐 ↔ 𝐺1𝑃 + 𝑈𝐷𝑃𝐺𝑎𝑙   (F4) 

𝐺1𝑃 ↔ 𝐺6𝑃   (F5) 

𝑈𝑟𝑑𝑖𝑛𝑡𝑟 + 𝐴𝑇𝑃 → 𝑈𝑀𝑃 + 𝐴𝐷𝑃   (F6) 

where, 𝑖𝑛𝑡𝑟 and 𝑒𝑥𝑡𝑟 indicate the intracellular and extracellular concentrations, respectively. 𝐺𝑎𝑙1𝑃: 

galactose-1-phosphate, 𝐺1𝑃: glucose-1-phosphate and 𝐺6𝑃: glucose-6-phosphate. 

F1 and F2 describe the transport of extracellular galactose and uridine to the intracellular 

environment, F3-F5 describe the intervention of galactose in the glycolysis pathway and F6 the 

introduction of uridine to the pyrimidines biosynthesis pathway. It is important to note that the 
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reaction of UDPGal synthesis from Gal1P and UTP, potentially catalyzed by the EC 2.7.7.64 and 2.7.7.10 

enzymes (uridylyltransferases), was not added to the FBA system as the reaction is not included in the 

iCHOv1 genome scale model28, 552. Therefore, all UDPGal synthesis is channelled through reaction F4. 

The inputs of the FBA include the experimentally measured specific uptake/synthesis rates of all amino 

acids and metabolites, including the specific growth rate and productivity. The demand of NSDs for 

the average oligosaccharide synthesis for the glycosylation of both the recombinant IgG and the HCPs 

was also included in the FBA inputs, and was calculated using the experimental data of IgG and HCP 

glycosylation using the framework presented in del Val et al.513. The FBA was performed in gPROMS 

ModelBuilder v.5.0.1 (Process Systems Enterprise, gPROMS, 

www.psenterprise.com/products/gproms, 1997-2020).  

Specific uptake/synthesis rates (nmol·106cell-1·h-1) for all metabolites and amino acids were calculated 

for each feeding interval using linear regression for the three points of each interval. The regression 

was performed between the cumulative metabolite or amino acid concentration and the 

corresponding IVCD for each time point. Linear regression was performed in Microsoft Excel for Office 

365. Finally, the Escher software was used for network and flux visualization553, using the iCHOv1 

genome scale model as a backbone28, 552.  

5.1.8   Formulas for the calculation of process variables 
The values of integral viable cell density (IVCD in 105cell·h·mL-1), specific mAb productivity (μg·106cell-

1·day-1) and specific metabolites/amino acids uptake or synthesis rate (μmol·106cell-1·day-1) for each 

interval were calculated based on Eq. 5.1-5.3: 

𝐼𝑉𝐶𝐷𝑡2
=

(𝑋𝑣𝑡2+𝑋𝑣𝑡1 )∗(𝑡2−𝑡1)

2
+  𝐼𝑉𝐶𝐷𝑡1

   (5.1) 

𝑞𝑚𝐴𝑏 =
[𝑚𝐴𝑏]𝑐𝑢𝑚𝑚

𝐼𝑉𝐶𝐷ℎ𝑎𝑟𝑣𝑒𝑠𝑡
   (5.2) 

𝑞𝑚𝑒𝑡 =
[𝑀𝑒𝑡]𝑐𝑢𝑚𝑚

𝐼𝑉𝐶𝐷ℎ𝑎𝑟𝑣𝑒𝑠𝑡
   (5.3) 

where, 𝑡1 and 𝑡2 are two time points of the culture period. The symbols used for each variable are 

presented in Chapter 2. Both 𝑞𝑚𝐴𝑏 and 𝑞𝑚𝑒𝑡  are calculated based on the cumulative concentration 

being consumed or produced during the entire cell culturing period. 

The calculation of the HCPs and IgG demand on NSDs, used as input for the FBA, was calculated based 

on del Val et al.513: 

𝑓𝐻𝐶𝑃
𝑁𝑆𝐷 = 𝑆𝑡𝐶𝐻𝐶𝑃

𝑁𝑆𝐷 ∙  𝑁𝐺𝑆𝐻𝐶𝑃  ·  
[𝐻𝐶𝑃]

𝑀𝑊̅̅ ̅̅ ̅̅ 𝐻𝐶𝑃
   (5.4) 
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𝑓𝐼𝑔𝐺
𝑁𝑆𝐷 = 𝑆𝑡𝐶𝐼𝑔𝐺

𝑁𝑆𝐷 ∙  𝑁𝐺𝑆𝐼𝑔𝐺  ∙  
[𝑚𝐴𝑏]

𝑀𝑊𝐼𝑔𝐺
    (5.5) 

where, 𝑓𝐻𝐶𝑃
𝑁𝑆𝐷  (nmolNSD·106cell-1) and 𝑓𝐼𝑔𝐺

𝑁𝑆𝐷  (nmolNSD·μgIgG
-1) are the HCPs and IgG demands for each 

NSD, 𝑆𝑡𝐶𝐻𝐶𝑃
𝑁𝑆𝐷  (molNSD·molHCP

-1) and 𝑆𝑡𝐶𝐼𝑔𝐺
𝑁𝑆𝐷  (molNSD·molIgG

-1) are the stoichiometric coefficients for 

each NSD based on the experimentally determined glycans on each protein, 𝑁𝐺𝑆𝐻𝐶𝑃  (moleculeHCP
-1) 

and 𝑁𝐺𝑆𝐼𝑔𝐺  (moleculeIgG
-1) are the number of N-linked glycosites per HCP and IgG protein molecule, 

respectively. The value for the IgG is equal to 2 moleculeIgG
-1 (one glycan site in each Fc fraction) and 

that for the HCPs is estimated513 as 0.0809 moleculeHCP
-1. 𝑀𝑊̅̅ ̅̅ ̅̅

𝐻𝐶𝑃  (gHCP·mol-1) is the average molecular 

weight of HCPs estimated513 as 46,167 gHCP·mol-1 and 𝑀𝑊𝐼𝑔𝐺  (moleculeIgG
-1) is the molecular weight of 

the IgG molecule equal to ~150,000 gIgG·mol-1. 

Throughout the chapter, the terms galactosylation (Eq. 2.46), sialylation (Eq. 5.6), high mannose 

structures (Eq. 5.7), fucosylation and highly branched (> bi-antennary) glycans are used to describe 

the distribution of the respective sugar molecules on the glycans. It is important to note that, the 

contribution of each glycan structure towards galactosylation and sialylation depends on the number 

of galactose or sialic acid molecules present in the glycan. For example, the contribution of the NaAF 

glycan that carries 1 sialic acid and 2 galactose molecules is 1x to sialylation and 2x to galactosylation.  

𝑠𝑖𝑎𝑙𝑦𝑙𝑎𝑡𝑖𝑜𝑛 = 1 %𝑚𝑜𝑛𝑜𝑠𝑖𝑎𝑙𝑦𝑙𝑎𝑡𝑒𝑑 𝑔𝑙𝑦𝑐𝑎𝑛 + 2 %𝑑𝑖𝑠𝑖𝑎𝑙𝑦𝑙𝑎𝑡𝑒𝑑 𝑔𝑙𝑦𝑐𝑎𝑛 +

3 %𝑡𝑟𝑖𝑠𝑖𝑎𝑙𝑦𝑙𝑎𝑡𝑒𝑑 𝑔𝑙𝑦𝑐𝑎𝑛 + 4 %𝑡𝑒𝑡𝑟𝑎𝑠𝑖𝑎𝑙𝑦𝑙𝑎𝑡𝑒𝑑 𝑔𝑙𝑦𝑐𝑎𝑛   (5.6) 

ℎ𝑖𝑔ℎ 𝑚𝑎𝑛𝑛𝑜𝑠𝑒 = %𝑀𝑎𝑛9 + %𝑀𝑎𝑛8 + %𝑀𝑎𝑛7 + %𝑀𝑎𝑛6 + %𝑀𝑎𝑛5   (5.7) 

5.1.9   Statistical analysis 
Where suitable, a two samples t-test assuming equal variance for p < 0.05 was performed for the 

evaluation of significant differences between samples and experimental conditions. Microsoft Excel 

for Office 365 was used for performing the t-tests. Calculation of the Pearson correlation coefficient 

and principal component analysis were performed in OriginPro 2020 (OriginLab, Northampton, MA). 

Prior to PCA the datasets were standardized to have a mean of 0 and a standard deviation of 1. Least-

square feature selection was performed in Python 3.7 using the linselect package (Github repository: 

https://github.com/EFavDB/linselect). 

5.1.10   Model modification and parameter estimation 
The model presented in Chapter 2 was adapted to include various additional parts of the secretory 

pathway. These include N-linked glycosylation of intracellular HCPs in the ER and the Golgi, N-linked 

IgG glycosylation in the ER (in addition to the already existing N-linked glycosylation in the Golgi) and 

protein transport from the ER to the cis-Golgi and from the TGN to cell membrane. These additional 

features enable us to simulate HCP glycosylation in parallel with IgG glycosylation. Model simulations 

https://github.com/EFavDB/linselect
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and parameter estimations were performed in gPROMS ModelBuilder v.5.1.1 (Process Systems 

Enterprise, gPROMS, www.psenterprise.com/products/gproms, 1997-2020). Parameter estimation 

was performed either through the Model Validation or the Optimization entity in gPROMS. 

Importantly, the Optimization entity does not calculate a 95% confidence interval for the estimated 

parameter but enables the use of various constraints and the assignment of custom objective 

functions. 

ER glycosylation 

An additional CSTR was employed for describing the N-linked glycosylation process in the ER. 

Processes occurring in the ER for assessing protein folding and initiating the ERAD pathway usually 

result in extended protein residence times in the organelle, exceeding 30 mins554. For that reason, the 

residence time was set at 45 mins, twice the residence time in the Golgi as assumed in this model. The 

ER enzymes included in the model are: ER-α-glucosidase I (αGluI), ER-a-glucosidase II (αGluII), ER-α-

mannosidase I (ER-ManI) and the glucosyltransferase UGGT. αGluI and αGluII are responsible for 

trimming the glucose residues from the precursor oligosaccharide. The product is further modified by 

ER-ManI that cuts one mannose molecule from the glycan, resulting to the final Man8 oligosaccharide. 

However, not all molecules are trimmed by ER-ManI and, therefore, both Man9 and Man8 structures 

enter the Golgi. Moreover, UGGT is responsible for adding glucose on the misfolded products of αGluI 

and αGluII, initiating again in that way the ER-glycosylation process and recycling the misfolded 

proteins. Enzyme concentrations were estimated based only on the glycoprofile of HCPs, assuming 

that cellular demands for the expression of glycosidases and GTases is dependent on the resources 

required for the glycosylation of the natural products of the cells that are the HCPs. The kinetics of 

enzymatic reactions involved in this part of the model are described in Eq. 5.8-5.12. 

𝑟𝛼𝐺𝑙𝑢𝐼 = 𝑘𝑓,𝛼𝐺𝑙𝑢𝐼  [𝛼𝐺𝑙𝑢𝐼]
[𝐺𝑙𝑐3𝑀𝑎𝑛9𝐺𝑙𝑐2]

([𝐺𝑙𝑐3𝑀𝑎𝑛9𝐺𝑙𝑐2]+𝐾𝑑𝑖,𝛼𝐺𝑙𝑢𝐼)
   (5.8) 

𝑟𝛼𝐺𝑙𝑢𝐼𝐼,𝐴 = 𝑘𝑓,𝛼𝐺𝑙𝑢𝐼,𝐴 [𝛼𝐺𝑙𝑢𝐼𝐼]
[𝐺𝑙𝑐2𝑀𝑎𝑛9𝐺𝑙𝑐2]

(
[𝐺𝑙𝑐2𝑀𝑎𝑛9𝐺𝑙𝑐2]

𝐾𝑑𝑖,𝛼𝐺𝑙𝑢𝐼𝐼,𝐴
+

[𝐺𝑙𝑐1𝑀𝑎𝑛9𝐺𝑙𝑐2]

𝐾𝑑𝑖,𝛼𝐺𝑙𝑢𝐼𝐼,𝐵
+1) 𝐾𝑑𝑖,𝛼𝐺𝑙𝑢𝐼𝐼,𝐴

   (5.9) 

𝑟𝛼𝐺𝑙𝑢𝐼𝐼,𝐵 = 𝑘𝑓,𝛼𝐺𝑙𝑢𝐼,𝐵  [𝛼𝐺𝑙𝑢𝐼𝐼]
[𝐺𝑙𝑐1𝑀𝑎𝑛9𝐺𝑙𝑐2]

(
[𝐺𝑙𝑐2𝑀𝑎𝑛9𝐺𝑙𝑐2]

𝐾𝑑𝑖,𝛼𝐺𝑙𝑢𝐼𝐼,𝐴
+

[𝐺𝑙𝑐1𝑀𝑎𝑛9𝐺𝑙𝑐2]

𝐾𝑑𝑖,𝛼𝐺𝑙𝑢𝐼𝐼,𝐵
+1) 𝐾𝑑𝑖,𝛼𝐺𝑙𝑢𝐼𝐼,𝐵

    (5.10) 

𝑟𝑈𝐺𝐺𝑇 = 𝑘𝑓,𝑈𝐺𝐺𝑇  [𝑈𝐺𝐺𝑇]
[𝑀𝑎𝑛9] [𝑈𝐷𝑃𝐺𝑙𝑐]𝐸𝑅

𝐾𝑑𝑖,𝑈𝐺𝐺𝑇 𝐾𝑑𝑘,𝑈𝐺𝐺𝑇 (
[𝑀𝑎𝑛9] [𝑈𝐷𝑃𝐺𝑙𝑐]𝐸𝑅

𝐾𝑑𝑖,𝑈𝐺𝐺𝑇 𝐾𝑑𝑘,𝑈𝐺𝐺𝑇
+

[𝑈𝐷𝑃𝐺𝑙𝑐]𝐸𝑅
𝐾𝑑𝑘,𝑈𝐺𝐺𝑇

+1)
    (5.11) 

𝑟𝐸𝑅𝑀𝑎𝑛𝐼 = 𝑘𝑓,𝐸𝑅𝑀𝑎𝑛𝐼  [𝐸𝑅𝑀𝑎𝑛𝐼]
[𝑀𝑎𝑛9]

([𝑀𝑎𝑛9]+𝐾𝑑𝑖,𝐸𝑅𝑀𝑎𝑛𝐼)
    (5.12) 
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with, 𝑟𝑒𝑛𝑧 (μΜ· min-1) are the reaction rates of each enzyme,  𝑘𝑓,𝑒𝑛𝑧  (min-1) is the rate-limiting turnover 

rate for each enzyme, [𝑒𝑛𝑧] (μM) is the concentration of each enzyme in the ER, 𝐾𝑑𝑖,𝑒𝑛𝑧  (μM) is the 

dissociation constant of the enzyme-glycan complex, 𝐾𝑑𝑘,𝑒𝑛𝑧 (μM) is the dissociation constant of the 

enzyme-NSD complex. The UDPGlc concentration was assumed to not be limiting and equal to 10x the 

intracellular concentration of UDPGlc, following a similar approach with Krambeck & Betenbaugh473, 

adjusted for the ER volume. With the exception of UGGT, for which sequential order Bi-Bi kinetics 

were assumed, a simple Michaelis-Menten type equation was applied for the rest of the enzymes. ER 

volume was considered as 10% of the total cellular volume555 and equal to 1.1·10-13 L. 

Transport between compartments 

COPII and COPI vesicles are responsible for ER → Golgi and retrograde Golgi → ER transport of 

proteins, respectively. Transport between the ER and cis-Golgi, and between trans-Golgi and the 

cytosolic membrane (CM) was included in the model, but the retrograde protein transport was ignored 

for the sake of simplicity of the parameter estimation task. The velocity with which the protein travels 

between the compartments was set equal to the exiting velocity from the prior compartment, in order 

to avoid protein accumulation or shortage. The shape of the cellular compartment that covers both 

distances was assumed similar to a cylinder (tube), and the volume of both compartments was 

considered to be the same. For uniformity, the diameter was set equal to the diameter of the Golgi 

(7.82 μm)478, while the length of each compartment was set at 0.15 μm 556. The compartment length 

was based on data for the ER to Golgi distance. Spang556 has reported that the distance between the 

ER and the cis-Golgi in yeast ranges between 100-150 nm. It is important to note that yeast lacks the 

ER-Golgi intermediate compartment (ERGIC) that is found in mammalian cells, and are therefore 

expected to exhibit a smaller distance between the two compartments557. However, immunoelectron 

microscopy of rat cells has indicated that the distance between the organelles is less than 200 nm 558-

559. Therefore, the reported 150 nm (0.15 μm) was regarded as a good approximation of the ER to 

Golgi distance and, therefore, the length of each compartment. Finally, while the ER to Golgi transport 

was considered for both the intracellular HCPs and the secreted IgG, the transport from the Golgi to 

the CM was only considered for the antibody, as the HCPs are distributed to various locations in the 

cell when secreted from the Golgi. 

HCP and IgG N-linked glycosylation in the Golgi 

The IgG glycosylation network of the updated model was identical to that presented in del Val et al.478 

and used in Chapter 2. The single PFR was replaced with four CSTRs in series to describe the different 

Golgi compartments (cis, medi, trans and TGN). Therefore, fixed distributions for each enzyme were 

considered in each compartment, and the partial differential equations describing glycan 
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concentration as a function of both time and distance within the Golgi, were replaced by ordinary 

differential equations that demonstrate the dependency of glycan concentration only on cell culture 

time. Residence times were assumed equal for both HCPs and the mAb. The general material balance 

followed in the Golgi and ER compartments is described in Eq. 5.13: 

𝑑[𝑂𝑆]𝑗,𝑐

𝑑𝑡
=  𝑉𝑒𝑙([𝑂𝑆]𝑗,𝑐−1 −  [𝑂𝑆]𝑗,𝑐) +  ∑ 𝜈𝑖,𝑗

𝑛
𝑖=1 𝑟𝑖   (5.13) 

where, [𝑂𝑆]𝑗,𝑐 (μΜ) is the concentration of the 𝑗𝑡ℎ  oligosaccharide at the compartment c, n is the 

number of reactions for the examined network (either HCPs or mAb), 𝜈𝑖,𝑗  (-) is the stoichiometric 

coefficient that expresses the participation of the [𝑂𝑆]𝑗  oligosaccharide on the 𝑟𝑖 (μΜ·min-1) reaction 

and 𝑉𝑒𝑙  (Golgi length·min-1) is the linear velocity (reverse residence time) with which the protein 

molecule travels through the ER and the Golgi. It is important to note that Eq. 5.13 is adapted 

accordingly to replace the [𝑂𝑆]𝑗,𝑐−1 term with either the initial concentration of the glycans for the 

ER compartments or the concentration from the ER → Golgi space for the cis-Golgi compartment. 

The approach of employing four CSTRs to describe Golgi glycosylation is based on the vesicular 

transport Golgi model and has been previously used in several studies to describe the glycosylation 

process with high accuracy472-473, 476. Based on previous reports472-473, a slightly modified distribution 

of the enzymes in each compartment was considered. Enzyme distributions alongside the 𝑘𝑓,𝑒𝑛𝑧 

values are presented in Table 5.3. The a6SiaT was not considered as it is not expressed in CHO cells. 

The a3FucT and a3GalT enzymes were not assigned distributions as no glycans carrying the respective 

sugar products were identified in the experimental analysis and their concentration was set equal to 

zero. The 𝐾𝑑𝑖,𝑒𝑛𝑧 and 𝐾𝑑𝑘,𝑒𝑛𝑧 were specific for either the HCPs or the IgG and can be found in the 

Appendix-Table A3 & A4. If not estimated, the 𝐾𝑑 parameters were assigned to their nominal values 

according to literature. The enzyme concentrations were estimated in order to fit the experimental 

data of the HCPs glycoprofile.  

Table 5.3: Enzymes distribution and rate-limiting turnover rate. 

Enzyme Distribution 

cis-Golgi 

Distribution 

medi-Golgi 

Distribution 

trans-Golgi 

Distribution 

TGN 

𝒌𝒇,𝒆𝒏𝒛 

(min-1) 

Reference 

for 𝒌𝒇,𝒆𝒏𝒛 

ManI 0.15 0.40 0.30 0.15 888 DV2011478 

ManII 0.15 0.40 0.30 0.15 1924 DV2011478 

GnTI 0.20 0.45 0.20 0.15 1022 DV2011478 

GnTII 0.20 0.45 0.20 0.15 1406 DV2011478 

GnTIII 0.20 0.45 0.20 0.15 629 DV2011478 

GnTIV 0.20 0.45 0.20 0.15 187 KB2005473 
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GnTV 0.20 0.45 0.20 0.15 1410 KB2005473 

iGnT 0.20 0.45 0.20 0.15 25 KB2005473 

a6FucT 0.20 0.45 0.20 0.15 291 DV2011478 

b4GalT 0 0.05 0.20 0.75 872 DV2011478 

a3SiaT 0 0.05 0.20 0.75 491 DV2011478 

 

Following the transformation of the model to account for a series of well mixed reactors instead of a 

PFR, the model was expanded to include the HCP glycosylation network. For that purpose, the 

GLYMMER software474  was used for generating the complete reaction network to describe the 

glycome of CHO cells, as previously reported475. The generated network consists of approximately 

20,000 reactions and 50,000 substrates. In order to reduce the size of the network and expedite model 

development and simulation, the Lumping function of the GLYMMER software was utilized for 

reducing the network based on the experimentally observed glycoprofile. A significantly reduced 

network with 180 reactions and 282 glycan structures was generated. Following its generation, the 

network was transferred to the gPROMS environment using stoichiometric tables. The conversion of 

the GLYMMER reaction network to a stoichiometric table was achieved through the use of Python 3.7 

and expedites the transfer of any new network to the simulation software of choice. At this point, the 

IgG network was also adapted to a stoichiometric table-based system, in order to facilitate future 

expansions of the model to include alternative and more complex glycan profiles.  

Finally, apart from the mannosidases (ManI and ManII) that were assumed to follow Michaelis-

Menten type kinetics, all glycosylatransferases were assigned sequential-order Bi-Bi kinetics, similar 

to Eq. 5.11 that described the UGGT activity in the ER. The assignment of a sequential-order Bi-Bi 

mechanism is a simplification for the kinetics of a6FucT, GnTIII and a3SiaT enzymes that have been 

previously found to follow random-order kinetics478. The use of a single mechanism for describing 

glycosyltransferases kinetics was employed for reducing model complexity. The general formula for 

sequential-order Bi-Bi kinetics is also shown in Eq. 2.42. Importantly, the inhibition of HCP glycans on 

each enzyme was considered in the kinetics of IgG glycosylation, and vice versa. Thus, a strong 

dependency between the glycosylation of the two proteins was ensured, further enabling the 

investigation of their in-between relationship within the glycosylation context. 

Nucleotide sugar donor transport 

The regulation of NSD transport was considered only for the Golgi compartment, as the structure of 

the ER glycosylation system requires only the concentration of UPDGlc for a single reaction. Therefore, 

the UDPGlc concentration in the ER was calculated based on a simplifying assumption, as mentioned 
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earlier, that alleviates a considerable burden and complexity from the model. However, the transport 

of the NSDs (UDPGlcNAc, GDPFuc, UDPGal and CMPNeu5Ac) to the Golgi compartments was assumed 

to follow a Michaelis-Menten type transport rate without inhibition from the NSD concentration and 

based on the cytosolic concentration of each NSD (Eq. 5.14). The cytosolic NSD concentration was 

calculated directly from the respective intracellular NSD levels (NSD submodel) based on the 

assumption that the cytosolic volume is equal to ~70% of the total cell volume and therefore the 

cytosolic concentration of each NSD is ~1.4x the intracellular value560. The transport of NSDs was 

assumed to occur in each compartment independently; no NSD transfer between compartments was 

considered. 

𝐹𝑖𝑛𝑁𝑆𝐷(𝑐) =  
𝐴𝐺,𝑐

𝑉𝐺,𝑐
𝑘𝑓

𝑁𝑆𝑇[𝑁𝑆𝑇] 𝑑𝑖𝑠𝑡𝑟𝑁𝑆𝑇(𝑐)
[𝑁𝑆𝐷]𝑐𝑦𝑡𝑜𝑠𝑜𝑙

𝐾𝑚
𝑁𝑆𝑇+[𝑁𝑆𝐷]𝑐𝑦𝑡𝑜𝑠𝑜𝑙

   (5.14) 

where, 𝐹𝑖𝑛𝑁𝑆𝐷(𝑐) (min-1) is the transport rate of each NSD in each compartment (c), 𝐴𝐺,𝑐 (μm2) and 

𝑉𝐺,𝑐 (μm3) are the area and the volume of each Golgi compartment, respectively, [𝑁𝑆𝑇] (μM) is the 

nucleotide sugar transporter concentration, 𝑑𝑖𝑠𝑡𝑟𝑁𝑆𝑇(𝑐) (-) is the distribution of the NST in each Golgi 

compartment, [𝑁𝑆𝐷]𝑐𝑦𝑡𝑜𝑠𝑜𝑙  (μΜ) is the cytosolic NSD concentration and 𝐾𝑚
𝑁𝑆𝑇 (μΜ) is the saturation 

constant each NST. The 𝐴𝐺,𝑐 and 𝑉𝐺,𝑐 were common for all compartments and were set at 99 μm2 and 

6.25 μm3, respectively478. Thus, the material balance for each intra-Golgi NSD and in each 

compartment is given by Eq. 5.15: 

𝑑[𝑁𝑆𝐷](𝑐)

𝑑𝑡
=  𝐹𝑖𝑛𝑁𝑆𝐷(𝑐) − ∑ 𝜈𝑁𝑆𝐷,𝑖

𝐼𝑔𝐺  𝑟𝑖
𝐼𝑔𝐺95

𝑖=1 − ∑ 𝜈𝑁𝑆𝐷,𝑗
𝐻𝐶𝑃𝑠  𝑟𝑗

𝐻𝐶𝑃𝑠282
𝑗=1    (5.15) 

where, [𝑁𝑆𝐷](𝑐) (μΜ) is the NSD concentration in each compartment of the Golgi, 𝜈𝑁𝑆𝐷,𝑖
𝐼𝑔𝐺  (-) and 

𝜈𝑁𝑆𝐷,𝑗
𝐻𝐶𝑃𝑠  (-) are the stoichiometric coefficients that describe the usage of each NSD in the 𝑖𝑡ℎ  and 𝑗𝑡ℎ  

reactions of the IgG and HCPs network, respectively, and 𝑟𝑖
𝐼𝑔𝐺  (μΜ·min-1) and 𝑟𝑗

𝐻𝐶𝑃𝑠 (μΜ·min-1) are 

the reaction rates in the IgG and HCPs network, respectively. With the exception of the UDPGal 

transporter (SLC35A2 gene), the distribution of which was estimated, the rest of the transporters were 

assigned a similar distribution with the respective glycosyltransferases (Appendix-Table A5 & A6). 

Similarly, the 𝐾𝑚
𝑁𝑆𝑇 value for each NST was assigned to its nominal values478, with the exception of 

𝐾𝑚
𝑈𝐷𝑃𝐺𝑎𝑙 that was estimated. The concentration of each NST was also estimated. 

Parameter estimation 

For all model simulations and parameter estimations, the parameters of the Metabolism submodel 

were assigned to their re-estimated values, as calculated in Chapter 3 and presented in Table 3.2 (Set 

B). The objective function of the ER-related parameter estimation was to maximize the amount of 

Man8 and Man9 glycans that leave the ER, while retaining a ratio of 1:4 (Man8:Man9). However, the 
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actual Man8:Man9 ratio has not been sufficiently studied and the latter constraint was reasonably 

relaxed. Estimated parameters for the ER glycosylation model can be found in Appendix-Table A7. The 

Golgi enzyme concentrations were estimated solely based on the native HCP glycoprofile. Further 

adjustment for both the HCPs and IgG kinetics was performed through the estimation of appropriate 

𝐾𝑑𝑖,𝑒𝑛𝑧 and 𝐾𝑑𝑘,𝑒𝑛𝑧 values and against each glycoproteins profile. All estimated parameters are shown 

in Appendix-Table A3 & A8. For estimating enzyme concentrations and inhibition constants, the 

approach presented in Chapter 2 was followed. 

Regarding the estimation of the NSD transport constants and NST concentrations, a slightly different 

parameter estimation strategy was chosen for each NSD. The objective function for each parameter 

estimation was the minimisation of the difference between the cytosolic and intra-Golgi NSD 

concentrations. As CMPNeu5Ac is not substantially consumed towards IgG and HCP N-linked 

glycosylation, and is mainly involved in glycolipid synthesis and HCP O-linked glycosylation that are 

not considered in the current modelling framework, the objective function could not be further 

constrained based on the available experimental data, and a lower threshold at 40x the cytosolic 

concentration473 was applied. On the other hand, the rest of the NSDs are considerably consumed for 

both IgG and HCP N-linked glycosylation and could be, therefore, further constrained. Each NSD was 

constrained within a different range of acceptable intra-Golgi concentrations based on previously 

reported values473, 478. For UDPGal the range was set at [50 μΜ, 1500 μΜ], for GDPFuc at [10 μM, 344 

μΜ] and for UDPGlcNAc at [500 μΜ, 1500 μΜ].  

Finally, when required, the intra-Golgi concentrations of UDPGal were estimated against the 

experimentally measured distributions of the major IgG glycans for each considered time point. 

5.2 Results 
5.2.1   Cell growth and antibody synthesis 
For viable cell density, all feeding scenarios show similar profiles up to the 168h time point, with the 

experiments starting to deviate from the 192h time point onwards (Fig. 5.1A). The aforementioned 

observation is expected, as the feeding concentrations of all experiments are at low levels at 96h, 

starting to considerably increase after the feeding at 144h (Table 5.1). Notably, all cell cultures exhibit 

a moderate death phase during the late hours of the culture period due to the addition of Feed C. P1 

and P4 include the highest concentrations of the first GU feeding at the 96h time point (with those in 

P1 being the highest overall at 79.35 mM galactose and 15.87 mM uridine), which, however, are 

considerably lower compared to the highest overall feeding concentrations in each experiment. 

Interestingly, while the elevated early feeding does not affect cell growth during the early exponential 

phase, the viable cell density of the P1 experiment presents the lowest levels during the late 
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exponential and stationary/death phase. The remaining cultures, P2-4, exhibit very similar viable cell 

density profiles across the culture duration, with that of P4 declining earlier than those of P2 and P3, 

from day 10 onwards, again pointing to a potentially negative effect of early supplementation. 

The IVCD exhibits a more discrete profile compared to the rest of the examined variables (Fig. 5.1B). 

P1 and P4 show consistently lower levels of IVCD compared to the control experiment, while P3 

presents an elevated IVCD profile compared to the control. P2 and P5 are almost identical throughout 

the culturing period. P1, that incorporates the highest feeding concentrations on day 4 as mentioned 

earlier, results in the lowest final IVCD, thus, indicating a plausible negative correlation between the 

early supplementation of galactose and uridine and IVCD. However, the values of IVCD at harvest were 

not found to be significantly different (p > 0.05) between the control and each of the feeding 

experiments. On the other hand, P3 and P1 presented a significantly different IVCD at harvest (p < 

0.05). 

 

Figure 5.1: (A) Viable cell density, (B) integral viable cell density and (C) The arrows indicate the galactose and uridine feeding 

points. Note that the specific growth rate could not be calculated for 0h due to the structure of the formula used for its 

calculation. The legend presented in the A panel is common for all panels. The asterisk in the B panel indicates significant 

difference for p set at 0.05. 
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Culture viability remains at high levels during the entire cell culture period, with all values being > 94% 

at harvest, thanks to the addition of Feed C every two days and, therefore, replenishment of nutrients 

(Fig. 5.1C). Interestingly, the control presents the lowest viability from 216h onwards. The 

aforementioned observation demonstrates a plausible positive effect of the GU supplementation on 

culture viability during the stationary phase of the culture, the mechanism of which could be related 

to the utilization of galactose for fuelling the glycolysis pathway. However, the viability profiles present 

no significant differences between the different feeding experiments and the control (p > 0.05), and 

the absolute difference between the control and feeding points is rather small (~1.7%) and within the 

margin of experimental error.  

Similar to cell growth, antibody titre and specific productivity present considerable similarities 

between the cultures (Fig. 5.2). During the first 168h all experiments exhibit similar mAb titre profiles, 

with the values starting to deviate during the late exponential and stationary/death phases. P2 and 

P3 show the highest final mAb titre, with P1 resulting in the lowest antibody concentration at harvest 

(432 ± 6 mg·L-1). In addition, all experiments were found to satisfy the mAb concentration constraint 

for the Design Space, as defined in Eq. 3.4 (430 mg·L-1). The decrease in mAb titre between a small 

number of intervals is probably a result of dilution (due to sampling and feed addition) and 

experimental error during titre quantification. Whilst the GU feeding experiments presented a slightly 

higher specific antibody production rate, no significant difference between the experiments was 

identified (Fig. 5.2B). Finally, the PCC between mAb titre and IVCD is calculated as ~0.96 over all 

experiments and a total of 130 points, showcasing the strong correlation between cell growth and 

antibody synthesis. 

 

Figure 5.2: (A) Antibody concentration and (B) specific mAb productivity at harvest, accounting for the mAb cumulatively 

produced throughout the cell culturing period. 
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5.2.2   Extracellular metabolism 
As shown in section 5.2.1, all cultures present similar profiles for growth and antibody synthesis, 

following an expected behaviour based on the in silico kinetic model simulations that guided the 

design of the feeding strategies. In order to further investigate the effects of the variable GU additions 

on cell metabolism, the extracellular profiles of all metabolites and amino acids were analysed. 

Regarding glucose, P5 presents the lowest levels of glucose throughout the entire cell culturing period 

(Fig. 5.3A). However, the glucose levels start considerably differing between the control and the 

feeding experiments following the 192h time point, with P5 presenting a final glucose concentration 

of ~47.8 mM. The elevated accumulation of glucose in the feeding experiments is attributed to the 

alternative consumption of galactose towards the synthesis of pyruvate and the fuelling of the TCA 

cycle. The intervention of galactose in the glycolysis pathway and the subsequent reduction of glucose 

consumption have been previously reported for both the specific cell line in-use482 and for different 

CHO cell lines292. Regarding the GU feeding experiments, P2 presents the lowest final glucose 

concentration (~56.6 mM) and P1 the highest (~64 mM), with the profiles of all feeding experiments 

presenting similar values up to the 240h time point. Interestingly, the considerably different 

concentrations of galactose supplemented to each culture at 96h, 144h and 192h show no significant 

effect on glucose concentration up to the 240h of culture.  
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Figure 5.3: Extracellular concentration of (A) glucose, (B) galactose and (C) lactate over the entire cell culture period. The 

legend of panel A is common for all panels. Note that in panel B, the calculated galactose concentration immediately after 

feeding has been included, to enable a better understanding of the metabolite’s profile. Also, the control (P5) is not included 

in panel B as no galactose was supplemented to the experiment. 

Galactose is consumed throughout the cell culturing period at lower rates compared to glucose for 

the majority of the intervals (Fig. 5.3B). An increase in galactose concentration during the last two 

days of the cell culture for the P1, P2 and P4 experiments is attributed to measurement errors in 

galactose quantification, rather than to a metabolic shift towards galactose synthesis. The enzymatic 

assay used for galactose quantification is based on fluorescence detection that can introduce 

considerable measurement errors. The main discrepancies in the galactose profiles are attributed to 

the different GU concentrations supplemented to the cultures at each time point. The lactate profile 

is similar between all cultures up to the 144h time point, with the control exhibiting slightly higher 

concentrations (Fig. 5.3C). Following the 144h time point, the control presents, overall, the highest 

lactate concentrations compared to all feeding experiments, with the exception of P3 that 

demonstrates a late lactate metabolic shift and reaches similar levels to the control at 240h. However, 

the lactate concentration of P3 is gradually reduced at 264h and 288h in lower levels than the control. 

Interestingly, P2 presents a repetitive shift of lactate metabolism from 192h onwards, with lactate 

being consumed after feed supplementation, followed by lactate production for the next interval. 
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Overall, P3 presents the lowest lactate concentration at harvest (~10 mM) and P5 the highest (~13 

mM). The elevated levels of lactate in the control experiment are in agreement with previous studies 

suggesting that galactose addition in CHO cell cultures can lead to reduced lactate accumulation268, 561.  

 

Figure 5.4: Extracellular concentration of (A) asparagine, (B) pyruvate, (C) uridine, (D) ammonia and (C) glutamine over the 

entire cell culture period. The legend of panel A is common for all panels. Note that in panel C, the calculated uridine 

concentration immediately after feeding has been included, to enable a better understanding of uridine’s profile. Also, the 

control (P5) is not included in panel C as no uridine was supplemented to the experiment. 

The asparagine profile of all experiments is almost identical, with the exception of P1 that deviates in 

the last three time points, resulting in a slightly higher final concentration (Fig. 5.4A). Similarly, 

pyruvate concentration follows a common trend for all cell cultures (Fig. 5.4B). Interestingly, 

extracellular pyruvate (supplemented through CD-CHO media) is rapidly consumed during the first 

96h of culture, with the exception of P4 that exhibits a higher consumption rate. Following the 96h 

time point, pyruvate seems to reach a steady-state, as its concentration remains relatively constant 

for all cell cultures. Pyruvate is a product of the glycolysis pathway and acts as a substrate for the 

initiation of the TCA cycle and the synthesis of lactate. The rapid initial consumption of pyruvate, 

alongside the consumption of glucose and the synthesis of lactate (Fig. 5.3), demonstrates the vital 

role of pyruvate for the regulation of the fluxes towards the TCA cycle. Moreover, uridine is consumed 

for the synthesis of the uridine-phosphates nucleotides and the UDP-sugars, immediately after being 

added to the cell culture, with a more prominent reduction of uridine concentration for all feeding 

experiments during the last interval of the culture (Fig. 5.4C). The addition of galactose and uridine 

results in elevated ammonia accumulation and reduced glutamine synthesis, compared to the control 
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(Fig. 5.4D & E). Based on the data presented in Chapter 2 where the same amount of galactose was 

fed with and without uridine (10G and 10G20U experiments), the observed increase of ammonia levels 

in the cultures of the current chapter is attributed to the uridine addition, without however being able 

to identify the pathway through which uridine results to elevated ammonia and reduced glutamine 

concentration. As ammonia is consumed towards glutamine synthesis from glutamate, the reduced 

glutamine levels in the GU experiments can justify the observed ammonia accumulation and vice 

versa.  

 

Figure 5.5: Specific synthesis rate for ammonia, glutamine and lactate. Specific uptake rates for asparagine, glutamate and 

glucose. The specific rates are calculated at harvest, accounting for the cumulatively produced/consumed metabolites. “ * ”  

indicates significant different at p < 0.05 and “ ** “ at p < 0.01. 

Similarly, the control experiment presents the lowest specific production rate of ammonia and the 

highest rate for glutamine synthesis. Whilst P1 exhibits the highest specific uptake rate of asparagine, 

no significant differences are detected. P2 shows the lowest specific uptake rate of glutamate, with 

significant differences observed with the P3 and P5 experiments. As expected, the glucose 

consumption rate is higher for the control experiment, while P1 presents the highest lactate synthesis 

rate and P3 the lowest. Overall, the results indicate that the addition of galactose and uridine mainly 

affects the uptake or synthesis of glucose, ammonia and glutamine, with minor differences observed 

for the rest of amino acids and metabolites. 
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5.2.3   Intracellular levels of nucleotides and nucleotide sugar donors  
Time-course measurements of intracellular NSD concentrations are presented in Fig. 5.6. CMPNeu5Ac 

co-elutes with intracellular uridine and therefore could not be accurately quantified for the GU feeding 

experiments. However, CMPNeu5Ac was quantified for the control experiment where no uridine was 

supplemented, and the results are displayed in Fig. 5.6G.  

As expected, the levels of UDPGalNAc, UDPGlcNAc, UDPGal and UDPGlc are elevated in the feeding 

experiments due to the addition of uridine in the cell culture (Fig. 5.6A - D). Uridine transforms to UMP 

and, therefore, sequentially to UDP and UTP. Thus, the supplementation of uridine leads to increased 

UTP levels and consequently to increased UDP-sugars concentrations. More specifically, UDPGal, 

which is also dependent on galactose concentration, is measured between ~3-4x higher for the 

feeding experiments when compared to the control at harvest. The UDPGal profiles clearly 

demonstrate the dependence of intracellular UDPGal concentration on galactose and uridine addition. 

To elaborate, P1 shows the highest concentration between 96h and 144h, followed by P4. The two 

aforementioned experiments are supplemented with the two highest GU concentrations at 96h, with 

P1 receiving the highest of the two, and therefore, reasonably exhibiting higher UDPGal levels 

compared to P2 and P3. A similar trend between the UDPGal levels and the feeding concentrations of 

galactose and uridine is observed for all feeding experiments and time points. Interestingly, unless 

supplemented in sufficient levels, UDPGal is swiftly consumed in all feeding experiments. In addition, 

all feeding experiments present similar profiles after 240h, with P1 slightly deviating from the rest of 

the GU feeding experiments, reaching a similar UDPGal concentration at harvest. However, the 

amount of galactose and uridine added to the cultures throughout the culturing period is largely 

different (Table 5.1), indicating a plausible bottleneck in UDPGal synthesis rate. Given that the specific 

antibody production rate (Fig. 5.2A) and the specific growth rate are similar for all experiments, the 

uptake of UDPGal towards protein glycosylation is expected to be in the same range of values. In 

addition, whilst P1 and P3 are supplemented with considerably higher GU amounts at 240h (day 10), 

the experiments present similar UDPGal levels during the last three days of the culture with the rest 

of the feeding experiments, further supporting the possibility of saturation in UDPGal synthesis 

pathway. It is important to note, that, unlike uridine, galactose was not consumed in the 240h - 288h 

interval, suggesting that the synthesis of UDPGal during the last hours of the culture results from the 

transformation of UDPGlc (reaction F4) and not from the plausible reaction between galactose-1-

phosphate and UTP (that was also not considered in the FBA). However, the uptake of uridine during 

the last three days of the culture was considerably different between the experiments, ranging 

between 0.06 μmol·106cell-1·day-1 (P4) and 0.12 μmol·106cell-1·day-1 (P3). 
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UDPGlc follows a similar pattern with UDPGal, with major discrepancies between the control and the 

feeding experiments observed after the 216h time point. Interestingly, the control experiment 

presents a reduction in UDPGlc concentration in the late stages of the culture, that in combination 

with the sudden increase of UDPGal for the control experiment, indicates an increase in the flux of 

UDPGal synthesis from UDPGlc (reaction F4) and a reduction in UDPGlc synthesis from glucose-1-

phosphate. This shift is also observed for the GU feeding experiments, all of which present a rapid 

increase in UDPGal concentration in the 240h - 288h period, regardless of the amount of 

supplemented galactose and uridine. Unlike the control, UDPGlc concentration increases in the 240h 

- 264h period due to the addition of galactose and uridine, and is subsequently reduced at harvest, 

further supporting UDPGlc swift transformation to UDPGal. 

 

Figure 5.6: Intracellular concentrations of (A) UDPGalNAc, (B) UDPGlcNAc, (C) UDPGal, (D) UDPGlc, (E) GDPFuc, (F) GDPMan 

and (G) CMPNeu5Ac for all cultures. The legend of panel A is common for all panels. 

The control and feeding experiments present similar UDPGalNAc and UDPGlcNAc profiles during the 

first 144h of the cell culture period. Gradually the profiles deviate for each experiment, but all 

experiments exhibit increasing concentrations towards the end of the culture. The increase of 
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UDPGlcNAc levels, and consequently UDPGalNAc through the epimerase reaction that connects the 

two NSDs, towards the late stages of cell culture has been related to ammonia accumulation256. 

Ammonia transforms to fructose-6-phosphate which acts as a substrate for UDPGlcNAc synthesis.  

Surprisingly enough, the control presents higher GDPMan and GDPFuc concentrations compared to 

the feeding experiments, with the difference becoming more prominent after 120h of culture. The 

aforementioned discrepancy between the GU feeding and the control experiment can be partially 

attributed to the different necessities for cellular glycosylation, as examined later in this chapter. 

Higher levels of fucosylation can result to reduced GDPFuc concentrations.  Finally, Fig. 5.6D shows 

the CMPNeu5Ac concentration of the control experiment that reduces approximately 10x from the 

start of the culture, to ~0.06 mM, followed by a slight increase of the CMPNeu5Ac levels during the 

last two days. Unlike IgG, HCPs exhibit high degrees of sialylation in both the N-linked and O-linked 

glycosites and therefore, the reduction or depletion of CMPNeu5Ac levels can have an adverse effect 

on HCP sialylation. 

Moreover, UTP and CTP show noticeably higher levels in the GU feeding experiments compared to the 

control (Fig. 5.7A & C). The concentration profile closely corresponds to the time points of uridine 

supplementation, demonstrating the direct dependency of both nucleotide triphosphates on uridine 

concentration. As shown in Fig. 5.8, uridine transforms to UMP and gradually to UTP. However, UTP is 

further converted to CTP through the activity of the cytidine triphosphate synthetase, and therefore 

the latter develops an indirect positive correlation with uridine supplementation. 



Page | 171 ANTIBODY GALACTOSYLATION BOTTLENECKS 

 

Figure 5.7: Intracellular concentrations of (A) UTP, (B) GTP, (C) CTP, and (D) ATP for all cultures. The legend of panel A is 

common for all panels. 

Both GTP and ATP are reduced after the 96h time point for all GU feeding experiments, while the 

concentration of GTP remains practically stable and ATP fluctuates within a more narrow range in the 

control experiment. Whilst the concentration of both nucleotides is higher at the GU feeding 

experiments and the 96h time point, the control culture presents the higher values at harvest. 
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Figure 5.8: De novo purine and pyrimidine synthesis pathways. IMP: inosine monophosphate, XMP: xanthosine 5’-phosphate 

and ADA: adenylosuccinate. The pathways were extracted from the KEGG database resource511. 

In order to evaluate the intracellular data and identify common cellular behaviours in the synthesis of 

nucleotides and NSDs, a PCA was performed using the consumption/production rates, as proposed in 

Kyriakopoulos & Kontoravdi519, of each variable and for the intervals between 96h - 144h, 144h - 192h, 

192h - 240h and 240h - 288h. Intervals prior to 96h were not considered as no GU supplementation 

was included during the first days of the culture. NSDs are utilized towards IgG and cellular 

glycosylation, and, therefore, the consumption rates are an indicator of the NSD fluxes towards the 

glycosylation process. 

 

Figure 5.9: PCA on the consumption/production rates of all measured nucleotides and NSDs, excluding CMPNeu5Ac. The 

black dots indicate the interval between 96h - 144h, red dots between 144h - 192h, green dots between 192h - 240h and 

blue dots between 240h - 288h. The blue lines indicate the loadings of each experiment, expressing the coordinates for 

each principal component. 
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As expected, P5 (control) exhibits a unique behaviour when compared to the rest of the experiments 

(Fig. 5.9). Reasonably, PCA indicates that P3 and P4 follow a similar nucleotide and NSD metabolism. 

The GU concentrations supplemented to both cultures and up to the 240h time point are almost 

identical, and, therefore, a similar intracellular metabolism is expected. The GU amounts 

supplemented at 240h exhibit minor influence on the PCA results, probably due to the late stage of 

the culture. It is important to note that the highest GU amounts, excluding the 240h time point, for 

the P3 and P4 cultures are supplemented at 192h, for P2 at 144h and for P1 at 96h. Interestingly, the 

PCA identifies similar nucleotide and NSD metabolism for P1 and P2, despite the fact that the two 

feeding cultures follow a considerably different schedule, with P2 receiving approximately twice the 

GU concentration at 144h compared to P1 at 96h. Therefore, the similar loadings indicate that feeding 

higher GU concentrations at 144h could replace the 96h feeding without affecting the overall NSD 

metabolism.  

5.2.4   Investigating intracellular metabolism through flux balance analysis 
The metabolites and amino acids presented in section 5.2.2, alongside with the remaining extracellular 

amino acid profiles and NSD demands, as calculated by the experimental data and Eq. 5.4 and 5.5, 

were utilized for the FBA-based estimation of the intracellular fluxes. The FBA was adapted to 

incorporate the effect of galactose and uridine addition in CHO cell metabolism. Overall, the 

differences are mainly time (interval) dependent, with the results for the second interval (day 6-8) 

that describes the late exponential phase, exhibiting supressed fluxes towards glycolysis and the TCA 

cycle for all experiments. However, differences between the experiments are also reported. 

 

Figure 5.10: FBA results for all experiments and for the first interval. The “m” designation indicates mitochondrial 

concentration. G6P: glucose-6-phosphate, F6P: fructose-6-phosphate, Gal1P: galactose-1-phosphate, G1P: glucose-1-

phosphate, 3PG: 3-phosphoglycerate, AcCoA: acetyl-coenzyme A, Cit: citrate, Icit: isocitrate, aKG: a-ketoglutarate, SucCoa: 

succinyl-CoA, Succ: succinate, Fum: fumarate, Mal: malate, OAA: oxaloacetate. Thickness of the lines denotes flux magnitude. 
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During the first interval, P1, that receives the highest galactose concentration on day 4, exhibits a 

considerable consumption of galactose towards glycolysis, approximately 24% of the total glycolytic 

flux, with the rest 76% supplemented by glucose uptake (Fig. 5.10). P4, that receives the second 

highest galactose concentration, shows a ~18% contribution towards glycolysis but with similar 

galactose flux compared to P1, while P2 and P3 a mere ~5% and ~3%, respectively. It is important to 

note that despite the 6% difference in galactose contribution between P1 and P4, the latter received 

> 3.5x lower galactose though the feed and exhibited similar galactose conversion rate towards G1P. 

The fact that not all galactose supplied was internalised by the cells, could indicate a saturation of 

galactose consumption in extracellular concentrations > 2.2 mM, at least for the early exponential 

phase.  

Interestingly, modest amounts of galactose addition, like in P2 and P3, appear to be stimulating 

glucose uptake. The control, P5, exhibits the lowest glycolytic flux, while P2 and P3 exhibit the highest 

glycolytic flux, with up to ~80% higher values when compared to P1. P4 presents a moderate glycolytic 

flux, followed by P1 and P5. More specifically, P1 and P5 present a similar flux, 106.2 nmol·106cell-1·h-

1 for P1 and 101.4 nmol·106cell-1·h-1 for P5, indicating that the addition of galactose in low levels, as in 

P2 and P3, stimulates glucose uptake in a more effective manner than the consumption of galactose 

itself. Indeed, P4 exhibits a 48% higher glucose intake compared to P1. Collectively, the results indicate 

that higher extracellular galactose concentrations result in elevated galactose intake, with a partial 

saturation observed at > 2.2 mM concentrations, and reduced glucose consumption. On the other 

hand, low galactose concentrations in the extracellular environment (~0.5 mM based on P2 and P3) 

lead to increased glucose consumption and, therefore, increased glycolysis metabolism. In addition, 

the levels of added uridine were not found to halt cell metabolism in the first interval. 

Notably, P3 and P4 present an increased flux for the conversion of mitochondrial malate to pyruvate 

and subsequently to oxaloacetate. The synthesis of oxaloacetate from pyruvate is catalysed by the 

pyruvate carboxylase enzyme and exhibits an anaplerotic function for TCA cycle fuelling562. The rest of 

the experiments present significantly lower fluxes for these two reactions, with the control exhibiting 

no conversion of pyruvate to oxaloacetate. The elevated activity of pyruvate carboxylase in P3 and P4 

indicates high levels of acetyl coenzyme A (AcCoA) that regulates the enzyme’s activity563. It is 

important to note that the conversion of pyruvate to oxaloacetate seems to be stimulated by the 

conversion of malate to pyruvate. Apart from succinate conversion within the TCA cycle, fumarate is 

also produced as a by-product of arginine synthesis from aspartate and citrulline (reaction not shown 

in the network) and this, in its turn, leads to increased malate levels in the TCA cycle. All experiments 

exhibit a relatively similar flux for the conversion of malate to oxaloacetate within the TCA cycle, apart 

from P4 that shows a suppressed flux, as the majority of malate is transformed to mitochondrial 
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pyruvate. In the P1, P2 and P5 experiments, the feeding of the TCA cycle from pyruvate occurs mainly 

through its conversion to AcCoA. Additionally, each experiment exhibits a different conversion of 

cytosolic pyruvate towards lactate synthesis, ranging from ~80% for P1 to ~15% for P3, with the 

control showing ~40% conversion. 

 

Figure 5.11: FBA results for all experiments and for the second interval. Thickness of the lines denotes flux magnitude. 

During the second interval, P3 and P4 show the highest TCA fluxes, followed by P5 and, subsequently, 

by P1 and P2 (Fig. 5.11). Overall, the cells experience supressed fluxes during the examined timeframe. 

Compared to the first interval, all cultures present minor fumarate synthesis from aspartate and 

citrulline. The difference between P3-P4 and the remaining experiments is identified in the 

transformation of mitochondrial fumarate to malate within the TCA cycle, that exhibits a > 50% higher 

flux in the two experiments. All experiments exhibit reduced pyruvate to lactate conversion (< 13%) 

indicating that all cultures simultaneously approach the lactate metabolic shift point. During the 

second interval, galactose contribution towards G6P synthesis presents the highest value in P2, 

accounting for 56% of the total flux. The respective value for P1 is ~12%, while for P3 and P4 the flux 

is 4% and 6%, respectively. When compared to the first interval, the elevation in galactose 

contribution for P2, which is more than twice compared to the highest contribution observed during 

the first interval, is mainly attributed to the considerably lower glucose consumption. To elaborate, 

the G1P to G6P flux in P1 for the first interval, that presented a 23% (the highest) contribution, is 13.4 

nmol·106cell-1·h-1, while the Glc to G6P flux is 44.4 nmol·106cell-1·h-1. On the other hand, the respective 

values for P2 in the second interval are 20.7 nmol·106cell-1·h-1 and 16.3 nmol·106cell-1·h-1. The results 

follow a reasonable pattern based on the supplemented galactose concentration for each experiment. 

Unlike in the first interval, the control presents the second highest glycolytic flux, right after P4, as the 

GU feeding experiments present a declining glycolytic flux (reduced by 25-60%), while the control 

remains more stable (15% reduction). 
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Figure 5.12: FBA results for all experiments and for the third interval. Thickness of the lines denotes flux magnitude. 

During the third interval (days 8-10), all experiments exhibit an elevated total TCA flux, while lactate 

is consumed towards pyruvate synthesis (Fig. 5.12). Interestingly, the control experiment presents the 

highest TCA flux, ranging between 1.5x to 4.5x higher when compared to the GU feeding experiments. 

The control also presents the highest glycolytic flux compared to the rest of the experiments. The 

increased metabolic activity for the control experiment (specific growth on day 10 at 0.0125 h-1) can 

be potentially attributed to the toxic effect of the accumulated uridine on cell growth for all GU 

feeding experiments (maximum specific growth on day 10 for the GU feeding experiments at 0.0084 

h-1). Unlike the first interval, the elevated mitochondrial malate levels do not lead to pyruvate 

synthesis. The majority of malate, synthesized from fumarate or from aspartate/oxaloacetate in the 

cytosol, directly converts to mitochondrial oxaloacetate. In its turn, the flux of oxaloacetate synthesis 

splits almost equally to citrate and alpha-ketoglutarate (αKG) synthesis. Surprisingly, galactose 

contribution towards glycolysis exhibits a significant difference between P3 (17%) and P4 (82%), 

despite the fact that the two cell cultures follow a similar feeding pattern up to that time point. The 

respective value in both P1 and P2 is ~20%.  

5.2.5   Intracellular characteristics differentiating galactose and uridine feeding 
cultures from the control 
To further elaborate on the differences between the GU experiments and the control, all fluxes were 

subjected to feature selection, a machine learning algorithm for identifying a representative subset of 

reactions that could efficiently capture the majority of data variation. Unlike PCA that creates latent 

variables, the least-squares feature selection enables the identification of a subset of the original 

features in an unsupervised manner, improving that way the results interpretability. A subset of 14 

reactions (Table 5.4) was designated by the feature selection method. 
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Table 5.4: Representative subset of metabolic reactions identified by the least-square feature selection method. G6P: 

glucose-6-phosphate, F6P: fructose-6-phosphate, Gln: glutamine, Glucyt: cytosolic glutamate, Fum: fumarate, G1P: glucose-

1-phosphate, OAA: oxaloacetate, Met: methionine, Ser: serine, αKb: alpha-ketobutyrate, NH4+: ammonium, Pi: phosphate 

ion, GAP: glyceraldehyde 3-phosphate, 3PG: 3-phosphoglycerate, Trp: tryptophan, Ala: alanine, AcCoA: acetyl-coenzyme A, 

CoASH: coenzyme-A, DHAP: dihydroxyacetone phosphate, SucCoa: succinyl-CoA, HCO3: bicarbonate. 

#Reaction  Reaction 

R68 UDPGlc → Glycogen + UDP 

R2 G6P ↔ F6P 

R62 Citrulline + ATP + Asp →Fum + Arg + AMP + 2Pi 

R67 G1P + H+ + UTP → UDPGlc + Pi 

R24 OAAcyt + NADHcyt ↔ Malcyt + NAD+ 

R95 F6P + Gln + AcCoA + UTP --> UDPGlcNAc + Glucyt + CoASH 

R53 Met + Ser + ATP → αKb + NH4+ + AMP 

R103 → IgG 

R5 GAP + NADcyt + ADP ↔ 3PG + NADHcyt + ATP 

R6 3PG + ADP → Pyrcyt + ATP 

R41 Trp + 2CoASH + 2NAD → Ala + 2AcCoA + 2NADH + 4CO2 

R3 F6P + ATP → DHAP + GAP + ADP 

R40 αKb + CoASH + NAD+ + HCO3 + ATP → SucCoA + ADP + NADHcyt + CO2 

R90 18AcCoA + 18ATP + 14NADPH → Cholesterol + 9CO2 + 18ADP + 14NADP+ 

 

As expected, the designated subset includes reactions, the flux of which, differs significantly among 

the experiments and examined intervals. Interestingly, the subset includes three reactions (R67, R68 

and R98) directly related to NSD synthesis and therefore to protein glycosylation. Overall, R64 

maintained higher levels in the GU feeding experiments when compared to the control, due to both 

the elevated G1P levels from galactose uptake and increased UTP concentrations from uridine 

supplementation. Similarly, R65 that describes the synthesis of glycogen, a glucose polymer, from 

UDPGlc, was upregulated in the GU feeding experiments as higher UDPGlc concentrations were 

achieved due to uridine supplementation. Interestingly, glycogen was recently found to induce human 

ovarian cancer cell proliferation and metastasis due to its intervention in the glycolysis pathway564. 

Through the activity of glycogen phosphorylase, glycogen can release G1P molecules that are fed back 

to the glycolysis pathway. Glycogen was also recently identified as the major glycolysis fuel in the bulk 

body of mice565. Therefore, glycogen can supplement glycolytic flux in the GU experiments, during the 

reduced glucose and insufficient galactose consumption periods. Moreover, glycogen is involved in 
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biomass production and therefore the excessive levels in the GU feeding experiments can assist 

towards ensuring growth. Unlike R67 and R68, the flux of R98 was found in similar levels for all 

experiments, partially due to the similar HCPs and mAb glycans mannosylation. 

 

Figure 5.13: Estimated fluxes for glycolysis reactions for all experiments and intervals. The bars with the blue colour are for 

the GU feeding experiments and with the yellow are for the control (P5). 

In addition, when comparing the fluxes between the control and GU feeding experiments, the 

glycolysis reactions R2, R3, R5 and R6 present a significantly different profile between the two sets of 

experiments (Fig. 5.13). The control maintains a relatively constant glycolytic flux throughout the 

culturing period, unlike the GU feeding experiments that present a high initial flux that is quickly 

reduced to levels lower than the control. As mentioned earlier, P2 and P3 that received the lowest 

initial GU concentration, present the highest glycolytic fluxes for the first interval, indicating that a 

moderate addition of galactose during the early culturing period can lead to increased glycolytic flux. 

On the other hand, high initial galactose concentrations (P1) do not positively affect the total glycolytic 

flux. Through the rapid downregulation of glycolysis, the cells in the GU experiments manage to 

reduce the discrepancies from the control and therefore, follow a reasonably similar growth and 

productivity, while achieving the desired IgG glycosylation profile. 

5.2.6   IgG N-linked glycosylation 
The N-linked glycosylation analysis of the produced IgG indicates a significant difference (p < 0.05) 

between the control and the GU feeding experiments (Fig. 5.14D). All GU feeding experiments present 



Page | 179 ANTIBODY GALACTOSYLATION BOTTLENECKS 

similar glycoform distributions in each day of the cell culture, with considerably lower levels of GnGnF 

compared to the control (Fig. 5.14 A, B, C). Man5 is not affected by the GU addition, while GnGn is 

moderately supressed by the feeding. All galactosylated forms, including Aa6Gn, Aa3Gn, Aa6GnF, 

Aa3GnF, AA and AAF, reasonably exhibit higher distributions in the GU feeding experiments. The non-

fucosylated AGn and AA glycans presented the most subtle increase, while the respective fucosylated 

variants showed a considerably elevated distribution. Whilst core-fucosylation presented a slightly 

increasing trend through the culturing period, no significant differences were observed between the 

different time points and experiments. Despite the differences in the UPDGal levels observed for each 

experiment at each time point, and the P1-P2 and P3-P4 similarities in the NSD metabolism (Fig. 5.9), 

no significant differences were observed between the glycans of the GU feeding experiments at all 

time points. Moreover, galactosylation was found to decrease during the cell culturing period in all 

experiments. The gradual reduction in IgG galactosylation can be attributed to ammonia accumulation 

that has been found to inhibit galactosyltransferase expression and activity247, 257, 259, 261. Finally, as 

expected, all GU feeding experiments were found to satisfy the mAb galactosylation constraint set for 

the Design Space, as defined in Eq. 3.5, ranging between ~258 mg·L-1 for P4 and 292 mg·L-1 for P2 and 

P3, with the control (P5) presenting a value of 207 mg·L-1. Therefore, considering the satisfaction of 

the mAb titre constraint that was reported in section 5.2.1, the model was found to result in 

trustworthy feeding experiments for achieving the desired titre and glycosylation profile. 
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Figure 5.14: IgG N-linked glycosylation analysis of all experiments for days (A) 9, (B) 11 and (C) 12 of the cell culturing period 

(corresponding hours: 216h, 264h and 288h). The legend shown in panel A is common for panels B and C as well. (D) Absolute 

galactosylation for each experiment and for days 9, 11 and 12. Significant differences (p < 0.05) between the absolute 

galactosylation for day 12 are also denoted by the asterisk.  

5.2.7   Does UDPGal synthesis limit antibody galactosylation? 
As shown in Fig. 5.14, all GU feeding experiments presented similar mAb galactosylation, that was 

found to be significantly higher compared to the control. Despite the different amounts of galactose 

and uridine supplemented in each culture, UDPGal concentration was measured in comparable levels 

between all GU feeding experiments in the last three days of the cultures, suggesting a possible 

saturation in the reaction of UDPGlc conversion to UDPGal. The enzyme catalysing the UDPGlc to 

UDPGal conversion, namely galactose-1-phosphate uridylyltrasferase, presents various reported in 

vitro Michaelis-Menten saturation constants, with reported values for the human homolog varying 

between 0.08 mM 566 to 0.6 mM 567 for UDPGlc as a substrate. Therefore, a regulation of the reaction 

is possible if the in vivo kinetic constant lies in the lower range of reported values, as UDPGlc 

concentration is > 0.5 mM towards the end of the culture for all GU feeding experiments.  
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The uniform galactosylation levels of all experiments indicate that the upper limit in antibody 

galactosylation is unrelated to the differences in the cytosolic levels of UDPGal. More specifically and 

for the 216h (day 9) time point when the highest galactosylation levels are observed, and up to which 

the intracellular UDPGal concentration is considerably different between the experiments, the glycans 

distribution of the accumulated mAb among the different experiments was surprisingly similar. 

To that end, plausible bottlenecks for the further increase in IgG galactosylation include: 1) the UDPGal 

transport rate in the Golgi apparatus from the SLC35A2 transporter that could have reached its 

maximum velocity, 2) the insufficient b4GalT availability for galactosylation, with the bottleneck being 

on the transcription or translation level, 3) the consumption of the excess intra-Golgi UDPGal for 

cellular glycosylation and 4) the combination of two or more of the aforementioned reasons. Whilst 

insufficient concentration of b4GalT in the Golgi is the most likely reason for the observed IgG 

galactosylation limit, the low Km values for UDPGal transport (~2.4 μM) reported in literature568 

compared to the considerably higher intracellular UDPGal concentrations reported herein (100 – 

1,600 μΜ), cannot rule out the possibility of transport saturation. Similarly, the high degree of O-linked 

and N-linked galactosylation in the CHO glycome 513 can significantly influence the intra-Golgi UDPGal 

levels. 

5.2.8   N-linked glycosylation of the intracellular HCPs 
The MALDI-TOF-MS analysis (Fig. 5.15A) of intracellular HCPs resulted in the identification of 49 N-

linked glycans (without considering the potential isomeric structures) throughout the five 

experiments. An elaboration on the plausible isomers for each identified m/z would require further 

fragmentation through the use of MS/MS or a prior step of glycans separation, preferably through 

capillary electrophoresis that exhibits high efficiency in isomer separation569. 

Table 5.5: Specific parts of HCPs glycosylation for all experiments. Galactosylation and sialylation account for the total 

amount of molecules present in each glycan. High mannose glycans refer to structures with equal to or more than 5 

mannose molecules. 

Experiment Galactosylation 

(%) 

Sialylation 

(%) 

Fucosylation 

(%) 

High 

Mannose (%) 

> Bi-

antennary 

(%) 

P1 52.66 10.06 26.35 68.99 9.22 

P2 99.23 46.64 34.52 61.11 21.50 

P3 72.95 22.28 28.55 65.64 14.13 

P4 77.56 21.62 26.20 65.22 14.71 

P5 (control) 39.80 16.96 16.96 70.53 9.33 
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Fig. 5.15B presents the profile of the 10 glycans with the highest % distribution among the identified 

structures. Immature high mannose glycan structures (Man ≥ 5) exhibit high levels in all experiments, 

accounting for 61 - 70% of the total distribution (Table 5.5). Man6 is the most abundant glycan for all 

experiments, with the exception of P2 in which the Man8 and Man9 glycans are the most prominent. 

Overall, feeding experiments present lower distributions for Man5, Man6 and Man7. Similarly, the 

distribution of non-galactosylated structures, including GnF, GnGnF and GnGnGnF, is suppressed in 

the GU feeding experiments, with the total galactosylation exhibiting up to 2.5-fold higher levels in 

the GU feeding experiments when compared to the control (Table 5.5). Thus, the supplementation of 

galactose and uridine and the accumulation of higher UDPGal pools in the intracellular environment 

leads to elevated HCP galactosylation levels, an observation that could potentially inhibit the further 

increase of antibody galactosylation. 
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Figure 5.15: (A) MALDI-TOF-MS analysis of the intracellular HCPs of CHO cells in the P5 (control) experiment and at harvest. 

Selected glycan structures are also shown. (B) HCPs glycoform distribution for the 10 glycan structures that present the 

highest abundance at harvest. 

Sialylation presents a similar profile with galactosylation in all experiments, except for P1 where the 

sialic acid content is reduced compared to the control (P5) despite the increase in galactosylation. 

Whilst a strong dependency of sialylation on galactosylation would be expected due to the former 

enzyme acting only on galactosylated substrates, overall, HCP galactosylation and sialylation exhibit a 

weak correlation with a PCC ~0.65 (Fig. 5.16). The aforementioned observation could be attributed to 

the considerable number of identified glycans in the GU feeding experiments that present several 

terminally galactosylated molecules that lack of further sialylation processing. Whilst the control 

experiment presented the highest GDPFuc concentrations, HCP fucosylation is elevated in the GU 
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feeding experiments, partially due to the reduction of the high mannose structures and consequently, 

the further processing of the glycans. The increased fucosylation observed in the feeding experiments 

can also explain the reduced GDPFuc concentrations compared to the control. Fucosylation is strongly 

correlated to galactosylation (PCC ~0.91), while all considered parts of glycosylation present a negative 

correlation to high mannose structures, as expected. Finally, highly branched glycans (> bi-antennary) 

present a strong positive correlation to galactosylation and a slightly weaker interdependence with 

fucosylation and sialylation. The positive association between highly branched and sialylated glycans 

is attributed to the monotonic dependency of sialylation on the number of branches in the glycan 

molecule. 

 

Figure 5.16: Heatmap of the correlation (PCC) between different parts of HCPs N-linked glycosylation. 

5.2.9   Model-based investigation of galactosylation bottlenecks 
 

A glycosylation model that enables the evaluation of HCPs-IgG interaction 

In order to investigate the previously proposed bottlenecks of galactosylation in silico, the kinetic 

glycosylation model was adapted to more holistically describe the secretion process and include the 

following steps: 1) Golgi N-linked glycosylation of intracellular HCPs (simultaneously with IgG 

glycosylation), 2) N-linked glycosylation in the ER for both HCPs and IgG, 3) transport from ER to Golgi 

and 4) transport from Golgi to the cytosolic membrane for IgG. The model was also modified to 

account for all four compartments of the Golgi, assuming the vesicular transport Golgi model. No 
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transport from the Golgi to the membrane or to other cellular compartments was considered for HCPs, 

as they represent the entire intracellular proteome and they exhibit various localizations within the 

cell. The reaction network for HCP glycosylation was based on the previously identified glycans in all 

feeding experiments, including the control.  

Substrate competition between HCPs and the IgG product was also considered as a single model and 

was used to simulate the glycosylation of both proteins. The model was fitted against the experimental 

data of both HCPs and IgG of the control experiment, with the enzymatic concentrations estimated 

against only the HCP profile, since they are the natural products of the cells. Model simulation results 

compared to experimental data are shown in Fig. 5.17. The model exhibits a good agreement with the 

data for both the intracellular HCPs and the IgG. More specifically, the model closely matches the 

distributions of the most abundant glycans, such as the high mannose structures (Man5-Man9) for the 

HCPs, while the fitting is less accurate for the lower abundance HCP glycans. To the best of our 

knowledge, this is the first modelling effort that successfully and simultaneously captures the N-linked 

glycosylation with the entire intracellular CHO glycome alongside with the glycoprofile of the secreted 

recombinant protein. The inclusion of HCP glycosylation enables the investigation of HCP-IgG 

interaction within the glycosylation context, as the two protein classes act as competitive substrates 

for the same glycosyltransferases and consume NSDs towards their glycosylation from the same intra-

Golgi pool.  

 

Figure 5.17: Model agreement between the experimental data of the control experiment at harvest for the intracellular HCPs 

and the secreted IgG. 



Page | 186 ANTIBODY GALACTOSYLATION BOTTLENECKS 

UDPGal transport limits antibody galactosylation 

The inclusion of the different steps within the secretion pathway (Fig. 5.18D) enables a more detailed 

representation of the intracellular distributions for each glycoform. A snapshot of the IgG glycan 

distributions for the different cellular compartments and for the control experiment at harvest is 

shown in Fig. 5.18A. As expected, the distribution of each glycan differs considerably between the 

examined compartments. GnF and Aa3GnF glycoforms of the IgG present a significantly different 

distribution compared to the last compartment of the Golgi (TGN). More specifically, GnF distribution 

in the TGN compartment at harvest is ~78% (Fig. 5.18B), considerably higher than that measured on 

secreted IgG (~52%). The relationship between the secreted distribution of each glycan and the 

respective distribution in the various compartments of the Golgi is important for developing a better 

understanding of the cellular state.  

Given the spatial evolution of the glycoform that can be simulated using the model, it became possible 

to back calculate the required UDPGal concentration in the Golgi for acquiring the experimentally 

measured IgG glycoprofile when galactose and uridine are supplemented to the culture. As shown in 

Fig. 5.18C, the experimentally identified increase of intracellular UDPGal concentration in the GU 

feeding experiments surpasses the model-estimated concentration in the Golgi compartments where 

galactosylation occurs. Whilst a discrepancy between the increase in the intracellular and the 

estimated intra-Golgi concentrations is observed for all Golgi compartments and all time points, the 

large standard deviations (calculated based on the 95% confidence intervals of the estimated 

concentrations) moderate the significance in the difference between the two concentrations. Whilst 

a regulation of UDPGal transport is expected, the results clearly indicate that the intra-Golgi UDPGal 

concentration does not reflect the changes in the NSD intracellular pools and, therefore, the transport 

limits antibody galactosylation.  



Page | 187 ANTIBODY GALACTOSYLATION BOTTLENECKS 

 

Figure 5.18: (A) Snapshot of the major glycans distribution at each cellular compartment for the secreted mAb in the control 

experiment at harvest, based on model simulation. (B) The fraction of GnGnF in three subcellular compartments during the 

entire cell culture period and for the control experiment, based on model simulation. (C) Ratio between the UDPGal 

concentration of the P4 and P5 experiments (P4:P5) in different compartments of the Golgi where galactosylation occurs, 

and in the intracellular environment. The intra-Golgi concentrations were calculated based on model parameterization in 

order to fit the experimentally observed glycan profile. Intracellular UDPGal concentrations were determined experimentally 

as reported in section 5.2.3. For the model-estimated concentrations the errors are based on the 95% confidence intervals 

and for the experimentally measured concentrations on the standard deviation. As glycan distributions and UDPGal levels 

are similar between the GU feeding experiments, only minor discrepancies are expected for P1, P2 and P3. (D) Parts of the 

secretory pathway examined by the model. Abbreviations: ERtG represents the ER to Golgi transport and GtCM represents 

the transport between the Golgi and the cellular membrane. 

If no saturation of NSD transport between the cytosol and the Golgi occurred, the intra-Golgi 

concentration of UDPGal would present the same increase in the feeding experiments as the increase 

in intracellular concentration, when compared to the control. This would increase mAb galactosylation 

by ~ 43% (from 30% to ~ 44%) from the levels calculated based on the experimental data for P4 at 

harvest, for example, as shown in Fig. 5.19A. This demonstrates that regulation and saturation of NSD 

transport can have a profound effect on antibody galactosylation. The model further enables the 
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simulation of the potential effect of b4GalT overexpression by glycoengineering. Fig. 5.19B compares 

the effect of enzyme overexpression to that of increased UDPGal synthesis and clearly demonstrates 

that an increase in b4GalT levels has a more significant effect on galactosylation levels. 

 

Figure 5.19: (A) Comparison of mAb galactosylation in the TGN compartment of the Golgi for the P4 experiment at harvest, 

when the UDPGal transport the intra-Golgi concentration is saturated and when the fold change in the intracellular NSD 

concentration between the control (P5) and the P4 experiment is reflected to the intra-Golgi UDPGal concentration (no 

saturation). (B) Increase in mAb galactosylation compared to its nominal value with the increase of either b4GalT 

concentration or UDPGal concentration. 

HCP galactosylation disproportionally increases compared to antibody galactosylation 

The consumption of UDPGal towards cellular N-linked glycosylation was further investigated. As 

shown in Fig. 5.20, the IgG galactosylation rate is constantly higher compared to the respective HCP 

rate through the entire cell culture period and for all three compartments where galactosylation 

occurs, with the exception of the last intervals in the TGN compartment in which the HCP rate slightly 

surpasses the respective value for the IgG. However, the HCP galactosylation rate is within the same 

order of magnitude as the IgG galactosylation rate, indicating that, indeed, HCPs are influencing IgG 

galactosylation. The model-based results are in agreement with the experimentally observed increase 

of HCP galactosylation in the GU feeding experiments. To that end, the UDPGal consumption rate for 

both HCP and mAb N-linked glycosylation was calculated based on the experimentally quantified 

glycan distributions at harvest. In order to further investigate the impact of HCP galactosylation on IgG 

glycans distribution, HCP galactosylation was blocked in the model through the knockout of the 

respective reactions. The in silico blocking of HCP galactosylation, resulted in a ~ 33% increase of IgG 

galactosylation, demonstrating the dependence of IgG on the cellular requirements for N-linked 

glycosylation.  



Page | 189 ANTIBODY GALACTOSYLATION BOTTLENECKS 

 

Figure 5.20: In silico galactosylation rates for both the IgG and the HCPs for the entire cell culture period of the control 

experiment and for (A) the medi, (B) the trans and (C) the TGN compartments. (D) UDPGal consumption for each experiment 

at harvest, based on HCPs and IgG glycan analysis. The ratio between the two consumption rates is also reported. 

As presented in Fig. 5.20D, while IgG galactosylation maintains a higher consumption rate of UDPGal 

for all experiments, the rate towards HCP N-linked glycosylation presents a larger increase in the 

feeding experiments compared to the mAb. For that reason, the HCP:mAb ratio for UDPGal 

consumption is up to ~ 2x higher in the P2 experiment compared to the control, indicating that HCPs 

utilize any excess of UDPGal synthesised in the feeding experiments in a better way than the IgG, with 

the exception of P1 that presents a similar ratio with the control. However, it is important to note that 

despite the experimentally and model-based identified dependency between cellular and 

recombinant protein glycosylation, the consumption of NSDs towards HCPs galactosylation is not 

expected to act as the main bottleneck of IgG galactosylation, rather than weaken the effect of GU 

feeding on IgG galactosylation. 

5.3   Discussion 
In this chapter, an integrated experimental and computational analysis was carried out in order to 

evaluate and determine the reasons behind the experimentally observed upper threshold in mAb 

galactosylation. In addition, the effects of galactose and uridine addition on intracellular metabolism 
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were also examined. For that reason, five fed-batch experiments with different concentrations of 

galactose and uridine supplemented during the cell culture period were performed. The glycosylation 

profile of both the recombinantly produced IgG and the intracellular HCPs of the cell was quantified. 

The IgG glycoprofile verified the observation that an upper threshold in IgG galactosylation exists, 

regardless of the supplemented galactose and uridine concentrations. The analysis of the HCPs 

glycoprofile enabled the investigation of the resources that cells take up for the glycosylation of the 

intracellular proteins. Amino acid analysis of all experiments was utilized in order to identify 

discrepancies between the feeding and the control experiments through flux balance analysis. In 

addition, the kinetic glycosylation model was modified in order to account for additional parts of the 

secretory pathway and importantly to simultaneously simulate both HCP and antibody glycosylation.  

The GU feeding experiments presented similar growth compared to the control, with the only 

statistically significant difference for the IVCD observed between the P1 and P3 experiments (Fig. 

5.1B). Overall, the feeding experiments presented a slightly improved mAb productivity compared to 

the control, without the difference being statistically significant (Fig. 5.2B). As expected, the GU 

feeding experiments presented increased glucose concentrations (Fig. 5.3A) and therefore reduced 

glucose specific consumption rate (Fig. 5.5). Pyruvate was consumed within the first four days of the 

culture in all experiments (Fig. 5.4B), while the feeding of galactose and uridine resulted in increased 

ammonia (Fig. 4D) and reduced glutamine levels (Fig. 4E). In a similar manner, the GU feeding 

experiments presented higher ammonia synthesis rates, with only P1 and P2 being significantly 

different compared to the control (Fig. 5.5). Overall, P1 presented the lowest IVCD and antibody titre 

of all experiments at harvest, indicating that an elevated GU feeding in the early culturing period (day 

4) can halt cell growth. On the contrary, P2 that incorporated low GU concentrations on the feeding 

at day 4, but higher concentrations at day 6, showed a similar growth profile with the rest of the 

experiments that included elevated feedings only on days 8 and/or day 10 of the culture period. 

As expected, UDP-sugars presented elevated profiles in the GU feeding experiments (Fig. 5.6). UDPGal 

was measured in similar levels for all GU feeding experiments towards the end of the culture. 

Therefore, a saturation in UDPGal synthesis rate was considered as a possible scenario but was not 

found to affect IgG glycosylation based on the glycan analysis results. Surprisingly, GDPMan and 

GDPFuc concentration were measured in lower levels in the GU feeding experiments (Fig. 5.6) and the 

aforementioned results were partially attributed to the different requirements for cellular 

glycosylation. UTP and CTP concentrations were increased due to uridine addition, while GTP and ATP 

levels followed an overall declining profile for the feeding experiments after the 96h time point, while 

both nucleotide triphosphates were maintained largely stable in the control culture (Fig. 5.7). In 

addition, a PCA on the NSD and nucleotides data identified that the intracellular profiles of P1/P2 and 
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P3/P4 clustered closely together (Fig. 5.9). The inclusion of P1/P2 in the same cluster indicates that 

the elevated GU feeding at day 4 (P1) can be sufficiently replaced from a GU feeding at day 6 of the 

culturing period, without affecting NSD metabolism, and also ensuring an improved cell growth. 

FBA was used in order to further study the intracellular metabolism of the cultures. In the first 

examined interval (day 4-6), galactose feeding was found to proportionally increase galactose 

consumption (Fig. 5.10). However, for concentrations higher than 2.2 mM, galactose uptake was only 

marginally increased. Additionally, the elevated galactose consumption was found to supress the total 

glycolytic flux, while the P3 and P4 experiments exhibited elevated activity of the pyruvate carboxylase 

enzyme. P1 that received the higher GU concentrations at day 4 of the culture showed the highest 

pyruvate to lactate conversion (80%). The second interval (day 6-8) showed a reduced total TCA flux 

and a suppressed pyruvate to lactate conversion, indicating that all cultures were approaching the 

lactate metabolic shift point (Fig. 5.11). In the third interval (day 8- 10), lactate was consumed towards 

pyruvate synthesis, the total TCA flux was increased compared to the second interval, while the 

pyruvate carboxylase activity was considerably lower compared to the first interval (Fig. 5.12). Finally, 

the unsupervised least-squares feature selection technique identified a subset of 14 reactions showing 

the highest variability between the experiments, with 4 of the main glycolysis reactions exhibiting a 

considerably different profile between the control and the GU feeding experiments throughout the 

cell culturing period. Finally, the GU feeding experiments were found to produce higher amounts of 

glycogen. 

The IgG glycan analysis revealed significantly higher levels of galactosylation in all GU feeding 

experiments compared to the control, but similar between the feeding experiments (Fig. 5.14). 

Galactosylation was also reduced during the cell culturing period, possibly due to ammonia 

accumulation that has been found to inhibit b4GalT expression and activity257, 259-261. The resulting IgG 

glycoprofile indicated that the plausible saturation in the synthesis rate of intracellular UDPGal should 

not have an effect on antibody galactosylation. Similarly, HCPs glyoprofile showed higher 

galactosylation levels for all feeding experiments, while sialylation, fucosylation and highly branched 

glycans were also generally increased due to galactose and uridine addition (Table 5.5). Interestingly, 

HCPs galactosylation presented a strong positive correlation with fucosylation and highly branched 

glycans (Fig. 5.16). 

Subsequently, the kinetic glycosylation model was modified in order to approximate the N-linked 

glycosylation profile of both the intracellular HCPs and the secreted IgG. In addition, the updated 

model incorporated ER glycosylation and protein transport between cellular compartments. The 

model presented good agreement with the experimental data of the control experiment (Fig. 5.17) 
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and was used in order to showcase that the identified saturation of NSD transport to the Golgi results 

in reduced IgG galactosylation (Fig. 5.18C, Fig. 5.19A). HCPs N-linked glycosylation was also found to 

consume considerable UDPGal resources, and also disproportionally more compared to the IgG in the 

GU feeding experiments (Fig. 5.20). Combined with the elevated amounts of UDPGal utilized towards 

HCPs O-linked glycosylation in CHO cells513, HCPs glycosylation was found to considerably influence 

the glycoprofile of the recombinantly produced IgG. Overall, NSD transport saturation and HCPs 

glycosylation were found to halt the increase of IgG galactosylation by 33% and 43%, respectively. 

Designing genetic engineering experiments based on the model-based analysis  

Throughout this chapter, several insights in the intracellular metabolism and glycosylation of CHO cells 

were provided. The observed upper threshold in antibody galactosylation was partially attributed to 

NSD transport to the Golgi and to the amount of NSD resources consumed towards cellular 

glycosylation. The results are based on both experimental measurements and model-based 

simulations. In addition, the expression levels of b4GalT were found to be the major bottleneck in IgG 

galactosylation. To that end, the overexpression of i) the SLC35A2 gene responsible for the expression 

of the UDPGal transporter, and ii) the B4GALT1 gene, the main isoform responsible for b4GalT 

expression in CHO cells350, could reveal further insights in the relationship between NSD transport and 

b4GalT availability. When combined with galactose and uridine supplementation in the culture and 

therefore elevated UDPGal levels in the cytosol, the overexpression scenarios can reveal the exact 

hierarchy of galactosylation bottlenecks. 

As the manipulation of HCPs N-linked galactosylation requires the modification of b4GalT expression 

levels that would also affect IgG galactosylation, a plausible target is the beta-1,3-

galactosyltransferase (B3GALT5 gene) that is responsible for HCPs O-linked galactosylation. The 

knockout of the aforementioned enzyme could release UDPGal resources that will subsequently be 

available for IgG galactosylation. Alternatively, the high positive correlation between HCPs 

galactosylation and the > bi-antennary glycans (Fig. 5.16) indicates that the knockout of the GnTIV, 

GnTV and iGnT enzymes could potentially lead to decreased HCP galactosylation and therefore to 

increased intra-Golgi levels of UDPGal that could be consumed towards IgG galactosylation. 

Importantly, the aforementioned enzymes are not involved in IgG glycosylation, and therefore such 

genetic engineering experiments will not compromise antibody glycosylation. However, transient 

transfection (electroporation) with siRNA molecules targeting the MGAT4A, MGAT4B and MGAT5 

genes, resulted in no improvements in IgG galactosylation (data not shown), indicating that a complete 

knockout is possibly necessary to evaluate the effect of such genetic modifications on IgG 

glycosylation. 



Page | 193 CONCLUSIONS AND FUTURE WORK  

Chapter 6 Conclusions and future work 
 

6.1 Summary of results 
Mammalian cell culture is a complicated yet critical process for therapeutics production. The genome, 

metabolism and N-linked glycosylation pathways of CHO cells, the main hosts for recombinant protein 

synthesis, have been extensively, but not exhaustively, studied. The optimization of CHO cell-based 

systems remains a challenging task due to the complexity of cellular metabolism that is inherently 

related to product quality. Following the Quality by Design framework, the understanding of the 

relationship between process parameters and therapeutic protein synthesis and glycosylation is of 

paramount importance. 

Overall, this thesis endeavoured to demonstrate the power of various computational tools in the 

optimization of CHO cell cultures and the implementation of the Quality by Design paradigm. A 

particular focus throughout the thesis was placed on the effect of galactose and uridine, the 

precursors for UDPGal synthesis, on CHO cell growth, productivity and mAb glycosylation. However, 

the applications of the developed models were not limited to galactose and uridine feeding and also 

included different therapeutic glycoproteins. 

The literature review presented in Chapter 1 was mainly focused on showcasing the importance of 

protein glycosylation within the bioprocess context. Specific interest was placed on the effect of 

different glycosylation profiles, such as galactosylation, on the efficacy and immunogenicity of mAbs. 

In addition, the role of protein glycosylation within the Quality by Design paradigm was further 

analysed in an effort to set the basis for the rest of the thesis and demonstrate the importance of this 

cellular function. Subsequently, the effect of process parameters on mammalian cell growth and 

protein glycosylation were discussed, and methods from literature to control glycosylation were 

described. The last part of the literature review described the main categories of computational tools, 

including kinetic, stoichiometric and data-driven models and their applications on simulation, 

controlling and optimizing cell growth and protein glycosylation. 

In Chapter 2 of the thesis, a holistic model describing CHO cell growth and mAb glycosylation was 

developed. In total, the model comprises three kinetic submodules, namely the Metabolism submodel 

that captures CHO cell growth, metabolism and antibody synthesis, the NSD submodel that utilizes a 

lumped reaction pathway for NSD synthesis and aims to estimate intracellular NSD concentrations, 

and finally the Glycomodel that is employed for simulating mAb glycosylation based on the NSD 

concentrations and specific antibody production rate. Importantly, the Metabolism submodel utilized 

a reduced reaction network, including a lumped glycolysis pathway, in order to minimize the number 
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of parameters requiring estimation. The Glycomodel, adapted from del Val et al.478, adapts the Golgi 

maturation theory and uses a single PFR system in order to capture the dynamics within the 

compartment. The model was tailored to predict the effect of galactose and uridine addition on 

antibody titre and glycosylation, exhibiting an R2 > 0.95 for viable cell density and mAb titre, R2 > 0.96 

for UDPGal concentration and a 5% error range against the experimental data of glycan analysis. 

Subsequently, the model was successfully utilized for designing a galactose and uridine feeding 

strategy in order to maximize mAb galactosylation without compromising cell growth and product 

titre. The optimized experiment achieved a 93% increase in antibody galactosylation at harvest, 

showcasing the power of model-based process optimization. 

Following the development of the holistic model and the validation of its predictive capabilities, an in 

silico Design Space was constructed. Constrained GSA was employed for the identification of the 

Design Space, based on 8,192 (213) model simulations with varying galactose and uridine 

concentrations added on days 4, 6, 8 and 10 of the culture. In addition, the lowest acceptable values 

for both the antibody concentration and galactosylation were defined, ensuring that the feeding 

regimes falling within the Design Space would meet the pre-determined quantitative and qualitative 

targets, respectively. Only 556 out of the 8,192 simulations were found to satisfy both constraints, 

while the identified Design Space was validated against experimental data from 7 fed-batch 

experiments including galactose and uridine addition. 

Subsequently, a strategic framework for the parameterization of the Metabolism submodel was 

developed. The framework was based on GSA and aimed to identify the model parameters that 

significantly influence the designated outputs, such as viable cell density and mAb concentration, and 

require tuning for model adaptation to new experimental data. The validity of the framework was 

initially verified against experimental data that presented a different profile compared to the 

experiments used for model training. The adapted model presented an R2 > 0.91 for model predictions 

for 4 fed-batch feeding experiments, demonstrating the correct identification of the significant model 

parameters. In addition, the framework was applied to data from another CHO cell line. The aim was 

to examine whether the same model structure could be applied to describe the growth and 

metabolism of a newly introduced cell line. Following the re-estimation of 10 parameters, the model 

presented an R2 > 0.95 in the simulation of viable cell density, mAb concentration, glucose and 

asparagine extracellular concentration and a R2 ~0.89 for ammonia. 

Whilst the holistic kinetic model was proven a powerful tool for predicting mAb glycosylation, the 

parameterization and development of such models remains a challenging task. For that reason, 

artificial neural networks were used in order to replace the kinetic Glycomodel. As a standalone 
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algorithm the ANN-based glycosylation model was found to describe the experimentally measured 

mAb glycoprofile with an AAE of 0.87%, outperforming its equivalent data-driven PLS model. The ANN-

based model was also configured to describe the effect of manganese, galactose and fucose addition 

on mAb glycosylation, presenting an AAE of 0.89%. In a next step, the ANN-based model was tuned to 

predict the effect of knockouts of b4GalT isoforms on site-specific glycosylation of two fusion proteins, 

namely EPO-Fc and Fc-DAO. Finally, a hybrid model consisting of the kinetic Metabolism and NSD 

submodels and the ANN-based glycosylation model, namely HyGlycoM, was found to outperform its 

fully mechanistic equivalent by ~30% and simultaneously, significantly reducing the required 

simulation time. 

The galactose and uridine feeding experiments used throughout this thesis revealed that IgG 

galactosylation reached an upper threshold, regardless the supplemented concentration of galactose 

and uridine and consequently, the intracellular levels of UDPGal. To that end, five fed-batch 

experiments with different concentrations of galactose and uridine (including the control) were 

performed, in order to examine the possible bottlenecks in antibody galactosylation and distinctive 

characteristics of intracellular metabolism in the feeding experiments. The experimental results were 

also used to inform an updated kinetic glycosylation model, describing both HCPs and IgG 

glycosylation in the ER and Golgi compartments, and protein transport between cellular 

compartments. The integrated experimental and computational framework demonstrated that the 

limitations in UDPGal transport towards the Golgi and the utilization of UDPGal resources towards 

HCPs glycosylation considerably halt IgG galactosylation (43% and 33%, respectively). In addition, 

expression levels of b4GalT were identified as the major bottleneck in IgG galactosylation. Finally, cell 

growth and productivity, metabolites profile and amino acid analysis were used for flux balance 

analysis. An unsupervised feature selection technique was applied in the FBA results, identifying the 

glycolysis reactions as the main difference between the control and the feeding experiments. 

6.2 Main contributions and conclusions 
The development of computational tools for describing mammalian cell metabolism and recombinant 

protein production has never been more relevant. The transition to QbD-based process development 

has triggered a growing interest in the use of model-based platforms for bioprocess control and 

optimization, in both academia and industry. To that end, mathematical models have proven to be 

valuable tools for expediting process development and reducing the relevant costs, while maintaining 

high levels of prediction confidence. However, it is important to note that model development is 

inextricably linked to relevant experimentation that necessitates careful designing in order to 

maximize the potential of the model under development. The motivating power behind this thesis 

was the exploration of different computational tools for describing mammalian bioprocesses. 
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Throughout this thesis, kinetic, constraint-based and machine learning models have altogether been 

used for different or similar purposes, demonstrating the importance and necessity of applying hybrid 

configurations for describing cellular processes. Indeed, this thesis includes the development of the 

first holistic hybrid model (HyGlycoM) that incorporates both kinetic and machine learning 

submodules for describing CHO cell growth and recombinant protein glycosylation. 

Whilst the simulation and experimental investigation of CHO cell metabolism was part of this thesis’ 

objectives, the major focus of the worked presented herein was placed on glycosylation, due to its 

paramount importance for recombinant protein activity and immunogenicity. In addition, 

glycosylation is a rather intriguing process; the non-template driven nature of glycosylation results in 

high degrees of variability between different cell lines and recombinant proteins, further increasing 

the difficulty in developing a predictive tool that can be seamlessly applied in several bioprocesses. In 

addition, this thesis was focused on the manipulation of antibody galactosylation through the 

supplementation of galactose and uridine during the cell culture period. We strongly believe that the 

mathematical models and experimental approaches developed herein, to describe and optimize the 

examined bioprocess or investigate relevant intracellular bottlenecks, can be applied to other 

bioprocesses of interest and through different objectives, with the introduction of minor 

modifications.  

We believe that each chapter of this thesis presented a novel and important contribution in the field 

of bioprocess engineering. The main contributions of the work presented herein, and the relevant 

conclusions are listed below: 

1. A kinetic model holistically describing CHO cell growth, metabolism, NSD synthesis, antibody 

production and glycosylation was developed. The model was found to successfully evaluate 

the effect of galactose and uridine (NSD precursors) addition on cell growth, mAb 

concentration and glycosylation. A modelling framework with such capabilities can be a 

valuable tool for process control and the design of optimal feeding regimes. 

2. The developed holistic model was successfully used in order to design a fed-batch experiment 

that would maximize mAb galactosylation through the adjustment of galactose and uridine 

concentrations in the feed. The results of the optimal scenario were experimentally verified, 

achieving a > 90% increase in antibody galactosylation compared to the control, minimizing 

the costs of identifying an optimal feeding strategy. 

3. For the first time in literature, a Design Space of galactose and uridine concentrations in the 

feed was constructed, based solely on model simulations and cGSA. The Design Space ensured 

that both the desired quality and quantity of the product could be achieved. Such a model-
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based framework can significantly expedite bioprocess development, reduce relevant costs 

and increase the flexibility of the process, while simultaneously contributing to the 

implementation of the Quality by Design paradigm. 

4. A comprehensive framework for successfully adapting the CHO metabolism model to data of 

the same cell line that deviated considerably from the training dataset, and to data from a 

new CHO cell line, was proposed. To our knowledge this is one of the first studies to develop 

a detailed workflow for adapting an existing metabolic model to a new mammalian cell line 

without changing model’s configuration. Such frameworks can significantly accelerate the 

development of kinetic models for new cell lines and contribute towards the establishment of 

a more global kinetic model for describing CHO cell metabolism. 

5. For the first time in literature, an ANN-based glycosylation model configuration was proposed 

and was verified against several bioprocess and genetic engineering scenarios. Machine 

learning models are simpler to build and parameterize, especially in processes like 

glycosylation that require the identification of product-specific reaction networks and the 

development of sophisticated parameterization methodologies. For that reason, the ANN-

based glycosylation model can be particularly useful for industrial applications were hundreds 

of cell lines and several different molecules are examined during cell line and product 

development. 

6. A hybrid model, namely HyGlycoM, was proposed. HyGlycoM is, to our knowledge, the first 

hybrid model to predict antibody glycosylation based on nutrients concentration in the media 

and feed. Importantly, HyGlycoM was found to outperform its fully mechanistic equivalent, 

while requiring significantly less time for development. The superior performance of 

HyGlycoM reflects the promising future of hybrid configurations for describing and optimizing 

new bioprocesses. 

7. The comprehensive experimental analysis and the applied modifications in the kinetic 

glycosylation model enabled the identification of bottlenecks in antibody galactosylation. The 

identified bottlenecks can be manipulated to improve galactosylation, while a similar 

framework can be applied for the identification of other bottlenecks in protein glycosylation. 

8. Importantly, the updated glycosylation model describes both HCPs and IgG glycosylation, 

being the first model to simultaneously describe both the cellular and the recombinant 

protein glycoprofile. The updated model can be utilized to design genetic engineering studies 

and feeding scenarios that would harness the captured balance between HCPs and IgG 

glycosylation. 
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9. Through the use of FBA and unsupervised machine learning, the major differences in the 

intracellular metabolism between the control and the GU feeding experiments were 

identified. The hybrid configuration provided valuable insights into CHO cell metabolism 

under galactose and uridine supplementation, that could be utilized for further refining the 

bioprocess. 

6.3 Limitations and future work 
Similar to every research project, the work presented herein exhibits certain limitations. The identified 

limitations, in combination with the new research avenues that are created based on the results of 

this thesis, are summarized below, in an effort to describe the future work that can further improve 

the current research. 

6.3.1   Improvements in the holistic kinetic model  
The kinetic glycosylation submodel (Glycomodel) does not account for enzymes regulation through 

the culture. The lack of a dynamic description of glycosyltransferases transcription/translation was 

found to constraint the predictive capabilities of the model in the validation experiment. A 15% 

upregulation in b4GalT concentration led to better predictions for the optimal experiment. As the 

mechanistic description of glycosyltransferase expression would be challenging, RNA-seq, microarray 

or proteomics data can be utilized from a data-driven algorithm to inform the Glycomodel for changes 

in enzymes concentrations during the cell culture period. In addition, several kinetic constants 

involved in the glycosylation reaction rates calculation were assigned to their nominal values due to 

lack of experimental data. Studies, either using transient or stable gene knockdown/knockout or 

inhibitors of glycosyltransferases can be performed, in order to generate relevant data that would 

accurately inform the Glycomodel. For glycoproteins, such as mAbs, that present a rather simple 

glycoprofile, the reaction network can be further reduced in order to accelerate model simulation and 

reduce the parameters requiring estimation. 

The holistic kinetic model developed in this thesis was only trained and tested in fed-batch cultures, 

in which the variability was introduced from the supplementation of different galactose and uridine 

concentrations. In addition, all experimental data were derived from small-scale cultures (100 mL) in 

flasks. Incorporation of other feeding regimes, including NSD precursors (i.e., ManNAc, fucose, 

guanosine) or glycosylation inhibitors (e.g., kifunensine) and co-factors (e.g., manganese), or different 

process parameters, such as mild-hypothermia or pH shift, is required. Model training to data from 

scaled up experiments in bioreactors is necessary in order to ensure model applicability within the 

industrial context. In addition, model predictive capabilities can be examined against more CHO cell 

lines that i) exhibit considerably different specific cell growth and protein productivity rates, ii) are 
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derived from CHO-S or CHO-DG44 parental cell lines, or iii) express different glycoproteins. Model 

adaptation to a CHO cell line with a considerably different growth profile was partially covered (only 

the Metabolism submodel was adapted) in Chapter 3 of this thesis.  

Finally, based on model performance in successfully maximizing antibody galactosylation, the model 

can be used in MPC-based applications for the online control of protein glycosylation by adjusting 

feeding composition during the cell culture period. It is important to note that the PFR-based system 

of the Glycomodel could be replaced with a 4-CSTR kinetic system (Chapter 5) or with the ANN-based 

glycosylation model (Chapter 4) in order to significantly reduce the simulation time and ensure the 

swift optimization convergence that is necessary for online applications. 

6.3.2   Quality by Design applications 
Whilst the model successfully predicted which experiments would fall in the in silico Design Space and 

which would fail to satisfy the constraints, discrepancies between the experimentally measured mAb 

titre and the model predicted values were observed. As the model assumes that the addition of 

galactose and uridine will halt cell growth and productivity, it is important to identify the reasons 

behind the observed increase in the experimentally measured titre in the feeding experiments and 

introduce this underlying relationship to the model. In addition, the proposed framework for DS 

identification can be applied on different feeding regimes, cell lines and products to examine its 

adaptability to new bioprocess conditions. 

Whilst the adapted Metabolism submodel was successfully adapted to the GS46 cell line data, it is 

necessary to validate model performance in unrelated experimental data of the GS46 cell line in order 

to evaluate its predictive capabilities. Experiments including galactose and uridine supplementation 

should be prioritized in order to compare model performance between the T127 and GS46 cell line. 

The adaptation to experimental data from additional CHO cell lines, as also described in section 6.3.1, 

is necessary to investigate the extent at which a single kinetic model can be utilized for several cell 

lines. A similar framework can be developed for adapting the NSD and the Glycomodel submodels. 

Finally, the results of the GSA can be used for reducing the size of the model by removing parameters 

that do not affect model outputs. However, model reduction should be performed cautiously, 

considering that parameters not significant for the examined bioprocess (process parameters, cell line, 

product) might influence the results of an alternative bioprocess. 

6.3.3   Machine learning and hybrid applications 
Hybrid models combining mechanistic and machine learning modules are expected to dominate the 

field of bioprocess modelling, due to their flexibility, reduced simulation times and superior 

performance. However, hybrid and machine learning configurations, like the ANN-based glycosylation 
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model and HyGlycoM, require large datasets for appropriate training. The datasets used in the work 

presented herein were rather small; however, the introduction of Gaussian noise and the restrictions 

imposed in the complexity of the networks can reduce the risk of overfitting. Extensive and elaborate 

datasets are difficult to acquire in processes like mammalian cell culturing and especially in academic 

research, transforming the machine learning and hybrid applications mostly fit for industrial research. 

The introduction of omics data, such as transcriptomics or proteomics for identifying the mRNA or 

protein levels of the glycosylatransferases, metabolomics for the quantifying several crucial 

metabolites such as the NSDs, and glycomics for the comprehensive analysis of the glycoprofile, can 

significantly improve the applicability and performance of the ANN-based models presented in 

Chapter 4 of this thesis. 

6.3.4   Glycosylation bottlenecks 
In order to further evaluate and experimentally verify the mAb galactosylation bottlenecks identified 

in Chapter 5 of this thesis, several genetic engineering studies can be performed. Overexpression of 

the SLC35A2 gene will reveal the extent of limitations imposed by the saturation of UDPGal transport, 

while upregulation of the b4GalT expression will provide insights in enzyme’s availability in the Golgi. 

In addition, downregulation or complete knockout of the B3GALT5, MGAT4A, MGAT4B and MGAT5 

genes were found as potential strategies for manipulating HCPs glycosylation towards improving IgG 

galactosylation. Whilst preliminary results (data not shown) on MGAT4A/4B/5 transient siRNA-

mediated knockdown, did not show increased IgG galactosylation, genes knockout might be necessary 

in order to correctly evaluate the effect of this genetic modification. Another potential target is the 

B3GNT2 gene expressing the iGnT enzyme that is responsible for polyLacNAcs formation. Whilst the 

CHO-T127 cell line did not exhibit high levels of polyLacNAc-extended glycans, silencing of iGnT could 

be proven useful for other cell lines, in order to reduce UDPGal consumption towards HCPs 

glycosylation. 

The updated glycosylation model describing both HCPs and IgG glycosylation can be easily adapted to 

the glycoprofile of any cell line and glycoprotein. Due to the large size of the model, a GSA can be 

useful in reducing the size of the model and alleviating the burden imposed by parameter estimation. 

Model reduction will also considerably improve the confidence in the estimated parameter values 

(lower 95% CIs). Future applications should also include training and validation of the updated model 

in the GU feeding experiments. Finally, the insights provided by the FBA studies and the NSD analysis 

can be used to refine and further improve the design of GU feeding experiments. 
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6.4 Concluding remarks 
Overall, the results of this thesis have considerably contributed to model-based prediction and 

optimization of antibody synthesis and glycosylation, while simultaneously improving our 

understanding of the process itself. The combination of experimental and computational work, 

including both mechanistic and machine learning models, was found to lead to trustworthy results 

within the Quality by Design context. The frameworks proposed in this thesis can significantly expedite 

process and product development, reduce the development and manufacturing costs and, ultimately, 

create more affordable biotherapeutics for the people in need. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 202 LIST OF PUBLICATIONS 

List of publications 

 

Articles 

Kotidis, P.; Pappas, I.; Avraamidou, S.; Pistikopoulos, E.N.; Kontoravdi, C.; Papathanasiou, M., DigiGlyc: 

a hybrid tool for reactive scheduling in cell culture systems, Computers & Chemical Engineering 2021, 

154, 107460. 

Alhuthali, S.; Kotidis, P.; Kontoravdi, C., Osmolality effects on CHO cell growth, cell volume, antibody 

productivity and glycosylation, International Journal of Molecular Sciences 2021, 22 (7), 3290. 

Kotidis, P.; Kontoravdi, C., Harnessing the potential of artificial neural networks for predicting protein 

glycosylation. Metabolic Engineering Communications 2020, 10, e00131. 

Kotidis, P.; Kontoravdi, C., Strategic Framework for Parameterization of Cell Culture Models. Processes 

2019, 7 (3), 174. 

Kotidis, P.; Jedrzejewski, P.; Sou, S. N.; Sellick, C.; Polizzi, K.; del Val, I. J.; Kontoravdi, C., Model-based 

optimization of antibody galactosylation in CHO cell culture. Biotechnology and bioengineering 2019, 

116 (7), 1612-1626. 

Kotidis, P.; Demis, P.; Goey, C. H.; Correa, E.; McIntosh, C.; Trepekli, S.; Shah, N.; Klymenko, O. V.; 

Kontoravdi, C., Constrained global sensitivity analysis for bioprocess design space identification. 

Computers & Chemical Engineering 2019, 125, 558-568. 

 

Reviews 

Makrydaki, E.; Kotidis, P.; Kontoravdi, C., Hitting the Sweet Spot with Capillary Electrophoresis: 

Advances in N- Glycomics and Glycoproteomics, Current Opinion in Biotechnology, accepted for 

publication, in-press. 

Fung Shek, C.; Kotidis, P.; Betenbaugh M.J., Mechanistic and Data-Driven Modeling of Glycoproteins, 

Current Opinion in Chemical Engineering 2021, 32, 100690. 

Antonakoudis, A.; Barbosa, R.; Kotidis, P.; Kontoravdi, C., The era of big data: Genome-scale modelling 

meets machine learning. Computational and Structural Biotechnology Journal 2020, 18, 3287-3300. 



Page | 203 LIST OF PUBLICATIONS 

 

Book Chapters & Proceedings 

Kotidis, P., Marbiah, M., Donini, R., Gómez, I.A., del Val, I.J., Haslam, S.; Polizzi. K.M.; Kontoravdi, C., 

Rapid antibody glycoengineering in CHO cells via RNA interference and CGE-LIF N-glycomics, Methods 

in Molecular Biology, Editor: Gavin Davey, in press. 

Kotidis, P.; del Val, I. J.; Krambeck F.J.; Betenbaugh M.J.; Kontoravdi, C., Novel approach to account for 

enzyme regulation in kinetic models of protein glycosylation, BMC Proceedings 2020, 15. 

Antonakoudis A.; Kis Z.; Kontoravdi C.; Kotidis P.; Papathanasiou M.; Shah N.; Tomba E.; Varsakelis C.; 

von Stock M., Accelerating product and process development through a model centric approach, In: 

Quality by Design—An Indispensable Approach to Accelerate Biopharmaceutical Product 

Development, Editors: Francesca Campa, Amin Khan, Parenteral Drug Association, USA, 2021, ISBN 

Number: 9781945584220. 

Kis Z.; Papathanasiou M.; Kotidis P.; Antonakoudis A.; Kontoravdi C.; Shah N., Stability modelling for 

biopharmaceutical process intermediates, In: Quality by Design—An Indispensable Approach to 

Accelerate Biopharmaceutical Product Development, Editors: Francesca Campa, Amin Khan, 

Parenteral Drug Association, USA, 2021, ISBN Number: 9781945584220. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 204 BIBLIOGRAPHY 

 

Bibliography 

1. Walsh, G., Biopharmaceutical benchmarks 2006. Nature Biotechnology 2006, 24 (7), 769-776. 

2. Walsh, G., Biopharmaceutical benchmarks 2010. Nature Biotechnology 2010, 28 (9), 917-924. 

3. Walsh, G., Biopharmaceutical benchmarks 2014. Nature Biotechnology 2014, 32 (10), 992-

1000. 

4. Walsh, G., Biopharmaceutical benchmarks 2018. Nature Biotechnology 2018, 36 (12), 1136-

1145. 

5. Kristen, A. V.; Ajroud-Driss, S.; Conceição, I.; Gorevic, P.; Kyriakides, T.; Obici, L., Patisiran, an 

RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. 

Neurodegenerative Disease Management 2018, 9 (1), 5-23. 

6. Akinc, A.; Maier, M. A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; 

Du, X.; Hope, M. J.; Madden, T. D.; Mui, B. L.; Semple, S. C.; Tam, Y. K.; Ciufolini, M.; Witzigmann, D.; 

Kulkarni, J. A.; van der Meel, R.; Cullis, P. R., The Onpattro story and the clinical translation of 

nanomedicines containing nucleic acid-based drugs. Nature Nanotechnology 2019, 14 (12), 1084-

1087. 

7. Zahavi, D.; Weiner, L., Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2020, 9 

(3), 34. 

8. EvaluatePharma Evaluate Pharma World Preview 2020, Outlook to 2026. 

https://www.evaluate.com/thought-leadership/pharma/evaluatepharma-world-preview-2020-

outlook-2026 (accessed March 12, 2021). 

9. Zhu, J., Mammalian cell protein expression for biopharmaceutical production. Biotechnology 

Advances 2012, 30 (5), 1158-1170. 

10. Demain, A. L.; Vaishnav, P., Production of recombinant proteins by microbes and higher 

organisms. Biotechnology Advances 2009, 27 (3), 297-306. 

11. Love, K. R.; Dalvie, N. C.; Love, J. C., The yeast stands alone: the future of protein biologic 

production. Current Opinion in Biotechnology 2018, 53, 50-58. 

12. McKenzie, E. A.; Abbott, W. M., Expression of recombinant proteins in insect and mammalian 

cells. Methods 2018, 147, 40-49. 

13. Dhara, V. G.; Naik, H. M.; Majewska, N. I.; Betenbaugh, M. J., Recombinant Antibody 

Production in CHO and NS0 Cells: Differences and Similarities. BioDrugs 2018, 32 (6), 571-584. 

14. Dumont, J.; Euwart, D.; Mei, B.; Estes, S.; Kshirsagar, R., Human cell lines for biopharmaceutical 

manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 2016, 36 (6), 1110-1122. 

https://www.evaluate.com/thought-leadership/pharma/evaluatepharma-world-preview-2020-outlook-2026
https://www.evaluate.com/thought-leadership/pharma/evaluatepharma-world-preview-2020-outlook-2026


Page | 205 BIBLIOGRAPHY 

15. Chin, C. L.; Goh, J. B.; Srinivasan, H.; Liu, K. I.; Gowher, A.; Shanmugam, R.; Lim, H. L.; Choo, 

M.; Tang, W. Q.; Tan, A. H.-M.; Nguyen-Khuong, T.; Tan, M. H.; Ng, S. K., A human expression system 

based on HEK293 for the stable production of recombinant erythropoietin. Scientific Reports 2019, 9 

(1), 16768. 

16. Little, M.; Kipriyanov, S. M.; Le Gall, F.; Moldenhauer, G., Of mice and men: hybridoma and 

recombinant antibodies. Immunology Today 2000, 21 (8), 364-370. 

17. Kim, J. Y.; Kim, Y.-G.; Lee, G. M., CHO cells in biotechnology for production of recombinant 

proteins: current state and further potential. Applied Microbiology and Biotechnology 2012, 93 (3), 

917-930. 

18. Puetz, J.; Wurm, F. M., Recombinant Proteins for Industrial versus Pharmaceutical Purposes: 

A Review of Process and Pricing. Processes 2019, 7 (8). 

19. Jayapal, K. P.; Wlaschin, K. F.; Hu, W. S.; Yap, M. G. S., Recombinant protein therapeutics from 

CHO Cells - 20 years and counting. Chemical Engineering Progress 2007, 103 (10), 40-47. 

20. Grilo, A. L.; Mantalaris, A., The Increasingly Human and Profitable Monoclonal Antibody 

Market. Trends in Biotechnology 2019, 37 (1), 9-16. 

21. Reinhart, D.; Damjanovic, L.; Kaisermayer, C.; Sommeregger, W.; Gili, A.; Gasselhuber, B.; 

Castan, A.; Mayrhofer, P.; Grünwald-Gruber, C.; Kunert, R., Bioprocessing of Recombinant CHO-K1, 

CHO-DG44, and CHO-S: CHO Expression Hosts Favor Either mAb Production or Biomass Synthesis. 

Biotechnology journal 2019, 14 (3), 1700686. 

22. Xu, X.; Nagarajan, H.; Lewis, N. E.; Pan, S.; Cai, Z.; Liu, X.; Chen, W.; Xie, M.; Wang, W.; 

Hammond, S.; Andersen, M. R.; Neff, N.; Passarelli, B.; Koh, W.; Fan, H. C.; Wang, J.; Gui, Y.; Lee, K. H.; 

Betenbaugh, M. J.; Quake, S. R.; Famili, I.; Palsson, B. O.; Wang, J., The genomic sequence of the 

Chinese hamster ovary (CHO)-K1 cell line. Nature Biotechnology 2011, 29 (8), 735-741. 

23. Brinkrolf, K.; Rupp, O.; Laux, H.; Kollin, F.; Ernst, W.; Linke, B.; Kofler, R.; Romand, S.; Hesse, F.; 

Budach, W. E.; Galosy, S.; Müller, D.; Noll, T.; Wienberg, J.; Jostock, T.; Leonard, M.; Grillari, J.; Tauch, 

A.; Goesmann, A.; Helk, B.; Mott, J. E.; Pühler, A.; Borth, N., Chinese hamster genome sequenced from 

sorted chromosomes. Nature Biotechnology 2013, 31 (8), 694-695. 

24. Lewis, N. E.; Liu, X.; Li, Y.; Nagarajan, H.; Yerganian, G.; O'Brien, E.; Bordbar, A.; Roth, A. M.; 

Rosenbloom, J.; Bian, C.; Xie, M.; Chen, W.; Li, N.; Baycin-Hizal, D.; Latif, H.; Forster, J.; Betenbaugh, 

M. J.; Famili, I.; Xu, X.; Wang, J.; Palsson, B. O., Genomic landscapes of Chinese hamster ovary cell lines 

as revealed by the Cricetulus griseus draft genome. Nature Biotechnology 2013, 31 (8), 759-765. 

25. Cao, Y.; Kimura, S.; Itoi, T.; Honda, K.; Ohtake, H.; Omasa, T., Construction of BAC-based 

physical map and analysis of chromosome rearrangement in chinese hamster ovary cell lines. 

Biotechnology and bioengineering 2012, 109 (6), 1357-1367. 



Page | 206 BIBLIOGRAPHY 

26. Baycin-Hizal, D.; Tabb, D. L.; Chaerkady, R.; Chen, L.; Lewis, N. E.; Nagarajan, H.; Sarkaria, V.; 

Kumar, A.; Wolozny, D.; Colao, J.; Jacobson, E.; Tian, Y.; O’Meally, R. N.; Krag, S. S.; Cole, R. N.; Palsson, 

B. O.; Zhang, H.; Betenbaugh, M., Proteomic Analysis of Chinese Hamster Ovary Cells. Journal of 

Proteome Research 2012, 11 (11), 5265-5276. 

27. Park, J. H.; Jin, J. H.; Lim, M. S.; An, H. J.; Kim, J. W.; Lee, G. M., Proteomic Analysis of Host Cell 

Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells. Scientific Reports 

2017, 7 (1), 44246. 

28. Hefzi, H.; Ang, K. S.; Hanscho, M.; Bordbar, A.; Ruckerbauer, D.; Lakshmanan, M.; Orellana, C. 

A.; Baycin-Hizal, D.; Huang, Y.; Ley, D.; Martinez, V. S.; Kyriakopoulos, S.; Jiménez, N. E.; Zielinski, D. C.; 

Quek, L. E.; Wulff, T.; Arnsdorf, J.; Li, S.; Lee, J. S.; Paglia, G.; Loira, N.; Spahn, P. N.; Pedersen, L. E.; 

Gutierrez, J. M.; King, Z. A.; Lund, A. M.; Nagarajan, H.; Thomas, A.; Abdel-Haleem, A. M.; Zanghellini, 

J.; Kildegaard, H. F.; Voldborg, B. G.; Gerdtzen, Z. P.; Betenbaugh, M. J.; Palsson, B. O.; Andersen, M. 

R.; Nielsen, L. K.; Borth, N.; Lee, D. Y.; Lewis, N. E., A Consensus Genome-scale Reconstruction of 

Chinese Hamster Ovary Cell Metabolism. Cell systems 2016, 3 (5), 434-443.e8. 

29. Sommeregger, W.; Mayrhofer, P.; Steinfellner, W.; Reinhart, D.; Henry, M.; Clynes, M.; 

Meleady, P.; Kunert, R., Proteomic differences in recombinant CHO cells producing two similar 

antibody fragments. Biotechnology and bioengineering 2016, 113 (9), 1902-1912. 

30. Birzele, F.; Schaub, J.; Rust, W.; Clemens, C.; Baum, P.; Kaufmann, H.; Weith, A.; Schulz, T. W.; 

Hildebrandt, T., Into the unknown: expression profiling without genome sequence information in CHO 

by next generation sequencing. Nucleic Acids Research 2010, 38 (12), 3999-4010. 

31. Clarke, C.; Doolan, P.; Barron, N.; Meleady, P.; O'Sullivan, F.; Gammell, P.; Melville, M.; 

Leonard, M.; Clynes, M., Large scale microarray profiling and coexpression network analysis of CHO 

cells identifies transcriptional modules associated with growth and productivity. Journal of 

biotechnology 2011, 155 (3), 350-359. 

32. Becker, J.; Hackl, M.; Rupp, O.; Jakobi, T.; Schneider, J.; Szczepanowski, R.; Bekel, T.; Borth, N.; 

Goesmann, A.; Grillari, J.; Kaltschmidt, C.; Noll, T.; Pühler, A.; Tauch, A.; Brinkrolf, K., Unraveling the 

Chinese hamster ovary cell line transcriptome by next-generation sequencing. Journal of 

biotechnology 2011, 156 (3), 227-235. 

33. Hammond, S.; Kaplarevic, M.; Borth, N.; Betenbaugh, M. J.; Lee, K. H., Chinese hamster 

genome database: An online resource for the CHO community at www.CHOgenome.org. 

Biotechnology and bioengineering 2012, 109 (6), 1353-1356. 

34. Rita Costa, A.; Elisa Rodrigues, M.; Henriques, M.; Azeredo, J.; Oliveira, R., Guidelines to cell 

engineering for monoclonal antibody production. European Journal of Pharmaceutics and 

Biopharmaceutics 2010, 74 (2), 127-138. 

file:///C:/Users/pk1617/Box/Pavlos%20Thesis/www.CHOgenome.org


Page | 207 BIBLIOGRAPHY 

35. EMA Biosimilar medicines: Overview. https://www.ema.europa.eu/en/human-

regulatory/overview/biosimilar-medicines-overview (accessed March 12 2021). 

36. Gulácsi, L.; Brodszky, V.; Baji, P.; Kim, H.; Kim, S. Y.; Cho, Y. Y.; Péntek, M., Biosimilars for the 

management of rheumatoid arthritis: economic considerations. Expert Review of Clinical Immunology 

2015, 11 (sup1), 43-52. 

37. Rugo, H. S.; Barve, A.; Waller, C. F.; Hernandez-Bronchud, M.; Herson, J.; Yuan, J.; Sharma, R.; 

Baczkowski, M.; Kothekar, M.; Loganathan, S.; Manikhas, A.; Bondarenko, I.; Mukhametshina, G.; 

Nemsadze, G.; Parra, J. D.; Abesamis-Tiambeng, M. L. T.; Baramidze, K.; Akewanlop, C.; Vynnychenko, 

I.; Sriuranpong, V.; Mamillapalli, G.; Ray, S.; Yanez Ruiz, E. P.; Pennella, E.; for the Heritage Study, I., 

Effect of a Proposed Trastuzumab Biosimilar Compared With Trastuzumab on Overall Response Rate 

in Patients With ERBB2 (HER2)–Positive Metastatic Breast Cancer: A Randomized Clinical Trial. JAMA 

2017, 317 (1), 37-47. 

38. Akram, M. S.; Pery, N.; Butler, L.; Shafiq, M. I.; Batool, N.; Rehman, M. F. u.; Grahame-Dunn, 

L. G.; Yetisen, A. K., Challenges for biosimilars: focus on rheumatoid arthritis. Crit Rev Biotechnol 2021, 

41 (1), 121-153. 

39. Blackwell, K.; Semiglazov, V.; Krasnozhon, D.; Davidenko, I.; Nelyubina, L.; Nakov, R.; Stiegler, 

G.; Singh, P.; Schwebig, A.; Kramer, S.; Harbeck, N., Comparison of EP2006, a filgrastim biosimilar, to 

the reference: a phase III, randomized, double-blind clinical study in the prevention of severe 

neutropenia in patients with breast cancer receiving myelosuppressive chemotherapy. Annals of 

Oncology 2015, 26 (9), 1948-1953. 

40. Yoo, D. H.; Hrycaj, P.; Miranda, P.; Ramiterre, E.; Piotrowski, M.; Shevchuk, S.; Kovalenko, V.; 

Prodanovic, N.; Abello-Banfi, M.; Gutierrez-Ureña, S.; Morales-Olazabal, L.; Tee, M.; Jimenez, R.; 

Zamani, O.; Lee, S. J.; Kim, H.; Park, W.; Müller-Ladner, U., A randomised, double-blind, parallel-group 

study to demonstrate equivalence in efficacy and safety of CT-P13 compared with innovator infliximab 

when coadministered with methotrexate in patients with active rheumatoid arthritis: the PLANETRA 

study. Annals of the Rheumatic Diseases 2013, 72 (10), 1613. 

41. Park, W.; Hrycaj, P.; Jeka, S.; Kovalenko, V.; Lysenko, G.; Miranda, P.; Mikazane, H.; Gutierrez-

Ureña, S.; Lim, M.; Lee, Y.-A.; Lee, S. J.; Kim, H.; Yoo, D. H.; Braun, J., A randomised, double-blind, 

multicentre, parallel-group, prospective study comparing the pharmacokinetics, safety, and efficacy 

of CT-P13 and innovator infliximab in patients with ankylosing spondylitis: the PLANETAS study. Annals 

of the Rheumatic Diseases 2013, 72 (10), 1605. 

42. Jørgensen, K. K.; Olsen, I. C.; Goll, G. L.; Lorentzen, M.; Bolstad, N.; Haavardsholm, E. A.; 

Lundin, K. E. A.; Mørk, C.; Jahnsen, J.; Kvien, T. K.; Berset, I. P.; Fevang, B. T. S.; Florholmen, J.; Kalstad, 

S.; Mørk, N. J.; Ryggen, K.; Tveit, K. S.; Sæther, S. K.; Gulbrandsen, B.; Hagfors, J.; Waksvik, K.; Warren, 

https://www.ema.europa.eu/en/human-regulatory/overview/biosimilar-medicines-overview
https://www.ema.europa.eu/en/human-regulatory/overview/biosimilar-medicines-overview


Page | 208 BIBLIOGRAPHY 

D.; Henanger, K. J.; Asak, Ø.; Baigh, S.; Blomgren, I. M.; Bruun, T. J.; Dvergsnes, K.; Frigstad, S. O.; 

Gjesdal, C. G.; Grandaunet, B. H. J.; Hansen, I. M.; Hatten, I. S. H.; Huppertz-Hauss, G.; Henriksen, M.; 

Hoie, S. S.; Krogh, J.; Kruse, J. R.; Ljoså, M.-K. A.; Midtgard, I. P.; Mielnik, P.; Moum, B.; Noraberg, G.; 

Poyan, A.; Prestegård, U.; Rashid, H. U.; Rydning, J. H.; Sagatun, L.; Seeberg, K. A.; Skjetne, K.; Strand, 

E. K.; Stray, H.; Stray, N.; Torp, R.; Vold, C.; Ystrøm, C. M.; Zettel, C. C., Switching from originator 

infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-

SWITCH): a 52-week, randomised, double-blind, non-inferiority trial. The Lancet 2017, 389 (10086), 

2304-2316. 

43. Liu, L., Antibody Glycosylation and Its Impact on the Pharmacokinetics and Pharmacodynamics 

of Monoclonal Antibodies and Fc-Fusion Proteins. Journal of Pharmaceutical Sciences 2015, 104 (6), 

1866-1884. 

44. Bui, L. A.; Hurst, S.; Finch, G. L.; Ingram, B.; Jacobs, I. A.; Kirchhoff, C. F.; Ng, C.-K.; Ryan, A. M., 

Key considerations in the preclinical development of biosimilars. Drug Discovery Today 2015, 20, 3-15. 

45. Kwon, O.; Joung, J.; Park, Y.; Kim, C. W.; Hong, S. H., Considerations of critical quality attributes 

in the analytical comparability assessment of biosimilar products. Biologicals 2017, 48, 101-108. 

46. Kaur, H., Characterization of glycosylation in monoclonal antibodies and its importance in 

therapeutic antibody development. Crit Rev Biotechnol 2021, 41 (2), 300-315. 

47. Rathore, A. S.; Winkle, H., Quality by design for biopharmaceuticals. Nature Biotechnology 

2009, 27 (1), 26-34. 

48. Narayanan, H.; Luna, M. F.; von Stosch, M.; Cruz Bournazou, M. N.; Polotti, G.; Morbidelli, M.; 

Butté, A.; Sokolov, M., Bioprocessing in the Digital Age: The Role of Process Models. Biotechnology 

journal 2020, 15 (1), 1900172. 

49. Kiparissides, A.; Pistikopoulos, E. N.; Mantalaris, A., On the model-based optimization of 

secreting mammalian cell (GS-NS0) cultures. Biotechnology and bioengineering 2015, 112 (3), 536-

548. 

50. Zhang, L.; Schwarz, H.; Wang, M.; Castan, A.; Hjalmarsson, H.; Chotteau, V., Control of IgG 

glycosylation in CHO cell perfusion cultures by GReBA mathematical model supported by a novel 

targeted feed, TAFE. Metabolic Engineering 2020. 

51. Kol, S.; Ley, D.; Wulff, T.; Decker, M.; Arnsdorf, J.; Schoffelen, S.; Hansen, A. H.; Jensen, T. L.; 

Gutierrez, J. M.; Chiang, A. W. T.; Masson, H. O.; Palsson, B. O.; Voldborg, B. G.; Pedersen, L. E.; 

Kildegaard, H. F.; Lee, G. M.; Lewis, N. E., Multiplex secretome engineering enhances recombinant 

protein production and purity. Nature Communications 2020, 11 (1), 1908. 

52. Gutierrez, J. M.; Feizi, A.; Li, S.; Kallehauge, T. B.; Hefzi, H.; Grav, L. M.; Ley, D.; Baycin Hizal, 

D.; Betenbaugh, M. J.; Voldborg, B.; Faustrup Kildegaard, H.; Min Lee, G.; Palsson, B. O.; Nielsen, J.; 



Page | 209 BIBLIOGRAPHY 

Lewis, N. E., Genome-scale reconstructions of the mammalian secretory pathway predict metabolic 

costs and limitations of protein secretion. Nature Communications 2020, 11 (1), 68. 

53. Presnell, K. V.; Alper, H. S., Systems Metabolic Engineering Meets Machine Learning: A New 

Era for Data-Driven Metabolic Engineering. Biotechnology journal 2019, 14 (9), 1800416. 

54. Zampieri, G.; Vijayakumar, S.; Yaneske, E.; Angione, C., Machine and deep learning meet 

genome-scale metabolic modeling. PLOS Computational Biology 2019, 15 (7), e1007084. 

55. Hayes, J. M.; Cosgrave, E. F. J.; Struwe, W. B.; Wormald, M.; Davey, G. P.; Jefferis, R.; Rudd, P. 

M., Glycosylation and Fc Receptors. In Fc Receptors, Daeron, M.; Nimmerjahn, F., Eds. Springer 

International Publishing: Cham, 2014; pp 165-199. 

56. Reily, C.; Stewart, T. J.; Renfrow, M. B.; Novak, J., Glycosylation in health and disease. Nature 

Reviews Nephrology 2019, 15 (6), 346-366. 

57. Marth, J. D.; Grewal, P. K., Mammalian glycosylation in immunity. Nat Rev Immunol 2008, 8 

(11), 874-887. 

58. Wong, C.-H., Protein Glycosylation:  New Challenges and Opportunities. The Journal of Organic 

Chemistry 2005, 70 (11), 4219-4225. 

59. Flynn, R. A.; Pedram, K.; Malaker, S. A.; Batista, P. J.; Smith, B. A. H.; Johnson, A. G.; George, B. 

M.; Majzoub, K.; Villalta, P. W.; Carette, J. E.; Bertozzi, C. R., Small RNAs are modified with N-glycans 

and displayed on the surface of living cells. Cell 2021. 

60. Eichler, J.; Koomey, M., Sweet New Roles for Protein Glycosylation in Prokaryotes. Trends in 

Microbiology 2017, 25 (8), 662-672. 

61. Zarschler, K.; Janesch, B.; Pabst, M.; Altmann, F.; Messner, P.; Schäffer, C., Protein tyrosine O-

glycosylation—A rather unexplored prokaryotic glycosylation system. Glycobiology 2010, 20 (6), 787-

798. 

62. Iwashkiw, J. A.; Vozza, N. F.; Kinsella, R. L.; Feldman, M. F., Pour some sugar on it: the 

expanding world of bacterial protein O-linked glycosylation. Molecular Microbiology 2013, 89 (1), 14-

28. 

63. Nothaft, H.; Szymanski, C. M., Bacterial Protein N-Glycosylation: New Perspectives and 

Applications. The Journal of Biological Chemistry 2013, 288 (10), 6912-6920. 

64. Abouelhadid, S.; North, S. J.; Hitchen, P.; Vohra, P.; Chintoan-Uta, C.; Stevens, M.; Dell, A.; 

Cuccui, J.; Wren, B. W., Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric 

Bacterial Pathogen. mBio 2019, 10 (2), e00297-19. 

65. Lu, Q.; Li, S.; Shao, F., Sweet Talk: Protein Glycosylation in Bacterial Interaction With the Host. 

Trends in Microbiology 2015, 23 (10), 630-641. 



Page | 210 BIBLIOGRAPHY 

66. Nothaft, H.; Szymanski, C. M., New discoveries in bacterial N-glycosylation to expand the 

synthetic biology toolbox. Current Opinion in Chemical Biology 2019, 53, 16-24. 

67. Wandall, H. H.; Rumjantseva, V.; Sørensen, A. L. T.; Patel-Hett, S.; Josefsson, E. C.; Bennett, E. 

P.; Italiano, J. E., Jr.; Clausen, H.; Hartwig, J. H.; Hoffmeister, K. M., The origin and function of platelet 

glycosyltransferases. Blood 2012, 120 (3), 626-635. 

68. Manhardt, C. T.; Punch, P. R.; Dougher, C. W. L.; Lau, J. T. Y., Extrinsic sialylation is dynamically 

regulated by systemic triggers in vivo. Journal of Biological Chemistry 2017, 292 (33), 13514-13520. 

69. Lee-Sundlov, M. M.; Ashline, D. J.; Hanneman, A. J.; Grozovsky, R.; Reinhold, V. N.; 

Hoffmeister, K. M.; Lau, J. T. Y., Circulating blood and platelets supply glycosyltransferases that enable 

extrinsic extracellular glycosylation. Glycobiology 2017, 27 (2), 188-198. 

70. Stanley, P., Golgi Glycosylation. Cold Spring Harbor Perspectives in Biology 2011, 3 (4). 

71. Moremen, K. W.; Tiemeyer, M.; Nairn, A. V., Vertebrate protein glycosylation: diversity, 

synthesis and function. Nature Reviews Molecular Cell Biology 2012, 13 (7), 448-462. 

72. Dube, D. H.; Prescher, J. A.; Quang, C. N.; Bertozzi, C. R., Probing mucin-type O-linked 

glycosylation in living animals. Proceedings of the National Academy of Sciences of the United States 

of America 2006, 103 (13), 4819. 

73. Hang, H. C.; Bertozzi, C. R., The chemistry and biology of mucin-type O-linked glycosylation. 

Bioorganic & Medicinal Chemistry 2005, 13 (17), 5021-5034. 

74. Hanisch, F.-G., O-Glycosylation of the Mucin Type. Biological Chemistry 2001, 382 (2), 143-

149. 

75. Allen, A. C.; Harper, S. J.; Feehally, J., Galactosylation of N- and O-linked carbohydrate moieties 

of IgA1 and IgG in IgA nephropathy. Clinical and Experimental Immunology 1995, 100 (3), 470-474. 

76. Strasser, R., Challenges in O-glycan engineering of plants. Frontiers in Plant Science 2012, 3, 

218. 

77. Hirayama, K.; Yuji, R.; Yamada, N.; Kato, K.; Arata, Y.; Shimada, I., Complete and Rapid Peptide 

and Glycopeptide Mapping of Mouse Monoclonal Antibody by LC/MS/MS Using Ion Trap Mass 

Spectrometry. Analytical Chemistry 1998, 70 (13), 2718-2725. 

78. Leibiger, H.; Wüstner, D.; Stigler, R. D.; Marx, U., Variable domain-linked oligosaccharides of a 

human monoclonal IgG: structure and influence on antigen binding. Biochemical Journal 1999, 338 (Pt 

2), 529-538. 

79. Lehoux, S.; Ju, T., Chapter Five - Separation of Two Distinct O-Glycoforms of Human IgA1 by 

Serial Lectin Chromatography Followed by Mass Spectrometry O-Glycan Analysis. In Methods in 

Enzymology, Shukla, A. K., Ed. Academic Press: 2017; Vol. 585, pp 61-75. 



Page | 211 BIBLIOGRAPHY 

80. Sjögren, J.; Lood, R.; Nägeli, A., On enzymatic remodeling of IgG glycosylation; unique tools 

with broad applications. Glycobiology 2020, 30 (4), 254-267. 

81. Lippincott-Schwartz, J.; Roberts, T. H.; Hirschberg, K., Secretory Protein Trafficking and 

Organelle Dynamics in Living Cells. Annual Review of Cell and Developmental Biology 2000, 16 (1), 557-

589. 

82. Hubbard, S. C.; Ivatt, R. J., Synthesis and Processing of Asparagine-Linked Oligosaccharides. 

Annual Review of Biochemistry 1981, 50 (1), 555-583. 

83. Varki, A.; Cummings, R. D.; Aebi, M.; Packer, N. H.; Seeberger, P. H.; Esko, J. D.; Stanley, P.; 

Hart, G.; Darvill, A.; Kinoshita, T.; Prestegard, J. J.; Schnaar, R. L.; Freeze, H. H.; Marth, J. D.; Bertozzi, 

C. R.; Etzler, M. E.; Frank, M.; Vliegenthart, J. F. G.; Lütteke, T.; Perez, S.; Bolton, E.; Rudd, P.; Paulson, 

J.; Kanehisa, M.; Toukach, P.; Aoki-Kinoshita, K. F.; Dell, A.; Narimatsu, H.; York, W.; Taniguchi, N.; 

Kornfeld, S., Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology 2015, 25 

(12), 1323-1324. 

84. Bloch, J. S.; Pesciullesi, G.; Boilevin, J.; Nosol, K.; Irobalieva, R. N.; Darbre, T.; Aebi, M.; 

Kossiakoff, A. A.; Reymond, J.-L.; Locher, K. P., Structure and mechanism of the ER-based 

glucosyltransferase ALG6. Nature 2020, 579 (7799), 443-447. 

85. Sanyal, S.; Frank, C. G.; Menon, A. K., Distinct flippases translocate glycerophospholipids and 

oligosaccharide diphosphate dolichols across the endoplasmic reticulum. Biochemistry 2008, 47 (30), 

7937-7946. 

86. Sanyal, S.; Menon, A. K., Specific transbilayer translocation of dolichol-linked oligosaccharides 

by an endoplasmic reticulum flippase. Proceedings of the National Academy of Sciences of the United 

States of America 2009, 106 (3), 767-772. 

87. Sanyal, S.; Menon, A. K., Stereoselective transbilayer translocation of mannosyl phosphoryl 

dolichol by an endoplasmic reticulum flippase. Proceedings of the National Academy of Sciences 2010, 

107 (25), 11289. 

88. Rush, J. S., Role of Flippases in Protein Glycosylation in the Endoplasmic Reticulum. Lipid 

Insights 2016, 8 (Suppl 1), 45-53. 

89. Caragea, C.; Sinapov, J.; Silvescu, A.; Dobbs, D.; Honavar, V., Glycosylation site prediction using 

ensembles of Support Vector Machine classifiers. BMC Bioinformatics 2007, 8 (1), 438. 

90. Taherzadeh, G.; Dehzangi, A.; Golchin, M.; Zhou, Y.; Campbell, M. P., SPRINT-Gly: predicting 

N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted 

structural properties. Bioinformatics 2019, 35 (20), 4140-4146. 



Page | 212 BIBLIOGRAPHY 

91. Pitti, T.; Chen, C.-T.; Lin, H.-N.; Choong, W.-K.; Hsu, W.-L.; Sung, T.-Y., N-GlyDE: a two-stage N-

linked glycosylation site prediction incorporating gapped dipeptides and pattern-based encoding. 

Scientific Reports 2019, 9 (1), 15975. 

92. Chien, C. H.; Chang, C. C.; Lin, S. H.; Chen, C. W.; Chang, Z. H.; Chu, Y. W., N-GlycoGo: Predicting 

Protein N-Glycosylation Sites on Imbalanced Data Sets by Using Heterogeneous and Comprehensive 

Strategy. IEEE Access 2020, 8, 165944-165950. 

93. Petrescu, A.-J.; Milac, A.-L.; Petrescu, S. M.; Dwek, R. A.; Wormald, M. R., Statistical analysis 

of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. 

Glycobiology 2004, 14 (2), 103-114. 

94. de Silva, A. M.; Balch, W. E.; Helenius, A., Quality control in the endoplasmic reticulum: folding 

and misfolding of vesicular stomatitis virus G protein in cells and in vitro. Journal of Cell Biology 1990, 

111 (3), 857-866. 

95. Araki, K.; Nagata, K., Protein folding and quality control in the ER. Cold Spring Harbor 

perspectives in biology 2011, 3 (11), a007526-a007526. 

96. Ferris, S. P.; Kodali, V. K.; Kaufman, R. J., Glycoprotein folding and quality-control mechanisms 

in protein-folding diseases. Disease Models &amp; Mechanisms 2014, 7 (3), 331-341. 

97. Benyair, R.; Ogen-Shtern, N.; Mazkereth, N.; Shai, B.; Ehrlich, M.; Lederkremer, G. Z., 

Mammalian ER mannosidase I resides in quality control vesicles, where it encounters its glycoprotein 

substrates. Molecular biology of the cell 2015, 26 (2), 172-184. 

98. Molinari, M.; Helenius, A., Chaperone Selection During Glycoprotein Translocation into the 

Endoplasmic Reticulum. Science 2000, 288 (5464), 331. 

99. Williams, D. B., Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic 

reticulum. Journal of Cell Science 2006, 119 (4), 615. 

100. Pobre, K. F. R.; Poet, G. J.; Hendershot, L. M., The endoplasmic reticulum (ER) chaperone BiP 

is a master regulator of ER functions: Getting by with a little help from ERdj friends. The Journal of 

biological chemistry 2019, 294 (6), 2098-2108. 

101. Ermonval, M.; Kitzmüller, C.; Mir, A. M.; Cacan, R.; Ivessa, N. E., N-glycan structure of a short-

lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the 

role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation. 

Glycobiology 2001, 11 (7), 565-576. 

102. Frenkel, Z.; Gregory, W.; Kornfeld, S.; Lederkremer, G. Z., Endoplasmic Reticulum-associated 

Degradation of Mammalian Glycoproteins Involves Sugar Chain Trimming to Man6–5GlcNAc2. Journal 

of Biological Chemistry 2003, 278 (36), 34119-34124. 



Page | 213 BIBLIOGRAPHY 

103. Hosokawa, N.; Tremblay, L. O.; You, Z.; Herscovics, A.; Wada, I.; Nagata, K., Enhancement of 

Endoplasmic Reticulum (ER) Degradation of Misfolded Null Hong Kong α1-Antitrypsin by Human ER 

Mannosidase I. Journal of Biological Chemistry 2003, 278 (28), 26287-26294. 

104. Avezov, E.; Frenkel, Z.; Ehrlich, M.; Herscovics, A.; Lederkremer, G. Z., Endoplasmic Reticulum 

(ER) Mannosidase I Is Compartmentalized and Required for N-Glycan Trimming to Man5–6GlcNAc2 in 

Glycoprotein ER-associated Degradation. Molecular Biology of the Cell 2007, 19 (1), 216-225. 

105. Shenkman, M.; Ron, E.; Yehuda, R.; Benyair, R.; Khalaila, I.; Lederkremer, G. Z., Mannosidase 

activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. 

Communications Biology 2018, 1 (1), 172. 

106. Li, S.-T.; Lu, T.-T.; Xu, X.-X.; Ding, Y.; Li, Z.; Kitajima, T.; Dean, N.; Wang, N.; Gao, X.-D., 

Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans. 

Nature Communications 2019, 10 (1), 1813. 

107. Gemmill, T. R.; Trimble, R. B., Overview of N- and O-linked oligosaccharide structures found in 

various yeast species. Biochimica et Biophysica Acta (BBA) - General Subjects 1999, 1426 (2), 227-237. 

108. Dunphy, W. G.; Fries, E.; Urbani, L. J.; Rothman, J. E., Early and late functions associated with 

the Golgi apparatus reside in distinct compartments. Proceedings of the National Academy of Sciences 

of the United States of America 1981, 78 (12), 7453-7457. 

109. Dunphy, W. G.; Rothman, J. E., Compartmental organization of the golgi stack. Cell 1985, 42 

(1), 13-21. 

110. Farquhar, M. G., Progress in Unraveling Pathways of Golgi Traffic. Annual Review of Cell 

Biology 1985, 1 (1), 447-488. 

111. Kleene, R.; Berger, E. G., The molecular and cell biology of glycosyltransferases. Biochimica et 

Biophysica Acta (BBA) - Reviews on Biomembranes 1993, 1154 (3), 283-325. 

112. Nilsson, T.; Au, C. E.; Bergeron, J. J. M., Sorting out glycosylation enzymes in the Golgi 

apparatus. FEBS Letters 2009, 583 (23), 3764-3769. 

113. Rabouille, C.; Hui, N.; Hunte, F.; Kieckbusch, R.; Berger, E. G.; Warren, G.; Nilsson, T., Mapping 

the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. Journal of 

Cell Science 1995, 108 (4), 1617. 

114. Nilsson, T.; Pypaert, M.; Hoe, M. H.; Slusarewicz, P.; Berger, E. G.; Warren, G., Overlapping 

distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. Journal of Cell Biology 

1993, 120 (1), 5-13. 

115. Colley, K. J., Golgi localization of glycosyltransferases: more questions than answers. 

Glycobiology 1997, 7 (1), 1-13. 



Page | 214 BIBLIOGRAPHY 

116. Staehelin, L. A.; Kang, B.-H., Nanoscale Architecture of Endoplasmic Reticulum Export Sites 

and of Golgi Membranes as Determined by Electron Tomography. Plant Physiology 2008, 147 (4), 

1454. 

117. Storrie, B.; White, J.; Röttger, S.; Stelzer, E. H.; Suganuma, T.; Nilsson, T., Recycling of golgi-

resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for 

nocodazole-induced Golgi scattering. J Cell Biol 1998, 143 (6), 1505-1521. 

118. Liu, L.; Doray, B.; Kornfeld, S., Recycling of Golgi glycosyltransferases requires direct binding 

to coatomer. Proceedings of the National Academy of Sciences 2018, 115 (36), 8984. 

119. Kellokumpu, S.; Hassinen, A.; Glumoff, T., Glycosyltransferase complexes in eukaryotes: long-

known, prevalent but still unrecognized. Cell Mol Life Sci 2016, 73 (2), 305-325. 

120. Hadley, B.; Litfin, T.; Day, C. J.; Haselhorst, T.; Zhou, Y.; Tiralongo, J., Nucleotide Sugar 

Transporter SLC35 Family Structure and Function. Computational and Structural Biotechnology Journal 

2019, 17, 1123-1134. 

121. Jedrzejewski, P. M.; Del Val, I. J.; Constantinou, A.; Dell, A.; Haslam, S. M.; Polizzi, K. M.; 

Kontoravdi, C., Towards Controlling the Glycoform: A Model Framework Linking Extracellular 

Metabolites to Antibody Glycosylation. Int J Mol Sci 2014, 15 (3). 

122. Murrell, M. P.; Yarema, K. J.; Levchenko, A., The Systems Biology of Glycosylation. 

ChemBioChem 2004, 5 (10), 1334-1347. 

123. Hadley, B.; Maggioni, A.; Ashikov, A.; Day, C. J.; Haselhorst, T.; Tiralongo, J., Structure and 

function of nucleotide sugar transporters: Current progress. Computational and structural 

biotechnology journal 2014, 10 (16), 23-32. 

124. Parker, J. L.; Newstead, S., Gateway to the Golgi: molecular mechanisms of nucleotide sugar 

transporters. Current Opinion in Structural Biology 2019, 57, 127-134. 

125. Parker, J. L.; Corey, R. A.; Stansfeld, P. J.; Newstead, S., Structural basis for substrate specificity 

and regulation of nucleotide sugar transporters in the lipid bilayer. Nature Communications 2019, 10 

(1), 4657. 

126. Pelham, H. R. B.; Rothman, J. E., The Debate about Transport in the Golgi&#x2014;Two Sides 

of the Same Coin? Cell 2000, 102 (6), 713-719. 

127. Stalder, D.; Gershlick, D. C., Direct trafficking pathways from the Golgi apparatus to the plasma 

membrane. Seminars in Cell & Developmental Biology 2020, 107, 112-125. 

128. Glick, B. S.; Luini, A., Models for Golgi traffic: a critical assessment. Cold Spring Harbor 

perspectives in biology 2011, 3 (11), a005215-a005215. 

129. Beznoussenko, G. V.; Mironov, A. A., Models of intracellular transport and evolution of the 

Golgi complex. The Anatomical Record 2002, 268 (3), 226-238. 



Page | 215 BIBLIOGRAPHY 

130. Pfeffer, S. R., How the Golgi works: A cisternal progenitor model. Proceedings of the National 

Academy of Sciences 2010, 107 (46), 19614. 

131. Rothman, J. E.; Wieland, F. T., Protein Sorting by Transport Vesicles. Science 1996, 272 (5259), 

227. 

132. Mironov, A. A.; Weidman, P.; Luini, A., Variations on the Intracellular Transport Theme: 

Maturing Cisternae and Trafficking Tubules. Journal of Cell Biology 1997, 138 (3), 481-484. 

133. Mironov, A. A.; Beznoussenko, G. V., Models of Intracellular Transport: Pros and Cons. 

Frontiers in Cell and Developmental Biology 2019, 7 (146). 

134. Higgins, E., Carbohydrate analysis throughout the development of a protein therapeutic. 

Glycoconjugate Journal 2010, 27 (2), 211-225. 

135. Lee, H. S.; Qi, Y.; Im, W., Effects of N-glycosylation on protein conformation and dynamics: 

Protein Data Bank analysis and molecular dynamics simulation study. Scientific Reports 2015, 5 (1), 

8926. 

136. Shental-Bechor, D.; Levy, Y., Effect of glycosylation on protein folding: A close look at 

thermodynamic stabilization. Proceedings of the National Academy of Sciences 2008, 105 (24), 8256. 

137. Solá, R. J.; Griebenow, K., Effects of glycosylation on the stability of protein pharmaceuticals. 

Journal of Pharmaceutical Sciences 2009, 98 (4), 1223-1245. 

138. Zhang, P.; Woen, S.; Wang, T.; Liau, B.; Zhao, S.; Chen, C.; Yang, Y.; Song, Z.; Wormald, M. R.; 

Yu, C.; Rudd, P. M., Challenges of glycosylation analysis and control: an integrated approach to 

producing optimal and consistent therapeutic drugs. Drug Discovery Today 2016, 21 (5), 740-765. 

139. Dubé, S.; Fisher, J. W.; Powell, J. S., Glycosylation at specific sites of erythropoietin is essential 

for biosynthesis, secretion, and biological function. Journal of Biological Chemistry 1988, 263 (33), 

17516-17521. 

140. Jiang, J.; Tian, F.; Cai, Y.; Qian, X.; Costello, C. E.; Ying, W., Site-specific qualitative and 

quantitative analysis of the N- and O-glycoforms in recombinant human erythropoietin. Anal Bioanal 

Chem 2014, 406 (25), 6265-6274. 

141. van de Bovenkamp, F. S.; Hafkenscheid, L.; Rispens, T.; Rombouts, Y., The Emerging 

Importance of IgG Fab Glycosylation in Immunity. The Journal of Immunology 2016, 196 (4), 1435. 

142. Strebhardt, K.; Ullrich, A., Paul Ehrlich's magic bullet concept: 100 years of progress. Nature 

Reviews Cancer 2008, 8 (6), 473-480. 

143. Köhler, G.; Milstein, C., Continuous cultures of fused cells secreting antibody of predefined 

specificity. Nature 1975, 256 (5517), 495-497. 

144. Lu, R.-M.; Hwang, Y.-C.; Liu, I. J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C., Development of 

therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science 2020, 27 (1), 1. 



Page | 216 BIBLIOGRAPHY 

145. Rodgers, K. R.; Chou, R. C., Therapeutic monoclonal antibodies and derivatives: Historical 

perspectives and future directions. Biotechnology Advances 2016, 34 (6), 1149-1158. 

146. Vidarsson, G.; Dekkers, G.; Rispens, T., IgG subclasses and allotypes: from structure to effector 

functions. Front Immunol 2014, 5, 520-520. 

147. Ryman, J. T.; Meibohm, B., Pharmacokinetics of Monoclonal Antibodies. CPT: 

Pharmacometrics & Systems Pharmacology 2017, 6 (9), 576-588. 

148. Liu, H.; May, K., Disulfide bond structures of IgG molecules: structural variations, chemical 

modifications and possible impacts to stability and biological function. MAbs 2012, 4 (1), 17-23. 

149. McAuley, A.; Jacob, J.; Kolvenbach, C. G.; Westland, K.; Lee, H. J.; Brych, S. R.; Rehder, D.; 

Kleemann, G. R.; Brems, D. N.; Matsumura, M., Contributions of a disulfide bond to the structure, 

stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci 2008, 17 (1), 95-106. 

150. Maverakis, E.; Kim, K.; Shimoda, M.; Gershwin, M. E.; Patel, F.; Wilken, R.; Raychaudhuri, S.; 

Ruhaak, L. R.; Lebrilla, C. B., Glycans in the immune system and The Altered Glycan Theory of 

Autoimmunity: A critical review. Journal of Autoimmunity 2015, 57, 1-13. 

151. Conroy, P. J.; Law, R. H. P.; Caradoc-Davies, T. T.; Whisstock, J. C., Antibodies: From novel 

repertoires to defining and refining the structure of biologically important targets. Methods 2017, 116 

(Supplement C), 12-22. 

152. Seidel, U.; Schlegel, P.; Lang, P., Natural Killer Cell Mediated Antibody-Dependent Cellular 

Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies. Front Immunol 2013, 4 (76). 

153. Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D., Therapeutic antibodies: successes, 

limitations and hopes for the future. Br J Pharmacol 2009, 157 (2), 220-233. 

154. Bournazos, S.; Gupta, A.; Ravetch, J. V., The role of IgG Fc receptors in antibody-dependent 

enhancement. Nature Reviews Immunology 2020, 20 (10), 633-643. 

155. Cobb, B. A., The history of IgG glycosylation and where we are now. Glycobiology 2020, 30 (4), 

202-213. 

156. Wright, A.; Morrison, S. L., Effect of glycosylation on antibody function: implications for 

genetic engineering. Trends in Biotechnology 1997, 15 (1), 26-32. 

157. Boune, S.; Hu, P.; Epstein, A. L.; Khawli, L. A., Principles of N-Linked Glycosylation Variations of 

IgG-Based Therapeutics: Pharmacokinetic and Functional Considerations. Antibodies (Basel) 2020, 9 

(2), 22. 

158. Zheng, K.; Bantog, C.; Bayer, R., The impact of glycosylation on monoclonal antibody 

conformation and stability. MAbs 2011, 3 (6), 568-576. 



Page | 217 BIBLIOGRAPHY 

159. Boyd, P. N.; Lines, A. C.; Patel, A. K., The effect of the removal of sialic acid, galactose and total 

carbohydrate on the functional activity of Campath-1H. Molecular Immunology 1995, 32 (17), 1311-

1318. 

160. Cambay, F.; Raymond, C.; Brochu, D.; Gilbert, M.; Tu, T. M.; Cantin, C.; Lenferink, A.; Grail, M.; 

Henry, O.; De Crescenzo, G.; Durocher, Y., Impact of IgG1 N-glycosylation on their interaction with Fc 

gamma receptors. Current Research in Immunology 2020, 1, 23-37. 

161. Shields, R. L.; Lai, J.; Keck, R.; O'Connell, L. Y.; Hong, K.; Meng, Y. G.; Weikert, S. H. A.; Presta, 

L. G., Lack of Fucose on Human IgG1 N-Linked Oligosaccharide Improves Binding to Human FcγRIII and 

Antibody-dependent Cellular Toxicity. Journal of Biological Chemistry 2002, 277 (30), 26733-26740. 

162. Chung, S.; Quarmby, V.; Gao, X.; Ying, Y.; Lin, L.; Reed, C.; Fong, C.; Lau, W.; Qiu, Z. J.; Shen, A.; 

Vanderlaan, M.; Song, A., Quantitative evaluation of fucose reducing effects in a humanized antibody 

on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities. MAbs 2012, 4 

(3), 326-340. 

163. Niwa, R.; Natsume, A.; Uehara, A.; Wakitani, M.; Iida, S.; Uchida, K.; Satoh, M.; Shitara, K., IgG 

subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal 

from Asn297-linked oligosaccharides. Journal of Immunological Methods 2005, 306 (1), 151-160. 

164. Li, T.; DiLillo, D. J.; Bournazos, S.; Giddens, J. P.; Ravetch, J. V.; Wang, L.-X., Modulating IgG 

effector function by Fc glycan engineering. Proceedings of the National Academy of Sciences 2017, 114 

(13), 3485. 

165. Kanda, Y.; Imai-Nishiya, H.; Kuni-Kamochi, R.; Mori, K.; Inoue, M.; Kitajima-Miyama, K.; 

Okazaki, A.; Iida, S.; Shitara, K.; Satoh, M., Establishment of a GDP-mannose 4,6-dehydratase (GMD) 

knockout host cell line: A new strategy for generating completely non-fucosylated recombinant 

therapeutics. Journal of biotechnology 2007, 130 (3), 300-310. 

166. Lifely, M. R.; Hale, C.; Boyce, S.; Keen, M. J.; Phillips, J., Glycosylation and biological activity of 

CAMPATH-1H expressed in different cell lines and grown under different culture conditions. 

Glycobiology 1995, 5 (8), 813-822. 

167. Umaña, P.; Jean–Mairet, J.; Moudry, R.; Amstutz, H.; Bailey, J. E., Engineered glycoforms of an 

antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nature 

Biotechnology 1999, 17 (2), 176-180. 

168. Davies, J.; Jiang, L.; Pan, L.-Z.; LaBarre, M. J.; Anderson, D.; Reff, M., Expression of GnTIII in a 

recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms 

leads to an increase in ADCC through higher affinity for FCγRIII. Biotechnology and bioengineering 

2001, 74 (4), 288-294. 



Page | 218 BIBLIOGRAPHY 

169. Shinkawa, T.; Nakamura, K.; Yamane, N.; Shoji-Hosaka, E.; Kanda, Y.; Sakurada, M.; Uchida, K.; 

Anazawa, H.; Satoh, M.; Yamasaki, M.; Hanai, N.; Shitara, K., The Absence of Fucose but Not the 

Presence of Galactose or Bisecting N-Acetylglucosamine of Human IgG1 Complex-type 

Oligosaccharides Shows the Critical Role of Enhancing Antibody-dependent Cellular Cytotoxicity. 

Journal of Biological Chemistry 2003, 278 (5), 3466-3473. 

170. Ferrara, C.; Brünker, P.; Suter, T.; Moser, S.; Püntener, U.; Umaña, P., Modulation of 

therapeutic antibody effector functions by glycosylation engineering: Influence of Golgi enzyme 

localization domain and co-expression of heterologous β1, 4-N-acetylglucosaminyltransferase III and 

Golgi α-mannosidase II. Biotechnology and bioengineering 2006, 93 (5), 851-861. 

171. Hodoniczky, J.; Zheng, Y. Z.; James, D. C., Control of Recombinant Monoclonal Antibody 

Effector Functions by Fc N-Glycan Remodeling in Vitro. Biotechnology Progress 2005, 21 (6), 1644-

1652. 

172. Morell, A. G.; Gregoriadis, G.; Scheinberg, I. H.; Hickman, J.; Ashwell, G., The Role of Sialic Acid 

in Determining the Survival of Glycoproteins in the Circulation. Journal of Biological Chemistry 1971, 

246 (5), 1461-1467. 

173. Wide, L.; Eriksson, K.; Sluss, P. M.; Hall, J. E., Serum Half-Life of Pituitary Gonadotropins Is 

Decreased by Sulfonation and Increased by Sialylation in Women. The Journal of Clinical Endocrinology 

& Metabolism 2009, 94 (3), 958-964. 

174. Bas, M.; Terrier, A.; Jacque, E.; Dehenne, A.; Pochet-Béghin, V.; Beghin, C.; Dezetter, A.-S.; 

Dupont, G.; Engrand, A.; Beaufils, B.; Mondon, P.; Fournier, N.; de Romeuf, C.; Jorieux, S.; Fontayne, 

A.; Mars, L. T.; Monnet, C., Fc Sialylation Prolongs Serum Half-Life of Therapeutic Antibodies. The 

Journal of Immunology 2019, ji1800896. 

175. Scallon, B. J.; Tam, S. H.; McCarthy, S. G.; Cai, A. N.; Raju, T. S., Higher levels of sialylated Fc 

glycans in immunoglobulin G molecules can adversely impact functionality. Molecular Immunology 

2007, 44 (7), 1524-1534. 

176. Naso, M. F.; Tam, S. H.; Scallon, B. J.; Raju, T. S., Engineering host cell lines to reduce terminal 

sialylation of secreted antibodies. MAbs 2010, 2 (5), 519-527. 

177. Wada, R.; Matsui, M.; Kawasaki, N., Influence of N-glycosylation on effector functions and 

thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. MAbs 

2019, 11 (2), 350-372. 

178. Zhang, Z.; Shah, B.; Richardson, J., Impact of Fc N-glycan sialylation on IgG structure. MAbs 

2019, 11 (8), 1381-1390. 

179. Kaneko, Y.; Nimmerjahn, F.; Ravetch, J. V., Anti-Inflammatory Activity of Immunoglobulin G 

Resulting from Fc Sialylation. Science 2006, 313 (5787), 670. 



Page | 219 BIBLIOGRAPHY 

180. Anthony, R. M.; Nimmerjahn, F.; Ashline, D. J.; Reinhold, V. N.; Paulson, J. C.; Ravetch, J. V., 

Recapitulation of IVIG Anti-Inflammatory Activity with a Recombinant IgG Fc. Science 2008, 320 (5874), 

373. 

181. Kumpel, B. M.; Rademacher, T. W.; Rook, G. A.; Williams, P. J.; Wilson, I. B., Galactosylation of 

human IgG monoclonal anti-D produced by EBV-transformed B-lymphoblastoid cell lines is dependent 

on culture method and affects Fc receptor-mediated functional activity. Human antibodies and 

hybridomas 1994, 5 (3-4), 143-51. 

182. Thomann, M.; Reckermann, K.; Reusch, D.; Prasser, J.; Tejada, M. L., Fc-galactosylation 

modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. Molecular Immunology 

2016, 73, 69-75. 

183. Bheemareddy, B. R.; Pulipeta, M.; Iyer, P.; Dirisala, V. R., Effect of the total galactose content 

on complement-dependent cytotoxicity of the therapeutic anti-CD20 IgG1 antibodies under 

temperature stress conditions. Journal of Carbohydrate Chemistry 2019, 38 (1), 1-19. 

184. Raju, T. S.; Jordan, R. E., Galactosylation variations in marketed therapeutic antibodies. MAbs 

2012, 4 (3), 385-391. 

185. Higel, F.; Sandl, T.; Kao, C.-Y.; Pechinger, N.; Sörgel, F.; Friess, W.; Wolschin, F.; Seidl, A., N-

glycans of complex glycosylated biopharmaceuticals and their impact on protein clearance. European 

Journal of Pharmaceutics and Biopharmaceutics 2019, 139, 123-131. 

186. Patel, D.; Guo, X.; Ng, S.; Melchior, M.; Balderes, P.; Burtrum, D.; Persaud, K.; Luna, X.; Ludwig, 

D. L.; Kang, X., IgG isotype, glycosylation, and EGFR expression determine the induction of antibody-

dependent cellular cytotoxicity in vitro by cetuximab. Human Antibodies 2010, 19, 89-99. 

187. Eon-Duval, A.; Broly, H.; Gleixner, R., Quality attributes of recombinant therapeutic proteins: 

An assessment of impact on safety and efficacy as part of a quality by design development approach. 

Biotechnology Progress 2012, 28 (3), 608-622. 

188. Newkirk, M. M.; Novick, J.; Stevenson, M. M.; Fournier, M. J.; Apostolakos, P., Differential 

clearance of glycoforms of IgG in normal and autoimmune-prone mice. Clinical & Experimental 

Immunology 1996, 106 (2), 259-264. 

189. Datta-Mannan, A., Mechanisms Influencing the Pharmacokinetics and Disposition of 

Monoclonal Antibodies and Peptides. Drug Metabolism and Disposition 2019, 47 (10), 1100. 

190. Galili, U., The α-gal epitope (Galα1-3Galβ1-4GlcNAc-R) in xenotransplantation. Biochimie 

2001, 83 (7), 557-563. 

191. Millward, T. A.; Heitzmann, M.; Bill, K.; Längle, U.; Schumacher, P.; Forrer, K., Effect of constant 

and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals 

2008, 36 (1), 41-47. 



Page | 220 BIBLIOGRAPHY 

192. Malhotra, R.; Wormald, M. R.; Rudd, P. M.; Fischer, P. B.; Dwek, R. A.; Sim, R. B., Glycosylation 

changes of IgG associated with rheumatooid arthritis can activate complement via the mannose-

binding protein. Nature Medicine 1995, 1 (3), 237-243. 

193. Jones, A. J. S.; Papac, D. I.; Chin, E. H.; Keck, R.; Baughman, S. A.; Lin, Y. S.; Kneer, J.; Battersby, 

J. E., Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal 

N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 2007, 17 (5), 529-

540. 

194. Huang, L.; Biolsi, S.; Bales, K. R.; Kuchibhotla, U., Impact of variable domain glycosylation on 

antibody clearance: An LC/MS characterization. Analytical Biochemistry 2006, 349 (2), 197-207. 

195. Goetze, A. M.; Liu, Y. D.; Zhang, Z.; Shah, B.; Lee, E.; Bondarenko, P. V.; Flynn, G. C., High-

mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. 

Glycobiology 2011, 21 (7), 949-959. 

196. Alessandri, L.; Ouellette, D.; Acquah, A.; Rieser, M.; Leblond, D.; Saltarelli, M.; Radziejewski, 

C.; Fujimori, T.; Correia, I., Increased serum clearance of oligomannose species present on a human 

IgG1 molecule. MAbs 2012, 4 (4), 509-520. 

197. Zhou, Q.; Shankara, S.; Roy, A.; Qiu, H.; Estes, S.; McVie-Wylie, A.; Culm-Merdek, K.; Park, A.; 

Pan, C.; Edmunds, T., Development of a simple and rapid method for producing non-fucosylated 

oligomannose containing antibodies with increased effector function. Biotechnology and 

bioengineering 2008, 99 (3), 652-65. 

198. Liu, L.; Stadheim, A.; Hamuro, L.; Pittman, T.; Wang, W.; Zha, D.; Hochman, J.; Prueksaritanont, 

T., Pharmacokinetics of IgG1 monoclonal antibodies produced in humanized Pichia pastoris with 

specific glycoforms: A comparative study with CHO produced materials. Biologicals 2011, 39 (4), 205-

210. 

199. Yu, M.; Brown, D.; Reed, C.; Chung, S.; Lutman, J.; Stefanich, E.; Wong, A.; Stephan, J.-P.; Bayer, 

R., Production, characterization and pharmacokinetic properties of antibodies with N-linked 

Mannose-5 glycans. MAbs 2012, 4 (4), 475-487. 

200. Pacis, E.; Yu, M.; Autsen, J.; Bayer, R.; Li, F., Effects of cell culture conditions on antibody N-

linked glycosylation--what affects high mannose 5 glycoform. Biotechnology and bioengineering 2011, 

108 (10), 2348-58. 

201. Dasgupta, S.; Navarrete, A.-M.; Bayry, J.; Delignat, S.; Wootla, B.; André, S.; Christophe, O.; 

Nascimbeni, M.; Jacquemin, M.; Martinez-Pomares, L.; Geijtenbeek, T. B. H.; Moris, A.; Saint-Remy, J.-

M.; Kazatchkine, M. D.; Kaveri, S. V.; Lacroix-Desmazes, S., A role for exposed mannosylations in 

presentation of human therapeutic self-proteins to CD4+ T lymphocytes. Proceedings of the National 

Academy of Sciences 2007, 104 (21), 8965. 



Page | 221 BIBLIOGRAPHY 

202. Chen, X.; Liu, Y. D.; Flynn, G. C., The effect of Fc glycan forms on human IgG2 antibody 

clearance in humans. Glycobiology 2009, 19 (3), 240-249. 

203. Schlesinger, P. H.; Doebber, T. W.; Mandell, B. F.; White, R.; DeSchryver, C.; Rodman, J. S.; 

Miller, M. J.; Stahl, P., Plasma clearance of glycoproteins with terminal mannose and N-

acetylglucosamine by liver non-parenchymal cells. Studies with beta-glucuronidase, N-acetyl-beta-D-

glucosaminidase, ribonuclease B and agalacto-orosomucoid. Biochem J 1978, 176 (1), 103-109. 

204. Flynn, G. C.; Chen, X.; Liu, Y. D.; Shah, B.; Zhang, Z., Naturally occurring glycan forms of human 

immunoglobulins G1 and G2. Molecular Immunology 2010, 47 (11), 2074-2082. 

205. Lee, S. J.; Evers, S.; Roeder, D.; Parlow, A. F.; Risteli, J.; Risteli, L.; Lee, Y. C.; Feizi, T.; Langen, 

H.; Nussenzweig, M. C., Mannose Receptor-Mediated Regulation of Serum Glycoprotein Homeostasis. 

Science 2002, 295 (5561), 1898. 

206. Malhotra, R.; Lu, J.; Holmskov, U.; Sim, R. B., Collectins, collectin receptors and the lectin 

pathway of complement activation. Clin Exp Immunol 1994, 97 Suppl 2 (Suppl 2), 4-9. 

207. Jefferis, R., Glycosylation of Recombinant Antibody Therapeutics. Biotechnology Progress 

2005, 21 (1), 11-16. 

208. Mimura, Y.; Ashton, P. R.; Takahashi, N.; Harvey, D. J.; Jefferis, R., Contrasting glycosylation 

profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass 

spectrometry. Journal of Immunological Methods 2007, 326 (1), 116-126. 

209. Bondt, A.; Rombouts, Y.; Selman, M. H. J.; Hensbergen, P. J.; Reiding, K. R.; Hazes, J. M. W.; 

Dolhain, R. J. E. M.; Wuhrer, M., Immunoglobulin G (IgG) Fab Glycosylation Analysis Using a New Mass 

Spectrometric High-throughput Profiling Method Reveals Pregnancy-associated Changes. Molecular 

&amp;amp; Cellular Proteomics 2014, 13 (11), 3029. 

210. Anumula, K. R., Quantitative glycan profiling of normal human plasma derived 

immunoglobulin and its fragments Fab and Fc. Journal of Immunological Methods 2012, 382 (1), 167-

176. 

211. Endo, T.; Wright, A.; Morrison, S. L.; Kobata, A., Glycosylation of the variable region of 

immunoglobulin G—site specific maturation of the sugar chains. Molecular Immunology 1995, 32 (13), 

931-940. 

212. Chung, C. H.; Mirakhur, B.; Chan, E.; Le, Q.-T.; Berlin, J.; Morse, M.; Murphy, B. A.; Satinover, 

S. M.; Hosen, J.; Mauro, D.; Slebos, R. J.; Zhou, Q.; Gold, D.; Hatley, T.; Hicklin, D. J.; Platts-Mills, T. A. 

E., Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 

2008, 358 (11), 1109-1117. 



Page | 222 BIBLIOGRAPHY 

213. Schoch, A.; Kettenberger, H.; Mundigl, O.; Winter, G.; Engert, J.; Heinrich, J.; Emrich, T., 

Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. 

Proceedings of the National Academy of Sciences 2015, 112 (19), 5997. 

214. Wang, W.; Lu, P.; Fang, Y.; Hamuro, L.; Pittman, T.; Carr, B.; Hochman, J.; Prueksaritanont, T., 

Monoclonal Antibodies with Identical Fc Sequences Can Bind to FcRn Differentially with 

Pharmacokinetic Consequences. Drug Metabolism and Disposition 2011, 39 (9), 1469. 

215. Zhang, L.; Mao, S., Application of quality by design in the current drug development. Asian 

Journal of Pharmaceutical Sciences 2017, 12 (1), 1-8. 

216. ICH ICH Q8 (R2) Pharmaceutical development; 2014. 

217. Yu, L. X., Pharmaceutical Quality by Design: Product and Process Development, 

Understanding, and Control. Pharmaceutical Research 2008, 25 (4), 781-791. 

218. del Val, I. J.; Kontoravdi, C.; Nagy, J. M., Towards the implementation of quality by design to 

the production of therapeutic monoclonal antibodies with desired glycosylation patterns. 

Biotechnology Progress 2010, 26 (6), 1505-1527. 

219. Luciani, F.; Galluzzo, S.; Gaggioli, A.; Kruse, N. A.; Venneugues, P.; Schneider, C. K.; Pini, C.; 

Melchiorri, D., Implementing quality by design for biotech products: Are regulators on track? MAbs 

2015, 7 (3), 451-455. 

220. Kepert, J. F.; Cromwell, M.; Engler, N.; Finkler, C.; Gellermann, G.; Gennaro, L.; Harris, R.; 

Iverson, R.; Kelley, B.; Krummen, L.; McKnight, N.; Motchnik, P.; Schnaible, V.; Taticek, R., Establishing 

a control system using QbD principles. Biologicals 2016, 44 (5), 319-331. 

221. Hakemeyer, C.; McKnight, N.; St. John, R.; Meier, S.; Trexler-Schmidt, M.; Kelley, B.; Zettl, F.; 

Puskeiler, R.; Kleinjans, A.; Lim, F.; Wurth, C., Process characterization and Design Space definition. 

Biologicals 2016, 44 (5), 306-318. 

222. Lourenço, V.; Lochmann, D.; Reich, G.; Menezes, J. C.; Herdling, T.; Schewitz, J., A quality by 

design study applied to an industrial pharmaceutical fluid bed granulation. European Journal of 

Pharmaceutics and Biopharmaceutics 2012, 81 (2), 438-447. 

223. Djuris, J.; Djuric, Z., Modeling in the quality by design environment: Regulatory requirements 

and recommendations for design space and control strategy appointment. International Journal of 

Pharmaceutics 2017, 533 (2), 346-356. 

224. Tomba, E.; Facco, P.; Bezzo, F.; Barolo, M., Latent variable modeling to assist the 

implementation of Quality-by-Design paradigms in pharmaceutical development and manufacturing: 

A review. International Journal of Pharmaceutics 2013, 457 (1), 283-297. 



Page | 223 BIBLIOGRAPHY 

225. Mandenius, C.-F.; Graumann, K.; Schultz, T. W.; Premstaller, A.; Olsson, I.-M.; Petiot, E.; 

Clemens, C.; Welin, M., Quality-by-Design for biotechnology-related pharmaceuticals. Biotechnology 

journal 2009, 4 (5), 600-609. 

226. Kelley, B.; Cromwell, M.; Jerkins, J., Integration of QbD risk assessment tools and overall risk 

management. Biologicals 2016, 44 (5), 341-351. 

227. Alt, N.; Zhang, T. Y.; Motchnik, P.; Taticek, R.; Quarmby, V.; Schlothauer, T.; Beck, H.; Emrich, 

T.; Harris, R. J., Determination of critical quality attributes for monoclonal antibodies using quality by 

design principles. Biologicals 2016, 44 (5), 291-305. 

228. Schiestl, M.; Stangler, T.; Torella, C.; Čepeljnik, T.; Toll, H.; Grau, R., Acceptable changes in 

quality attributes of glycosylated biopharmaceuticals. Nature Biotechnology 2011, 29 (4), 310-312. 

229. Kim, S.; Song, J.; Park, S.; Ham, S.; Paek, K.; Kang, M.; Chae, Y.; Seo, H.; Kim, H.-C.; Flores, M., 

Drifts in ADCC-related quality attributes of Herceptin®: Impact on development of a trastuzumab 

biosimilar. MAbs 2017, 9 (4), 704-714. 

230. Schiestl, M.; Li, J.; Abas, A.; Vallin, A.; Millband, J.; Gao, K.; Joung, J.; Pluschkell, S.; Go, T.; Kang, 

H.-N., The role of the quality assessment in the determination of overall biosimilarity: A simulated case 

study exercise. Biologicals 2014, 42 (2), 128-132. 

231. Kirchhoff, C. F.; Wang, X.-Z. M.; Conlon, H. D.; Anderson, S.; Ryan, A. M.; Bose, A., Biosimilars: 

Key regulatory considerations and similarity assessment tools. Biotechnology and bioengineering 

2017, 114 (12), 2696-2705. 

232. Hajba, L.; Szekrényes, Á.; Borza, B.; Guttman, A., On the glycosylation aspects of biosimilarity. 

Drug Discovery Today 2018, 23 (3), 616-625. 

233. Szekrenyes, A.; Szigeti, M.; Dvorakova, V.; Jarvas, G.; Guttman, A., Quantitative comparison of 

the N-glycosylation of therapeutic glycoproteins using the Glycosimilarity Index. A tutorial. TrAC 

Trends in Analytical Chemistry 2020, 122, 115728. 

234. St. Amand, M. M.; Hayes, J.; Radhakrishnan, D.; Fernandez, J.; Meyer, B.; Robinson, A. S.; 

Ogunnaike, B. A., Identifying a robust design space for glycosylation during monoclonal antibody 

production. Biotechnology Progress 2016, 32 (5), 1149-1162. 

235. Karst, D. J.; Scibona, E.; Serra, E.; Bielser, J.-M.; Souquet, J.; Stettler, M.; Broly, H.; Soos, M.; 

Morbidelli, M.; Villiger, T. K., Modulation and modeling of monoclonal antibody N-linked glycosylation 

in mammalian cell perfusion reactors. Biotechnology and bioengineering 2017, 114 (9), 1978-1990. 

236. Loebrich, S.; Clark, E.; Ladd, K.; Takahashi, S.; Brousseau, A.; Kitchener, S.; Herbst, R.; Ryll, T., 

Comprehensive manipulation of glycosylation profiles across development scales. MAbs 2019, 11 (2), 

335-349. 



Page | 224 BIBLIOGRAPHY 

237. Mayrhofer, P.; Reinhart, D.; Castan, A.; Kunert, R., Rapid development of clone-specific, high-

performing perfusion media from established feed supplements. Biotechnology Progress 2020, 36 (2), 

e2933. 

238. Abt, V.; Barz, T.; Cruz-Bournazou, M. N.; Herwig, C.; Kroll, P.; Möller, J.; Pörtner, R.; 

Schenkendorf, R., Model-based tools for optimal experiments in bioprocess engineering. Current 

Opinion in Chemical Engineering 2018, 22, 244-252. 

239. Möller, J.; Kuchemüller, K. B.; Steinmetz, T.; Koopmann, K. S.; Pörtner, R., Model-assisted 

Design of Experiments as a concept for knowledge-based bioprocess development. Bioprocess and 

Biosystems Engineering 2019, 42 (5), 867-882. 

240. Kappatou, C. D.; Ehsani, A.; Niedenführ, S.; Mhamdi, A.; Schuppert, A.; Mitsos, A., Quality-

targeting dynamic optimization of monoclonal antibody production. Computers & Chemical 

Engineering 2020, 142, 107004. 

241. Wang, J.; Chen, X.; Nan, Y.; Zhou, J.; Xue, T., Narrow Operating Space Based on the Inversion 

of Latent Structures Model for Glycosylation Process. IEEE Access 2020, 8, 190504-190515. 

242. Hossler, P.; Khattak, S. F.; Li, Z. J., Optimal and consistent protein glycosylation in mammalian 

cell culture. Glycobiology 2009, 19 (9), 936-949. 

243. Ozturk, S. S.; Riley, M. R.; Palsson, B. O., Effects of ammonia and lactate on hybridoma growth, 

metabolism, and antibody production. Biotechnology and bioengineering 1992, 39 (4), 418-431. 

244. Ozturk, S. S.; Palsson, B. O., Chemical Decomposition of Glutamine in Cell Culture Media: Effect 

of Media Type, pH, and Serum Concentration. Biotechnology Progress 1990, 6 (2), 121-128. 

245. Martinelle, K.; Häggström, L., Mechanisms of ammonia and ammonium ion toxicity in animal 

cells: transport across cell membranes. Journal of biotechnology 1993, 30 (3), 339-50. 

246. Lao, M.-S.; Toth, D., Effects of Ammonium and Lactate on Growth and Metabolism of a 

Recombinant Chinese Hamster Ovary Cell Culture. Biotechnology Progress 1997, 13 (5), 688-691. 

247. Yang, M.; Butler, M., Effects of ammonia on CHO cell growth, erythropoietin production, and 

glycosylation. Biotechnology and bioengineering 2000, 68 (4), 370-80. 

248. Kurano, N.; Leist, C.; Messi, F.; Kurano, S.; Fiechter, A., Growth behavior of Chinese hamster 

ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste products. 

Journal of biotechnology 1990, 15 (1), 113-128. 

249. Doyle, C.; Butler, M., The effect of pH on the toxicity of ammonia to a murine hybridoma. 

Journal of biotechnology 1990, 15 (1), 91-100. 

250. Lie, S.; Wang, T.; Forbes, B.; Proud, C. G.; Petersen, J., The ability to utilise ammonia as nitrogen 

source is cell type specific and intricately linked to GDH, AMPK and mTORC1. Scientific Reports 2019, 

9 (1), 1461. 



Page | 225 BIBLIOGRAPHY 

251. Andersen, D. C.; Goochee, C. F., The effect of ammonia on the O-linked glycosylation of 

granulocyte colony-stimulating factor produced by chinese hamster ovary cells. Biotechnology and 

bioengineering 1995, 47 (1), 96-105. 

252. Thorens, B.; Vassalli, P., Chloroquine and ammonium chloride prevent terminal glycosylation 

of immunoglobulins in plasma cells without affecting secretion. Nature 1986, 321 (6070), 618-620. 

253. Aghamohseni, H.; Ohadi, K.; Spearman, M.; Krahn, N.; Moo-Young, M.; Scharer, J. M.; Butler, 

M.; Budman, H. M., Effects of nutrient levels and average culture pH on the glycosylation pattern of 

camelid-humanized monoclonal antibody. Journal of biotechnology 2014, 186, 98-109. 

254. Ryll, T.; Valley, U.; Wagner, R., Biochemistry of growth inhibition by ammonium ions in 

mammalian cells. Biotechnology and bioengineering 1994, 44 (2), 184-193. 

255. Valley, U.; Nimtz, M.; Conradt, H. S.; Wagner, R., Incorporation of ammonium into intracellular 

UDP-activated N-acetylhexosamines and into carbohydrate structures in glycoproteins. Biotechnology 

and bioengineering 1999, 64 (4), 401-417. 

256. Gawlitzek, M.; Papac, D. I.; Sliwkowski, M. B.; Ryll, T., Incorporation of 15 N from ammonium 

into the N-linked oligosaccharides of an immunoadhesin glycoprotein expressed in Chinese hamster 

ovary cells. Glycobiology 1999, 9 (2), 125-131. 

257. Chen, P.; Harcum, S. W., Effects of elevated ammonium on glycosylation gene expression in 

CHO cells. Metabolic Engineering 2006, 8 (2), 123-132. 

258. Brodsky, A. N.; Caldwell, M.; Bae, S.; Harcum, S. W., Glycosylation-related genes in NS0 cells 

are insensitive to moderately elevated ammonium concentrations. Journal of biotechnology 2014, 

187, 78-86. 

259. Gawlitzek, M.; Ryll, T.; Lofgren, J.; Sliwkowski, M. B., Ammonium alters N-glycan structures of 

recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnology and 

bioengineering 2000, 68 (6), 637-46. 

260. Yang, M.; Butler, M., Effects of Ammonia and Glucosamine on the Heterogeneity of 

Erythropoietin Glycoforms. Biotechnology Progress 2002, 18 (1), 129-138. 

261. Villiger, T. K.; Steinhoff, R. F.; Ivarsson, M.; Solacroup, T.; Stettler, M.; Broly, H.; Krismer, J.; 

Pabst, M.; Zenobi, R.; Morbidelli, M.; Soos, M., High-throughput profiling of nucleotides and 

nucleotide sugars to evaluate their impact on antibody N-glycosylation. Journal of biotechnology 2016, 

229, 3-12. 

262. Li, F.; Vijayasankaran, N.; Shen, A. Y.; Kiss, R.; Amanullah, A., Cell culture processes for 

monoclonal antibody production. MAbs 2010, 2 (5), 466-479. 



Page | 226 BIBLIOGRAPHY 

263. Glacken, M. W.; Fleischaker, R. J.; Sinskey, A. J., Reduction of waste product excretion via 

nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of 

mammalian cells. Biotechnology and bioengineering 1986, 28 (9), 1376-89. 

264. Hartley, F.; Walker, T.; Chung, V.; Morten, K., Mechanisms driving the lactate switch in Chinese 

hamster ovary cells. Biotechnology and bioengineering 2018, 115 (8), 1890-1903. 

265. Mulukutla, B. C.; Gramer, M.; Hu, W.-S., On metabolic shift to lactate consumption in fed-

batch culture of mammalian cells. Metabolic Engineering 2012, 14 (2), 138-149. 

266. Luo, J.; Vijayasankaran, N.; Autsen, J.; Santuray, R.; Hudson, T.; Amanullah, A.; Li, F., 

Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell 

culture process. Biotechnology and bioengineering 2012, 109 (1), 146-156. 

267. Handlogten, M. W.; Lee-O'Brien, A.; Roy, G.; Levitskaya, S. V.; Venkat, R.; Singh, S.; Ahuja, S., 

Intracellular response to process optimization and impact on productivity and product aggregates for 

a high-titer CHO cell process. Biotechnology and bioengineering 2018, 115 (1), 126-138. 

268. Altamirano, C.; Illanes, A.; Becerra, S.; Cairó, J. J.; Gòdia, F., Considerations on the lactate 

consumption by CHO cells in the presence of galactose. Journal of biotechnology 2006, 125 (4), 547-

556. 

269. Carinhas, N.; Duarte, T. M.; Barreiro, L. C.; Carrondo, M. J. T.; Alves, P. M.; Teixeira, A. P., 

Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase 

transition. Biotechnology and bioengineering 2013, 110 (12), 3244-3257. 

270. Zagari, F.; Jordan, M.; Stettler, M.; Broly, H.; Wurm, F. M., Lactate metabolism shift in CHO cell 

culture: the role of mitochondrial oxidative activity. New Biotechnology 2013, 30 (2), 238-245. 

271. Templeton, N.; Smith, K. D.; McAtee-Pereira, A. G.; Dorai, H.; Betenbaugh, M. J.; Lang, S. E.; 

Young, J. D., Application of 13C flux analysis to identify high-productivity CHO metabolic phenotypes. 

Metabolic Engineering 2017, 43, 218-225. 

272. Le, H.; Kabbur, S.; Pollastrini, L.; Sun, Z.; Mills, K.; Johnson, K.; Karypis, G.; Hu, W.-S., 

Multivariate analysis of cell culture bioprocess data—Lactate consumption as process indicator. 

Journal of biotechnology 2012, 162 (2), 210-223. 

273. Martínez, V. S.; Dietmair, S.; Quek, L.-E.; Hodson, M. P.; Gray, P.; Nielsen, L. K., Flux balance 

analysis of CHO cells before and after a metabolic switch from lactate production to consumption. 

Biotechnology and bioengineering 2013, 110 (2), 660-666. 

274. Capiaumont, J.; Legrand, C.; Carbonell, D.; Dousset, B.; Belleville, F.; Nabet, P., Methods for 

reducing the ammonia in hybridoma cell cultures. Journal of biotechnology 1995, 39 (1), 49-58. 



Page | 227 BIBLIOGRAPHY 

275. Lim, Y.; Wong, N. S. C.; Lee, Y. Y.; Ku, S. C. Y.; Wong, D. C. F.; Yap, M. G. S., Engineering 

mammalian cells in bioprocessing – current achievements and future perspectives. Biotechnology and 

Applied Biochemistry 2010, 55 (4), 175-189. 

276. Chen, K.; Liu, Q.; Xie, L.; Sharp, P. A.; Wang, D. I. C., Engineering of a mammalian cell line for 

reduction of lactate formation and high monoclonal antibody production. Biotechnology and 

bioengineering 2001, 72 (1), 55-61. 

277. Kim, S. H.; Lee, G. M., Down-regulation of lactate dehydrogenase-A by siRNAs for reduced 

lactic acid formation of Chinese hamster ovary cells producing thrombopoietin. Applied Microbiology 

and Biotechnology 2007, 74 (1), 152-159. 

278. Noh, S. M.; Park, J. H.; Lim, M. S.; Kim, J. W.; Lee, G. M., Reduction of ammonia and lactate 

through the coupling of glutamine synthetase selection and downregulation of lactate 

dehydrogenase-A in CHO cells. Applied Microbiology and Biotechnology 2017, 101 (3), 1035-1045. 

279. Jeon, M. K.; Yu, D. Y.; Lee, G. M., Combinatorial engineering of ldh-a and bcl-2 for reducing 

lactate production and improving cell growth in dihydrofolate reductase-deficient Chinese hamster 

ovary cells. Applied Microbiology and Biotechnology 2011, 92 (4), 779-790. 

280. Dorai, H.; Kyung, Y. S.; Ellis, D.; Kinney, C.; Lin, C.; Jan, D.; Moore, G.; Betenbaugh, M. J., 

Expression of anti-apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture. 

Biotechnology and bioengineering 2009, 103 (3), 592-608. 

281. Zhou, M.; Crawford, Y.; Ng, D.; Tung, J.; Pynn, A. F. J.; Meier, A.; Yuk, I. H.; Vijayasankaran, N.; 

Leach, K.; Joly, J.; Snedecor, B.; Shen, A., Decreasing lactate level and increasing antibody production 

in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and 

pyruvate dehydrogenase kinases. Journal of biotechnology 2011, 153 (1), 27-34. 

282. Gupta, S. K.; Srivastava, S. K.; Sharma, A.; Nalage, V. H. H.; Salvi, D.; Kushwaha, H.; Chitnis, N. 

B.; Shukla, P., Metabolic engineering of CHO cells for the development of a robust protein production 

platform. PLOS ONE 2017, 12 (8), e0181455. 

283. Hu, W. S.; Dodge, T. C.; Frame, K. K.; Himes, V. B., Effect of glucose on the cultivation of 

mammalian cells. Dev Biol Stand 1987, 66, 279-290. 

284. Li, J.; Wong, C. L.; Vijayasankaran, N.; Hudson, T.; Amanullah, A., Feeding lactate for CHO cell 

culture processes: Impact on culture metabolism and performance. Biotechnology and bioengineering 

2012, 109 (5), 1173-1186. 

285. Altamirano, C.; Paredes, C.; Cairó, J. J.; Gòdia, F., Improvement of CHO Cell Culture Medium 

Formulation: Simultaneous Substitution of Glucose and Glutamine. Biotechnology Progress 2000, 16 

(1), 69-75. 



Page | 228 BIBLIOGRAPHY 

286. Omasa, T.; Higashiyama, K.-I.; Shioya, S.; Suga, K.-i., Effects of lactate concentration on 

hybridoma culture in lactate-controlled fed-batch operation. Biotechnology and bioengineering 1992, 

39 (5), 556-564. 

287. Freund, N. W.; Croughan, M. S., A Simple Method to Reduce both Lactic Acid and Ammonium 

Production in Industrial Animal Cell Culture. Int J Mol Sci 2018, 19 (2), 385. 

288. Liu, B.; Spearman, M.; Doering, J.; Lattová, E.; Perreault, H.; Butler, M., The availability of 

glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy 

and the N-glycosylation profile of a monoclonal antibody. Journal of biotechnology 2014, 170, 17-27. 

289. Fan, Y.; Jimenez Del Val, I.; Müller, C.; Lund, A. M.; Sen, J. W.; Rasmussen, S. K.; Kontoravdi, C.; 

Baycin-Hizal, D.; Betenbaugh, M. J.; Weilguny, D.; Andersen, M. R., A multi-pronged investigation into 

the effect of glucose starvation and culture duration on fed-batch CHO cell culture. Biotechnology and 

bioengineering 2015, 112 (10), 2172-2184. 

290. Naik, H. M.; Majewska, N. I.; Betenbaugh, M. J., Impact of nucleotide sugar metabolism on 

protein N-glycosylation in Chinese Hamster Ovary (CHO) cell culture. Current Opinion in Chemical 

Engineering 2018, 22, 167-176. 

291. Sha, S.; Agarabi, C.; Brorson, K.; Lee, D.-Y.; Yoon, S., N-Glycosylation Design and Control of 

Therapeutic Monoclonal Antibodies. Trends in Biotechnology 2016, 34 (10), 835-846. 

292. Gramer, M. J.; Eckblad, J. J.; Donahue, R.; Brown, J.; Shultz, C.; Vickerman, K.; Priem, P.; van 

den Bremer, E. T. J.; Gerritsen, J.; van Berkel, P. H. C., Modulation of antibody galactosylation through 

feeding of uridine, manganese chloride, and galactose. Biotechnology and bioengineering 2011, 108 

(7), 1591-1602. 

293. Grainger, R. K.; James, D. C., CHO cell line specific prediction and control of recombinant 

monoclonal antibody N-glycosylation. Biotechnology and bioengineering 2013, 110 (11), 2970-2983. 

294. St. Amand, M. M.; Tran, K.; Radhakrishnan, D.; Robinson, A. S.; Ogunnaike, B. A., Controllability 

Analysis of Protein Glycosylation in Cho Cells. PLOS ONE 2014, 9 (2), e87973. 

295. Rouiller, Y.; Périlleux, A.; Vesin, M.-N.; Stettler, M.; Jordan, M.; Broly, H., Modulation of mAb 

quality attributes using microliter scale fed-batch cultures. Biotechnology Progress 2014, 30 (3), 571-

583. 

296. Crowell, C. K.; Grampp, G. E.; Rogers, G. N.; Miller, J.; Scheinman, R. I., Amino acid and 

manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture 

system. Biotechnology and bioengineering 2007, 96 (3), 538-549. 

297. Wong, N. S. C.; Wati, L.; Nissom, P. M.; Feng, H. T.; Lee, M. M.; Yap, M. G. S., An investigation 

of intracellular glycosylation activities in CHO cells: Effects of nucleotide sugar precursor feeding. 

Biotechnology and bioengineering 2010, 107 (2), 321-336. 



Page | 229 BIBLIOGRAPHY 

298. Gawlitzek, M.; Valley, U.; Wagner, R., Ammonium ion and glucosamine dependent increases 

of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. 

Biotechnology and bioengineering 1998, 57 (5), 518-28. 

299. Grammatikos, S. I.; Valley, U.; Nimtz, M.; Conradt, H. S.; Wagner, R., Intracellular UDP−N-

Acetylhexosamine Pool Affects N-Glycan Complexity: A Mechanism of Ammonium Action on Protein 

Glycosylation. Biotechnology Progress 1998, 14 (3), 410-419. 

300. Gu, X.; Wang, D. I. C., Improvement of interferon-γ sialylation in Chinese hamster ovary cell 

culture by feeding of N-acetylmannosamine. Biotechnology and bioengineering 1998, 58 (6), 642-648. 

301. Zanghi, J. A.; Mendoza, T. P.; Schmelzer, A. E.; Knop, R. H.; Miller, W. M., Role of Nucleotide 

Sugar Pools in the Inhibition of NCAM Polysialylation by Ammonia. Biotechnology Progress 1998, 14 

(6), 834-844. 

302. Baker, K. N.; Rendall, M. H.; Hills, A. E.; Hoare, M.; Freedman, R. B.; James, D. C., Metabolic 

control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnology and 

bioengineering 2001, 73 (3), 188-202. 

303. Hills, A. E.; Patel, A.; Boyd, P.; James, D. C., Metabolic control of recombinant monoclonal 

antibody N-glycosylation in GS-NS0 cells. Biotechnology and bioengineering 2001, 75 (2), 239-251. 

304. Clark, K. J. R.; Griffiths, J.; Bailey, K. M.; Harcum, S. W., Gene-expression profiles for five key 

glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap. 

Biotechnology and bioengineering 2005, 90 (5), 568-577. 

305. Davidson, M. B.; Hunt, K.; Fernandez-Mejia, C., The hexosamine biosynthetic pathway and 

glucose-induced down regulation of glucose transport in L6 myotubes. Biochimica et Biophysica Acta 

(BBA) - General Subjects 1994, 1201 (1), 113-117. 

306. Sha, S.; Yoon, S., An investigation of nucleotide sugar dynamics under the galactose 

supplementation in CHO cell culture. Process Biochemistry 2019, 81, 165-174. 

307. Cha, H.-M.; Lim, J.-H.; Lee, K.-S.; Kim, D.-I., Nucleotide sugar precursor feeding strategy to 

enhance sialylation of albumin-erythropoietin in CHO cell cultures. Process Biochemistry 2018, 66, 

197-204. 

308. Huang, C., Jr.; Lin, H.; Yang, J., A robust method for increasing Fc glycan high mannose level of 

recombinant antibodies. Biotechnology and bioengineering 2015, 112 (6), 1200-1209. 

309. Slade, P. G.; Caspary, R. G.; Nargund, S.; Huang, C., Jr., Mannose metabolism in recombinant 

CHO cells and its effect on IgG glycosylation. Biotechnology and bioengineering 2016, 113 (7), 1468-

1480. 



Page | 230 BIBLIOGRAPHY 

310. Berrios, J.; Altamirano, C.; Osses, N.; Gonzalez, R., Continuous CHO cell cultures with improved 

recombinant protein productivity by using mannose as carbon source: Metabolic analysis and scale-

up simulation. Chemical Engineering Science 2011, 66 (11), 2431-2439. 

311. Jedrzejewski, P. A platform for the optimisation of metabolic pathways for glycosylation to 

achieve a narrow and targeted glycoform distribution. Imperial Collge London, 2015. 

312. Kildegaard, H. F.; Fan, Y.; Sen, J. W.; Larsen, B.; Andersen, M. R., Glycoprofiling effects of media 

additives on IgG produced by CHO cells in fed-batch bioreactors. Biotechnology and bioengineering 

2016, 113 (2), 359-366. 

313. Rodriguez, J.; Spearman, M.; Huzel, N.; Butler, M., Enhanced Production of Monomeric 

Interferon-β by CHO Cells through the Control of Culture Conditions. Biotechnology Progress 2005, 21 

(1), 22-30. 

314. Gawlitzek, M.; Estacio, M.; Fürch, T.; Kiss, R., Identification of cell culture conditions to control 

N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnology 

and bioengineering 2009, 103 (6), 1164-1175. 

315. Yin, B.; Wang, Q.; Chung, C.-Y.; Bhattacharya, R.; Ren, X.; Tang, J.; Yarema, K. J.; Betenbaugh, 

M. J., A novel sugar analog enhances sialic acid production and biotherapeutic sialylation in CHO cells. 

Biotechnology and bioengineering 2017, 114 (8), 1899-1902. 

316. Yin, B.; Wang, Q.; Chung, C.-Y.; Ren, X.; Bhattacharya, R.; Yarema, K. J.; Betenbaugh, M. J., 

Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells. Biotechnology 

and bioengineering 2018, 115 (6), 1531-1541. 

317. Senger, R. S.; Karim, M. N., Optimization of fed-batch parameters and harvest time of CHO cell 

cultures for a glycosylated product with multiple mechanisms of inactivation. Biotechnology and 

bioengineering 2007, 98 (2), 378-390. 

318. Walther, J.; Lu, J.; Hollenbach, M.; Yu, M.; Hwang, C.; McLarty, J.; Brower, K., Perfusion Cell 

Culture Decreases Process and Product Heterogeneity in a Head-to-Head Comparison With Fed-Batch. 

Biotechnology journal 2019, 14 (2), 1700733. 

319. Butler, M., Optimisation of the Cellular Metabolism of Glycosylation for Recombinant Proteins 

Produced by Mammalian Cell Systems. Cytotechnology 2005, 50 (1), 57. 

320. Axelsson, M. A. B.; Karlsson, N. G.; Steel, D. M.; Ouwendijk, J.; Nilsson, T.; Hansson, G. C., 

Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes 

in the O-glycosylation of mucins. Glycobiology 2001, 11 (8), 633-644. 

321. Borys, M. C.; Linzer, D. I. H.; Papoutsakis, E. T., Culture pH Affects Expression Rates and 

Glycosylation of Recombinant Mouse Placental Lactogen Proteins by Chinese Hamster Ovary (CHO) 

Cells. Bio/Technology 1993, 11 (6), 720-724. 



Page | 231 BIBLIOGRAPHY 

322. Ivarsson, M.; Villiger, T. K.; Morbidelli, M.; Soos, M., Evaluating the impact of cell culture 

process parameters on monoclonal antibody N-glycosylation. Journal of biotechnology 2014, 188, 88-

96. 

323. Müthing, J.; Kemminer, S. E.; Conradt, H. S.; Šagi, D.; Nimtz, M.; Kärst, U.; Peter-Katalinić, J., 

Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I 

anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnology and bioengineering 2003, 83 (3), 

321-334. 

324. Yoon, S. K.; Choi, S. L.; Song, J. Y.; Lee, G. M., Effect of culture pH on erythropoietin production 

by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0°C. Biotechnology and 

bioengineering 2005, 89 (3), 345-356. 

325. Michl, J.; Park, K. C.; Swietach, P., Evidence-based guidelines for controlling pH in mammalian 

live-cell culture systems. Communications Biology 2019, 2 (1), 144. 

326. Zhu, M. M.; Goyal, A.; Rank, D. L.; Gupta, S. K.; Boom, T. V.; Lee, S. S., Effects of Elevated pCO2 

and Osmolality on Growth of CHO Cells and Production of Antibody-Fusion Protein B1: A Case Study. 

Biotechnology Progress 2005, 21 (1), 70-77. 

327. Ozturk, S. S.; Palsson, B. O., Growth, Metabolic, and Antibody Production Kinetics of 

Hybridoma Cell Culture: 2. Effects of Serum Concentration, Dissolved Oxygen Concentration, and 

Medium pH in a Batch Reactor. Biotechnology Progress 1991, 7 (6), 481-494. 

328. deZengotita, V. M.; Kimura, R.; Miller, W. M., Effects of CO2 and osmolality on hybridoma 

cells: growth, metabolism and monoclonal antibody production. Cytotechnology 1998, 28 (1), 213-

227. 

329. Kim, M. S.; Kim, N. S.; Sung, Y. H.; Lee, G. M., Biphasic culture strategy based on hyperosmotic 

pressure for improved humanized antibody production in Chinese hamster ovary cell culture. In vitro 

cellular & developmental biology. Animal 2002, 38 (6), 314-9. 

330. Nasseri, S. S.; Ghaffari, N.; Braasch, K.; Jardon, M. A.; Butler, M.; Kennard, M.; Gopaluni, B.; 

Piret, J. M., Increased CHO cell fed-batch monoclonal antibody production using the autophagy 

inhibitor 3-MA or gradually increasing osmolality. Biochemical Engineering Journal 2014, 91, 37-45. 

331. Qin, J.; Wu, X.; Xia, Z.; Huang, Z.; Zhang, Y.; Wang, Y.; Fu, Q.; Zheng, C., The effect of 

hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies 

produced in CHO cell fed-batch and perfusion cultures. Applied Microbiology and Biotechnology 2019, 

103 (3), 1217-1229. 

332. Konno, Y.; Kobayashi, Y.; Takahashi, K.; Takahashi, E.; Sakae, S.; Wakitani, M.; Yamano, K.; 

Suzawa, T.; Yano, K.; Ohta, T.; Koike, M.; Wakamatsu, K.; Hosoi, S., Fucose content of monoclonal 



Page | 232 BIBLIOGRAPHY 

antibodies can be controlled by culture medium osmolality for high antibody-dependent cellular 

cytotoxicity. Cytotechnology 2012, 64 (3), 249-265. 

333. Hippach, M. B.; Schwartz, I.; Pei, J.; Huynh, J.; Kawai, Y.; Zhu, M. M., Fluctuations in dissolved 

oxygen concentration during a CHO cell culture process affects monoclonal antibody productivity and 

the sulfhydryl-drug conjugation process. Biotechnology Progress 2018, 34 (6), 1427-1437. 

334. Goey, C. H.; Tsang, J. M. H.; Bell, D.; Kontoravdi, C., Cascading effect in bioprocessing—The 

impact of mild hypothermia on CHO cell behavior and host cell protein composition. Biotechnology 

and bioengineering 2017, 114 (12), 2771-2781. 

335. Sou, S. N.; Sellick, C.; Lee, K.; Mason, A.; Kyriakopoulos, S.; Polizzi, K. M.; Kontoravdi, C., How 

does mild hypothermia affect monoclonal antibody glycosylation? Biotechnology and bioengineering 

2015, 112 (6), 1165-1176. 

336. Trummer, E.; Fauland, K.; Seidinger, S.; Schriebl, K.; Lattenmayer, C.; Kunert, R.; Vorauer-Uhl, 

K.; Weik, R.; Borth, N.; Katinger, H.; Müller, D., Process parameter shifting: Part II. Biphasic 

cultivation—A tool for enhancing the volumetric productivity of batch processes using Epo-Fc 

expressing CHO cells. Biotechnology and bioengineering 2006, 94 (6), 1045-1052. 

337. Borys, M. C.; Dalal, N. G.; Abu-Absi, N. R.; Khattak, S. F.; Jing, Y.; Xing, Z.; Li, Z. J., Effects of 

culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein 

produced in CHO cells. Biotechnology and bioengineering 2010, 105 (6), 1048-1057. 

338. Serrato, J. A.; Palomares, L. A.; Meneses-Acosta, A.; Ramírez, O. T., Heterogeneous conditions 

in dissolved oxygen affect N-glycosylation but not productivity of a monoclonal antibody in hybridoma 

cultures. Biotechnology and bioengineering 2004, 88 (2), 176-188. 

339. Lewis, A. M.; Croughan, W. D.; Aranibar, N.; Lee, A. G.; Warrack, B.; Abu-Absi, N. R.; Patel, R.; 

Drew, B.; Borys, M. C.; Reily, M. D.; Li, Z. J., Understanding and Controlling Sialylation in a CHO Fc-

Fusion Process. PLOS ONE 2016, 11 (6), e0157111. 

340. Chotigeat, W.; Watanapokasin, Y.; Mahler, S.; Gray, P. P., Role of environmental conditions on 

the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by 

recombinant CHO cells. Cytotechnology 1994, 15 (1), 217-221. 

341. Kunkel, J. P.; Jan, D. C. H.; Butler, M.; Jamieson, J. C., Comparisons of the Glycosylation of a 

Monoclonal Antibody Produced under Nominally Identical Cell Culture Conditions in Two Different 

Bioreactors. Biotechnology Progress 2000, 16 (3), 462-470. 

342. Kunkel, J. P.; Jan, D. C. H.; Jamieson, J. C.; Butler, M., Dissolved oxygen concentration in serum-

free continuous culture affects N-linked glycosylation of a monoclonal antibody. Journal of 

biotechnology 1998, 62 (1), 55-71. 



Page | 233 BIBLIOGRAPHY 

343. Restelli, V.; Wang, M.-D.; Huzel, N.; Ethier, M.; Perreault, H.; Butler, M., The effect of dissolved 

oxygen on the production and the glycosylation profile of recombinant human erythropoietin 

produced from CHO cells. Biotechnology and bioengineering 2006, 94 (3), 481-494. 

344. Yamane-Ohnuki, N.; Kinoshita, S.; Inoue-Urakubo, M.; Kusunoki, M.; Iida, S.; Nakano, R.; 

Wakitani, M.; Niwa, R.; Sakurada, M.; Uchida, K.; Shitara, K.; Satoh, M., Establishment of FUT8 

knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated 

antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnology and 

bioengineering 2004, 87 (5), 614-622. 

345. Ripka, J.; Adamany, A.; Stanley, P., Two chinese hamster ovary glycosylation mutants affected 

in the conversion of GDP-mannose to GDP-fucose. Archives of Biochemistry and Biophysics 1986, 249 

(2), 533-545. 

346. Imai-Nishiya, H.; Mori, K.; Inoue, M.; Wakitani, M.; Iida, S.; Shitara, K.; Satoh, M., Double 

knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-

producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with 

enhanced ADCC. BMC Biotechnology 2007, 7 (1), 84. 

347. Louie, S.; Haley, B.; Marshall, B.; Heidersbach, A.; Yim, M.; Brozynski, M.; Tang, D.; Lam, C.; 

Petryniak, B.; Shaw, D.; Shim, J.; Miller, A.; Lowe, J. B.; Snedecor, B.; Misaghi, S., FX knockout CHO 

hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and 

comparable product quality. Biotechnology and bioengineering 2017, 114 (3), 632-644. 

348. Zhang, P.; Haryadi, R.; Chan, K. F.; Teo, G.; Goh, J.; Pereira, N. A.; Feng, H.; Song, Z., 

Identification of functional elements of the GDP-fucose transporter SLC35C1 using a novel Chinese 

hamster ovary mutant. Glycobiology 2012, 22 (7), 897-911. 

349. Yang, Z.; Wang, S.; Halim, A.; Schulz, M. A.; Frodin, M.; Rahman, S. H.; Vester-Christensen, M. 

B.; Behrens, C.; Kristensen, C.; Vakhrushev, S. Y.; Bennett, E. P.; Wandall, H. H.; Clausen, H., Engineered 

CHO cells for production of diverse, homogeneous glycoproteins. Nature Biotechnology 2015, 33 (8), 

842-844. 

350. Bydlinski, N.; Maresch, D.; Schmieder, V.; Klanert, G.; Strasser, R.; Borth, N., The contributions 

of individual galactosyltransferases to protein specific N-glycan processing in Chinese Hamster Ovary 

cells. Journal of biotechnology 2018, 282, 101-110. 

351. Amann, T.; Hansen, A. H.; Kol, S.; Lee, G. M.; Andersen, M. R.; Kildegaard, H. F., CRISPR/Cas9-

Multiplexed Editing of Chinese Hamster Ovary B4Gal-T1, 2, 3, and 4 Tailors N-Glycan Profiles of 

Therapeutics and Secreted Host Cell Proteins. Biotechnology journal 2018, 13 (10), e1800111. 



Page | 234 BIBLIOGRAPHY 

352. Schulz, M. A.; Tian, W.; Mao, Y.; Van Coillie, J.; Sun, L.; Larsen, J. S.; Chen, Y.-H.; Kristensen, C.; 

Vakhrushev, S. Y.; Clausen, H.; Yang, Z., Glycoengineering design options for IgG1 in CHO cells using 

precise gene editing. Glycobiology 2018, 28 (7), 542-549. 

353. Voss, M.; Künzel, U.; Higel, F.; Kuhn, P.-H.; Colombo, A.; Fukumori, A.; Haug-Kröper, M.; Klier, 

B.; Grammer, G.; Seidl, A.; Schröder, B.; Obst, R.; Steiner, H.; Lichtenthaler, S. F.; Haass, C.; Fluhrer, R., 

Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-

glycosylation. The EMBO Journal 2014, 33 (24), 2890-2905. 

354. Chung, C.-y.; Wang, Q.; Yang, S.; Ponce, S. A.; Kirsch, B. J.; Zhang, H.; Betenbaugh, M. J., 

Combinatorial genome and protein engineering yields monoclonal antibodies with 

hypergalactosylation from CHO cells. Biotechnology and bioengineering 2017, 114 (12), 2848-2856. 

355. Deutscher, S. L.; Hirschberg, C. B., Mechanism of galactosylation in the Golgi apparatus. A 

Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle 

membranes. Journal of Biological Chemistry 1986, 261 (1), 96-100. 

356. Maszczak-Seneczko, D.; Olczak, T.; Jakimowicz, P.; Olczak, M., Overexpression of UDP-GlcNAc 

transporter partially corrects galactosylation defect caused by UDP-Gal transporter mutation. FEBS 

Letters 2011, 585 (19), 3090-3094. 

357. Varki, A., Sialic acids in human health and disease. Trends Mol Med 2008, 14 (8), 351-360. 

358. Lin, C.-W.; Tsai, M.-H.; Li, S.-T.; Tsai, T.-I.; Chu, K.-C.; Liu, Y.-C.; Lai, M.-Y.; Wu, C.-Y.; Tseng, Y.-

C.; Shivatare, S. S.; Wang, C.-H.; Chao, P.; Wang, S.-Y.; Shih, H.-W.; Zeng, Y.-F.; You, T.-H.; Liao, J.-Y.; 

Tu, Y.-C.; Lin, Y.-S.; Chuang, H.-Y.; Chen, C.-L.; Tsai, C.-S.; Huang, C.-C.; Lin, N.-H.; Ma, C.; Wu, C.-Y.; 

Wong, C.-H., A common glycan structure on immunoglobulin G for enhancement of effector functions. 

Proceedings of the National Academy of Sciences 2015, 112 (34), 10611. 

359. Raymond, C.; Robotham, A.; Spearman, M.; Butler, M.; Kelly, J.; Durocher, Y., Production of 

α2,6-sialylated IgG1 in CHO cells. MAbs 2015, 7 (3), 571-583. 

360. Rose, R. J.; van Berkel, P. H. C.; van den Bremer, E. T. J.; Labrijn, A. F.; Vink, T.; Schuurman, J.; 

Heck, A. J. R.; Parren, P. W. H. I., Mutation of Y407 in the CH3 domain dramatically alters glycosylation 

and structure of human IgG. MAbs 2013, 5 (2), 219-228. 

361. Jassal, R.; Jenkins, N.; Charlwood, J.; Camilleri, P.; Jefferis, R.; Lund, J., Sialylation of Human 

IgG-Fc Carbohydrate by Transfected Rat α2,6-Sialyltransferase. Biochemical and Biophysical Research 

Communications 2001, 286 (2), 243-249. 

362. Chung, C.-y.; Wang, Q.; Yang, S.; Yin, B.; Zhang, H.; Betenbaugh, M., Integrated Genome and 

Protein Editing Swaps α-2,6 Sialylation for α-2,3 Sialic Acid on Recombinant Antibodies from CHO. 

Biotechnology journal 2017, 12 (2), 1600502. 



Page | 235 BIBLIOGRAPHY 

363. Chung, C.-Y.; Yin, B.; Wang, Q.; Chuang, K.-Y.; Chu, J. H.; Betenbaugh, M. J., Assessment of the 

coordinated role of ST3GAL3, ST3GAL4 and ST3GAL6 on the α2,3 sialylation linkage of mammalian 

glycoproteins. Biochemical and Biophysical Research Communications 2015, 463 (3), 211-215. 

364. Eckhardt, M.; Gotza, B.; Gerardy-Schahn, R., Mutants of the CMP-sialic Acid Transporter 

Causing the Lec2 Phenotype. Journal of Biological Chemistry 1998, 273 (32), 20189-20195. 

365. Lim, S. F.; Lee, M. M.; Zhang, P.; Song, Z., The Golgi CMP-sialic acid transporter: A new CHO 

mutant provides functional insights. Glycobiology 2008, 18 (11), 851-860. 

366. Wong, N. S.; Yap, M. G.; Wang, D. I., Enhancing recombinant glycoprotein sialylation through 

CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnology and 

bioengineering 2006, 93 (5), 1005-16. 

367. Ha, T. K.; Hansen, A. H.; Kildegaard, H. F.; Lee, G. M., Knockout of sialidase and pro-apoptotic 

genes in Chinese hamster ovary cells enables the production of recombinant human erythropoietin in 

fed-batch cultures. Metabolic Engineering 2020, 57, 182-192. 

368. Kwak, C.-Y.; Park, S.-Y.; Lee, C.-G.; Okino, N.; Ito, M.; Kim, J. H., Enhancing the sialylation of 

recombinant EPO produced in CHO cells via the inhibition of glycosphingolipid biosynthesis. Scientific 

Reports 2017, 7 (1), 13059. 

369. Son, Y.-D.; Jeong, Y. T.; Park, S.-Y.; Kim, J. H., Enhanced sialylation of recombinant human 

erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. 

Glycobiology 2011, 21 (8), 1019-1028. 

370. Jeong, Yeon T.; Choi, O.; Son, Young D.; Park, Seung Y.; Kim, Jung H., Enhanced sialylation of 

recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells. Biotechnology and 

Applied Biochemistry 2009, 52 (4), 283-291. 

371. Yin, B.; Gao, Y.; Chung, C.-y.; Yang, S.; Blake, E.; Stuczynski, M. C.; Tang, J.; Kildegaard, H. F.; 

Andersen, M. R.; Zhang, H.; Betenbaugh, M. J., Glycoengineering of Chinese hamster ovary cells for 

enhanced erythropoietin N-glycan branching and sialylation. Biotechnology and bioengineering 2015, 

112 (11), 2343-2351. 

372. Wang, Q.; Wang, T.; Yang, S.; Sha, S.; Wu, W. W.; Chen, Y.; Paul, J. T.; Shen, R.-F.; Cipollo, J. F.; 

Betenbaugh, M. J., Metabolic engineering challenges of extending N-glycan pathways in Chinese 

hamster ovary cells. Metabolic Engineering 2020, 61, 301-314. 

373. Galleguillos, S. N.; Ruckerbauer, D.; Gerstl, M. P.; Borth, N.; Hanscho, M.; Zanghellini, J., What 

can mathematical modelling say about CHO metabolism and protein glycosylation? Computational 

and Structural Biotechnology Journal 2017, 15, 212-221. 

374. Bordbar, A.; Monk, J. M.; King, Z. A.; Palsson, B. O., Constraint-based models predict metabolic 

and associated cellular functions. Nature Reviews Genetics 2014, 15 (2), 107-120. 



Page | 236 BIBLIOGRAPHY 

375. Guo, W.; Feng, X., OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to 

Decipher the Cell Metabolism. PLOS ONE 2016, 11 (4), e0154188. 

376. Kim, M. K.; Lun, D. S., Methods for integration of transcriptomic data in genome-scale 

metabolic models. Computational and Structural Biotechnology Journal 2014, 11 (18), 59-65. 

377. Selvarasu, S.; Ho, Y. S.; Chong, W. P.; Wong, N. S.; Yusufi, F. N.; Lee, Y. Y.; Yap, M. G.; Lee, D. 

Y., Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. 

Biotechnology and bioengineering 2012, 109 (6), 1415-29. 

378. Volkova, S.; Matos, M. R. A.; Mattanovich, M.; Marín de Mas, I., Metabolic Modelling as a 

Framework for Metabolomics Data Integration and Analysis. Metabolites 2020, 10 (8). 

379. Henry, C. S.; Broadbelt, L. J.; Hatzimanikatis, V., Thermodynamics-Based Metabolic Flux 

Analysis. Biophysical Journal 2007, 92 (5), 1792-1805. 

380. Pandey, V.; Gardiol, D. H.; Chiappino-Pepe, A.; Hatzimanikatis, V., TEX-FBA: A constraint-based 

method for integrating gene expression, thermodynamics, and metabolomics data into genome-scale 

metabolic models. bioRxiv 2019, 536235. 

381. Pandey, V.; Hadadi, N.; Hatzimanikatis, V., Enhanced flux prediction by integrating relative 

expression and relative metabolite abundance into thermodynamically consistent metabolic models. 

PLOS Computational Biology 2019, 15 (5), e1007036. 

382. Mahadevan, R.; Schilling, C. H., The effects of alternate optimal solutions in constraint-based 

genome-scale metabolic models. Metabolic Engineering 2003, 5 (4), 264-276. 

383. Lularevic, M.; Racher, A. J.; Jaques, C.; Kiparissides, A., Improving the accuracy of flux balance 

analysis through the implementation of carbon availability constraints for intracellular reactions. 

Biotechnology and bioengineering 2019, 116 (9), 2339-2352. 

384. Yeo, H. C.; Hong, J.; Lakshmanan, M.; Lee, D.-Y., Enzyme capacity-based genome scale 

modelling of CHO cells. Metabolic Engineering 2020, 60, 138-147. 

385. Orth, J. D.; Thiele, I.; Palsson, B. Ø., What is flux balance analysis? Nature Biotechnology 2010, 

28 (3), 245-248. 

386. Fouladiha, H.; Marashi, S.-A.; Li, S.; Li, Z.; Masson, H. O.; Vaziri, B.; Lewis, N. E., Systematically 

gap-filling the genome-scale metabolic model of CHO cells. Biotechnology Letters 2020. 

387. Burgard, A. P.; Maranas, C. D., Optimization-based framework for inferring and testing 

hypothesized metabolic objective functions. Biotechnology and bioengineering 2003, 82 (6), 670-677. 

388. Knorr, A. L.; Jain, R.; Srivastava, R., Bayesian-based selection of metabolic objective functions. 

Bioinformatics 2007, 23 (3), 351-357. 



Page | 237 BIBLIOGRAPHY 

389. Chen, Y.; McConnell, B. O.; Gayatri Dhara, V.; Mukesh Naik, H.; Li, C.-T.; Antoniewicz, M. R.; 

Betenbaugh, M. J., An unconventional uptake rate objective function approach enhances applicability 

of genome-scale models for mammalian cells. npj Systems Biology and Applications 2019, 5 (1), 25. 

390. Edwards, J. S.; Ibarra, R. U.; Palsson, B. O., In silico predictions of Escherichia coli metabolic 

capabilities are consistent with experimental data. Nature Biotechnology 2001, 19 (2), 125-130. 

391. Pan, X.; Dalm, C.; Wijffels, R. H.; Martens, D. E., Metabolic characterization of a CHO cell size 

increase phase in fed-batch cultures. Applied Microbiology and Biotechnology 2017, 101 (22), 8101-

8113. 

392. Gudmundsson, S.; Thiele, I., Computationally efficient flux variability analysis. BMC 

Bioinformatics 2010, 11 (1), 489. 

393. Segrè, D.; Vitkup, D.; Church, G. M., Analysis of optimality in natural and perturbed metabolic 

networks. Proceedings of the National Academy of Sciences 2002, 99 (23), 15112. 

394. Varma, A.; Palsson, B. O., Metabolic Flux Balancing: Basic Concepts, Scientific and Practical 

Use. Bio/Technology 1994, 12 (10), 994-998. 

395. Wiechert, W., 13C Metabolic Flux Analysis. Metabolic Engineering 2001, 3 (3), 195-206. 

396. Gopalakrishnan, S.; Maranas, C. D., 13C metabolic flux analysis at a genome-scale. Metabolic 

Engineering 2015, 32, 12-22. 

397. Wiechert, W.; Möllney, M.; Petersen, S.; de Graaf, A. A., A Universal Framework for 13C 

Metabolic Flux Analysis. Metabolic Engineering 2001, 3 (3), 265-283. 

398. Bonarius, H. P. J.; Hatzimanikatis, V.; Meesters, K. P. H.; de Gooijer, C. D.; Schmid, G.; Tramper, 

J., Metabolic flux analysis of hybridoma cells in different culture media using mass balances. 

Biotechnology and bioengineering 1996, 50 (3), 299-318. 

399. Martínez, V. S.; Buchsteiner, M.; Gray, P.; Nielsen, L. K.; Quek, L.-E., Dynamic metabolic flux 

analysis using B-splines to study the effects of temperature shift on CHO cell metabolism. Metabolic 

Engineering Communications 2015, 2, 46-57. 

400. Nargund, S.; Qiu, J.; Goudar, C. T., Elucidating the role of copper in CHO cell energy metabolism 

using 13C metabolic flux analysis. Biotechnology Progress 2015, 31 (5), 1179-1186. 

401. Ahn, W. S.; Antoniewicz, M. R., Metabolic flux analysis of CHO cells at growth and non-growth 

phases using isotopic tracers and mass spectrometry. Metabolic Engineering 2011, 13 (5), 598-609. 

402. Mahadevan, R.; Edwards, J. S.; Doyle, F. J., Dynamic Flux Balance Analysis of Diauxic Growth 

in Escherichia coli. Biophysical Journal 2002, 83 (3), 1331-1340. 

403. Leighty, R. W.; Antoniewicz, M. R., Dynamic metabolic flux analysis (DMFA): A framework for 

determining fluxes at metabolic non-steady state. Metabolic Engineering 2011, 13 (6), 745-755. 



Page | 238 BIBLIOGRAPHY 

404. Schuster, S.; Dandekar, T.; Fell, D. A., Detection of elementary flux modes in biochemical 

networks: a promising tool for pathway analysis and metabolic engineering. Trends in Biotechnology 

1999, 17 (2), 53-60. 

405. Zanghellini, J.; Ruckerbauer, D. E.; Hanscho, M.; Jungreuthmayer, C., Elementary flux modes 

in a nutshell: Properties, calculation and applications. Biotechnology journal 2013, 8 (9), 1009-1016. 

406. Klamt, S.; Stelling, J., Combinatorial Complexity of Pathway Analysis in Metabolic Networks. 

Molecular Biology Reports 2002, 29 (1), 233-236. 

407. Burgard, A. P.; Vaidyaraman, S.; Maranas, C. D., Minimal Reaction Sets for Escherichia coli 

Metabolism under Different Growth Requirements and Uptake Environments. Biotechnology Progress 

2001, 17 (5), 791-797. 

408. Gerstl, M. P.; Jungreuthmayer, C.; Zanghellini, J., tEFMA: computing thermodynamically 

feasible elementary flux modes in metabolic networks. Bioinformatics 2015, 31 (13), 2232-2234. 

409. Sambamoorthy, G.; Raman, K., MinReact: a systematic approach for identifying minimal 

metabolic networks. Bioinformatics 2020, 36 (15), 4309-4315. 

410. Llaneras, F.; Picó, J., Stoichiometric modelling of cell metabolism. Journal of Bioscience and 

Bioengineering 2008, 105 (1), 1-11. 

411. Zomorrodi, A. R.; Suthers, P. F.; Ranganathan, S.; Maranas, C. D., Mathematical optimization 

applications in metabolic networks. Metabolic Engineering 2012, 14 (6), 672-686. 

412. Dai, Z.; Locasale, J. W., Understanding metabolism with flux analysis: From theory to 

application. Metabolic Engineering 2017, 43, 94-102. 

413. Gagneur, J.; Klamt, S., Computation of elementary modes: a unifying framework and the new 

binary approach. BMC Bioinformatics 2004, 5 (1), 175. 

414. Kyriakopoulos, S.; Ang, K. S.; Lakshmanan, M.; Huang, Z.; Yoon, S.; Gunawan, R.; Lee, D.-Y., 

Kinetic Modeling of Mammalian Cell Culture Bioprocessing: The Quest to Advance Biomanufacturing. 

Biotechnology journal 2018, 13 (3), 1700229. 

415. Goudar, C. T.; Joeris, K.; Konstantinov, K. B.; Piret, J. M., Logistic Equations Effectively Model 

Mammalian Cell Batch and Fed-Batch Kinetics by Logically Constraining the Fit. Biotechnology Progress 

2005, 21 (4), 1109-1118. 

416. Ben Yahia, B.; Malphettes, L.; Heinzle, E., Macroscopic modeling of mammalian cell growth 

and metabolism. Applied Microbiology and Biotechnology 2015, 99 (17), 7009-7024. 

417. Sidoli, F. R.; Asprey, S. P.; Mantalaris, A., A Coupled Single Cell-Population-Balance Model for 

Mammalian Cell Cultures. Industrial & Engineering Chemistry Research 2006, 45 (16), 5801-5811. 



Page | 239 BIBLIOGRAPHY 

418. Alhuthali, S.; Fadda, S.; Goey, C. H.; Kontoravdi, C., Multi-stage population balance model to 

understand the dynamics of fed-batch CHO cell culture. In Computer Aided Chemical Engineering, 

Espuña, A.; Graells, M.; Puigjaner, L., Eds. Elsevier: 2017; Vol. 40, pp 2821-2826. 

419. Kontoravdi, C.; Asprey, S. P.; Pistikopoulos, E. N.; Mantalaris, A., Development of a dynamic 

model of monoclonal antibody production and glycosylation for product quality monitoring. 

Computers & Chemical Engineering 2007, 31 (5), 392-400. 

420. Rügen, M.; Bockmayr, A.; Legrand, J.; Cogne, G., Network reduction in metabolic pathway 

analysis: Elucidation of the key pathways involved in the photoautotrophic growth of the green alga 

Chlamydomonas reinhardtii. Metabolic Engineering 2012, 14 (4), 458-467. 

421. Stanford, N. J.; Lubitz, T.; Smallbone, K.; Klipp, E.; Mendes, P.; Liebermeister, W., Systematic 

Construction of Kinetic Models from Genome-Scale Metabolic Networks. PLOS ONE 2013, 8 (11), 

e79195. 

422. Xing, Z.; Li, Z.; Chow, V.; Lee, S. S., Identifying Inhibitory Threshold Values of Repressing 

Metabolites in CHO Cell Culture Using Multivariate Analysis Methods. Biotechnology Progress 2008, 

24 (3), 675-683. 

423. Nielsen, J.; Keasling, Jay D., Engineering Cellular Metabolism. Cell 2016, 164 (6), 1185-1197. 

424. Chakrabarti, A.; Miskovic, L.; Soh, K. C.; Hatzimanikatis, V., Towards kinetic modeling of 

genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and 

physiological constraints. Biotechnology journal 2013, 8 (9), 1043-1057. 

425. Smallbone, K.; Simeonidis, E.; Swainston, N.; Mendes, P., Towards a genome-scale kinetic 

model of cellular metabolism. BMC Systems Biology 2010, 4 (1), 6. 

426. Khodayari, A.; Maranas, C. D., A genome-scale Escherichia coli kinetic metabolic model k-

ecoli457 satisfying flux data for multiple mutant strains. Nature Communications 2016, 7 (1), 13806. 

427. Srinivasan, S.; Cluett, W. R.; Mahadevan, R., Constructing kinetic models of metabolism at 

genome-scales: A review. Biotechnology journal 2015, 10 (9), 1345-1359. 

428. Jang, J. D.; Barford, J. P., An unstructured kinetic model of macromolecular metabolism in 

batch and fed-batch cultures of hybridoma cells producing monoclonal antibody. Biochemical 

Engineering Journal 2000, 4 (2), 153-168. 

429. Robitaille, J.; Chen, J.; Jolicoeur, M., A Single Dynamic Metabolic Model Can Describe mAb 

Producing CHO Cell Batch and Fed-Batch Cultures on Different Culture Media. PLOS ONE 2015, 10 (9), 

e0136815. 

430. Machado, D.; Costa, R. S.; Ferreira, E. C.; Rocha, I.; Tidor, B., Exploring the gap between 

dynamic and constraint-based models of metabolism. Metabolic Engineering 2012, 14 (2), 112-119. 



Page | 240 BIBLIOGRAPHY 

431. Strutz, J.; Martin, J.; Greene, J.; Broadbelt, L.; Tyo, K., Metabolic kinetic modeling provides 

insight into complex biological questions, but hurdles remain. Current Opinion in Biotechnology 2019, 

59, 24-30. 

432. Kovárová-Kovar, K.; Egli, T., Growth Kinetics of Suspended Microbial Cells: From Single-

Substrate-Controlled Growth to Mixed-Substrate Kinetics. Microbiology and Molecular Biology 

Reviews 1998, 62 (3), 646. 

433. Gutenkunst, R. N.; Waterfall, J. J.; Casey, F. P.; Brown, K. S.; Myers, C. R.; Sethna, J. P., 

Universally Sloppy Parameter Sensitivities in Systems Biology Models. PLOS Computational Biology 

2007, 3 (10), e189. 

434. Kontoravdi, C.; Asprey, S. P.; Pistikopoulos, E. N.; Mantalaris, A., Application of Global 

Sensitivity Analysis to Determine Goals for Design of Experiments: An Example Study on Antibody-

Producing Cell Cultures. Biotechnology Progress 2005, 21 (4), 1128-1135. 

435. Kiparissides, A.; Koutinas, M.; Kontoravdi, C.; Mantalaris, A.; Pistikopoulos, E. N., ‘Closing the 

loop’ in biological systems modeling — From the in silico to the in vitro. Automatica 2011, 47 (6), 1147-

1155. 

436. Kiparissides, A.; Kucherenko, S. S.; Mantalaris, A.; Pistikopoulos, E. N., Global Sensitivity 

Analysis Challenges in Biological Systems Modeling. Industrial & Engineering Chemistry Research 2009, 

48 (15), 7168-7180. 

437. Heijnen, J. J.; Verheijen, P. J. T., Parameter identification of in vivo kinetic models: Limitations 

and challenges. Biotechnology journal 2013, 8 (7), 768-775. 

438. Chowdhury, A.; Khodayari, A.; Maranas, C. D., Improving prediction fidelity of cellular 

metabolism with kinetic descriptions. Current Opinion in Biotechnology 2015, 36, 57-64. 

439. Zeng, H.; Yang, A., Bridging substrate intake kinetics and bacterial growth phenotypes with 

flux balance analysis incorporating proteome allocation. Scientific Reports 2020, 10 (1), 4283. 

440. von Stosch, M.; Hamelink, J.-M.; Oliveira, R., Hybrid modeling as a QbD/PAT tool in process 

development: an industrial E. coli case study. Bioprocess and Biosystems Engineering 2016, 39 (5), 

773-784. 

441. Rana, P.; Berry, C.; Ghosh, P.; Fong, S. S., Recent advances on constraint-based models by 

integrating machine learning. Current Opinion in Biotechnology 2020, 64, 85-91. 

442. Zelezniak, A.; Vowinckel, J.; Capuano, F.; Messner, C. B.; Demichev, V.; Polowsky, N.; Mülleder, 

M.; Kamrad, S.; Klaus, B.; Keller, M. A.; Ralser, M., Machine Learning Predicts the Yeast Metabolome 

from the Quantitative Proteome of Kinase Knockouts. Cell systems 2018, 7 (3), 269-283.e6. 

443. Angione, C.; Lió, P., Predictive analytics of environmental adaptability in multi-omic network 

models. Scientific Reports 2015, 5 (1), 15147. 



Page | 241 BIBLIOGRAPHY 

444. von Stosch, M.; Rodrigues de Azevedo, C.; Luis, M.; Feyo de Azevedo, S.; Oliveira, R., A principal 

components method constrained by elementary flux modes: analysis of flux data sets. BMC 

Bioinformatics 2016, 17 (1), 200. 

445. Folch-Fortuny, A.; Teusink, B.; Hoefsloot, H. C. J.; Smilde, A. K.; Ferrer, A., Dynamic elementary 

mode modelling of non-steady state flux data. BMC Systems Biology 2018, 12 (1), 71. 

446. Folch-Fortuny, A.; Marques, R.; Isidro, I. A.; Oliveira, R.; Ferrer, A., Principal elementary mode 

analysis (PEMA). Molecular BioSystems 2016, 12 (3), 737-746. 

447. Bhadra, S.; Blomberg, P.; Castillo, S.; Rousu, J., Principal metabolic flux mode analysis. 

Bioinformatics 2018, 34 (14), 2409-2417. 

448. González-Martínez, J. M.; Folch-Fortuny, A.; Llaneras, F.; Tortajada, M.; Picó, J.; Ferrer, A., 

Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media. Chemometrics 

and Intelligent Laboratory Systems 2014, 134, 89-99. 

449. Bordbar, A.; Yurkovich, J. T.; Paglia, G.; Rolfsson, O.; Sigurjónsson, Ó. E.; Palsson, B. O., 

Elucidating dynamic metabolic physiology through network integration of quantitative time-course 

metabolomics. Scientific Reports 2017, 7 (1), 46249. 

450. Sridhara, V.; Meyer, A. G.; Rai, P.; Barrick, J. E.; Ravikumar, P.; Segrè, D.; Wilke, C. O., Predicting 

Growth Conditions from Internal Metabolic Fluxes in an In-Silico Model of E. coli. PLOS ONE 2014, 9 

(12), e114608. 

451. Wu, S. G.; Wang, Y.; Jiang, W.; Oyetunde, T.; Yao, R.; Zhang, X.; Shimizu, K.; Tang, Y. J.; Bao, F. 

S., Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint 

Programming. PLOS Computational Biology 2016, 12 (4), e1004838. 

452. Antonakoudis, A.; Barbosa, R.; Kotidis, P.; Kontoravdi, C., The era of big data: Genome-scale 

modelling meets machine learning. Computational and Structural Biotechnology Journal 2020, 18, 

3287-3300. 

453. Petsagkourakis, P.; Sandoval, I. O.; Bradford, E.; Zhang, D.; del Rio-Chanona, E. A., 

Reinforcement learning for batch bioprocess optimization. Computers & Chemical Engineering 2020, 

133, 106649. 

454. Bradford, E.; Imsland, L.; Zhang, D.; del Rio Chanona, E. A., Stochastic data-driven model 

predictive control using gaussian processes. Computers & Chemical Engineering 2020, 139, 106844. 

455. Katz, J.; Pappas, I.; Avraamidou, S.; Pistikopoulos, E. N., Integrating deep learning models and 

multiparametric programming. Computers & Chemical Engineering 2020, 136, 106801. 

456. Del Rio-Chanona, E. A.; Ahmed, N. R.; Wagner, J.; Lu, Y.; Zhang, D.; Jing, K., Comparison of 

physics-based and data-driven modelling techniques for dynamic optimisation of fed-batch 

bioprocesses. Biotechnology and bioengineering 2019, 116 (11), 2971-2982. 



Page | 242 BIBLIOGRAPHY 

457. Zhang, D.; Del Rio-Chanona, E. A.; Petsagkourakis, P.; Wagner, J., Hybrid physics-based and 

data-driven modeling for bioprocess online simulation and optimization. Biotechnology and 

bioengineering 2019, 116 (11), 2919-2930. 

458. del Rio-Chanona, E. A.; Wagner, J. L.; Ali, H.; Fiorelli, F.; Zhang, D.; Hellgardt, K., Deep learning-

based surrogate modeling and optimization for microalgal biofuel production and photobioreactor 

design. AIChE Journal 2019, 65 (3), 915-923. 

459. Gunther, J. C.; Baclaski, J.; Seborg, D. E.; Conner, J. S., Pattern matching in batch 

bioprocesses—Comparisons across multiple products and operating conditions. Computers & 

Chemical Engineering 2009, 33 (1), 88-96. 

460. Sokolov, M.; Ritscher, J.; MacKinnon, N.; Bielser, J.-M.; Brühlmann, D.; Rothenhäusler, D.; 

Thanei, G.; Soos, M.; Stettler, M.; Souquet, J.; Broly, H.; Morbidelli, M.; Butté, A., Robust factor 

selection in early cell culture process development for the production of a biosimilar monoclonal 

antibody. Biotechnology Progress 2017, 33 (1), 181-191. 

461. Sokolov, M.; Soos, M.; Neunstoecklin, B.; Morbidelli, M.; Butté, A.; Leardi, R.; Solacroup, T.; 

Stettler, M.; Broly, H., Fingerprint detection and process prediction by multivariate analysis of fed-

batch monoclonal antibody cell culture data. Biotechnology Progress 2015, 31 (6), 1633-1644. 

462. Thomassen, Y. E.; van Sprang, E. N. M.; van der Pol, L. A.; Bakker, W. A. M., Multivariate data 

analysis on historical IPV production data for better process understanding and future improvements. 

Biotechnology and bioengineering 2010, 107 (1), 96-104. 

463. Mercier, S. M.; Diepenbroek, B.; Dalm, M. C. F.; Wijffels, R. H.; Streefland, M., Multivariate 

data analysis as a PAT tool for early bioprocess development data. Journal of biotechnology 2013, 167 

(3), 262-270. 

464. Kirdar, A. O.; Conner, J. S.; Baclaski, J.; Rathore, A. S., Application of Multivariate Analysis 

toward Biotech Processes: Case Study of a Cell-Culture Unit Operation. Biotechnology Progress 2007, 

23 (1), 61-67. 

465. Teixeira, A. P.; Portugal, C. A. M.; Carinhas, N.; Dias, J. M. L.; Crespo, J. P.; Alves, P. M.; 

Carrondo, M. J. T.; Oliveira, R., In situ 2D fluorometry and chemometric monitoring of mammalian cell 

cultures. Biotechnology and bioengineering 2009, 102 (4), 1098-1106. 

466. Dors, M.; Simutis, R.; Lübbert, A., Advanced Supervision of Mammalian Cell Cultures Using 

Hybrid Process Models. IFAC Proceedings Volumes 1995, 28 (3), 72-77. 

467. Narayanan, H.; Sokolov, M.; Butté, A.; Morbidelli, M., Decision Tree-PLS (DT-PLS) algorithm for 

the development of process: Specific local prediction models. Biotechnology Progress 2019, 35 (4), 

e2818. 



Page | 243 BIBLIOGRAPHY 

468. Narayanan, H.; Sokolov, M.; Morbidelli, M.; Butté, A., A new generation of predictive models: 

The added value of hybrid models for manufacturing processes of therapeutic proteins. Biotechnology 

and bioengineering 2019, 116 (10), 2540-2549. 

469. Noe, D. A.; Delenick, J. C., Quantitative analysis of membrane and secretory protein processing 

and intracellular transport. Journal of Cell Science 1989, 92 (3), 449. 

470. Shelikoff, M.; Sinskey, A. J.; Stephanopoulos, G., A modeling framework for the study of 

protein glycosylation. Biotechnology and bioengineering 1996, 50 (1), 73-90. 

471. Monica, T. J.; Andersen, D. C.; Goochee, C. F., A mathematical model of sialylation of N-linked 

oligosaccharides in the trans-Golgi network. Glycobiology 1997, 7 (4), 515-521. 

472. Umaña, P.; Bailey, J. E., A mathematical model of N-linked glycoform biosynthesis. 

Biotechnology and bioengineering 1997, 55 (6), 890-908. 

473. Krambeck, F. J.; Betenbaugh, M. J., A mathematical model of N-linked glycosylation. 

Biotechnology and bioengineering 2005, 92 (6), 711-728. 

474. Krambeck, F. J.; Bennun, S. V.; Narang, S.; Choi, S.; Yarema, K. J.; Betenbaugh, M. J., A 

mathematical model to derive N-glycan structures and cellular enzyme activities from mass 

spectrometric data. Glycobiology 2009, 19 (11), 1163-1175. 

475. Krambeck, F. J.; Bennun, S. V.; Andersen, M. R.; Betenbaugh, M. J., Model-based analysis of N-

glycosylation in Chinese hamster ovary cells. PLOS ONE 2017, 12 (5), e0175376. 

476. Hossler, P.; Mulukutla, B. C.; Hu, W.-S., Systems Analysis of N-Glycan Processing in Mammalian 

Cells. PLOS ONE 2007, 2 (8), e713. 

477. Bibila, T. A.; Flickinger, M. C., Use of a structured kinetic model of antibody synthesis and 

secretion for optimization of antibody production systems: I. Steady-state analysis. Biotechnology and 

bioengineering 1992, 39 (3), 251-61. 

478. Jimenez del Val, I.; Nagy, J. M.; Kontoravdi, C., A dynamic mathematical model for monoclonal 

antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi 

apparatus. Biotechnology Progress 2011, 27 (6), 1730-1743. 

479. Kaveh, O.; Hengameh, A.; Johannes, G.; Murray, M.-Y.; Raymond, L. L.; Jeno, S.; Hector, B. M., 

Novel Dynamic Model to Predict the Glycosylation Pattern of Monoclonal Antibodies from 

Extracellular Cell Culture Conditions. IFAC Proceedings Volumes 2013, 46 (31), 30-35. 

480. Sou, S. N.; Jedrzejewski, P. M.; Lee, K.; Sellick, C.; Polizzi, K. M.; Kontoravdi, C., Model-based 

investigation of intracellular processes determining antibody Fc-glycosylation under mild 

hypothermia. Biotechnology and bioengineering 2017, 114 (7), 1570-1582. 



Page | 244 BIBLIOGRAPHY 

481. Villiger, T. K.; Scibona, E.; Stettler, M.; Broly, H.; Morbidelli, M.; Soos, M., Controlling the time 

evolution of mAb N-linked glycosylation - Part II: Model-based predictions. Biotechnology Progress 

2016, 32 (5), 1135-1148. 

482. Kotidis, P.; Jedrzejewski, P.; Sou, S. N.; Sellick, C.; Polizzi, K.; del Val, I. J.; Kontoravdi, C., Model-

based optimization of antibody galactosylation in CHO cell culture. Biotechnology and bioengineering 

2019, 116 (7), 1612-1626. 

483. Aghamohseni, H.; Spearman, M.; Ohadi, K.; Braasch, K.; Moo-Young, M.; Butler, M.; Budman, 

H. M., A semi-empirical glycosylation model of a camelid monoclonal antibody under hypothermia cell 

culture conditions. Journal of Industrial Microbiology & Biotechnology 2017, 44 (7), 1005-1020. 

484. Sha, S.; Huang, Z.; Agarabi, C. D.; Lute, S. C.; Brorson, K. A.; Yoon, S., Prediction of N-linked 

Glycoform Profiles of Monoclonal Antibody with Extracellular Metabolites and Two-Step Intracellular 

Models. Processes 2019, 7 (4). 

485. Zhang, L.; Wang, M.; Castan, A.; Stevenson, J.; Chatzissavidou, N.; Hjalmarsson, H.; Vilaplana, 

F.; Chotteau, V., Glycan Residues Balance Analysis - GReBA: A novel model for the N-linked 

glycosylation of IgG produced by CHO cells. Metabolic Engineering 2020, 57, 118-128. 

486. Jimenez del Val, I.; Fan, Y.; Weilguny, D., Dynamics of immature mAb glycoform secretion 

during CHO cell culture: An integrated modelling framework. Biotechnology journal 2016, 11 (5), 610-

623. 

487. McDonald, A. G.; Hayes, J. M.; Bezak, T.; Głuchowska, S. A.; Cosgrave, E. F. J.; Struwe, W. B.; 

Stroop, C. J. M.; Kok, H.; van de Laar, T.; Rudd, P. M.; Tipton, K. F.; Davey, G. P., Galactosyltransferase 

4 is a major control point for glycan branching in N-linked glycosylation. Journal of Cell Science 2014, 

127 (23), 5014. 

488. Bennun, S. V.; Yarema, K. J.; Betenbaugh, M. J.; Krambeck, F. J., Integration of the 

Transcriptome and Glycome for Identification of Glycan Cell Signatures. PLOS Computational Biology 

2013, 9 (1), e1002813. 

489. Kremkow, B. G.; Lee, K. H., Glyco-Mapper: A Chinese hamster ovary (CHO) genome-specific 

glycosylation prediction tool. Metabolic Engineering 2018, 47, 134-142. 

490. Kawano, S.; Hashimoto, K.; Miyama, T.; Goto, S.; Kanehisa, M., Prediction of glycan structures 

from gene expression data based on glycosyltransferase reactions. Bioinformatics 2005, 21 (21), 3976-

3982. 

491. Suga, A.; Yamanishi, Y.; Hashimoto, K.; Goto, S.; Kanehisa, M., An improved scoring scheme 

for predicting glycan structures from gene expression data. Genome informatics. International 

Conference on Genome Informatics 2007, 18, 237-46. 



Page | 245 BIBLIOGRAPHY 

492. Arigoni-Affolter, I.; Scibona, E.; Lin, C.-W.; Brühlmann, D.; Souquet, J.; Broly, H.; Aebi, M., 

Mechanistic reconstruction of glycoprotein secretion through monitoring of intracellular N-glycan 

processing. Science Advances 2019, 5 (11), eaax8930. 

493. Hutter, S.; Villiger, T. K.; Brühlmann, D.; Stettler, M.; Broly, H.; Soos, M.; Gunawan, R., 

Glycosylation flux analysis reveals dynamic changes of intracellular glycosylation flux distribution in 

Chinese hamster ovary fed-batch cultures. Metabolic Engineering 2017, 43, 9-20. 

494. Hutter, S.; Wolf, M.; Papili Gao, N.; Lepori, D.; Schweigler, T.; Morbidelli, M.; Gunawan, R., 

Glycosylation Flux Analysis of Immunoglobulin G in Chinese Hamster Ovary Perfusion Cell Culture. 

Processes 2018, 6 (10). 

495. Losfeld, M.-E.; Scibona, E.; Lin, C.-W.; Villiger, T. K.; Gauss, R.; Morbidelli, M.; Aebi, M., 

Influence of protein/glycan interaction on site-specific glycan heterogeneity. The FASEB Journal 2017, 

31 (10), 4623-4635. 

496. Spahn, P. N.; Hansen, A. H.; Hansen, H. G.; Arnsdorf, J.; Kildegaard, H. F.; Lewis, N. E., A Markov 

chain model for N-linked protein glycosylation – towards a low-parameter tool for model-driven 

glycoengineering. Metabolic Engineering 2016, 33, 52-66. 

497. Spahn, P. N.; Hansen, A. H.; Kol, S.; Voldborg, B. G.; Lewis, N. E., Predictive glycoengineering 

of biosimilars using a Markov chain glycosylation model. Biotechnology journal 2017, 12 (2), 1600489. 

498. Liang, C.; Chiang, A. W. T.; Hansen, A. H.; Arnsdorf, J.; Schoffelen, S.; Sorrentino, J. T.; Kellman, 

B. P.; Bao, B.; Voldborg, B. G.; Lewis, N. E., A Markov model of glycosylation elucidates isozyme 

specificity and glycosyltransferase interactions for glycoengineering. Current Research in 

Biotechnology 2020, 2, 22-36. 

499. Fisher, P.; Spencer, H.; Thomas-Oates, J.; Wood, A. J.; Ungar, D., Modeling Glycan Processing 

Reveals Golgi-Enzyme Homeostasis upon Trafficking Defects and Cellular Differentiation. Cell Reports 

2019, 27 (4), 1231-1243.e6. 

500. Fisher, P.; Thomas-Oates, J.; Wood, A. J.; Ungar, D., The N-Glycosylation Processing Potential 

of the Mammalian Golgi Apparatus. Frontiers in Cell and Developmental Biology 2019, 7 (157). 

501. Zhang, L.; Wang, M.; Castan, A.; Hjalmarsson, H.; Chotteau, V., Probabilistic model by Bayesian 

network for the prediction of antibody glycosylation in perfusion and fed-batch cell cultures. 

Biotechnology and bioengineering 2021. 

502. Sokolov, M.; Ritscher, J.; MacKinnon, N.; Souquet, J.; Broly, H.; Morbidelli, M.; Butté, A., 

Enhanced process understanding and multivariate prediction of the relationship between cell culture 

process and monoclonal antibody quality. Biotechnology Progress 2017, 33 (5), 1368-1380. 

503. Zürcher, P.; Sokolov, M.; Brühlmann, D.; Ducommun, R.; Stettler, M.; Souquet, J.; Jordan, M.; 

Broly, H.; Morbidelli, M.; Butté, A., Cell culture process metabolomics together with multivariate data 



Page | 246 BIBLIOGRAPHY 

analysis tools opens new routes for bioprocess development and glycosylation prediction. 

Biotechnology Progress 2020, 36 (5), e3012. 

504. Sokolov, M.; Morbidelli, M.; Butté, A.; Souquet, J.; Broly, H., Sequential Multivariate Cell 

Culture Modeling at Multiple Scales Supports Systematic Shaping of a Monoclonal Antibody Toward a 

Quality Target. Biotechnology journal 2018, 13 (4), 1700461. 

505. Brühlmann, D.; Sokolov, M.; Butté, A.; Sauer, M.; Hemberger, J.; Souquet, J.; Broly, H.; Jordan, 

M., Parallel experimental design and multivariate analysis provides efficient screening of cell culture 

media supplements to improve biosimilar product quality. Biotechnology and bioengineering 2017, 

114 (7), 1448-1458. 

506. Kontoravdi, C.; N. Pistikopoulos, E.; Mantalaris, A., Systematic development of predictive 

mathematical models for animal cell cultures. 2010; Vol. 34, p 1192-1198. 

507. Nolan, R. P.; Lee, K., Dynamic model of CHO cell metabolism. Metab Eng 2011, 13 (1), 108-24. 

508. Qasba, P. K.; Ramakrishnan, B.; Boeggeman, E., Structure and function of beta -1,4-

galactosyltransferase. Curr Drug Targets 2008, 9 (4), 292-309. 

509. Wieczorke, R.; Dlugai, S.; Krampe, S.; Boles, E., Characterisation of Mammalian GLUT Glucose 

Transporters in a Heterologous Yeast Expression System. Cellular Physiology and Biochemistry 2003, 

13 (3), 123-134. 

510. Zhao, F.-Q.; Keating, A. F., Functional properties and genomics of glucose transporters. Curr 

Genomics 2007, 8 (2), 113-128. 

511. Kanehisa, M.; Goto, S., KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids 

research 2000, 28 (1), 27-30. 

512. Schomburg, I.; Chang, A.; Schomburg, D., BRENDA, enzyme data and metabolic information. 

Nucleic acids research 2002, 30 (1), 47-49. 

513. del Val, I. J.; Polizzi, K. M.; Kontoravdi, C., A theoretical estimate for nucleotide sugar demand 

towards Chinese Hamster Ovary cellular glycosylation. Scientific Reports 2016, 6, 28547. 

514. Waldman, B. C.; Rudnick, G., UDP-GlcNAc transport across the Golgi membrane: 

electroneutral exchange for dianionic UMP. Biochemistry 1990, 29 (1), 44-52. 

515. Presley, J. F.; Cole, N. B.; Schroer, T. A.; Hirschberg, K.; Zaal, K. J. M.; Lippincott-Schwartz, J., 

ER-to-Golgi transport visualized in living cells. Nature 1997, 389 (6646), 81-85. 

516. Planinc, A.; Dejaegher, B.; Vander Heyden, Y.; Viaene, J.; Van Praet, S.; Rappez, F.; Van 

Antwerpen, P.; Delporte, C., Batch-to-batch N-glycosylation study of infliximab, trastuzumab and 

bevacizumab, and stability study of bevacizumab. Eur J Hosp Pharm 2017, 24 (5), 286-292. 



Page | 247 BIBLIOGRAPHY 

517. Kotidis, P.; Demis, P.; Goey, C. H.; Correa, E.; McIntosh, C.; Trepekli, S.; Shah, N.; Klymenko, O. 

V.; Kontoravdi, C., Constrained global sensitivity analysis for bioprocess design space identification. 

Computers & Chemical Engineering 2019, 125, 558-568. 

518. Kotidis, P.; Kontoravdi, C., Strategic Framework for Parameterization of Cell Culture Models. 

Processes 2019, 7 (3), 174. 

519. Kyriakopoulos, S.; Kontoravdi, C., A framework for the systematic design of fed-batch 

strategies in mammalian cell culture. Biotechnology and bioengineering 2014, 111 (12), 2466-2476. 

520. Kucherenko, S.; Zaccheus, O. SobolGSA Software. https://www.imperial.ac.uk/process-

systems-engineering/research/free-software/sobolgsa-software/ (accessed March 12, 2021). 

521. Li, G.; Wang, S.-W.; Rabitz, H., Practical Approaches To Construct RS-HDMR Component 

Functions. The Journal of Physical Chemistry A 2002, 106 (37), 8721-8733. 

522. Klymenko, O. V.; Kucherenko, S.; Shah, N., Constrained Global Sensitivity Analysis: Sobol’ 

indices for problems in non-rectangular domains. In Computer Aided Chemical Engineering, Espuña, 

A.; Graells, M.; Puigjaner, L., Eds. Elsevier: 2017; Vol. 40, pp 151-156. 

523. Kucherenko, S.; Klymenko, O. V.; Shah, N., Sobol' indices for problems defined in non-

rectangular domains. Reliability Engineering & System Safety 2017, 167, 218-231. 

524. Li, J.-H.; Huang, W.; Lin, P.; Wu, B.; Fu, Z.-G.; Shen, H.-M.; Jing, L.; Liu, Z.-Y.; Zhou, Y.; Meng, Y.; 

Xu, B.-Q.; Chen, Z.-N.; Jiang, J.-L., N-linked glycosylation at Asn152 on CD147 affects protein folding 

and stability: promoting tumour metastasis in hepatocellular carcinoma. Scientific Reports 2016, 6 (1), 

35210. 

525. Houde, D.; Peng, Y.; Berkowitz, S. A.; Engen, J. R., Post-translational Modifications 

Differentially Affect IgG1 Conformation and Receptor Binding. Molecular &amp;amp; Cellular 

Proteomics 2010, 9 (8), 1716. 

526. Khoder-Agha, F.; Sosicka, P.; Escriva Conde, M.; Hassinen, A.; Glumoff, T.; Olczak, M.; 

Kellokumpu, S., N-acetylglucosaminyltransferases and nucleotide sugar transporters form multi-

enzyme–multi-transporter assemblies in golgi membranes in vivo. Cellular and Molecular Life Sciences 

2019, 76 (9), 1821-1832. 

527. Liang, C.; Chiang, A. W. T.; Hansen, A. H.; Arnsdorf, J.; Schoffelen, S.; Sorrentino, J. T.; Kellman, 

B. P.; Bao, B.; Voldborg, B. G.; Lewis, N. E., A Markov model of glycosylation elucidates isozyme 

specificity and glycosyltransferase interactions for glycoengineering. Current Research in 

Biotechnology 2020. 

528. Zhang, L.; Luo, S.; Zhang, B., Glycan analysis of therapeutic glycoproteins. MAbs 2016, 8 (2), 

205-215. 

https://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/
https://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/


Page | 248 BIBLIOGRAPHY 

529. Everest-Dass, A. V.; Moh, E. S. X.; Ashwood, C.; Shathili, A. M. M.; Packer, N. H., Human disease 

glycomics: technology advances enabling protein glycosylation analysis – part 1. Expert Review of 

Proteomics 2018, 15 (2), 165-182. 

530. Gaunitz, S.; Nagy, G.; Pohl, N. L. B.; Novotny, M. V., Recent Advances in the Analysis of Complex 

Glycoproteins. Anal Chem 2017, 89 (1), 389-413. 

531. Medlock, G. L.; Papin, J. A., Guiding the Refinement of Biochemical Knowledgebases with 

Ensembles of Metabolic Networks and Machine Learning. Cell systems 2020, 10 (1), 109-119.e3. 

532. García-Contreras, R.; Vos, P.; Westerhoff, H. V.; Boogerd, F. C., Why in vivo may not equal 

in vitro – new effectors revealed by measurement of enzymatic activities under the same in vivo-like 

assay conditions. The FEBS Journal 2012, 279 (22), 4145-4159. 

533. Sumit, M.; Dolatshahi, S.; Chu, A.-H. A.; Cote, K.; Scarcelli, J. J.; Marshall, J. K.; Cornell, R. J.; 

Weiss, R.; Lauffenburger, D. A.; Mulukutla, B. C.; Figueroa, B., Dissecting N-Glycosylation Dynamics in 

Chinese Hamster Ovary Cells Fed-batch Cultures using Time Course Omics Analyses. iScience 2019, 12, 

102-120. 

534. Lancashire, L. J.; Lemetre, C.; Ball, G. R., An introduction to artificial neural networks in 

bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies. 

Briefings in Bioinformatics 2009, 10 (3), 315-329. 

535. Darsey, J. A.; Griffin, W. O.; Joginipelli, S.; Melapu, V. K., Architecture and Biological 

Applications of Artificial Neural Networks: A Tuberculosis Perspective. In Artificial Neural Networks, 

Cartwright, H., Ed. Springer New York: New York, NY, 2015; pp 269-283. 

536. Shahid, N.; Rappon, T.; Berta, W., Applications of artificial neural networks in health care 

organizational decision-making: A scoping review. PLOS ONE 2019, 14 (2), e0212356. 

537. Julenius, K.; Mølgaard, A.; Gupta, R.; Brunak, S., Prediction, conservation analysis, and 

structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 2004, 15 (2), 

153-164. 

538. Senger, R. S.; Karim, M. N., Variable Site-Occupancy Classification of N-Linked Glycosylation 

Using Artificial Neural Networks. Biotechnology Progress 2005, 21 (6), 1653-1662. 

539. Senger, R. S.; Karim, M. N., Prediction of N-linked glycan branching patterns using artificial 

neural networks. Mathematical Biosciences 2008, 211 (1), 89-104. 

540. Senger, R. S.; Karim, M. N., Effect of Shear Stress on Intrinsic CHO Culture State and 

Glycosylation of Recombinant Tissue-Type Plasminogen Activator Protein. Biotechnology Progress 

2003, 19 (4), 1199-1209. 

541. Kotidis, P.; Kontoravdi, C., Harnessing the potential of artificial neural networks for predicting 

protein glycosylation. Metabolic Engineering Communications 2020, 10, e00131. 



Page | 249 BIBLIOGRAPHY 

542. McCulloch, W. S.; Pitts, W., A logical calculus of the ideas immanent in nervous activity. The 

bulletin of mathematical biophysics 1943, 5 (4), 115-133. 

543. del Rio-Chanona, E. A.; Manirafasha, E.; Zhang, D.; Yue, Q.; Jing, K., Dynamic modeling and 

optimization of cyanobacterial C-phycocyanin production process by artificial neural network. Algal 

Research 2016, 13, 7-15. 

544. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G., Glycosyltransferases: Structures, 

Functions, and Mechanisms. Annual Review of Biochemistry 2008, 77 (1), 521-555. 

545. Wang, Q.; Chung, C.-Y.; Chough, S.; Betenbaugh, M. J., Antibody glycoengineering strategies 

in mammalian cells. Biotechnology and bioengineering 2018, 115 (6), 1378-1393. 

546. Tulsyan, A.; Garvin, C.; Ündey, C., Advances in industrial biopharmaceutical batch process 

monitoring: Machine-learning methods for small data problems. Biotechnology and bioengineering 

2018, 115 (8), 1915-1924. 

547. North, S. J.; Huang, H.-H.; Sundaram, S.; Jang-Lee, J.; Etienne, A. T.; Trollope, A.; Chalabi, S.; 

Dell, A.; Stanley, P.; Haslam, S. M., Glycomics Profiling of Chinese Hamster Ovary Cell Glycosylation 

Mutants Reveals N-Glycans of a Novel Size and Complexity. Journal of Biological Chemistry 2010, 285 

(8), 5759-5775. 

548. Bojar, D.; Powers, R. K.; Camacho, D. M.; Collins, J. J., Deep-Learning Resources for Studying 

Glycan-Mediated Host-Microbe Interactions. Cell Host & Microbe 2020. 

549. Li, F.; Zhang, Y.; Purcell, A. W.; Webb, G. I.; Chou, K.-C.; Lithgow, T.; Li, C.; Song, J., Positive-

unlabelled learning of glycosylation sites in the human proteome. BMC Bioinformatics 2019, 20 (1), 

112. 

550. del Val, I. J.; Kyriakopoulos, S.; Polizzi, K. M.; Kontoravdi, C., An optimized method for 

extraction and quantification of nucleotides and nucleotide sugars from mammalian cells. Analytical 

Biochemistry 2013, 443 (2), 172-180. 

551. Ceroni, A.; Maass, K.; Geyer, H.; Geyer, R.; Dell, A.; Haslam, S. M., GlycoWorkbench: a tool for 

the computer-assisted annotation of mass spectra of glycans. J Proteome Res 2008, 7 (4), 1650-9. 

552. King, Z. A.; Lu, J.; Dräger, A.; Miller, P.; Federowicz, S.; Lerman, J. A.; Ebrahim, A.; Palsson, B. 

O.; Lewis, N. E., BiGG Models: A platform for integrating, standardizing and sharing genome-scale 

models. Nucleic Acids Research 2016, 44 (D1), D515-D522. 

553. Rowe, E.; Palsson, B. O.; King, Z. A., Escher-FBA: a web application for interactive flux balance 

analysis. BMC Systems Biology 2018, 12 (1), 84. 

554. Benyair, R.; Ron, E.; Lederkremer, G. Z., Chapter Five - Protein Quality Control, Retention, and 

Degradation at the Endoplasmic Reticulum. In International Review of Cell and Molecular Biology, 

Jeon, K. W., Ed. Academic Press: 2011; Vol. 292, pp 197-280. 



Page | 250 BIBLIOGRAPHY 

555. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular Biology of the 

Cell. 4th ed.; Garland Science: New York, 2002. 

556. Spang, A., Retrograde Traffic from the Golgi to the Endoplasmic Reticulum. Cold Spring Harbor 

Perspectives in Biology 2013, 5 (6). 

557. Brandizzi, F.; Barlowe, C., Organization of the ER–Golgi interface for membrane traffic control. 

Nature Reviews Molecular Cell Biology 2013, 14 (6), 382-392. 

558. Klumperman, J., Architecture of the mammalian Golgi. Cold Spring Harbor perspectives in 

biology 2011, 3 (7), a005181. 

559. Klumperman, J.; Kuliawat, R.; Griffith, J. M.; Geuze, H. J.; Arvan, P., Mannose 6–Phosphate 

Receptors Are Sorted from Immature Secretory Granules via Adaptor Protein AP-1, Clathrin, and 

Syntaxin 6–positive Vesicles. Journal of Cell Biology 1998, 141 (2), 359-371. 

560. Posakony, J. W.; England, J. M.; Attardi, G., Mitochondrial growth and division during the cell 

cycle in HeLa cells. Journal of Cell Biology 1977, 74 (2), 468-491. 

561. Zhang, L.; Castan, A.; Stevenson, J.; Chatzissavidou, N.; Vilaplana, F.; Chotteau, V., Combined 

effects of glycosylation precursors and lactate on the glycoprofile of IgG produced by CHO cells. 

Journal of biotechnology 2019, 289, 71-79. 

562. Owen, O. E.; Kalhan, S. C.; Hanson, R. W., The Key Role of Anaplerosis and Cataplerosis for 

Citric Acid Cycle Function*. Journal of Biological Chemistry 2002, 277 (34), 30409-30412. 

563. Jakkamsetti, V.; Marin-Valencia, I.; Ma, Q.; Pascual, J. M., Chapter 29 - Pyruvate 

dehydrogenase, pyruvate carboxylase, Krebs cycle, and mitochondrial transport disorders. In 

Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease (Sixth Edition), 

Rosenberg, R. N.; Pascual, J. M., Eds. Academic Press: 2020; pp 427-436. 

564. Curtis, M.; Kenny, H. A.; Ashcroft, B.; Mukherjee, A.; Johnson, A.; Zhang, Y.; Helou, Y.; Batlle, 

R.; Liu, X.; Gutierrez, N.; Gao, X.; Yamada, S. D.; Lastra, R.; Montag, A.; Ahsan, N.; Locasale, J. W.; 

Salomon, A. R.; Nebreda, A. R.; Lengyel, E., Fibroblasts Mobilize Tumor Cell Glycogen to Promote 

Proliferation and Metastasis. Cell Metabolism 2019, 29 (1), 141-155.e9. 

565. TeSlaa, T.; Bartman, C. R.; Jankowski, C. S. R.; Zhang, Z.; Xu, X.; Xing, X.; Wang, L.; Lu, W.; Hui, 

S.; Rabinowitz, J. D., The Source of Glycolytic Intermediates in Mammalian Tissues. Cell Metabolism. 

566. McCorvie, T. J.; Gleason, T. J.; Fridovich-Keil, J. L.; Timson, D. J., Misfolding of galactose 1-

phosphate uridylyltransferase can result in type I galactosemia. Biochimica et Biophysica Acta (BBA) - 

Molecular Basis of Disease 2013, 1832 (8), 1279-1293. 

567. Crews, C.; Wilkinson, K. D.; Wells, L.; Perkins, C.; Fridovich-Keil, J. L., Functional Consequence 

of Substitutions at Residue 171 in Human Galactose-1-phosphate Uridylyltransferase *. Journal of 

Biological Chemistry 2000, 275 (30), 22847-22853. 



Page | 251 BIBLIOGRAPHY 

568. Milla, M. E.; Clairmont, C. A.; Hirschberg, C. B., Reconstitution into proteoliposomes and 

partial purification of the Golgi apparatus membrane UDP-galactose, UDP-xylose, and UDP-glucuronic 

acid transport activities. The Journal of biological chemistry 1992, 267 (1), 103-7. 

569. Lu, G.; Crihfield, C. L.; Gattu, S.; Veltri, L. M.; Holland, L. A., Capillary Electrophoresis 

Separations of Glycans. Chem Rev 2018, 118 (17), 7867-7885. 

570. Grinna, L. S.; Robbins, P. W., Glycoprotein biosynthesis. Rat liver microsomal glucosidases 

which process oligosaccharides. Journal of Biological Chemistry 1979, 254 (18), 8814-8818. 

571. Burns, D. M.; Touster, O., Purification and characterization of glucosidase II, an endoplasmic 

reticulum hydrolase involved in glycoprotein biosynthesis. Journal of Biological Chemistry 1982, 257 

(17), 9991-10000. 

572. Sakono, M.; Seko, A.; Takeda, Y.; Hachisu, M.; Ito, Y., Biophysical properties of UDP-

glucose:glycoprotein glucosyltransferase, a folding sensor enzyme in the ER, delineated by synthetic 

probes. Biochemical and Biophysical Research Communications 2012, 426 (4), 504-510. 

573. Karaveg, K.; Moremen, K. W., Energetics of substrate binding and catalysis by class 1 

(glycosylhydrolase family 47) alpha-mannosidases involved in N-glycan processing and endoplasmic 

reticulum quality control. The Journal of biological chemistry 2005, 280 (33), 29837-48. 

574. Miyazaki, T.; Matsumoto, Y.; Matsuda, K.; Kurakata, Y.; Matsuo, I.; Ito, Y.; Nishikawa, A.; 

Tonozuka, T., Heterologous expression and characterization of processing α-glucosidase I from 

Aspergillus brasiliensis ATCC 9642. Glycoconjugate Journal 2011, 28 (8), 563-571. 

 

 

 

 

 

 

 

 

 



Page | 252 APPENDIX 

Appendix 
 

Appendix I - Figures & Tables 

 

Figure A1: Nucleotides concentration for the experiments used in Chapter 2 of this thesis and throughout the cell culturing 

period. Adapted from Jedrzejewski311. 
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Table A1: Estimated parameters for the Metabolism and NSD submodels. Taken with permission from Kotidis et al.482. 

Parameter  Value  Unit 95% Confidence  
Interval 

Metabolism 

𝒀𝑿𝑮𝒍𝒄
 1.01×109 cell·mmol-1 1.50×108 

𝜰𝑿𝑳𝒂𝒄
 5.46×107 cell·mmol-1 7.60×106 

𝒀𝑿𝑮𝒍𝒏
 4.64×109 cell·mmol-1 2.05×108 

𝒀𝑿𝑮𝒍𝒖
 1.46×1010 cell·mmol-1 3.29×109 

𝒀𝑿𝑨𝒔𝒏
 7.68×108 cell·mmol-1 7.23×106 

𝒀𝑿𝑨𝒎𝒎
 2.36×109 cell·mmol-1 2.15×107 

𝒀𝑿𝑮𝒂𝒍
 1.38×108 cell·mmol-1 4.09×106 

𝒀𝑿𝑼𝒓𝒅
 1.61×109 cell·mmol-1 2.39×107 

𝒀𝑿𝑨𝒔𝒑
 3.59×109 cell·mmol-1 fixed480 

𝒀𝑮𝒍𝒏/𝑨𝒎𝒎 0.10 mmol·mmol-1 2.24×10-2 

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.56 mmol·mmol-1 fixed480 

𝒀𝑨𝒔𝒏/𝑨𝒔𝒑 0.10 mmol·mmol-1 0.03 

𝒀𝑨𝒔𝒑/𝑨𝒔𝒏 0.13 mmol·mmol-1 fixed480 

𝒀𝑨𝒎𝒎/𝑼𝒓𝒅 2 mmol·mmol-1 0.03 

𝒎𝑮𝒍𝒄 3.43×10-11 mmol·cell-1·h-1 1.50×10-12 

𝒎𝒍𝒂𝒄 1.87×10-10 mmol·cell-1·h-1 4.65×10-11 

𝑲𝒄𝑮𝒂𝒍 5.27 mM 0.31 

𝒇𝑮𝒂𝒍 0.35 N/A 0.03 

𝑳𝒂𝒄𝒎𝒂𝒙𝟏 21.20 mM 0.73 

𝑳𝒂𝒄𝒎𝒂𝒙𝟐 16 mM 0.50 
𝑲𝑮𝒂𝒍 18.23 mM 0.74 
𝑲𝑼𝒓𝒅 7 mM 0.26 

NSD 

𝒇𝑮𝒍𝒏 2.00×10-2 N/A 3.30×10-4 
𝑲𝑴𝟏𝑮𝒍𝒏

 0.42 mM 6.23×10-3 

𝑲𝑴𝟏𝒔𝒊𝒏𝒌
 4.00×10-2 mM 1.98×10-3 

𝑲𝑰𝟏𝒔𝒊𝒏𝒌
 1.21×10-4 mM 2.18×10-6 

𝑲𝑴𝟐𝑮𝒍𝒄
 78.12 mM 6.719 

𝑲𝑴𝟐𝒃𝑼𝑫𝑷𝑮𝒂𝒍
 2.48×10-2 mM 3.22×10-3 

𝑲𝑰𝟐𝑨 1.05×10-6 mM 1.54×10-7 

𝑲𝑰𝟐𝑩 92.11 mM 9.82×107 
𝑲𝑰𝟐𝑪 1.33×10-2 mM 1.28 

𝑲𝑰𝟐𝑫 2.66×10-6 mM 1.23×10-7 

𝑲𝑴𝟑𝑮𝒍𝒄
 50 mM 4.05 

𝑲𝑴𝟒𝑼𝑫𝑷𝑮𝒍𝒄𝑵𝑨𝒄
 2.31 mM 0.30 

𝑲𝑴𝟓𝑼𝑫𝑷𝑮𝒍𝒄𝑵𝑨𝒄
 2.70×10-2 mM 8.21×10-3 

𝑲𝑰𝟓 1000 mM 8.92×106 

𝑲𝑴𝟔𝑼𝑫𝑷𝑮𝒍𝒄
 1.6×10-2 mM 3.22×10-4 

𝑲𝑰𝟔𝑨 1.10×10-7 mM 6.73×10-9 
𝑲𝑰𝟔𝑩 4.57 mM 2.81×105 

𝑲𝑰𝟔𝑪 4.84×10-6 mM 5.08×10-7 

𝑲𝟔𝒔𝒊𝒏𝒌
 0.13 mM 1.88×10-3 

𝑲𝑰𝟔𝒔𝒊𝒏𝒌
 10 mM 3.83×10-3 
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𝑲𝒓𝒆𝒈𝒖𝒍𝒂𝒕𝒐𝒓 1.00×10-5 mM fixed 

𝑲𝑴𝟕𝑮𝑫𝑷𝑴𝒂𝒏
 0.99 mM 0.10 

𝑲𝑰𝟕 1.64×10-2 mM 3.57×10-3 

𝑲𝑴𝟕𝒔𝒊𝒏𝒌
 8.88 mM 0.65 

𝑽𝒎𝒂𝒙,𝟏𝑼𝒓𝒅
 0.15 mmolNSD·Lcell

-1·h-1 6.02×10-3 

𝑽𝒎𝒂𝒙,𝟐𝑼𝒓𝒅
 4.52×10-2 mmolNSD·Lcell

-1·h-1 4.23×10-4 

𝑽𝒎𝒂𝒙,𝟒𝑼𝒓𝒅
 1.27×10-2 mmolNSD·Lcell

-1·h-1 2.70×10-3 

𝑽𝒎𝒂𝒙,𝟔𝑼𝒓𝒅
 5.34 mmolNSD·Lcell

-1·h-1 1.10×10-2 

𝑽𝒎𝒂𝒙𝟕𝒔𝒊𝒏𝒌
 10.94 mmolNSD·Lcell

-1·h-1 0.81 

𝑲𝑴,𝟏𝑼𝒓𝒅
 6.08 mM 0.51 

𝑲𝑴,𝟐𝑼𝒓𝒅
 13.63 mM 0.69 

𝑲𝑴,𝟒𝑼𝒓𝒅
 6.25 mM 2.62 

𝑲𝑴,𝟔𝑼𝒓𝒅
 0.44 mM 1.91×10-3 

𝑽𝒎𝒂𝒙𝟏𝒔𝒊𝒏𝒌
 25.49 mmolNSD·Lcell

-1·h-1 0.46 

𝑽𝒎𝒂𝒙𝟔𝒔𝒊𝒏𝒌
 7.30 mmolNSD·Lcell

-1·h-1 0.04 

𝑽𝒎𝒂𝒙𝟔𝑮𝒂𝒍
 40.90 mmolNSD·Lcell

-1·h-1 9.86 

𝑲𝑴𝟔𝑮𝒂𝒍
 0.60 mM 0.14 

𝑲𝑰𝟔𝑫 1.00×10-2 mM 3.75×10-4 

𝑲𝑰𝟔𝑬 99.63 mM 525.2 
𝑲𝑰𝟔𝑭 9.11×10-4 mM 8.74×10-6 

𝑲𝑻𝑷𝑼𝑫𝑷𝑮𝒍𝒄
 0.90 mM 4.47×10-2 

𝑲𝑻𝑷𝑼𝑫𝑷𝑮𝒍𝒄𝑵𝑨𝒄
 5.05 mM 2.31 

𝑲𝑻𝑷𝑼𝑫𝑷𝑮𝒂𝒍
 7.15 mM 0.33 

𝑲𝑻𝑷𝑼𝑫𝑷𝑮𝒂𝒍𝑵𝑨𝒄
 11.06 mM 9.12 

𝑲𝑻𝑷𝑮𝑫𝑷𝑴𝒂𝒏
 0.13 mM 3.42×10-2 

𝑲𝑻𝑷𝑮𝑫𝑷𝑭𝒖𝒄
 0.10 mM 0.75 

𝑲𝑻𝑷𝑪𝑴𝑷𝑵𝒆𝒖𝟓𝑨𝒄
 503.21 mM 824 

𝑽𝒄𝒆𝒍𝒍 1.12×10-12 L fixed 

𝑽𝑮𝒐𝒍𝒈𝒊  2.50×10-14 L fixed   

𝑴𝑾𝒎𝑨𝒃  165.17×103 gmAb·molmAb
-1 fixed 

𝑵𝑯𝑪𝑷/𝑳𝒊𝒑𝒊𝒅𝒔𝑼𝑫𝑷𝑮𝒍𝒄
 1.56×10-12 mmolNSD·cell-1 fixed513 

𝑵𝑯𝑪𝑷/𝑳𝒊𝒑𝒊𝒅𝒔𝑼𝑫𝑷𝑮𝒍𝒄𝑵𝑨𝒄
 1.25×10-12 mmolNSD·cell-1 fixed513 

𝑵𝑯𝑪𝑷/𝑳𝒊𝒑𝒊𝒅𝒔𝑼𝑫𝑷𝑮𝒂𝒍
 2.29×10-12 mmolNSD·cell-1 fixed513 

𝑵𝑯𝑪𝑷/𝑳𝒊𝒑𝒊𝒅𝒔𝑼𝑫𝑷𝑮𝒂𝒍𝑵𝑨𝒄
 1.25×10-12 mmolNSD·cell-1 fixed513 

𝑵𝑯𝑪𝑷/𝑳𝒊𝒑𝒊𝒅𝒔𝑮𝑫𝑷𝑴𝒂𝒏
 3.54×10-12 mmolNSD·cell-1 fixed513 

𝑵𝑯𝑪𝑷/𝑳𝒊𝒑𝒊𝒅𝒔𝑮𝑫𝑷𝑭𝒖𝒄
 1.40×10-13 mmolNSD·cell-1 fixed513 

𝑵𝑯𝑪𝑷/𝑳𝒊𝒑𝒊𝒅𝒔𝑪𝑴𝑷𝑵𝒆𝒖𝟓𝑨𝒄
 1.85×10-12 mmolNSD·cell-1 fixed513 

𝑵𝒑𝒓𝒆𝒄𝒖𝒓𝒔𝒐𝒓𝑼𝑫𝑷𝑮𝒍𝒄
  40.39×10-6 mmolNSD·mgmAb

-1 fixed513 

𝑵𝒑𝒓𝒆𝒄𝒖𝒓𝒔𝒐𝒓𝑮𝑫𝑷𝑴𝒂𝒏
  121.2×10-6 mmolNSD·mgmAb

-1 fixed513 

𝑵𝒑𝒓𝒆𝒄𝒖𝒓𝒔𝒐𝒓𝑼𝑫𝑷𝑮𝒍𝒄𝑵𝑨𝒄
  26.67×10-6 mmolNSD·mgmAb

-1 fixed513 
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Table A2: Reactions considered in the FBA. The FBA ant the reactions’ table was kindly provided by Dr. Ioscani Jimenez del 
Val (University College Dublin). The shown coefficients of amino acids contribution towards biomass and IgG synthesis are 
derived from the control experiment (P5). The coefficients were adapted according to the experiment. 

Flux Rev Reactions 

  Glycolylsis 

R1 0 Glc + ATP --> G6P + ADP 

R2 -1 G6P <--> F6P 

R3 0 F6P + ATP --> DHAP + GAP + ADP 

R4 -1 DHAP <--> GAP 

R5 -1 GAP + NAD + ADP <--> 3PG + NADHcyt + ATP 

R6  3PG + ADP --> Pyrcyt + ATP 

  TCA cycle & oxidative phosporylation (mitochondrion) 

R7 -1 Pyrcyt <--> Pyrmit 

R8 0 Pyrmit + NAD+ + CoASH --> AcCoA + CO2 + NADHmit 

R9 0 AcCoA + Oxalmit --> Cit + CoASH 

R10 0 Cit + NAD+ --> αKGmit + CO2 + NADHmit 

R11 0 αKGmit + CoASH + NAD --> SucCoA + CO2 + NADHmit 

R12 -1 SucCoA + GDP <--> Succ + GTP + CoASH 

R13 -1 Succ + FAD+ <--> Fum + FADH2 

R14 -1 Fum <--> Malmit 

R15 -1 Malmit + NAD+ <--> Oxalmit + NADHmit 

R16 0 Pyrmit + ATP --> Oxalmit + ADP 

R17 0 Malmit + NAD --> Pyrmit + NADHmit 

R18 0 FADH2 --> 1.5ATPenergy + FAD 

R19 0 NADHmit --> 2.5ATPenergy + NAD+ 

  Aspartate-Malate Shuttle & NAD+ and NADPH synthesis 

R20 0 Glucyt + Aspmit --> Glumit + Aspcyt 

R21 -1 Malcyt + KGmit <--> Malmit + KGcyt 

R22 -1 Oxalmit + Glumit <--> KGmit + Aspmit 

R23 -1 KGmit + NADHmit + NH4
+ <--> Glumit + NAD+ 

R24 -1 Oxalcyt + NADHcyt <--> Malcyt + NAD+ 

R25 0 NADHcyt + ATP --> NADPHcyt + ADP 

R26 0 R5P + Trp + Gln + NADPH + 2ATP --> NAD+ + Ala + NADP+ + Glucyt 

  
Pyruvate fates 

R27 -1 Pyrcyt + NADHcyt <--> Lac + NAD+ 

R28 -1 Pyrcyt + Glucyt <--> Ala + αKGcyt 

  
Pentose Phosphate pathway 

R30 0 3G6P + 6NADP+ --> 3CO2 + 3R5P + 6NADPH 

  
Anaplerotic reaction 

R31 -1 Malcyt + NAD+ <--> Pyrcyt + NADHcyt 

  
Amino acid metabolism 

R32 -1 Glucyt + NAD+ <--> αKGcyt + NH4
+ + NADHcyt 

R33 -1 Aspcyt + αKGcyt <--> Oxalcyt + Glucyt 

R34 -1 Gln + ADP <--> Glucyt + ATP + NH4
+ 

R35 0 Thr + NAD+ + CoASH --> Gly + NADHcyt + AcCoA 
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R36 -1 Ser + THF + NAD+ <--> Gly + NADHcyt + N10FTHF 

R37 -1 N10FTHF + ADP <--> ATP + Formate + THF 

R38 0 Ser --> Pyrcyt + NH4
+ 

R39 0 Thr --> αKb + NH4
+ 

R40 0 αKb + CoASH + NAD+ + HCO3 + ATP --> SucCoA + ADP + NADHcyt + CO2 

R41 0 Trp --> Ala + 2CO2 + αKa 

R42 0 Lys + 2αKGcyt + 3NAD+ + FAD2+ --> αKa + 2Glucyt + 3NADHcyt + FADH2 

R43 0 αKa + 2CoASH + 2NAD+ --> 2AcCoA + 2NADHcyt + 2CO2 

R44 0 Val + αKGcyt + CoASH + NAD+ --> IsobutCoA + Glucyt + CO2 + NADHcyt 

R45 
0 IsobutCoA + FAD2+ + 2NAD+ + HCO3 + ATP --> SucCoA + ADP + FADH2 + 

2NADHcyt + CO2 

R46 0 IsobutCoA --> Isobut 

R47 
0 Ile + αKGcyt + 2CoASH + 2NAD+ + FAD2+ + HCO3 + ATP --> AcCoA + SucCoA + 

ADP + Glucyt + CO2 + 2NADHcyt + FADH2 

R48 0 Leu + αKGcyt + CoASH + NAD+ --> IsovalCoA + Glucyt + CO2 + NADHcyt 

R49 
0 IsovalCoA + FAD2+ + ATP + CO2 + SucCoA + CoASH --> 3AcCoA + Succ + 

FADH2 + ADP 

R50 0 IsovalCoA --> Isoval 

R51 0 Phe + NADHcyt --> Tyr + NAD+ 

R52 0 Tyr + αKGcyt + SucCoA + CoASH --> Fum + 2AcCoA + Succ + Glucyt + CO2 

R53 0 Met + Ser + ATP --> αKb + NH4
+ + AMP 

R54 -1 Asn <--> Aspcyt + NH4
+ 

R55 -1 Pro + NAD+ <--> Glucyt + NADHcyt 

R56 0 2Arg + 3NADPH + 4O2 + 3H +  --> 2Citruline + 2NO + 3NADP + + 4H2O 

R57 0 His --> Glucyt + NH4
+ 

R58 0 3PG + NAD +  + Glucyt + H2O --> Ser + αKGcyt + NADHcyt + H + + Pi 

R59 -1 Gly + acetaldehyde <--> Thr 

  
Urea cycle 

R60 0 Arg  + H2O --> Ornithine + Urea 

R61 0 NH4
+ + 2ATP + CO2 + H2O + Ornithine --> Citruline + 2Pi + 2ADP 

R62 0 Citruline + ATP + Aspmit --> Fum + Arg + AMP + 2Pi 

R63 -1 Ornithine + KGcyt + NADHcyt <--> Glucyt + Pro + NAD+ 

R64 0 Ornithine --> Putrescine + CO2 

R65 0 Putrescine --> Spermidine 

  
Glycogen synthesis 

R66 0 G6P --> G1P 

R67 0 G1P + UMPRN + 2ATP --> UDP-Glc + 2ADP 

R68 0 UDP-Glc --> Glycogen + UDP 

  
Nucleotide synthesis 

R69 0 R5P + ATP --> PRPP + AMP 

R70 
0 PRPP + 2Gln + Gly + Aspcyt + 5ATP + CO2 + 2N10FTHF --> IMP + 2Glucyt + 

Fum + 5ADP + 2THF 

R71 0 IMP + Aspcyt + GTP --> AMPRN + Fum + GDP 

R72 0 IMP + Gln + ATP + NAD+ --> GMPRN + Glucyt + AMP + NADHcyt 

R73 0 HCO3 + NH4
+ + Aspcyt + 2ATP + NAD+ --> Orotate + 2ADP + NADHcyt 

R74 0 Orotate + PRPP --> UMPRN + CO2 

R75 0 UMPRN + Gln + ATP --> CMPRN + Glucyt + ADP 
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R76 0 AMPRN --> dAMP 

R77 0 GMPRN --> dGMP 

R78 0 CMPRN --> dCMP 

R79 0 UMPRN --> dTMP 

  
Lipid synthesis 

R80 0 Choline + ATP --> Pcholine + ADP 

R81 
0 Pcholine + 18AcCoA + Glyc3P + 22ATP + 33NADHcyt --> PC + 16ADP + 

6AMP + 33NAD+ 

R82 -1 PC + Ser --> PS + Choline 

R83 0 PS --> PE + CO2 

R84 -1 Choline + Glyc3P --> Glyc3PC 

R85 0 G6P --> Inositol 

R86 
0 Inositol + 18AcCoA + Glyc3P + 22ATP + 33NADHcyt --> PI + 16ADP + 6AMP 

+ 33NAD+ 

R87 
0 18AcCoA + 2Glyc3P + 22ATP + 33NADHcyt --> PG + 16ADP + 6AMP + 

33NAD+ 

R88 0 2PG --> DPG + Glyc 

R89 
0 16AcCoA + Ser + Choline + 16ATP + 29NADPH --> SM + 2CO2 + 14ADP + 

2AMP + 29NADP+ 

R90 0 18AcCoA + 18ATP + 14NADPH --> Cholesterol + 9CO2 + 18ADP + 14NADP+ 

  
Biomass formation 

R91 
 

0 110.599Ala + 80.3954Arg + 54.8137Asn + 82.7637Asp + 64.1741Gln + 
116.2137Glu + 103.1927Gly + 30.9908His + 72.7055Ile + 127.6291Leu + 
105.0358Lys + 36.044Met + 51.7991Phe + 72.8871Pro + 96.1535Ser + 
76.0632Thr + 13.5816Trp + 41.1743Tyr + 95.4303Val + 3.2393dAMP + 
2.1669dCMP + 2.1669dGMP + 3.2393dTMP + 7.2871AMPRN + 
12.1673CMPRN + 13.7793GMPRN + 7.2871UMPRN + 61.101Glycogen + 
3.942Cholesterol + 0.657DPG + 15.111PC + 5.694PE + 0.219PG + 2.19PI + 
0.657PS + 1.752SM + 2.0712ATP + 0.4131CTP + 0.5219GTP + 2.0338UTP + 
0.4709NAD + 0.0285NADP + 0.0022FAD + 0.011NADH + 0.0876NADPH + 
7.665putrescine + 1.533Spermidine + 0.73762UDP-Gal + 1.79789GDP-
Man + 0.513899UDP-GlcNAc + 0.833033CMP-Neu5Ac + 0CMP-Neu5Gc + 
0.0543580GDP-Fuc + 0.6581091UDP-GalNAc --> 1Biomass  +  
11,694,463ADP 

  
Other by-products 

R92 -1 AcCoA + AMP --> Acetate + CoASH + ATP 

R93 -1 DHAP + NADHcyt --> Glyc3P + NAD+ 

R94 -1 Glyc3P + FAD --> DHAP + FADH2 

R95 -1 Glyc3P --> Glyc 

  
IgG glycosylation 

R96 -1 UDP-Glc --> UDP-Gal 

R97 0 Glc + ATP + GTP --> GDP-Man + ADP 

R98 0 F6P + Gln + AcCoA + UTP --> UDP-GlcNAc + Glucyt + CoASH 

R99 0 UDP-GlcNAc + ATP + 3PG + CTP --> CMP-Neu5Ac + UDP + ADP 

R100 0 GDP-Man + NADPH --> GDP-Fuc + NADP+ 

R101 -1 UDP-GlcNAc <--> UDP-GalNAc 

R102 -1 CMP-Neu5Ac <--> CMP-NeuGc 
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IgG formation 

R103 
 

0 423.8Ala + 266.4Arg + 314.8Asn + 302.7Asp + 363.3Glu + 363.3Gln + 
581.2Gly + 133.2His + 605.4Leu + 520.7Lys + 72.7Met + 266.4Phe + 
532.8Pro + 1138.2Ser + 593.3Thr + 121.1Trp + 387.5Tyr + 690.2Val + 
10.44GDP-Fuc + 53.01UDP-GlcNAc + 120GDP-Man + 7.97UDP-Gal + 
0CMP-Neu5Ac --> 127.8566GDP + 54.8008UDP + 2.01845CMP + 1IgG 

  
Transport reactions 

R104 -1 --> Aspcyt 

R105 -1 Gly -->  

R106 -1 --> Ser 

R107 -1 --> Glucyt 

R108 -1 --> Tyr 

R109 -1 Ala -->  

R110 -1 --> Arg 

R111 -1 --> Asn 

R112 -1 --> Gln 

R113 0 --> His 

R114 0 --> Ile 

R115 0 --> Leu 

R116 0 --> Lys 

R117 0 --> Met 

R118 0 --> Phe 

R119 -1 --> Pro 

R120 0 --> Thr 

R121 0 --> Trp 

R122 0 --> Val 

R123 -1 --> Choline 

R124 -1 NH4
+ -->  

R125 0 CO2 -->  

R126 -1 Cit -->  

R127 -1 Fum -->  

R128 -1 Pyr -->  

R129 -1 Succ -->  

R130 -1 Mal -->  

R131 -1 Glyc -->  

R132 -1 Pcholine -->  

R133 -1 Glyc3PC -->  

R134 -1 Formate -->  

R135 -1 Acetate -->  

R136 0 Isobut -->  

R137 0 Isoval -->  

R138 0 Biomass -->  

R139 0 --> Glc 

R140 -1 Lac -->  

R141 0 IgG -->  

R142 -1 Urea --> 
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Table A3: Kinetic constants for HCPs N-linked glycosylation. The (-) symbol indicates that the value was assigned to the 
designated parameter due to trace levels of the glycans generated from the respective reaction in which the parameter is 
involved. N/A indicates that no confidence interval was given by the parameter estimation. 

Parameter Value (μΜ) 95% CI or Reference 

Kdi,ManIA,HCPs 2,565 ± 1,562 

Kdi,ManIB,HCPs 2,836 ± 2,306 

Kdi,ManIC,HCPs 100 Krambeck et al.474 
Kdi,ManID,HCPs 1,882 ± 1,052 

Kdi,ManIE,HCPs 284 ± 14,285 

Kdi,ManIF,HCPs 1,276 Krambeck et al.474 

Kdi,ManIG,HCPs 100 Krambeck et al.474 
Kdi,ManIIA,HCPs 353 ± 239 

Kdi,ManIIB,HCPs 219 ± 148 

Kdi,a6FucTA,HCPs 7,000 - 
Kdi,a6FucTB,HCPs 3,943 Krambeck et al.474 

Kdi,a6FucTC,HCPs 1,996 Krambeck et al.474 

Kdi,a6FucTD,HCPs 30 Krambeck et al.474 

Kdi,GnTIA,HCPs 397 ± 253 

Kdi,GnTIIA,HCPs 2,643 ± 1,814 

Kdi,GnTIIIA,HCPs 688 N/A 

Kdi,GnTIVA,HCPs 1,879 N/A 
Kdi,GnTIVB,HCPs 17,000 Krambeck et al.474 

Kdi,GnTIVC,HCPs 5,100 Krambeck et al.474 

Kdi,GnTIVD,HCPs 5,100 Krambeck et al.474 
Kdi,GnTVA,HCPs 9,072 N/A 

Kdi,GnTVB,HCPs 10,000 Krambeck et al.474 

Kdi,iGnTA,HCPs 76 ± 78 

Kdi,b4GalTA,HCPs 811 ± 59 

Kdi,b4GalTB,HCPs 2,622 ± 161 

Kdi,b4GalTC,HCPs 16,197 Krambeck et al.474 

Kdi,b4GalTD,HCPs 4,000 ± 11,265 

Kdi,b4GalTE,HCPs 10,000 - 

Kdi,b4GalTF,HCPs 10,000 - 

Kdi,b4GalTG,HCPs 6,280 Del Val et al.478 

Kdi,b4GalTH,HCPs 6,280 Del Val et al.478 
Kdi,b4GalTK,HCPs 44 ± 127 

Kdi,b4GalTL,HCPs 6,280 Del Val et al.478 

Kdi,b4GalTM,HCPs 6,280 Del Val et al.478 
Kdi,b4GalTN,HCPs 6,280 Del Val et al.478 

Kdi,b4GalTO,HCPs 6,280 Del Val et al.478 

Kdi,b4GalTP,HCPs 79 ± 73 

Kdi,b4GalTR,HCPs 51 ± 406 
Kdi,b4GalTS,HCPs 54 ± 150 

Kdi,a3SiaTA,HCPs 2,711 ± 209 

Kdi,a3SiaTB,HCPs 1,001 ± 258 
Kdk,ManIA,HCPs 0 Del Val et al.478 

Kdk,ManIB,HCPs 0 Del Val et al.478 

Kdk,ManIC,HCPs 0 Del Val et al.478 

Kdk,ManID,HCPs 0 Del Val et al.478 
Kdk,ManIE,HCPs 0 Del Val et al.478 
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Kdk,ManIF,HCPs 0 Del Val et al.478 
Kdk,ManIG,HCPs 0 Del Val et al.478 

Kdk,ManIIA,HCPs 0 Del Val et al.478 

Kdk,ManIIB,HCPs 0 Del Val et al.478 

Kdk,a6FucTA,HCPs 46 Del Val et al.478 
Kdk,a6FucTB,HCPs 4,600 - 

Kdk,a6FucTC,HCPs 46 Del Val et al.478 

Kdk,a6FucTD,HCPs 46 Del Val et al.478 
Kdk,GnTIA,HCPs 170 Del Val et al.478 

Kdk,GnTIIA,HCPs 960 Del Val et al.478 

Kdk,GnTIIIA,HCPs 3,100 Krambeck et al.474 

Kdk,GnTIVA,HCPs 8,300 Krambeck et al.474 
Kdk,GnTIVB,HCPs 8,300 Krambeck et al.474 

Kdk,GnTIVC,HCPs 8,300 Krambeck et al.474 

Kdk,GnTIVD,HCPs 8,300 Krambeck et al.474 
Kdk,GnTVA,HCPs 8,300 Krambeck et al.474 

Kdk,GnTVB,HCPs 3,500 Krambeck et al.474 

Kdk,iGnTA,HCPs 3,500 Krambeck et al.474 

Kdk,b4GalTA,HCPs 55 Krambeck et al.474 
Kdk,b4GalTB,HCPs 65 Del Val et al.478 

Kdk,b4GalTC,HCPs 65 Del Val et al.478 

Kdk,b4GalTD,HCPs 65 Del Val et al.478 

Kdk,b4GalTE,HCPs 65 Del Val et al.478 

Kdk,b4GalTF,HCPs 65 Del Val et al.478 

Kdk,b4GalTG,HCPs 65 Del Val et al.478 
Kdk,b4GalTH,HCPs 65 Del Val et al.478 

Kdk,b4GalTK,HCPs 65 Del Val et al.478 

Kdk,b4GalTL,HCPs 65 Del Val et al.478 

Kdk,b4GalTM,HCPs 65 Del Val et al.478 
Kdk,b4GalTN,HCPs 65 Del Val et al.478 

Kdk,b4GalTO,HCPs 65 Del Val et al.478 

Kdk,b4GalTP,HCPs 65 Del Val et al.478 
Kdk,b4GalTR,HCPs 65 Del Val et al.478 

Kdk,b4GalTS,HCPs 65 Del Val et al.478 

Kdk,a3SiaTA,HCPs 57 Krambeck et al.474 

Kdk,a3SiaTB,HCPs 57 Krambeck et al.474 

 

Table A4: Kinetic constants for IgG N-linked glycosylation. The high 95% CIs are a result of the parameter unidentifiability 

that characterizes this model. 

Parameter Value (μΜ) 95% CI or Reference 

Kdi,ManIA,IgG 61 Del Val et al.478 

Kdi,ManIB,IgG 110 Del Val et al.478 
Kdi,ManIC,IgG 31 Del Val et al.478 

Kdi,ManID,IgG 74 Del Val et al.478 

Kdi,ManIIA,IgG 221 N/A 
Kdi,ManIIB,IgG 100 Del Val et al.478 

Kdi,GnTIA,IgG 74 N/A 

Kdi,GnTIIA,IgG 104 N/A 

Kdi,GnTIIIA,IgG 1 x 1012 - 
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Kdi,a6FucTA,IgG 25 Del Val et al.478 
Kdi,a6FucTB,IgG 1,432 ± 279 

Kdi,b4GalTA,IgG 483 ± 879 

Kdi,b4GalTB,IgG 6,280 Del Val et al.478 

Kdi,b4GalTC,IgG 703 ± 630 
Kdi,b4GalTD,IgG 6,280 Del Val et al.478 

Kdi,a3SiaTA,IgG 1 x 1012 Del Val et al.478 

Kdi,a3SiaTB,IgG 1 x 1012 Del Val et al.478 
Kdi,a3SiaTC,IgG 1 x 1012 Del Val et al.478 

Kdi,a3SiaTD,IgG 1 x 1012 Del Val et al.478 

Kdk,ManIA,IgG 0 Del Val et al.478 

Kdk,ManIB,IgG 0 Del Val et al.478 
Kdk,ManIC,IgG 0 Del Val et al.478 

Kdk,ManID,IgG 0 Del Val et al.478 

Kdk,ManIIA,IgG 0 Del Val et al.478 
Kdk,ManIIB,IgG 0 Del Val et al.478 

Kdk,GnTIA,IgG 170 Del Val et al.478 

Kdk,GnTIIA,IgG 960 Del Val et al.478 

Kdk,GnTIIIA,IgG 1 x 1012 Del Val et al.478 
Kdk,a6FucTA,IgG 46 Del Val et al.478 

Kdk,a6FucTB,IgG 46 Del Val et al.478 

Kdk,b4GalTA,IgG 3668 ± 9177 

Kdk,b4GalTB,IgG 65 Del Val et al.478 

Kdk,b4GalTC,IgG 257 ± 541 

Kdk,b4GalTD,IgG 65 Del Val et al.478 
Kdk,a3SiaTA,IgG 1 x 1012 Del Val et al.478 

Kdk,a3SiaTB,IgG 1 x 1012 Del Val et al.478 

Kdk,a3SiaTC,IgG 1 x 1012 Del Val et al.478 

Kdk,a3SiaTD,G 1 x 1012 Del Val et al.478 

 

Table A5: Parameters for NST concentration and distribution. 95% CIs are not available as the estimated parameters 

([𝑁𝑆𝑇] and 𝑑𝑖𝑠𝑡𝑟𝑁𝑆𝑇
𝑈𝐷𝑃𝐺𝑎𝑙−𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑟 (c)) were calculated using the Optimization gPROMS entity. 

Enzyme [𝑵𝑺𝑻] (μΜ) 𝒅𝒊𝒔𝒕𝒓𝑵𝑺𝑻(𝟏) 𝒅𝒊𝒔𝒕𝒓𝑵𝑺𝑻(𝟐) 𝒅𝒊𝒔𝒕𝒓𝑵𝑺𝑻(𝟑) 𝒅𝒊𝒔𝒕𝒓𝑵𝑺𝑻(𝟒) 
UDPGal-transporter 7.8 x 10-9 0 0.085 0.324 0.591 
GDPFuc-transporter 2.4 x 10-7 0.200 0.450 0.200 0.150 

UDPGlcNac-transporter 4.2 x 10-8 0.050 0.700 0.200 0.050 
CMPNeu5Ac-transporter 8.9 x 10-8 0 0.050 0.200 0.750 

 

Table A6: Parameters for NSD transport kinetics. A 95% CI is not available for 𝐾𝑚
𝑈𝐷𝑃𝐺𝑎𝑙−𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑟 as the parameter was 

estimated using the Optimization gPROMS entity. 

Enzyme 𝒌𝒇
𝑵𝑺𝑻 (min-1) 𝑲𝒎

𝑵𝑺𝑻 (μM) Reference 

UDPGal-transporter 948 7.2 (estimated) Del Val et al.478 
GDPFuc-transporter 130 7.5 Del Val et al.478 

UDPGlcNac-transporter 1422 7.1 Del Val et al.478 
CMPNeu5Ac-transporter 592 1.3 Del Val et al.478 
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Table A7: ER glycosylation model parameters. If a designation of ‘HCPs’ or ‘mAb’ is not mentioned, then the same value was 
used for both proteins’ glycosylation. For the estimated parameters, a 95% CI is not provided due to the unidentifiability of  
the system. The resulting parameter values are by no means a realistic representation of the variables, as they are a single 
solution of the many that can satisfy the problem. 

Parameter Value Units Reference 

𝒌𝒇,𝜶𝑮𝒍𝒖𝑰 24.2 min-1 Grinna & 
Robbins570 

𝒌𝒇,𝜶𝑮𝒍𝒖𝑰,𝑨 432 min-1 Burns & 
Touster571 

𝒌𝒇,𝜶𝑮𝒍𝒖𝑰,𝑩 432 min-1 Burns & 
Touster571 

𝒌𝒇,𝑼𝑮𝑮𝑻  25 min-1 Sakono et al. 
2012572 

𝒌𝒇,𝑬𝑹𝑴𝒂𝒏𝑰 222 min-1 Karaveg & 
Moremen573 

𝑲𝒅𝒊,𝜶𝑮𝒍𝒖𝑰 6.1 μΜ Miyazaki et 
al.574 

𝑲𝒅𝒊,𝜶𝑮𝒍𝒖𝑰𝑰,𝑨 850 μΜ Burns & 
Touster571 

𝑲𝒅𝒊,𝜶𝑮𝒍𝒖𝑰𝑰,𝑩 850 μΜ Burns & 
Touster571 

𝑲𝒅𝒊,𝑼𝑮𝑮𝑻  69 μΜ Sakono et al. 
2012572 

𝑲𝒅𝒌,𝑼𝑮𝑮𝑻 4 μΜ Sakono et al. 
2012572 

𝑲𝒅𝒊,𝑬𝑹𝑴𝒂𝒏𝑰,𝑯𝑪𝑷𝒔 9988.5 μΜ - 

𝑲𝒅𝒊,𝑬𝑹𝑴𝒂𝒏𝑰,𝒎𝑨𝒃 1362.7 μΜ - 

[𝜶𝑮𝒍𝒖𝑰] 0.32 μΜ - 
[𝜶𝑮𝒍𝒖𝑰𝑰] 9.9 μΜ - 

[𝑼𝑮𝑮𝑻] 0.01 μΜ - 

[𝑬𝑹𝑴𝒂𝒏𝑰] 0.17 μΜ - 
 

Table A8: Glycosidases and glycosylatransferases concentration as estimated against the HCPs glycoprofile. 95% CIs are not 

available as all parameters were estimated using the Optimization gPROMS entity. 

Enzyme Concentration (μM) 
ManI 1.11 

ManII 2.10 

GnTI 0.19 

GnTII 3.80 
GnTIII 2.35 x 10-3 

GnTIV 3.45 

GnTV 1.70 
iGnT 1.89 

a6FucT 2.31 

b4GalT 0.29 

a3SiaT 0.77 

a6SiaT 0 

a3FucT 0 

a3GalT 0 
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Appendix II - Model reduction 
Model reduction was initially performed manually, prior to its integration in the GLYMMER software 

through the “Lumping” function. The manual model reduction was performed for a previously 

published dataset of CHO HCPs547. The utilized HCPs glyosylation profile presents 21 different 

glycans513, with the majority of them being high mannose (≥ 5 molecules of mannose in the 

oligosaccharide) glycans that collectively account for the 48.8% of the total distribution. The remaining 

51.2% is mainly distributed between bi-, tri- and tetra-antennary glycans and glycans that incorporate 

poly-LacNAc branches. The experimentally measured glycosylation profile of CHO-HCPs is presented 

in Fig. A2. 

The glycosylation network from Krambeck et al. 2017 (“Large” network) was generated with the 

GLYMMER software and included 18,276 structures (oligosaccharide conformations – glycans) and 

52,600 reactions. The enzymes included in the reactions network are listed in Table A9. The “Large” 

network was then reduced by defining the “essential glycans”, meaning the glycans that are 

experimentally observed in the glycosylation profile of interest. The distribution of the essential 

glycans is not used for network reduction (thus making the reduction based on solely qualitatively 

data). The network was reduced both manually and automatically (“Lumping”) with the methods as 

described below.  For highly branched glycans, the essential glycans list included only a small number 

of the possible isoforms, in an effort to maximise the reduction of the network’s complexity. The same 

values for the kinetic constants were used for all three networks, apart from the enzyme 

concentrations that were estimated for each case and are presented in Fig. A3. The GLYMMER 

software was used for the estimation of the enzyme concentrations for all networks.  

 

Figure A2: Glycosylation profile of intracellular host cell proteins of CHO cells as reported in North et al.547 
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The manual reduction method has the following workflow: Starting from each essential glycan and 

going backwards (backpropagation), all the reactions necessary for each essential glycan production 

are included. If during the backpropagation another essential glycan is encountered, the 

backpropagation for the examined essential glycans is terminated. No reactions related to the 

consumption of non-essential glycans that are not leading either directly or indirectly to essential 

glycans are included. Also, reactions describing essential glycans consumption are included during 

reduction, but no subsequent reaction was included unless it led to another essential glycan. The 

manually reduced network includes 346 structures and 596 reactions, leading to a significant decrease 

of the number of both the structures and the reactions of the network. The “Manual” network 

includes all the experimentally observed glycans and as shown in Fig. A3 is able to closely describe the 

vast majority of glycans and even present a slightly lower total error, when compared to the large 

network. Notably, the “Manual” network is unable to detect the tri-antennary AAAF and NaAAF and 

the highly branched AAAAA and NaAAAAF that are found in the “Large” network.   

Table A9: Enzymes used in the glycosylation network of CHO-HCPs. ManI and ManII are referred twice as they present 

different kinetic constants for different substrates. 

Enzyme Cosubstrate Coproduct Substrate Product 
ManI water mannose (Ma2Ma (Ma 

ManI water mannose (Ma3(Ma2Ma3(Ma6)Ma6) (Ma3(Ma3(Ma6)Ma6) 

ManII water mannose (Ma3(Ma6)Ma6 (Ma6Ma6 

ManII water mannose (Ma6Ma6 (Ma6 

a6FucT GDP-Fuc GDP GNb4GN GNb4(Fa6)GN 

GnTI UDP-GlcNAc UDP (Ma3(Ma3(Ma6)Ma6)Mb4 (GNb2Ma3(Ma3(Ma6)Ma6)Mb4 

GnTII UDP-GlcNAc UDP (GNb2|Ma3(Ma6)Mb4 (GNb2|Ma3(GNb2Ma6)Mb4 

GnTIII UDP-GlcNAc UDP GNb2|Ma3 GNb2|Ma3(GNb4) 

GnTIV UDP-GlcNAc UDP (GNb2Ma3 (GNb2(GNb4)Ma3 

GnTV UDP-GlcNAc UDP (GNb2Ma6 (GNb2(GNb6)Ma6 

iGnT UDP-GlcNAc UDP (Ab4GN (GNb3Ab4GN 

b4GalT UDP-Gal UDP (GN (Ab4GN 

a3SiaT CMP-NeuAc CMP (Ab4GN (NNa3Ab4GN 

a3FucT GDP-Fuc GDP (...Ab4GNb (Fa3(...Ab4)GNb 

a3GalT UDP-Gal UDP (Ab4GN (Aa3Ab4GN 

 

The automatic reduction method follows a similar procedure as in the first step only the reactions and 

structures required to generate the essential glycans are included. The automatic method is 

considered as an automatic implementation of the “Manual” network reduction, which is critical due 

to the extensively tedious, time-consuming and error prone process followed for manual reduction. 

The Lumping method was incorporated in the GLYMMER software by Dr. Fred Krambeck, who is also 

the developer of the GLYMMER software. Subsequently the network was enriched with reactions of 

which substrates and products were essential glycans. The automatically reduced “Lumped” network 

includes only 119 structures and 145 reactions, reducing both the number of structures and reactions 
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more than three (3x) times when compared to the “Manual” network and more than 100x when 

compared to the “Large” network. As presented in Table A10, the “Lumped” network presents the 

smallest total error when compared to the other configurations. Unlike the “Manual” network, the 

“Lumped” network is able to qualitatively detect the AAAF and NaAAF glycan but fails to find both the 

AAAAA and NaAAAAF (one poly-LacNAc molecule) glycans. The low levels of the AAAAA and AAAAAF 

glycans could be attributed to the increased concentration of the iGnT (the enzyme responsible for 

the poly-LacNAc extension) that leads to the formation of mainly AAAAAAF (two poly-LacNAc 

molecules). Moreover, all three networks were found to closely describe the high mannose glycans. 

Thus, the “Lumped” network that significantly improves the parameter estimation times when 

compared to the “Large” network, can be utilized to both qualitatively and quantitatively describe 

complex glycoprofiles using a very limited number of reactions and structures. 

 

Figure A3: (A) Comparison of the glycans distribution for each model simulation and the experimental data. (B) Estimated 

enzyme concentrations of the enzymes involved in all the networks (normalized by the value in the “Large” network). The 

following enzymes: GnTIII, a3FucT and a3GalT are not included in the graph as their concentration was estimated to be zero. 

As shown in Fig. A3, the concentration of ManI, a6FucT and a3SiaT is relatively the same between the 

different networks. Interestingly, ManII shows a very low concentration in the “Manual” network 

despite the fact that the estimations for the Man5 and GnF glycans are accurate. However, the actual 

concentration of ManII in the “Manual” experiment is ~1.44μM, which is approximatelly 35x lower 

compared to the concentration in the “Large” network (~51μM). Interestingly, the GnTII enzyme 

shows higher concentration in the reduced networks, increasing that way the flux towards the more 



Page | 266 APPENDIX 

complex glycans that are then regulated by the lower concentration of the GnTIV and GnTV enzymes 

(enzymes responsible for the formation of the tri- and tetra- antennary structures). 

Table A10: Total errors for the fitting of each network. 

 Large Manual Lumping 

Total error (%) 11.97 11.60 10.41 

 

Overall, the networks generated by the model reduction methods (either “Manual” or “Lumping”) 

were found to closely describe the experimental data, without reducing model performance on data 

fitting. Therefore, the Lumping method was considered reliable in creating a reduced reaction network 

for the experimentally measured HCPs of the CHO-T127 cell line, as presented in Chapter 5 of this 

thesis.  
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