
 1

Sampled-data fuzzy controller for continuous nonlinear systems 

 

H.K. Lam and W.K. Ling 

Department of Electronic Engineering, Division of Engineering, The King’s College 

London, Strand, London, WC2R 2LS, United Kingdom 

 

Abstract:  This paper presents the sampled-data fuzzy control of nonlinear systems.  The 

consequents of the fuzzy controller rules are linear sampled-data sub-controllers.  As a 

result, the fuzzy controller is a weighted sum of some linear sampled-data sub-controllers 

which can be implemented by a microcontroller or a digital computer to lower the 

implementation cost.  Consequently, a hybrid fuzzy controller consisting of continuous-

time grades of memberships and discrete-time sub-controller is resulted.  The system 

stability of the fuzzy control system is investigated.  The proposed fuzzy controller 

exhibits a favourable property to alleviate the conservativeness of the stability analysis.  

Due to the sampling activity introduces discontinuity to complicate the system dynamics, 

the stability analysis is made difficult.  Lyapunov-based approach is employed to 

investigate the system stability.  Furthermore, LMI (linear matrix inequality)-based 

performance conditions are derived to guarantee the system performance of the fuzzy 

control system.  An application example is given to illustrate the merits of the proposed 

approach. 

 

I.  INTRODUCTION 
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 Fuzzy control approach offers a powerful and systematical control methodology 

to handle nonlinear systems.  Due to the superior approximation and reasoning abilities of 

the fuzzy controller, fuzzy control approach has been applied in different applications.  

One of the most common issues of the fuzzy control systems is the system stability which 

has drawn the attention of researchers for many years.  In the early stage, the fuzzy 

controllers have been designed heuristically.  However, the fuzzy controllers designed 

based on the heuristic techniques come with no guarantee on the system stability.  With 

the extensive efforts of the researchers working on the fuzzy control discipline, fruitful 

stability analysis results have been obtained to aid the design of stable fuzzy controllers. 

 The most popular method to study the stability of the fuzzy control systems is the 

Lyapunov-based approach.  In [1]-[2], a T-S fuzzy model was employed to represent the 

system dynamics of the nonlinear system.  The T-S fuzzy model represents the nonlinear 

system as a weighted sum of some linear sub-systems.  This particular structure offers a 

general framework to represent the nonlinear system which is favourable for system 

analysis.  A fuzzy controller [3]-[4] was proposed to handle the nonlinear system 

represented the fuzzy model.  The fuzzy control system is guaranteed to be 

asymptotically stable if there exists a solution to a set of linear matrix inequalities (LMIs) 

[5] which can be solved efficiently and numerically using some convex programming 

techniques.  In [4], a parallel distributed compensation (PDC) design approach was 

proposed to design the feedback gains of the fuzzy controllers.  It was proposed in [4], [6] 

that the fuzzy controller shares the same premises as those of the fuzzy model.  Under 

such a design criterion, it was reported in [6] that relaxed stability conditions can be 

obtained.  Further relaxed stability results were reported in [7]-[11]. 
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 In most of the work on the stability analysis of fuzzy control systems, both 

continuous-time and discrete-time fuzzy control system have been studied.  However, 

fuzzy controllers with sampled-data control rules are seldom concerned.  The sampled-

data control rules can be easily implemented by some microcontrollers or digital 

computers to lower the implementation cost and time.  However, the system dynamics of 

the closed-loop system will become more complex due to the sampling activity 

introducing discontinuity to the system which increases the analysis difficulty.  As a 

result, the stability analysis approach proposed in pure continuous-time or discrete-time 

fuzzy controller system cannot be applied.  In [12], the sampled-data fuzzy control 

system was represented by an equivalent jump system.  In this approach, the system is 

separated to continuous and dis-continuous parts.  The system stability is implied by the 

stabilities of both parts.  In [13], the system stability of a linear sampled-data control 

system was analyzed.  By representing the sampling time as a time-varying delay, 

stability conditions were derived using Lyapunov-based approach.  However when 

nonlinear systems are considered, the system analysis will become more complicated.  In 

[14], we have extended the approach for linear system in [13] to time-delay sampled-data 

fuzzy control systems.  As the membership functions depending on the sampled system 

states, which leads to the favourable property relaxing the stability conditions, vanishes, a 

conservative stability analysis result were obtained.  Furthermore, it leads to a more 

number of stability conditions. 

 In this paper, fuzzy controller with sampled-data control rules is proposed to 

handle the nonlinear plant represented by a fuzzy model.  In the proposed fuzzy 

controller, it shares the same membership functions as those of the fuzzy model to relax 
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the stability conditions.  In the consequent part, the fuzzy controller employs sampled-

data linear sub-controllers.  The sampled-data linear sub-controller is formed by a 

sampler with sampling period h, a discrete-time linear controller and a zero-order-hold 

(ZOH) unit.  In this paper, the system stability of this kind of fuzzy control system is 

investigated using Lyapunov-based approach.  LMI-stability conditions are derived to 

guarantee the system stability.  In order to guarantee the system performance, LMI-based 

performance conditions are derived as well.  The stability and performance conditions 

will serve as a mathematical tool to aid the design of a stable and well-performed fuzzy 

controller for nonlinear system. 

 This paper is organized as follows.  In section II, the fuzzy model and the fuzzy 

controller with sampled-data control rules are presented.  In section III, the LMI-based 

stability and performance conditions of the fuzzy control systems are derived.  In section 

IV, an application example is presented to illustrate the design procedure and the merits 

of the proposed approach.  A conclusion is drawn in section V. 

 

II.  FUZZY MODEL AND FUZZY CONTROLLER WITH SAMPLED-DATA CONTROL RULES 

 A fuzzy control system, formed by a nonlinear plant represented by a fuzzy model 

and a fuzzy controller with sampled-data control rules, is considered. 

 

A.  Fuzzy Model 

 Let p be the number of fuzzy rules describing the nonlinear plant.  The i-th rule is 

of the following format, 

Rule i: IF ))((1 tf x  is i
1M  AND … AND ))(( tf xΨ  is i

ΨM  
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            THEN )()()(  ttt ii uBxAx +=&  (1) 

where i
αM  is a fuzzy term of rule i corresponding to the function ))(( tf xα , α = 1, 2, ..., 

Ψ, i = 1, 2, ..., p, Ψ is a positive integer; nn
i

×ℜ∈A  and mn
i

×ℜ∈B  are known constant 

system and input matrices respectively; 1)( ×ℜ∈ ntx  is the system state vector and 

1)( ×ℜ∈ mtu  is the input vector.  The system dynamics are described by, 

( ))()())(()(
1=

tttwt ii

p

i
i uBxAxx += ∑&  (2) 

where, 
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p
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i x∑ , [ ]10))(( ∈twi x  for all i (3) 
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L
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is a nonlinear function of x(t) and ))((M txi α
α

μ  is the grade of membership corresponding 

to the fuzzy terms i
αM . 

 

B.  Fuzzy Controller with Sampled-Data Control Rules 

 A p-rule fuzzy controller is designed based on the fuzzy model of the nonlinear 

plant.  The j-th rule of the fuzzy controller is of the following format: 

Rule j: IF ))((1 tf x  is j
1M  AND … AND ))(( tf xΨ  is j

ΨM  

           THEN )()( γtt j xGu = , t Bγ B < t ≤ tBγ+1 B (5) 

where G j
m n∈ℜ ×  is  the feedback gain of rule j to be designed.  tBγ B = γh, γ = 0, 1, 2, ..., ∞; 

denotes a time instant; h = tBγ+1B − tBγ B denotes the constant sampling period.  It can be seen 
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from (5) that u(t) = u(tBγ B) of each individual rule holds constant vector value for tBγB < t ≤ 

t Bγ+1B.  The inferred output of the fuzzy controller is given by, 

)())(()(
1=

γttwt j

p

j
j xGxu ∑= , t BγB < t ≤ tBγ+1 B (6) 

 Denote τ(t) = t − tBγB ≤ h for tBγ B < t ≤ tBγ+1 B and from (6), we have, 

))(())(()(
=1

γttttwt j

p

j
j −−=∑ xGxu  

       ))(())((
1=

tttw j

p

j
j τ−=∑ xGx  (7) 

 

III.  STABILITY ANALYSIS AND PERFORMANCE DESIGN 

 In this section, the system stability of the fuzzy control system formed by (2) and 

(7) is investigated based on the Lyapunov-based approach.  Stability conditions are 

derived to guarantee the system stability.  Based on the stability conditions, the feedback 

gains GBj B, j = 1, 2, ..., p, can be determined to achieve the system stability.  LMI-based 

performance conditions will be derived to serve as design constraints for the feedback 

gains to achieve the system performance. 

 

A.  Stability Analysis 

 The system stability of the fuzzy control system is investigated.  In the following 

analysis, wBi B(x(t)) is denoted by wBi B for short.  Furthermore, the equality of ∑
p

i=
iw

1
 = 

∑∑
=

p

i=

p

j
jiww

1 1

 = 1 is used.  The control action of (7) can be written as follows. 
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∫∑∑ −
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 From (8), we have the following equality which is used in the following stability 

analysis. 
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 To investigate the system stability of the fuzzy control system, the following 

Lyapunov function candidate is considered, 

)()()( 21 tVtVtV +=  (10) 

where 
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holds when x(t) = 0 and u(t) = 0) which implies the asymptotic stability of the fuzzy 
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 From (13), (15), and the fact that 0 < τ(t) ≤ h, 
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 It can be seen that 0)( ≤tV&  when XP

T
PQX < 0 which implies the asymptotic 

stability of the fuzzy control system.  Let M = M P
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 It should be noted that the inequalities of (23) are not LMI conditions due to the 
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PX.  With the property that M = M P

T
P > 0, we consider the 

following inequality, 

( ) ( ) 02
1

T
11

1T
11

1T
1 >+−−=−− −− MXXXMXMXMMX ζζζζζ  
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MXXMX 2
11

1
1 2 ζζ −>⇒ −  (24) 

where ζ is a non-zero positive scalar.  From (24), the holding of the following LMIs 

implies the holding of (23) 

0
2 2

1
T

1

1
TT

≥⎥
⎦

⎤
⎢
⎣

⎡

− MXXYX
XYXXRX
ζζi

ii  = 0
2 2

1
T

)22()21(

T)21()11(

≥

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− MXN0
NMM
0MM

ζζi

iii

ii

, i = 1, 2, ..., p (25) 

 It can be seen that the fuzzy control system is asymptotically stable if the stability 

conditions of (22) and (25) are satisfied. 

 

B.  Performance Design 

 The LMI-based performance conditions are derived for the fuzzy control system.  

The system performance is quantitatively measured by the following performance index 

which is commonly used in the optimal control techniques [16]. 

dt
t
t

t
t

J ∫
∞

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

0
3

T
2

21
T

)(
)(

)(
)(

u
x

JJ
JJ

u
x

 (26) 

where 0T
11 >ℜ∈= ×nnJJ , mn×ℜ∈2J , 0T

33 >ℜ∈= ×mmJJ  and 

0)()(

3
T

2

21 >ℜ∈⎥
⎦

⎤
⎢
⎣

⎡ +×+ mnmn

JJ
JJ

.  From (6) and (26), we have, 

dtttw

t
ttwtJ p

j
jj

p

i
ii∫ ∑∑

∞

=
= ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

0

1
3

T
2

21
T

1

T

))((

)(
))(()( ττ xG

x

JJ
JJ

xGx  

    dt
tt

t
wwtt

t p

j
jj

p

i
ii∫ ∑∑

∞

==

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=
0

13
T

2

21

1

T

T

))((
)(

))((
)(

ττ x
x

G0

0I

JJ
JJ

G0

0I

x
x

 (27) 
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 Let ∫
∞

−−

−−

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

<
0 1

1
1

1

1
1

1
1

T

))((
)(

))((
)(

dt
tt

t
tt

t
J

ττ
η

x
x

XX0
0XX

x
x

 where η is a non-

zero positive scalar.  Based on this condition and from (27), we have, 

0
))((

)(
))((

)(

1
1

1
1

1
1

1
1

1
3

T
2

21

1

T

0

T

<⎥
⎦

⎤
⎢
⎣

⎡
−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

−−

−−

==
∞ ∑∑
∫ dt

tt
tww

tt
t

p

j
jj

p

i
ii

τ
η

τ x
x

XX0
0XX

G0

0I

JJ
JJ

G0

0I

x
x

 (28) 

 The system performance can be attenuated the performance index J to a to 

prescribed level of η.  From (28) and let 1
1
−= XNG ii , i = 1, 2, ..., p, we have, 

0
))((

)(
))((

)(
1

1

1
1

0 1
1

1
1

T

<⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
− −

−
∞

−

−

∫ dt
tt

t
tt

t
ττ x

x
X0

0XW
X0

0X
x

x
 (29) 

where  

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
= ∑∑

==
I0
0I

N0

0X

JJ
JJ

N0

0X
W ηp

j
jj

p

i
ii ww

1

1

3
T

2

21

1

T

1

 (30) 

 It can be seen that the inequality of (29) holds when W < 0.  From (30) and by 

Schur complement, W < 0 is equivalent to the following inequality. 

0
1

<∑
=

i

p

i
iw W  (31) 

where 0
1

3
T

2

21

3
T

2

21 >⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

JJ
JJ

KK
KK

, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
−

=

3
T

2

211

T
1

KKN0
KK0X

N0I0
0X0I

W

i

i
i

η
η

, i = 1, 2, ..., p. 
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 It can be seen that the inequality of (31) holds when WBi B < 0, i = 1, 2, ..., p.  The 

LMI conditions of WBi B < 0, i = 1, 2, ..., p and 0
3

T
2

21 >⎥
⎦

⎤
⎢
⎣

⎡
JJ
JJ

 are the performance 

conditions.  The system stability and performance conditions are summarized in the 

following theorem. 

 

Theorem 1:  The fuzzy control system formed by the nonlinear system in form of (2) and 

the fuzzy controller of (6) is guaranteed to be asymptotically stable if there exist constant 

non-zero positive scalars, h, ζ and η, and constant matrices, nn×ℜ∈= T
11 XX , nm×ℜ∈2X , 

mm×ℜ∈3X , nn×ℜ∈= TMM , nn
ii

×ℜ∈=
T)11()11( MM , nm

i
×ℜ∈)21(M , mm

ii
×ℜ∈=

T)22()22( MM , 

nm
j

×ℜ∈N , nn×ℜ∈= T
11 JJ , mn×ℜ∈2J  and mm×ℜ∈= T

33 JJ  such that the following LMI-

based stability and performance conditions hold. 

Stability Conditions: 

01 >X ; 0>M ; 

0

321

TT
3

)22(T
33

)21(
2

TT
3

TT
2

T
1

T)21(T
2

T
3

)11(TT
22

T
11

<

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+
+−−+−+

++−+++++

MXBXBXA
BXMXXMXNBX

BXAXMXNXBMBXXBAXXA

hhhh
hhh

hhhh

iii

iiiii

iiiiiiiiii

0
2 2

1
T

)22()21(

T)21()11(

≥

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− MXN0
NMM
0MM

ζζi

iii

ii

, i = 1, 2, ..., p and the feedback gains are defined as 

1
1
−= XNG ii , i = 1, 2, ..., p. 

Performance Conditions: 
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0
1
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21
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⎤
⎢
⎣

⎡
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⎦

⎤
⎢
⎣

⎡
−

KK
KK

JJ
JJ

, 0

3
T

2

211

T
1

<

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
−

=

KKN0
KK0X

N0I0
0X0I

W

i

i
i

η
η

, i = 1, 2, ..., p. 

 

Remark 1:  It can be seen that the solution to the stability conditions in Theorem 1 

implies 0T
11 >= XX  and 0T

33 <−− XX .  As 0T
11 >= XX  and 0T

33 <−− XX , 

⎥
⎦

⎤
⎢
⎣

⎡
=

32

1

XX
0X

X  is a non-singular matrix.  Hence, there must exist XP =−1  if the stability 

conditions in Theorem 1 has solution. 

 

IV.  APPLICATION EXAMPLE 

 An application example on stabilizing a cart-pole typed inverted pendulum [17] is 

given in this section. 

 

Step I)  The dynamic equations of the inverted pendulum on the cart [17] is given 

by, 

)()( 21 txtx =&  (32) 

2
1

222
11

14011
2

2
22

21

2 ))((cos))((
)()(cos)(sin)(

)(cos)()(cos)(sin)()()(

)(
txlmmlJmM

tutxmltxmglmM
txtmlxFtxtxtxlmtxmMF

tx
−++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−++
+−+−

=&  (33) 

)()( 43 txtx =&  (34) 

2
1

222

2
11

22
4

2
01

2
2

2
121

4 ))((cos))((
)()()(cos)(sin

)()()(sin)()()(cos)(

)(
txlmmlJmM

tumlJtxtxglm

txmlJFtxtmlxmlJtxtmlxF

tx
−++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++−

+−++

=&  (35) 
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where xB1 B(t) and xB2 B(t) denote the angular displacement (rad) and the angular velocity 

(rad/s) of the pendulum from vertical respectively, x B3 B(t) and x B4B(t) denote the displacement 

(m) and the velocity (m/s) of the cart respectively, g = 9.8 m/sP

2
P is the acceleration due to 

gravity, m = 0.22 kg is the mass of the pendulum, M = 1.3282 kg is the mass of the cart, l 

= 0.304 m is the length from the center of mass of the pendulum to the shaft axis, J = 

ml P

2
P/3 kgmP

2
P is the moment of inertia of the pendulum round the center of mass, FB0 B = 

22.915 N/m/s and FB1B = 0.007056 N/rad/s are the friction factors of the cart and the 

pendulum respectively, and u(t) is the force (N) applied to the cart.  The objective of this 

application example is to design the proposed fuzzy controller to close the feedback loop 

such that xB1 B(t) = xB3 B(t) = 0 at the steady state.  The nonlinear plant can be represented by a 

fuzzy model with two fuzzy rules [17].  The i-th rule is given by, 

Rule i:  IF xB1 B(t) is i
1M  THEN )()()( tutt ii BxAx +=&  for i = 1, 2 (36) 

The system dynamics are described by, 

( )∑
=

+=
2

1
1 )()()()(

i
iii tutxwt BxAx&  (37) 

where [ ]T4321 )()()()()( txtxtxtxt =x ; 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−

+−+
=

1
2

0111
22

10111
1

/)(0//
0100

/0/)(/)(
0010

amlJFamlFaglm

amlFamMFamglmM
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−
=

1
2

1
1

/)(
0

/
0

amlJ

aml
B ; 

( )

( ) ( ) ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−−

+−+
=

1
2

0212
22

20212

2

/)(0/3/cos/3/cos
2

33
0100

/3/cos0/)(/)(
2

33
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amlJFamlFaglm

amlFamMFamglmM

ππ
π

π
πA , 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−
=

2
2

2
2

/)(
0

/)3/cos(
0

amlJ

aml π
B ; 222

1 ))(( lmmlJmMa −++= , 

2222
2 )3/cos())(( πlmmlJmMa −++= ; 

∑
=

= 2

1
1M

1M
1

))((

))((
)(

1

1

l

i

tx

tx
xw

l

i

μ

μ
.  The membership 

functions are defined as )6/)((7)6/)((71M 11
1
1 1

1
1

11))(( ππμ +−−− +
⎟
⎠
⎞

⎜
⎝
⎛

+
−= txtx ee

tx  and 

))((1))(( 1M1M 1
1

2
1

txtx μμ −= . 

 

Step II) A fuzzy controller with four sampled-data sub-controller is employed to 

handle the inverted pendulum.  The fuzzy controller is given by, 

∑
2

1

)())((=)(
j=

jj ttwtu γxGx , t BγB < t ≤ tBγ+1 B (38) 

 

Step III) Based on Theorem 1, with h = 0.02s, ζ = 2, η = 10P

−5
P, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
0001

1J , 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0
0

2J  and JB3B = 1, we have GB1 B = [243.9049   25.1386   0.3358   31.0842] and GB2 B = 

[691.2348   52.0482   0.7582   42.4703].  To show the effect of the LMI performance 
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conditions, another set of feedback gains is obtained with 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
010000
0010
0001

1J , 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0
0

2J  and JB3 B = 1.  Under these parameters, we have GB1 B = [234.6775   24.9963   

1.9178   31.3144] and G B2 B = [709.4599   54.0132   4.6975   44.6502].  Both of theses two 

controllers are employed to handle the inverted pendulum. 

 

 Fig. 1 shows the system state responses and control signals of the fuzzy control 

system.  It can be seen that both fuzzy controllers with different feedback gains can 

stabilize the nonlinear plant.  The fuzzy controller with 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
010000
0010
0001

1J , which 

places heavier weight on xB3 B(t), offers better system responses in terms of faster settling 

time for x B3 B(t).  Referring to this figure, it can be seen that the control signals are 

continuous during the sampling period due to the grade of the membership is continuous 

changing and there is a jump at the sampling instant in which the control signals of the 

sampled-data linear sub-controllers change.  In this example, the proposed LMI-based 

stability and performance conditions offer a systematic tool to help achieve a stable and 

well-performed fuzzy controller with sampled-data sub-control rules. 

 

V.  CONCLUSION 
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 The stability of the fuzzy control system formed by a nonlinear plant and a fuzzy 

controller with sampled-data sub-control rules has been investigated.  Stability conditions 

in terms of linear matrix inequalities have been derived based on Lyapunov-based 

approach.  LMI-based performance conditions have been derived to guarantee the system 

performance.  With the LMI-based stability and performance conditions, a stable and 

well-performed fuzzy controller with sampled-data sub-control rules can be designed for 

a nonlinear system.  An application example has been given to illustrate the effectiveness 

of the proposed approach. 
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Fig. 1(a).  xB1B(t). 
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Fig. 1(b).  xB2B(t). 
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Fig. 1(c).  xB3B(t). 
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Fig. 1(d).  xB4B(t). 
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Fig. 1(e).  u(t). 

Fig. 1.  System state responses and control signals of the fuzzy control system with 
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