o

UNIVERSITY
OF

JOHANNESBURG

COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION

@creative
commons

Q0C®

o Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

o NonCommercial — You may not use the material for commercial purposes.

o0 ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

How to cite this thesis

Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/
M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved
from: https://ujdigispace.uj.ac.za (Accessed: Date).

http://www.uj.ac.za/
https://ujdigispace.uj.ac.za/

Design and Implementation
of a Prototype

to include security activities
- as part of

Application Systems Design

A Kasselman

RO
GBS

DESIGN AND IMPLEMENTATION

OF A PROTOTYPE
TO INCLUDE SECURITY ACTIVITIES
AS PART OF
APPLICATION SYSTEMS DESIGN
by

ANDRé KASSELMAN

DISSERTATION

submitted in accordance with the requirements for

the degree of |
MAGISTER COMMERCII
in the subject
INFORMATION SYSTEMS
in the
FACULTY OF ECONOMICAL AND MANAGEMENT SCIENCES
at the
RAND AFRIKAANS UNIVERSITY

SUPERVISOR: PROF J H.P. ELOFF
MAY 1995

t9

Financial assistance by the Center for Scientific development (SRC, South Africa) for this research is
hereby acknowledged. Opinions raised and conclusions reached are those of the author and should
not necessarily be attributed to the Center for Scientific development.

Geldelike bystand gelewer deur die Sentrum vir Wetenskapontwikkeling (RGN, S;lid-Aﬁ'ika) vir
hierdie navorsing word hiermee erken. Menings uitgespreek en gevolgtrekkings waartoe geraak is, is
dié van die outeur en moet nie noodwendig aan die Sentrum vir Wetenskapontwikkeling toegeskryf
word nie. '

TITEL ; Ontwerp en Implementering van ‘n Prototipe om
sekuriteitsaktiwiteite in te sluit as deel van

Toe;;assing Stelselsontwerp

OUTEUR André Kasselman
STUDIELEIER Prof. J. H.P. Eloff
GRAAD M. Com.
DEPARTEI\/IENf _ Rekenaametenskap
TAAL Engels

‘sl

OPSOMMING

Die studie het sy oorsprong in die groeiende behoefie aan inligtingstelsels wat as ‘veilig’
beskou kan word. Met die toenemende gebruik van rekenaargesteunde sagteware
ingenieurswese hulpmiddels (‘CASE-tools’) in die ontwerp van toepassingstelsels wvir
kommersiéle gebruik, het die risiko’s wat daar bestaan in terme van inligtingsekuriteit, al hoe

meer prominent geword.

Dit word al hoe belangriker om sekuriteit in ag te neem tydens die analise en ontwerp van ‘n
stelsel, m.a.w. op ‘n logiese vlak, in plaas van om dit op ‘n ad hoc basis by bestaande
toepassingstelsels te probeer voeg. Sekuriteitsontwerp-aktiwiteite behoort op so ‘n logiese vlak
deel te word van stelselanalise en -ontwerpsaktiwiteite dat daar volkome integrasie tussen die

twee vakgebiede sekuriteit en rekenaargesteunde sagteware-ontwerp bereik word.

Die doelwit van die verhandeling is om die teorie te bestudeer vir bestaande benaderings tot dié
integrasie, en dan alle relevante sterkpunte daaruit te haal en dit uit te brei indien nodig, ten
einde ‘n benadering daar te stel wat ten volle implementeerbaar is in die vorm van ‘n prototipe
datavloei-ontwerp hulpmiddel (‘DFD CASE-tool’). Die voorgestelde benadering tot die sekure
analise en ontwerp van ‘n toepassingstelsel of ‘n logiese vlak, wat in Hoofstuk 4 aangebied
word, is ontwerp in samewerking met H.A.S. Booysen en J.H.P. Eloff [Booysen, Kasselman,
Eloff - 1994).

Bestaande rekenaargesteunde sagteware-ontwerp hulpmiddels is deur die outeur bestudeer om
te bepaal wat hul huidige vermoéns is in terme van veral die definiéring van sekuriteit, maar
ook in terme van steun aan die stelselanalis tydens die analise en ontwerps-fases van dic

projeklewensiklus wanneer ‘n toepassingstelsel ontwikkel word.

Sekuriteitsbeginsels word ook daargestel wat nodig sou wees vir die sekure en effektiewe
ontwerp van ‘n toepassingstelsel. Hierdie beginsels word gebruik in die ontwerp van dic
prototipe en geillustreer met voorbeelde. Daar word gepoog om met hierdie studie aan te toon
dat dit prakties moontlik is om sekuriteitsaktiwiteite te integreer met ‘n bestaande metodologie

vir die analise en ontwerp van inligtingstelsels.

SUMMARY

This study has its origin in the growing need for information systems to be classified as
‘secure’. With the increasing use of Computer Aided Software Engineering (CASE) tools in
the design of application systems for commercial use, the risks that exist in terms of

information security have become more prominent.

The importance of considering security during the analysis and design of an information
system, in other words, on a logical level, is increasing daily. Usually security features are
added to existing application systems on an ad hoc basis. Security design activities should
become such an integrated part of systems analysis and desigh activities on a logical level, that
a complete integration of the two fields, security and computer aided software engineering,

can be achieved.

The aim of this dissertation is to study the literature to discover existing approaches to this
integration, and to extract the strengths from them and expand on those strengths in order to
compile an approach that is completely implementable in the form of a prototype data flow
design tool (DFD tool). The proposed approach to the secure analysis and design of an
application system of a logical level, which is presented in Chapter 4, is designed

conjunction with H.A.S. Booysen [Booysen, Kasselman, Eloff - 1994].

Existing CASE-tools have also been studied by the author to determine their current
capabilities, especially in terms of security definition activities, but also in terms of their
support to the systems analyst during the analysis and design phases of the project life c\:ic

when developing a target application system.

Security principles that would be necessary for the secure and effective design of :n
application system are determined. These principles are used in the design of the prototipe
and illustrated with examples The aim of this study is to prove that it is possible to integ:ic
security activities with existing methodologies for analysis and design of information syste=is

in a practical way.

DESIGN AND IMPLEMENTATION OF A PROTOIYPE TO INCLUDE SECURITY
ACTIVITIES AS PART OF APPLICATION SYSTEMS DESIGN

CONTENTS

Contents 6

List of Figures 10
List of Tables 11
Chapter 1 12
Introduction 12
1 Introduction to this study 12
1.1 State of the art situation v 13
1.2 Definitions 13
1.3 Problem statcment 16
1.4 Grey areas to be resolved when attempting a combination of security and CASE-tools 16
1.5 Motivation 18
1.6 Short overview of each chapter 19
Chapter 2 21
Theoretical approaches to the design of a 'secure’ application system 21
2 Introduction 21
2.1 Prescntation of the approaches 21
2.2 Baskenrville 23
2.3 Eckmann 34
2.4 Pernul . 41
2.5 Positioning of The Proposcd Approach 18
2.6 Conclusion S0
Chapter 3 S1
A critical review of some CASE-tools : Si

3 Introduction S

O

3.1 SILVERRUN 51
3.2 Objcct Modeler 58
3.3 Conclusion 59
Chapter 4 60
Proposed Approach to Secure Design: Rules and principles to be considered 60
4 Introduction 60
4.1 Rulcs for effective Data flow design 61
4.2 Adopted concepts from the theory 62
4.3 Proposed Approach: Security Activitics of EASGE 67
4.4 General Advantages of the Proposed Approach 78
4.5 Conclusion 78
Chapter 5 80
Prototype implementation: the DFDSEC tool 80
5 Introduction 80
S.1 Purpose of the Prototype. 81
5.2 Goals of the prototype 82
5.3 Security Stages of DFDSEC 84
5.4 Example with differcnt representations (SILVERRUN, OMD and DFDSEC). 84
5.5 Description of DFDSEC in terms of Sccurity Activitics and Recommendations. 83
5.6 Conclusion 9¢
Chapter 6 98
Design and Implementation of the Prototype. 98
6 Introduction on
6.1 Requirements Specification _ o
6.2 Requirements Design LY
6.3 Some implementation details) 103
6.4 Conclusion 103
Chapter 7 103

User manual for DFDSEC 10=

7 Introduction and structure of this user manual 108

7.1 Installation 106
7.2 Activating the tool and System requircments 106
7.3 Drawing a DFD with DFDSEC: Gencral Information and Tools 107
7.4 The Menu Options 109
7.5 Error message and information mcssage windows I3
7.6 Input Windows for Entering Information 113
7.7 Defining a Sanitiser Object 114
7.8 Conclusion 118
Chapter 8 116
Future Prospects and Conclusion 116
8 Introduction 116
8.1 General advantages 116
8.2 Implcmentation prospects . 117
8.3 Object-oriented implementation of a prototype ' 118
8.4 Analysing Control Flow in DFDs. 118
8.5 Analysing Bigger DFDs. 119
8.6 Possible research directions 120
Chapter 9 121
Bibliography 121
Annexure A 124
Security Agorithms Implemented in DFDSEC 124
Annexure B _ 129
Pascal Source Code for DFDSEC 129
Annexure C 164
List of Abbreviations ' 164

Annexure D 166

Article by Booysen, Kasselman and Eloff 166

List of Figures

Figure 1.1: Information Systems Security

Figure 1.2: Five stages to a secure application system (ASSDM)
Figure 2.1: Automated Software Generation Environment (ASGE)
Figure 2.2: ASGE and Baskerville’s Approach

Figure 2.3: Indirect information flow

Figure 2.4: Ina Jo specification example

Figure 2.5: Example of a security-extended Ina Jo specification.
Figure 2.6: Ina Flow output for the system above

Figure 2.7: ASGE and Eckmann’s Approach

Figure 2.8: Classifying System Functions [Pernul - 1994b]

Figure 2.9: ASGE and Pemul’s Approach

Figure 2.10: Positioning of the Proposed Approach’s Prototype Tool
Figure 3.1: Syntax rules verified by Silverrun CASE-tool

Figure 3.2: Object diagram of Objects ‘Order’ and Ttem-In-Order'
Figure 4.1: Extended Automated Sofiware Generation Environment
Figure 4.2: Design phases adopted from Baskerville

Figure 4.3: Risks adopled from Baskerville

Figure 4.4: The Extended Automated Soliware Generation Environment
Figure 4.5: Information Flow Types

Figure 4.6: Example DFD with indicated access types to databases
Figure 4.7: Example Compound Data Flow Diagram

Figure 5.1: Domain of the Prototype in the Extended Automated Software Generation Linvironment
Figure 5.2: Indirect Information Flow between Data Stores and Processes.
Figure 5.3: Silverrun Representation of the Example

Figure 5.4: OMD Representation of the Example

Figure 5.5: DFDSEC Representation of the Example

Figure 5.6: DFDSEC Initial Screen

Figure 5.7: Objects in a DFD (Gane and Sarson representation)
Figure 5.8: Example Data Flow Diagram as created on DFDSEC
Figure 5.9: Change of Information Flow Type (Access Type)

Figure 5.10: Allocation of Security Classes to Objects

Figure 5.11: Pointing out Invalid Information Flow Types

Figure 5.12: Inserting a Sanitiser Object

Figure 6.1: The Main Goal of DFDSEC

Figure 6.2: The Nodes Connecting Objects on the DFD

Figure 6.3: Extension of "Figure-Data™ in Figure 6.2

Figure 6.4: Record of Data Stored for Each Object/DFD clement
Figure 7.1: DFDSEC Main Screen

Figure 7.2: Inserting a Sanitiser Object on the DFD

15

22
32
33
37
38
39
40
44
49
49
53
56
63
63

6Y

10

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4;
Table 5.5:
Table 5.6:
Table 7.1:

List of Tables

Three Generations of Systems Development and Security Development Mcthods
Generic Second-Gencration Security Projcct Stages

Security design phases according to Baskerville

Type of risks to be considered for different design levcls.

Logical Controls Design data dictionary entries with sccurity controls
Projects

Syntax rules which can be verified by CASE-tools {Ganc - 1990}
Proposed Security Phases in the EASGE

Example Object Matrix

Example Revised Object Matrix

Possible Compound Access combinatibns

Adjusted Revised Object Matrix

Binary Access Rules

Object Matrix for thc Example

Revised Object Matrix for the Example

Security Reviscd Object Matrix for the Example

Reconstructed Object Matrix for the Example

Reconstructed Revised Object Matrix for the Examplc

Reconstructed Security Revised Object Matrix for the Example

System requirements and recommended specifications to run DFDSEC

68

Chapter 1

Introduction

Introduction to this study

Security is one of the fields in computer science that is being researched with increased
intensity. This is due to the fact that systems need to be more secure against unauthorised

access, since the level of use of computers is increasing in the business world.

Imagine the following scenario: An idea or need for an application is conceived, the user
requirements are assimilated, the system is analysed, designed, implemented and tested. It is
set up in the production environment of the business, and used by people. Months after being
put into the production environment, some vital, secure data is discovered by the wrong
people (disclosed), because of one or more loopholes in the logic of the application which was
overlooked by the systems analysts, designers and programmers. The reason for this is that
security features were added to the application as a separate activity from the progfamming
and testing activities. Although the security features have been tested extensively ‘as well,

those tests were still not rigorous enough to pick up ALL the security loopholes in the system.

This situation, which is not very uncommon, could have been avoided had security features
been an .integral part of the systems analysis and design. If this was the case, security
mechanisms would have been a much more integral part of the normal program logic
mechanisms, and the resulting security features and strengths in the application could have

been sufficient to prevent breaches such as the one described in the scenario above.

Parallel with the growth in business computing, there has been an increase in the number of
programs created with CASE-tools. CASE (Computer Aided Software Engineering) is also a
field in computer science which is expanding daily, so that currently almost all new business
software is created by system analysts using CASE-tools. This situation has led to a need for

some sort of integration between computer security and computer aided software engineering.

12

1.1

1.2

State of the art situation

After a literature overview, the author has found that there is a general absence of secunty
enforcement facilities in mainstream CASE-tools used in business environments. The main
reasons for this, according to Baskerville, are the following:
(i) Loss of performance of the final application with the addition of security features;
(i1)) Loss of flexibility because of restrictions‘ and confinements on the target system's
behaviour;
(i) Higher costs in system creation to account for:
- analysis of the security requirements;
- design and implementation of the security specifications;

- maintenance of security properties in the system [Baskerville - 1988].

Charles Cresson Wood [Wood - 1990], states that computer systems designers and analysts
are usually very aware of and concerned about information systems security, but that they still
don't incorporate control measures into the systems they create and maintain. This is because
they don't have a set of principles of secure information systems design that they can adhere to
when selecting or creating control measures. This view supports the finding that secunty

design is not part of the process of designing information systems.

Most of the mainstream CASE-tools in use in the commercial world today don't have any
facilities. for ensuring information flow security in the models and systems created. However,
the author has tested one CASE-tool that comes close to facilitating a secure information

system, but only in the area of access control. Chapter 3 investigates this CASE-tool in detail.

Definitions

Some definitions are presented now which will be useful when reading this dissertation. They

represent important concepts in the study of CASE-tools and information systems security.

a. Software Engineering

The disciplined application of engineering, scientific, and mathematical principles and

methods in the economical production of quality software {Sodhi - 1991].

b. Computer Aided Software Engineering (CASE)

The application of tools in the whole of the software development process [Vliet - 1993].

(i) Upper-CASE
Tool support during the analysis/design phases of CASE [Vliet - 1993].
(ii) Lower-CASE
Tool support during the implementati.on/test phases of CASE [Vliet - 1993].

c. Data Flow Diagrams (DFDs)

Data flow diagrams are used to illustrate data flow between data entities in a data flow
design. In its simplest form it is a functional decomposition with respect to the flow of data.
This design technique on'ginate& with Yourdon and Constantine [Yourdon - 1975] and is
also known as composite design or structured design. In a DFD, four types of data entities

are distinguished [Vliet - 1993]:

e External entities are the source or destination of a transaction. These entities are
located outside the domain éonsidered in the DFD. | |

e Processes transforms the data in some way.

e Data flows occurs between processes, external entities and data stores. A data flow is
indicated by an arrow. Data flows are paths along which data structures travel.

e Data stores are where data structures are stored until needed. They should be placed

between processes [Gane - 1990}

- Note: For the remainder of this dissertation, external entities, processes and data stores

will be referred to as objects. A data flow is used to connect the objects.
d. Information system Security.

It 1s necessary to distinguish information system security from normal computer security

in order to implement it as an extension to existing CASE methodologies.

14

According to Baskerville [Baskerville - 1988], computer security can be defined as
identifying threat concepts and the physical and logical techniques applied in the protection
of the electronic computer and communication systems; while information security can be
defined as the broader view, incorporating systems analysis and design methods, information
systems, managerial issues, and social and ethical problems. Thus, computer security is

viewed by Baskerville [Baskerville - 1993] as a component of information systems security.

Booysen and Eloff further defines information security as consisting of the following two
major components: technological security and applications information security
[Booysen, Eloff - 1993]. The two views are summarised in Figure 1.1 in order to obtain a

definition for information systems security to be used throughout this dissertation.

applications
information security

hnological security

- logical aspects
.- physical aspects

(Baskerville) (Booyscn/Eloff)

Figure 1.1: Information Systems Security

Technological security addresses both logical and physical aspects. Physical security is
defined as the action that prevents physical harm to the resources of a computer sysiem.
while logical security is the protection of data and access to and between progrems
[Booysen, Eloff - 1993]. The security overhead programs 7op Secrer and RACHK whick. are
used extensively on most mainframe systems in the world, are good examples of logica:
security in action, allowing the definition of access lists to application programs, as weil as
the definition of all the possible users or user groups which must have access to those

programs.

1.3

1.4

Applications information security addresses the security issues surrounding the
development of new applications systems as well as the maintenance of existing application

systems in terms of security features. This dissertation will focus on this area.

Note: To simplify the terminology, applications information security will hereafter be

referred to as information security.

Problem statement

The main problem in information security is that in the specification and design of an
information application system, the addition of security features to the system is postponed
until one of the following stages in the traditional waterfall-model is reached [Baskerville -
1988):

e the implementation stage, or

e the maintenance stage, when the system has already been installed and put to use.

The second case (adding security features during the maintenance stage) is even worse than
the first, because although both approaches involve a large measure of risk, the second one
usually amounts to considerable change to the original system design, and also causes

unrealistic system expectations {Booysen, Eloff - 1993].

Security features should be added to the system during the high-level design of the system, in

other words during the Upper-CASE design phase, not the Lower-CASE design phase.

Grey areas to be resolved when attempting a combination of security and CASE-tools

When attempting to combine computer security and CASE, several important questions must
be kept in mind for which answers must be found. The author attempts to answer the

following important questions using the literature and own experience with CASE-tools:

16

a.

c.

What do security requirements for commercial information systems look like?

In other words, what requirements should an information system satisfy in order to be
classified as 'secure'? This issue is covered in Chapter 4, which presents some rules and
principles for design to ensure the general security and consistency in the developed
system. It also presents the framework for the design of the security activities of the

prototype.

Why are there virtually no CASE-tools on the market that support information

security in terms of such security requirements?

Section 1.1 has stated the main reasons for this question. Chapter 2 looks at previous
approaches in the research for the design of a 'secure' application system. Chapter 3 also

reviews two commercial CASE-tools that the author has tested.

When are security features normally added to an application system? When should

such features be added to a system?

Section 1.4 examined these issues shortly. Baskerville proposes the addition of security
features to an application system during analysis and design. The proposed method

presented in Chapter 4 also propagates this viewpoint.

How .can the existing CASE environment be adapted to incorporate security
definition and enforcement facilities?

Section 2.2 investigates the positioning of security activities within a development
environment. The suggested security activities of the three approaches from literature are

also positioned in this development environment to facilitate easier comparison.

Chapter 4 describes the proposed approach developed by the author of this dissertation for

expanding the development environment to include security facilities.

17

1.5

What kind of rules can be defined in terms of objects on a DFD, information flow

between them, and their security properties? Which of these rules can be automated?

Chapter 2 investigates the work done in the field of security. Chapter 4 specifies security
classification for objects on a DFD in order to make security analysis possible, and lists
some requirements for a secure system. Binary and compound access rules between DFD

objects are defined, which are also automated in the prototype.

What are the prospects of integrating security capabilities into a commercial CASE

tool?

Chapter 5 covers the detail of the implementation of the prototype, looking at its purpose,
some DFD examples, security activities and recommendations done by it. A critical

evaluation is given in Chapter 8, describing the possible commercial use of such a tool.

Motivation

The goal in the research done by Booysen and Eloff [Booysen, Eloff - 1993] was to propose a
methodology for integrating application information security with CASE. The propbsed
methodology, called ASSDM (Automated Secure System Development Methodology) defined
five stages to reach a secure application system. These stages are listed in Figure 1.2 on the

following page.

ASSDM was just a theoretical idea. At a later stage, together with the author of this
dissertation, they developed a revised model, the EASGE model (Extended Automated

Software Generation Environment) [Booysen, Eloff, Kasselman - 1994] which forms the core

'of the proposed approach presented in Chapter 4.

-~

A model is of little practical use if it cannot be implemented. The possibilities in terms of
implementation of a model can be seen as an indication of its present usefulness. If
implementation of the EASGE model is possible, then there must be merits to its

implementation in the real world of CASE today.

18

1.6

Phase 1: User needs

Phase 2: Network of functions
Phase 3: Information flow controller
Phase 4: Information flow enforcer

Phase 5: A secure application system

Figure 1.2: Five stages to a secure application system (ASSDM)

The author of this dissertation has developed a prototype tool to demonstrate the possibilities
brought to light by EASGE. This prototype is a partiai DFD tool that a systems analyst can
use for drawing DFDs which can be analysed by it. It is partial because it is not a fully fledged
CASE package, but a demonstration tool. The prototype will examine the data flow occurring
on the diagram and make some suggestions to the analyst on improving the security of this

data flow on the diagram.

Short overview of each chapter

In Chapter 2 theoretical approaches to the design of 'secure' application systems will be
presented. The approaches of Baskerville, Austria, and Eckmann will be discussed [Baskerville
- 1993] [Eckmann - 1994] [Pernul - 1994]. The proposed methodology, EASGE, developed
by Booysen, Eloff and the author [Booysen, Kasselman, Eloff, - 1994] is presented in Chapter
4.

In Chapter 3 two commercial CASE-tools will be critically reviewed in terms of design

assistance to the user and security definition and enforcement capabilities.

In Chapter 4 some rules and principles will be defined that should be present in a CASE-tool
in order to design a 'secure' application system. The design framework of the prototype is also
presented in this chapter in terms of such rules, because it uses them for analysing the secun:y

aspects of a DFD.

Chapter 5 presents an example that is analysed by the prototype. Aspects discussed in this
chapter include the purpose of the prototype, security activities that it performs, possible

recommendations that it suggests, and several examples of DFDs analysed by it.
Chapter 6 covers some details on the design and implementation of the prototype.

Chapter 7 presents a user manual for the prototype, explaining basic features and how to

operate the tool.

Chapter 8 investigates the future prospects of information security in the design of application
systems, evaluating the prototype in terms of the implementation feasibility of its security

activities in the real world of CASE today, and Chapter 9 concludes the dissertation.

Annexure A lists the security algorithms used in the prototype and Annexure B gives a listing
of all the Pascal source code for the prototype.

Annexure C presents the article by Booysen, Eloff and the author [Booysen, Kasselman, Eloff
- 1994]. |

2.1

Chapter 2

Theoretical approaches to the design of a 'secure’ application system

Introduction®

There is a gap in application software development. What is this gap? Security. The smallest
lack of security provides a possible loophole for the computer hacker who could possibly be a

thief or a terrorist.

There are, virtually no commercial packages available on the market that support the analysis
and design of secure applicatioh systems, and this lack of security has been identified and
analysed to some extent by, among others, Baskerville [Baskerville - 1993], Pernul [Pernul -
1994] and Eckmann [Eckmann - 1994]. In their research and development, they have tried 10
incorporate the field of information security into the field of general information systems (IS)
development. Their efforts have led to the development of approaches that attempt to integraze

the two fields.

These approaches are described and critically discussed in this chapter. In Section 2.5, a
diagram is presented which illustrates the position of the proposed approach in terms of the
three approaches from the literature. The diagram also illustrates the role of the prototype DFD
tool that the author has developed.

The proposed approach is presented in detail in Chapter 4. This approach by Booyss.
Kasselman and Eloff [Booysen, Kasselman, Eloff - 1994] adopts some of the elements of t1e
other three approaches in terms of security, and expands them to a level that can e

computerised and incorporated into an existing CASE-tool.

Presentation of the approaches

During development, an application goes through different stages in its life cycle, for exam;le

analysis, design, implementation and testing. Booysen proposes an Automated Softwere

Generation Environment (ASGE) that denotes CASE-tools which support the entire life cycle
[Booysen, Kasselman, Eloff - 1994].

Figure 2.1 is a diagram representing an ASGE. The user requirements serve as input to the
ASGE and the final application system is the output. Diagrams are used to describe the user
requirements in a format that can be readily understood by both users and systems designers.
They might be Data Flow Diagrams, Entity Attribute Relationship diagrams, or other design

diagrams.

Revise

; User

Requirements
(input)

| Diagrams 4

Design

Generate
database tables

L

’I Generate code

v

*l Load databasc

]

Application systcm
(output)

Figure 2.1: Automated Software Generation Environment (ASGE)

The diagrams are stored in the repository of the CASE-tool which was used to generate them.
They evolve during the analysis and design stages, and are normally used during the

implementation of the application logic. During this implementation stage, program code is

t9
9

generated for the application and database tables are created on a secondary storage medium

The tables are then populated with data. After that, the application system is ready for testing,

Note: This Environment will serve as a basis for comparing the different approaches
presented in this chapter. Each approach will be diagrammatically represented similar
to the ASGE, to facilitate easier comparison. Wherever an approach suggests any

security activities, those will also be indicated on the relevant ASGE diagram.

Note: This diagram is not presented as a proposed systems development life cycle, but is
used merely as a skeleton of systems design to which security activities can be

attached during the discussion of the various approaches.

2.2 Baskerville

- 2.2.1 Analysis of the evolution of security analysis and design methods

In ‘his paper, Baskerville first gives an analytical description of the evolution of IS security
analysis and design methods [Baskerville - 1993]. He distinguishes three generations ot
systems development and security development methods and compares them. Table 2.1
summarises the three generations in terms of primary features and gives key examples o:
methods and tools available in each generation. A short discussion of each generatior

follows.

2.2.1.a First Generation: Checklist Methods

Checklist methods are still used in some areas of information systems developmen:.
‘especially in the personal computer marketplace, where independent systems analys:s :s
often not cost-effective. Sales representatives configure a combination of avaizbis
hardware and software to form a solution to the customer’s needs or problems. A cos:-
benefit analysis is needed to ensure control over the total cost. Because this metheZ c2
systems “development” is still used today, there is no end date to this generation ir. (o2

table.

Checklist security methods generally begin the design of security with an examination

of all known risks and controls, instead of a view of what risks are involved in the case

at hand. A list is provided to the analyst, containing every conceivable control that can

be implemented in an application system. He first checks to see whether or not the

control has been implemented already. If it hasn’t been found, he analyses the necessity

for the control, and if required, implements it.

Generation of Principle Objective Primary Systems Security
System Features Devclopment Development
Development Methods and Typical - and Typical
Methods Tools Tools
First Gencration: The selection of the Mapping of Vendor's technical Security
Checklist various solution limited solutions salcs procedures and checklists and
Methods components, {0 onto the literature risk analysis
(From 1972) create a sum solution | information

o problem
Second- The partitioning of A partitioned Top-down CRAMM?*,
Generation: complex systems complex solution enginecring. rapid BDSS*, control
Mechanistic solutions: identify that matches prototyping, system point and
Enginecring and solve each functional and logic flowcharts eprsurc analysis
Methods detailed functional . requircments matrices.
(From 1981) requirement computer

qucstionnaires

Third- The abstraction of Highly abstracted Structured analysis. Logical Controls
Genceration: the problem and design expressing data modclling. Design. data flow
Logical solution space: both the problem information diagrams.
Transformation create a logical and solution space | engincering , data SSADM-
al Mcthods model of the flow and cntity- CRAMM.

(From 1988)

problem and solution

attribute rclationship

diagrams,

Key: CRAMM = CCTA's Risk Analysis and Management Methodology

CCTA = UK Government Central Computer and Tclecommunications Agency

BDSS = Baycsian Dccision Support System

SSADM-CRAMM = CCTA’s Structured Systems Analysis and Design Mcthod interfacing with

CRAMM

Table 2.1: Three Generations of Systems Development and Security Development Methods

24

2.2.1.b Second Generation: Mechanistic Engineering Methods

These methods aim at finding an ideal system solution by breaking up the problem into
sub-problems which can be analysed in detail. Solution elements can then be integrated

to form a coherent solution.

Engineering concepts form the core of these methods. The process of “building™ an
application system is broken down into iogical steps which are performed in a specific
sequence. The classical “waterfall” or “bottom-up” approach forms the basic project
life cycle which is the integral substance of many current design methodologies. Other
examples of engineering-based systems development methods are top-down

engineering, rapid prototyping, and system and logic flowcharts.

Stage 1: Identify and evaluate system assets.
Stage 2: Identify and evaluate threats

Stage 3: Identify possible exposures

Stage 4: Risk analysis

Stage 5: Prioritise controls for implementation

Stage 6: Implement and maintain controls

Table 2.2: Generic Second-Generation Security Project Stages

The engineering perspective of the second generation causes security anelysis
techniques to focus on physical specifications such as control points and acces:
procedures. An existing mechanistic engineering life cycle is the security waterfali thz:

consists of the stages listed in Table 2.2 on the previous page.

Concerning security development, there are various examples of fully comp.ie:-
supported security analysis and design methods which provide an extensive database o7
possible threats, assets, and controls, from which the analyst selects a subset durinz the
analysis and design phases of the application’s life cycle. Three examples wil te

described briefly.

e CRAMM (CCTA'’s Risk Analysis and Management Methodology) [Farquhar
- 1991] is a method which was adopted by the UK Government Central
Computer and Telecommunications Agency (CCTA) as a government-wide
standard to risk analysis and security management. This method uses data on
asset groups, risk levels, existing controls and an internal database of 900
possible counter-measures to compile a list of additional controls that can be
added. It follows all of the generic stages in second generation security

methods listed in Table 2.2.

e BDSS (The Bayesian Decision Support System) [Ozier - 1989] is a complete
computer-supported information security design method that has its roots
firmly fixed in quantitative risk analysis techniques. Its output has the
following reports: an executive summary- which focuses on ‘the design process
vulnerabilities, decision support in terms of foregoing or accepting each
security control, and a technical analysis which provides detailed
documentation from the security analysis and design project. Each report

contains relevant graphs to support the findings of the method.

e RISKPAC is a method which utilises questionnaires to deductively compile
the security controls necessary for the application. Security designers, system
professionals and information system users can all give their input to the
program. The questionnaire employs linguistic variables, and in this way
enables qualitative user evaluations. The final output is also of a qualitative

nature [Computer Security Consultants - 1988].

26

2.2.1.c Third Generation: Logical Transformational Methods

The main objective of these methods is to abstract the problem space and the solution
space, in order to distantiate analysis and design concerns from physical limitations.
This distinguishes the methods from first and second generation methods, which start

the analysis by looking at the physical limitations.

The most significant challenge to' designers in the third generation is to select the
correct attributes to be abstracted in the model. Friedman describes this phase as one in
which the primary criterion for a successful system becomes “producing the right

system, rather than producing the system right” [Friedman - 1989].

Baskerville [Baskerville - 1993] classifies the third generation models into two
categories: '
e Logical models are used mostly to express system needs and behaviour

in a functional or data-oriented sense.

¢ Transformational models express organisational needs instead of
systems needs; they look beyond the functional requirements and focus

on problem formulation, job satisfaction, and worker autonomy.

Three distinguishing characteristics of third-geﬁeration security methods are defined by
Baskerville [Baskerville - 1993]. Firstly, the emphasis will be on producing the right
types of security for the system, not just implementing the security correctly. Secondiy.
the security design method will either be characterised by logical models or
transformational models (or both). Thirdly, cost-benefit risk analysis will be ce-

emphasised as abstract models are increasingly used.

The work in the third generation of security methods is still formative. However, there
a‘re two methods that have been published that approach the criteria described abo-e.
the CCTA SSADM-CRAMM interface and the Logical Controls Design methed.
The CCTA which has developed the second generation CRAMM security method, was

also responsible for the UK Government standard called ‘Structured Systems Analysis

and Design Method’ (SSADM). They have extended the CRAMM method into an
overall systems development process by developing an interface between CRAMM and
SSADM. CRAMM is the only second-generation method which has been transformed
into a total information systems development method which allows for security
definition activities. The SSADM-CRAMM interface i1s a unique combination of

second generation security design and a third generation systems development method.

The disadvantage of this combination is that, in order to produce recommended
security risk countermeasures that can be compared, broad assumptions must be made
about the physical assets that can be expected for the target application system. This
means that CRAMM can only be used during the logical modelling phases of SSADM

if the systems designers create an assumed physical model.

The Logical Controls Design approach is Baskerville's own approach to secure
information system analysis and design. It builds on the Yourdon/De Marco
methodology to facilitate the addition of security features to information systems
[Baskerville - 1988]. It focuses the security design process on the software and work
procedures that access and manipulate information, in other words, awéy from
hardware aspects. This focus shift emphasises logical controls that can endure longer

than physical controls in an organisation.

Baskerville [Baskerville - 1993] notes that the people responsible for researching
systems development methods seem to view security as a separate issue from analysis
and design. It was noted in Section 1.4 that security features are normally added to an

application system on an ad hoc basis, if necessary.

It is suggested by him that the best approach to the development of a security analysis
and design methodology would be to nest it as a component part of an existing,
established, successful overall information systems analysis and design methodology
[Baskerville - 1988]. This existing methodology points to the Upper-CASE
environment as defined in Section 1.3, because it focuses on the analysis and design

phases of information systems development, i.e. on the logical development activities.

28

Security definition features should be present on this level. This means that logical
security processes should be added to an application system during the Upper-CASE
phases in the life cycle, in order to become an integral part of the eventual application

system.

He also suggests that the availability of an integrated security design methodology
would encourage the increased use of such a methodology as an application system
design tool, with important implications for the security and integrity of resulting

information systems in general.

2.2.2 Baskerville's suggested security design methodology (Logical Controls Design)

Baskerville [Baskerville - 1988] expands the methodology of Yourdon/De Marco to include

security tools in the following way:

First of all he identifies five security design phases as listed in-Table 2.3:

Phase One: Identify entities
Phase Two: Identify risks
Phase Three: Identify controls

Phase Four: Evaluate controls

Phase Five: Implement

Table 2.3: Security design phases according to Baskerville

Phase One is where the analyst identifies the important software entities to be implementec in
“the application system. Phase Two is where risks are identified, such as disclosure or
modification of data. During Phase Three, controls are created to protect data against the
nisks. Phase Four involves evaluating the controls in terms of implementability and cost zné

Phase Five concerns the implementation of the system.

Baskerville then argues that Phase One, identify entities, is a natural activity of structured
specification, and Phases Four and Five, evaluate and implement, are not structured design

considerations since these phases involve feasibility and physical implementation.

His conclusion is that only Phases Two and Three, identify risks and identify controls, need
to be added to an existing methodology such as the one of Yourdon/De Marco. Since the
specification of a DFD occurs on a logical level instead of a physical level, one only needs to
consider logical risks when attempting to extend this logical methodology. Table 2.4

illustrates these levels. The risks are described in the following section.

A DFD is also the ideal starting point for analysing and designing security features for a target
application system, since it represents the high-level view that the software engineer and the

end user have of the system under development.

Design scope Activity Risks to be considered
Physical design Consider physical Unauthorised .entry to computer room.
' risks -
Logical design Consider logical Unauthorised modification, deletion or
risks disclosure of data in an application system.

2.2.3

Table 2.4: Type of risks to be considered for different design levels.

Baskerville's method focuses on software instead of hardware

The Logical Controls Design method focuses the process of security design away from the
hardware to the software and work procedures that access and manipulate information. This is

an important shift in focus, because the focus is now set on logical controls that should stand

“the test of time much better than physical controls.

The lack of physical (hardware related) aspects in the logical model have the effect that the
type of risks to be concerned about in the model is limited to /ogical risks. Baskerville
identifies three classes of logical risks which can be present in such a model: destruction,
modification, or disclosure of information to unauthorised users or entities. The destruction

risk signifies the risk of data being deleted, either by intent or by accident. The modification

30

risk signifies the risk of data being altered without authorisation, and the disclosure risk

signifies the risk of data being made available to unauthorised people.

The Logical Controls Design method makes provision for controls as well. A control is
inserted on the overall systems logical model in the form of a control process with possible

control data. In this way, the logical security model is part of the logical systems model.

For example, if we have a data flow Verified Timecharts in a data dictionary, the three risks
modification, disclosure and destruction have to be addressed. The analyst can add controls to
the data dictionary, like those in the example entry into the dictionary represented by Table
25.

For completeness of the set of security controls, the method adds cross-references in each
data dictionary entry. A cross-reference takes the form of a threat class together with the
logical process that contains the control for that threat class. For example, in the example data
dictionary entry below the risks together with their control processes are listed for the data
flow Verified Timecharis. The exact structures of the security process elements are also
documented, just like any normal process. This results in the security control processes being
an element in the overall data flow diagram in the same way and on the same level as normal

systems processes.

For each process in the model, there are up to three relevant control processes to prevent zny

- of the three risks from realising.

Data Flow Name: Verified Timecharts
Composition: Timecard-Header-Record

* (Timecard-Record)

* Timecard-Hash-Record
Modification Control: Process 2.2 (Print Paycheques)
Destruction Control: Process 1.3 (Transcribe Timecards)

Disclosure Control: Process 2.1 (Sort Timecards)

Table 2.5: Logical Controls Design data dictionary entries with security controls

[y

2.2.4 Graphical positioning of Baskerville's method in the ASGE

The additions of Baskerville are shown on the diagram (Figure 2.2). The security stages
'Identify risks' and 'Identify Controls' are added to the normal ASGE.

Identify risks
Identify controls

A
Load database B
TN

b

ki

Figure 2.2: ASGE and Baskerville’s Approach

2.2.5 Critical discussion of Baskerville's approach

‘The Logical Controls Design method is distinguished from the CCTA SSADM-CRAMM
method described in Section 2.1.1 by the fact that security design activities are raised to the

same level as application design activities, i.e. a logical level instead of a physical level.

The advantages of the Logical Controls Design method are that security design features are
integrated with system design activities on the Upper-CASE level (analysis and design). This

performance is accomplished by Baskerville through the addition of detailed security controls

32

to the system design. The analyst gets a logical view of the security design that isn't limited by
any physical considerations. The security control processes are analysed and designed on the
same level as normal application processes and documented in the same way. Security controls
are linked to the processes that use them and cross-referenced in a proper way, in order to

ease their implementation during the implementation phase of the application.

Disadvantages are that, as a third generation method, this approach is only formative.
Furthermore, although it checks for breaches of security during direct information flow
between entities in the form of the three risks described in Section 2.2.2 being breached, it
doesn't check for the three risks in the situations where indirect information flow occurs. For
examplé; as shown in Figure 2.3, if we have the situation where information flows from Object
A to Object B, as well as from Object B to Object C, it implies that information is also flowing
indirectly from Object A to Object C. This kind of situation isn't addressed by the Logical
Controls Design method. '

An implementation could analyse such indirect flows and indicate possible materialisation of
the above-mentioned risks. For example, the disclosure-risk could cause harm to the
confidentiality of information in a database when Top Secret-classified data is allowed to flow

to Confidential-classified Objects.

Key: 1= Direct information flows

2 = Indirect information flow

Figure 2.3: Indirect information flow

Although the approach of Baskerville is relatively formal, many aspects of it are
implementable. The proposed approach that is presented in Chapter 4 adopts some concepts

from Baskerville’s approach. The two design phases Identify Risks and Identify Controls are

33

incorporated into the proposed approach. The risks that are addressed by it include the three
classes of logical risk defined by Baskerville (i.e. disclosure, modification and destruction). It

facilitates the addition of controls on a logical analysis level, similar to Baskerville’s approach.

2.3 Eckmann

2.3.1 Eckmann’s approach (Formal flows)

In his paper on automated information flow analysis, Eckmann discusses flow tools that
analyse covert information flow in formal specification languages [Eckmann - 1994]
Informally, the concept “covert information flow” denotes a hidden information flow or an
information flow which are difficult to detect manually, i.e. without using information flow
analysis tools. Also informally, the term “security label” as used by Eckmann is a security
classification that is assigned to a state component in the formal specification. For example, 2

state component A can be assigned a security label “high-level” or “low-level”.

Although flow tools automate much of the work of analysing covert channels for information
flow, existing flow tools typically report large numbers of formal flows. Eckmann [Eckmann -
1994] defines a formal flow as a flow that was found in the specification, but is not in the
system being specified. In other Words, we can see it as a flow that was identified as an
indirect or covert flow not originally specified. Such flows must then be proved to be only
formal (due to the specification), or they must be treated as real flows and consequentls
proved to be secure as well.

Eckmann states that an important goal for flow tool builders is to reduce the number c¢7
reported formal flows. His paper examines the causes of formal flows and describes =
technique for eliminating many of them, which results in automated flow analysis whica 2

practically more useful to the analyst.

Using flow tools, application systems can be analysed in terms of security, formally speciied
and an attempt can be made to prove security using automated flow analysis. Covert charneis

for information flow can then be exposed to the analysis team for scrutinisation. Tools used b=

23.2

233

Eckmann are /na Jo [Scheid, Holtsbers - 1992] as formal specification language and /na Flow

[Eckmann, Cowal - 1992] as flow analysis tool.

Eckmann describes two security policies as defined by Fine [Fine - 1989]: the ft-policy (flow
tool policy) and the ni-policy (non-interference policy). The ft-policy is a policy enforced by
certain flow tools. The policy requires that each farget’s new and old security labels must be
higher than the old label of each of its sources. A target is any state component of which the
value or label changes, and a source is anything that affects the new value or new label of a
target. The ni-policy requires that “low"-classed subjects do not see any change in their
environment as a result of actions taken by "high"-classed subjects. This is what is meant by

non-interference (ni).

Eckmann's extended ft-policy

Fine showed that many formal flows are the result of flow tools enforcing a security policy
that is too strict [Fine - 1989]). Eckmann proceeds to extend the fi-policy, describing a
technique for eliminating the unnecessary formal flows identified by the policy. He also
presents a way of implementing his extended ft-policy in flow tools. The presented technique
allows the specification writer to specify a security policy together with the functional
specification. This is accomplished by assigning security labels to state variables and
transforms in the formal specification. The specification writer also suggests security levels for
unclear formulas, which the tool checks and uses. Eckmann calls a suggested security level an
opaque definition, and defines it as a hint given by the specification writer to the flow tool,

suggesting semantic information that might be useful in the flow analysis [Eckmann - 1990].

Example of Eckmann’s extended policy

Firstly, an example system from Eckmann’s work is presented. This is called the AB system.
Secondly, an Ina Jo formal specification of the system is given. Thirdly, the Ina Jo
specification 1s extended to specify a security policy. Lastly, the output of the Ina Flow

security checking tool is presented for the system.

35

2.3.3.a System definition
The AB system has two state components, A and B. The system contains read and write
operations for integer values, with the following behaviours:

® When a high-level subject writes a value v, the following assignments are

performed: B := B - A + v
A :=v
® When a high-level subject reads a value, the current value of A is returned.

® When a low-level subject writes a value v, the following assignment is performed:
B:=A+v

® When a low-level subject reads a value, the current value of B ~ A is returned.

The AB system is defined to be secure if and only if no high-level information can ever be
observed by a low-level subject. The system must therefore be scrutinised to determine

whether there is any information flow from a high level subject to a low-level subject.

2.3.3.b Ina Jo specification

The Ina Jo formal specification for the AB system is represented in Figure 2.4 [Eckmann -
1994].

2.3.3.c Extended Ina Jo specification’

To speéify the system's security policy, labels are assigned to the state variables and
transforms. An example of this is given in Figure 2.5. In the figure, vertical lines on the

left-hand side of the text means that changes have been made here from the original formal

specification.

specification AB

level top
variable A, B: integer

variable lo_return, hi_return: integer

transform hi_write (v: integer)
effect N"B =B-A+v
& N'A=v

transform hi_read
effect N"hi_retun=A

transform lo_write (v: integer)

effect N'\B=A+v

transform lo_read

effect N."lo__retum =B-A

end top ~ |
end AB

Figure 2.4: Ina Jo specification example

37

specification AB

level top

| type mls_label = (syslo, syshi)

| constant

| dominates (L.1:mls _label, L2:mls_label)
| =L1<=12

variable A, B: integer

variable lo_return, hi_return: integer

| label A @ syshi,

| B @ syshi,

| lo_return @ syslo,
| hi_return @ syshi

transform hi_write (v: integer)

effect N'B=B-A+v & N"'A=v

transform hi_read

effect N"hi_return= A

transform lo_write (v: integer)

effect N'\B=A +v

transform lo_read

effect N'lo retum=B - A
| label hi_write(v) @ syshi,
I hi_read @ syshi,

| lo_write (v) @ syslo,

| lo_read @ syslo

end top end AB

Figure 2.5: Example of a security-extended Ina Jo specification.

(9%

(7 4]

2.3.4.d Flow Analysis using Ina Flow

2.3.5

2.3.6

An example of flow analysis by Ina Flow is given in Figure 2.6. For the AB system, there is
only output for the last transform, which changes a syslo variable. The analysis identifies a

suspected flow, called a conjecture, which seems to exist between A and B to 1o_return.

Flow Conjecture (1) for Transform

lo_read
Transform_Preserves_Correctness
& lo_read

—> (N"lo_return =lo_return

--> dominates(syslo, syshi))

Figure 2.6: Ina Flow output for the syStem above

Graphical positioning of Eckmann's method in the ASGE

In order to illustrate which principles from Eckmann’s approach can be added to the analysis
and design stages of an application system life cycle (as denoted by the ASGE in Figure 2.1),
Figure 2.7 has an analysis stage, a design stage, and the output of the stages is a formal
application definition. The additional block on the right-hand side of the figure contains the

security activities Identify information flows and Clarify with opaque definitions of Eckmann.

In the case of Eckmann, the analysis and design stages are formal and therefore theoretical.

Addition of Eckmann's mechanisms to the ASGE is therefore also theoretical.

Critical discussion of Eckmann’s approach

A strong point of Eckmann's approach is that a security policy can be incorporated into a

formal specification in the form of security labels.

Another advantage is that information flow is identified between different classes of subjects.

Direct information flow is detected, for example, between the two state variables A and B in

39

the discussed example. Indirect information flow is also detected, for example, between A

and B to 1o_return in the example.

PRt 4 - NPT RO Lt
RN T R AP - 1o

; d iy User SR
] gt En s o e en - Requirements [ETER:

“Identify information flows

Clarify with opaque definitions

Figure 2.7: ASGE and Eckmann’s Approach

The greatest advantage of Eckmann’s approach is in terms of a decrease of the number of
formal flows. This is accomplished by opaque definitions which are given by the specification

writer as hints to the flow tool.

The main disadvantage is in practical use. The tools Ina Jo and Ina Flow operate on formal
specifications only. Formal specifications are good for theoretical studies, but a great distance
away from implementability. The security policy is also specified on a formal level, and only
has two security levels, syslo and syshi. For practical, commercial use in the form of additioas
to a CASE-tool, Eckmann's method is not directly applicable in the CASE-tool environment.
although certain concepts are usable. In Chapter 4, the proposed approach extends the
concept of security labels and will allow it to be used it on a logical level. It also uses the
concept of an opaque definition in the form of a user-suggested security classification on a

_logical level.

40

2.4

24.1

2.4.2

Pernul

Pernul's approach (Data and Function design)

Pernul's paper describes a semantic data model used as an actual design environment for
designing multilevel secure database applications. Security classification down to a single data

field is supported in the multilevel database concept [Pernul - 1994b].

Pernul and his team proposes a combined data- and function-driven design of information
systems [Pernul - 1994a]. Pernul uses Entity Relationship techniques to model the structural
(i.e. data) paﬁ of information systems, and Data Flow Diagrams to model the behaviour. Both
techniques have been extended to capture the security semantics that he proposes. The study
concentrates on the DFD section of his model, since the aim in the proposed model is to
extend security on the logical (i.e. DFD) level and to be able to implement this improved
security in a practical way. Pernul and his team have developed a prototype implementation of

their model, using the tools Interviews and Unidraw [Pernul - 1994b)].

Adapted Mandatory Access Control (AMAC) model for secure information systems

design -

According to Pernul [Pernul - 1994b], discretionary access controls are concerned with
defining, modelling, and enforcing access to information in the database. These types of access
controls are implemented in most database management systems (DBMS). Mandatory access
controls are, in addition, concerned with enforcing security onto the information flow in the
system being developed. For mandatory security, both the accessed data items and the subjects

(users and their transactions) are assigned security labels, for example top-secret, secret,

_confidential, classified.

Pernul [Pernul - 1994b] has developed a model to fit mandatory access controls into
commercial application systems. Called the Adapted Mandatory Access Control Model
(AMAC) for information systems security, the goal of Pernul's model is to adapt mandatory
access controls to fit better into commercial data processing practice. Moreover, the AMAC

model does not only support access controls but is mainly a total design environment for

41

secure information systems that are designed for implementation in DBMS which supports

either DAC (Discretionary Access Control), MAC (Mandatory Access Control), or both.

The technique combines concepts from the field of data modelling (specifically the ER
modelling technique) with concepts from the field of data security research, such as the Bell
and LaPadula security policy, which are formalised by two rules [Bell, LaPadula - 1976]. The
first rule, called the simple property, protects the database information from unauthorised
disclosure, and the second (*-property) protects data from contamination or unauthorised
modification by not allowing any information flow from high to low.

(i) Subject s is allowed to read from data item d if clear(s) > = class(d).

(ii) * Subject s is allowed to write to data item d if clear(s) <= class(d).

The disclosure and modification risks mentioned here are two of the risks identified by

Baskerville in his paper, and described in Section 2.2.3 [Baskerville - 1988].

As the read and write checks are both mandatory controls, successful protection is given by
the simple security property and the *-property against undesired information flow among

subjects with different security clearances.

Pernul [Pernul - 1994b] describes a useful design concept called Multi-Level Secure (MLS)
databases as a possible combination of mandatory security and the Bell-LaPadula paradigm.
The concept of MLS relational properties has been carefully formalised by Jajodia and Dandhu

[Jajodia, Dandhu - 1991], but several ambiguities still exist, according to Pernul.

MLS supports the assignment of a security label to an individual attribute value in a database.
For example, suppose we have the following data table, represented in Table 2.6, which has
the attributes Title, Subject, Client and Total Classification. The Total Classification is the

highest of the security classifications of each tuple (data occurrence).

42

Title Subject Client Total Classification
Alpha, S Development, S A S S
Beta, U Research, S B, S S
Celsius, U Production, U C,U 8]
Alpha, U Production, U D, U U

24.3

Key: S =Secret
U= Unclassified

Table 2.6: Projects

The first tuple’s Title attribute has the value of A/pha and the security label for this attribute is
secure (S). All the values of the first tuple are classified as secret, thus the tuple's Total
Classification has the value of S. However, the tuple with the title Beta has a label of
unclassified (U), but the tuple’s Total Classification is S, because the security classification of

its Subject attribute is secret.

Pernul and his team have developed a semantic data model for multilevel security. The MLS
model underlying it is the one developed by Jajodia and Sandhu [Jajodia, Sandhu - 1991}
They define three types of classification constraints to express the security semantics of the
database application, integrity constraints (responsible for secure update of the database),
secrecy constraints (responsible for data classification) and access control requirements
(regulate the type of access to data by people). They also propose security relevant extensions
for Entity-Relationship modelling and Data Flow modelling. A discussion of the DFD

extension follows.

Extensions to the DFD

Pernul [Pernul - 1994b] defines extensions that are needed, including the labelling of DFD

objects and the choice of a formal security policy such as Bell and LaPadula.

43

In a DFD, data stores are labelled as the sensitivity of the information contained in it, ranging
from Unclassified to Top Secret. Any process that reads data from a data store must have a

clearance greater than the classification of the data store.

Similarly, if there is a data flow from process P1 to process P2 and P1 has a classtfication of
Top Secret and P2 a classification of Unclassified only, that data flow might be a source for an
undesired information flow, from a high level downward to a lower level security classified

DFED object.

For example, in Figure 2.8, process P1 reads data from data store D1, which has a secunty
classification of Unclassified to Top Secret, because of muiti-level security of the various data
attributes or fields that it is composed of. Process P1 thus needs a clearance greater than that

of data store D1, in other words Top Secret (TS).

= PwaN
read from D
—» | store 1 1| Data store 1
* [U.TS)
store -—Fg quuest
request 9
A 75

Figure 2.8: Classifying System Functions [Pernul - 1994b]

2.4.4 Advantages of extending DFDs

Pernul defines several advantages of extending DFDs by adding security concepts:

e [t helps in identifying and positioning security critical parts of an application.
e It may help to identify ‘dangerous' information flow channels by pointing out
information flows between processes of different security clearances.

e [t may help in determining appropriate security clearances for subjects. This can be a

big help when developing a complex database application system.

2.4.5 Design phases for security critical databases using AMAC

The following design phases are discussed because they represent a useful method which is

similar to the one that will be used in the proposed method. They are used in AMAC for the

design of security critical databases:

M

(i)

(iii)

Requirements analysis and conceptual design

This results in a conceptual database model that is described by a single ER-schema
extended by security flags or classifications indicating security requirements for certain user
roles. For example, if a database contains secret (S) information, a user must have a

clearance of at least Secret to access the data in the database.

Logical Design

AMAC contains general rules for the translation of ER schemata into the relational data
model or into the multilevel relational data model. Output of the transformation process is a
set of relational schemata, global dependencies defined between schemata and necessary
for database consistency during further design steps, and a set of views describing access

rules on relational schemata.

The AMAC security object

When it is necessary to enforce mandatory security, a security object and security subject
must be defined. Security levels are then assigned to them. In AMAC a security object 1s a
database fragment and a subject is a view. Fragments are derived by using structured

database composition and views are derived by combining resulted fragments.

45

(iv) Support of automated security labelling

In most commercial, civil information technology applications, data which is labelled with
security classifications is not available. AMAC offers a supporting policy for the automated
security labelling of security objects and security subjects. Automated labelling is based on
the following assumption: The greater the number of views accessing a particular.
Jragment, the lower is the sensitivity of the contained data. This effects the level of security
classification that needs to be assigned to the fragment. For example, if a fragment isn’t
accessed by many views, then it might be classified as top secret (highly sensitive).
Similarly, if a fragment is accessed by many views, it might be labelled as unclassified or
confidential.

(v) Security Enforcement

In AMAC fragments are physically stored. Secuﬁty is enforced by using trigger
mechanisms that are supported by many commercial DBMS products. Triggers are hidden
rules that can be fired (activated) if a fragment is effected by certain database operations.
Security critical actions in databases are the select command (for read access), the append,
insert, delete, and update (for write access) commands. In AMAC select-triggers are used
to route queries to the proper fragments, insert-triggers are responsible to decompose
tuples and to insert corresponding sub-tuples into proper fragments, and wupdafte- and
delete-triggers are responsible for protecting against unauthorised modification by
restricting information flow from high to low in cases that could lead to an undesired

information transfer.

2.4.6 Security advantages of AMAC

Pernul sees the following security advantages for AMAC:

® It supports all the phases of the design of a database and can be used for construction of
databases which are protected on a discretionary basis, as well as databases which are

protected on a mandatory basis.

e Uniform labelling is possible by using fragments as the granularity of the security object.
Furthermore, a supporting policy to derive single level fragments from multilevel base
relations is provided.

e Automated labelling as implemented in AMAC, leads to candidate security labels that can
be refined by a human security administrator if necessary. This overcomes the limitation
that labelled data often is not available in civil environments.

e By using triggers security enforcement can be fine-tuned to meet the security requirements

of the specific application system under development.

2.4.7 Critical discussion of Pernul's approach

Pernul [Pernul - 1994b] proposes extensions to the data flow diagram definition activities to
include security activities. In this way, security activities are added on a logical level, i.e.
without physical limitations. He notes the following advantages when extending DFDs:

e Security critical parts of the application can be identified -

e 'Dangerous' information flow channels can be identified

e Appropriate security clearances for subjécts can be determined.

The proposed approach uses the following stages of AMAC:
e Phase 3, defining a Sanitiser Object, which enables information flow between
objects with different security classifications.
e Phase 4, support of automated security labelling, is supported partially in the
~proposed method, in that security labels will be suggested to the user. It is not
based on the frequency of use of the data, however, but on the classification of the

objects around it.
The concept of MLS databases will be adopted in theory for the proposed approach, but only

on a logical level, i.e. the analyst will be able to add security handling objects on the DFD

level.

47

2.4.8

2.5

The Bell and LaPadula security policy will also be used, but will be extended to be less
militaristic and more commercially practical, by expanding the write action to allow for

different types of write actions to occur, i.e. insert, append, delete and update.

Pernul's classification of DFD objects will be adopted, i.e. objects will be labelled from
Unclassified to Top Secret. In Chapter 4, different types of access to the database will also be
considered, because the access type actually influences the type of risks which are at stake for
the system security. For example, a read action implies the risk of disclosure as defined by
Baskerville [Baskerville - 1988], while an update action implies both a disclosure risk (through

the read action) and a modification risk (through the write action).

Graphical positioning of Pernul's approach in the ASGE

In positioning Pernul’s approach in the ASGE (Figure 2.9), the five stages of AMAC are
added to the Automated Software Generation Environment. These stages are executed during

the Analysis and Design stages of ASGE. Both occur on a logical level.

Positioning of The Proposed Approach

Figure 2.10 illustrates the proposed approach’s target miche. The approach is built upon
several pillars that are principles and mechanisms taken in full or in part from the three
approaches presented in this chapter, and extendéd to be implementable. The prototype
implements the security principles and activities of the proposed approach. These principles

and activities are described in detail in Chapter 4.

Some elements of a DFD CASE tool are also adopted. For example, a Graphical Uszr
Interface (GUI) and the ability to create and edit DFDs. These elements are combined with the
security principles and activities from the Information Security domain. The result is a tool
which allows for secure DFDs to be generated. The prototype tool which was developed tv

the author is presented in Chapters 5 and 6.

48

User
Requirements

Requirements Analysis and Design

Logical Design
Sccurity Object
Automated Securitly Labeling

Security Enforcement

Generate
database tables

RNy

”y

4R Kt

Figufe 2.9: ASGE and Pernul’s Approach

CASE-tools
DFD

ROTOTYPE

- [Information

Security Baskerville
Security
‘ Activities Pernul
Booysen/Eloff/ Eckmann
Kasselman

Figure 2.10: Positioning of the Proposed Approach’s Prototype Tool

2.6

Conclusion

The three approaches presented in this chapter represent a great amount of work done in the
research related to the incorporation of security definition activities with application system
analysis and design activities. In the critical discussion of each, some attributes of the approach
have been identified by the author that need to be implemented in a prototype program to
enable the systems analyst to accomplish security analysis and design on a logical level. Those
attributes will be fully dwelled upon in Chapter 4 and if necessary, expanded to reach a level

that is sufficient for implementation.

According to Baskerville [Baskerville - 1993] it is worth the effort to try to combine an
information security-methodology with an existing software engineering methodology such as,
for example, that of Ydurdon and De Marco or Gane and Sarson, so that security checking
facilities can become an integral part of such a methodology. That is the goal of the proposed

method in Chapter 4. : .
In Chapter 3, some CASE-tools are discussed in terms of their capabilities concerning the

effective and secure analysis and design of an application system. This provides an overview of

the state of the art in the commercial market for CASE-tools.

50

Chapter 3

A critical review of some CASE-tools

3 Introduction

Two commercial CASE-tools will be reviewed in this chapter to evaluate their secunty

analysis and definition capabilities, and their support for effective analysis and design.

The first tool is Silverrun for Windows, which gives the systems analyst a Data Flow Diagram
definition tool, amongst other tools. The second, Object Modeler for Windows built on the
Sapiens mainframe CASE-tool, has a different approach; a combination of Entity-Relationship
modelling and Object-Oriented rﬁethods. Object Modeler is discussed because its secunty
features are quite comprehensive. For example, security down to the individual data field level

is supported.

The following structure is followed in discussing the tools:
¢ General information;
e Assistance to the analyst in bettering the quality of the design;
e Assistance to the analyst in defining an application system's design diagrams, and

. Security analysis and design capabilities (if present).

3.1 SILVERRUN

3.1.1 General

Silverrun is distributed by Computer Systems Advisers. It is a multi-platform CASE

Workbench which can run on MS-Windows, OS/2 and Apple Macintosh systems.

3.1.2

Silverrun consists of 4 modules, namely Silverrun-ERX (Entity-Relationship eXpert),
Silverrun-DFD (‘Data Flow Diagram Diagrammer’), Silverrun-RDM (‘Relational Data
Modeler’) and Silverrun-WRM (*Workgroup Repository Manager’).

Quality overall design

The Silverrun modules ERX, RDM and DFD allows fast access to application definition
information. This information is divided into two parts:
e The Project Dictionary (RepoSitory) contains information which can be used
in all four modules, for example data structures, base types and domains.
* o The Model or Schema Dictionary contains the relevant information for each
type of diagram, for example the objects that are part of the DFD, such as

processes and data flows.

Silverrun offers some functions to enhance information integrity and confidentiality, especially
when working in group format over a local area network. The first function is parameterised
update operations, which can bé one of the following: addition, modification, or deletion of
the model or project data. It is however not possible to use this facility for analysis or design
of the target system’s database accesses. The second function is the choice of either
individual or group selection of concepts to be updated. For example, the user can select
objects on the diagram to be updated. The third function is the capability of hierarchical
selections, where selection of a concept retrieves all the information that is connected to it,
such as lower-level processes. Fourth is an update history for project or model data. The fifth
function is the facility of impact reports, where a trial update is done and a report is produced
specifying the impact on the rest of the project team. Sixth is password protection on save or

read. Seventh, a creation and a modification date for each information process. Lastly, a

 selective clean-up function is provided, to facilitate relatively easy deletion of objects that are

not in use anymore.

One outstanding feature concerning the design quality in data flow diagrams in Silverrun DFD
is the verification of the integrity of the DFD according to rules which test the quality of the
design. These rules are presented in Figure 3.1. They can be checked by Silverrun on request

by the analyst. These rules are called 'syntax rules' in Silverrun and, dependant on which

52

formalism is used for representing the DFD, different combinations of the rules are activated

for checking the diagram. A report is then generated to a text file, stating which, if any, of the

rules were found to be breached.

The following features are also provided by Silverrun:

e Selective clean up to remove objects that are meaningless to the project, for example

objects that are no longer used in the model,

e A report writer with flexible formatting; .

e An import/export function that enables data exchange with other programs, via ASCII

files;
o The facility to generate relational database table definition schemata with the RDM tool
from the EAR diagram.
Are/Is there:

1. Any processes without a synchronisation rule?
2. Processes without a name?

3. External entities with the default name?

4. Processes which are not graphically present?

14. Flows without an emission condition?

15. Data stores with the default name?

16. Flows with the default numerical ID?

17 Data stores which arc not graphically present?

5. External entities which are not graphically present? 18. Processcs linked to processes?

6. Data stores linked to a data store?

7. External entities linked to an external entity?

8. Orphan data stores (not linked to an object)?

9. Orphan flows (not linked to an object)?

10 Processes without input flows?

11. Data stores without input flows?

12. An external entity with an input flow?

13. Flows which are in the hierarchy of the process

to which they are linked?

19. Data stores linked 10 an external entity?

20. Orphan processes (not linked to an object)?

21. Orphan external entitics (not linked to an objcct)?
22. Flows linked to only onc object?

23. Processes without output flows?

24. Data stores without output flows?

25. An external entity with an output flow?

Figure 3.1: Syntax rules verified by Silverrun CASE-tool

53

3.1.3 Assisting the designer with design diagrams

3.14

Dictionary information can be entered graphically, or imported from other sources such as file
descriptions, screen and report specifications, or from other dictionaries. This means that
objects in a model can be entered by importing text descriptions. For example objects such as
data files, external entities, or processes can be described in structured English and engineered

to graphical entities.

Silverrun-DFD supports the methodologies of Gane and Sarson, Yourdon and DeMarco, and
Merise. The analyst can also customise the representation of objects to facilitate the

customisation of a methodology.

A user-friendly option is the capability to choose any object from a palette, for example, a
common item, data structure, or process can be selected from the list of available objects.
Depending on the tool in use, the selection can be used to automatically generate a sub model

or an object, add or replace the attributes of an existing entity, or create duplicates.

An innovative feature in Silverrun is the expert system which assists the analyst during analysis
when using the ERX tool. The expert system asks questions concerning entities and the
relationships between them, to aid in clarifying what type of relationship is applicable between

entities on the ER diagram.

Security analysis and design capabilities

The ease of use of Silverrun makes it a user-friendly tool, but in terms of security it comes
short. It has no security analysis and design options, except on the dictionary update level. No
fa;:ility exists for tracing direct or indirect information flow on the DFD, nor is there the ability
to specify what type of access (for example read, update, append, insert, or delete) occurs
between a process object and a data store object. These are facts which are needed to enable
the analyst to check that information flows in the developed system are secure and that
security in the system allows no risk such as unauthorised disclosure, modification or

destruction as defined by Baskerville [Baskerville - 1988].

3.2

3.2.1

Object Modeler

General

Object Modeler (OMD) is distributed by Sapiens International Corporation N.V., and is a
development tool that enables one to build applications, starting at the analysis stage, and
continuing the development through to production. It is built on a mainframe-environment
CASE-tool which is also called Sapiens. Although OMD is operated on a PC workstation
under MS-Windows or OS/2, it communicates with the mainframe every time that the user
(the systems analyst) changes something on tl'1e graphical model of the system developed on

the workstation [ObjMod - 1994].

The main strength of OMD is that it enables the analyst to concentrate on the data modelling
of the system under development. Implementation of the model is transparent to the analyst,

except if he wants to change the way of implementation.

OMD doesn't use DFDs, but rather combines an Object-Oriented (OO) approach with
conventional Entity-Attribute-Relationship methodologies. Its methodology differs from that
of Data Flow Diagrams, in that it facilitates a high level functional analysis, called Man-
Machine-Interface (MMI) which constitutes the application flow. MMI is similar to structure
diagrams in the functional methodology, but doesn't show any data flow details. Instead, it

shows only the menu structure of the application. All OMD applications are menu-driven.

OMD consists of the following tools:
e an extended EAR diagram, called an Object Relationship Diagram (OR diagram);
e business rules;

e MMI (man-machine interface) requirements, which represents the application flow.

The results of these three components are integrated by OMD to produce a fully functional

end user application.

55

3.2.2 Quality overall design

Sapiens, the CASE-tool that is the underlying heart of OMD, is an extremely powerful tool
which allows the development of a working prototype within a short time. The systems analyst
creates an object diagram on screen. This should include all the important objects in the target
organisation. An object can be linked to another object to become a child of that object. For
example, object Item-in-Order is a child of Order and can have many data occurrences. This is

illustrated in Figure 3.2.

Order

Ite!m—in-Order

L |

Figure 3.2: Object diagram of Objects 'Order’ and 'Item-In-Order’

3.2.3 Assisting the designer with design diagrams

3.2.3.a The modelling environment

Since OMD is positioned on top of the Sapiens CASE-tool on the mainframe, OMD is very
important as modelling tool. It places an enormous amount of analytical power and control in

the hands of the analyst in the generation of a working prototype.

The analyst models the OR diagram and the business rules in OMD as a basic object model,
v an'd the MMI as a function model. The basic object model contains objects which, during
implementation stage, translate into database tables in the Sapiens knowledge base. Each of
the table objects has embedded within it the following items:
e associated data fields (called object attributes);
e default data input forms, which are created automatically during the implementation

phase;

56

e default transactions to modify data in the table, created together with the data input
forms;
¢ optional business rules which are triggered for execution by a transaction; and

e optional security classification properties, which will be discussed later.

3.2.3.b Analysis, design and implementation approach

The development methodology differs from the Data Flow Design methodology of Yourdon
and Constantine [Yourdon, Constantine - 1979], in that there is no low-level functional
analysis, because low-level functions aren't needed in Sapiens. It uses interpreted code to
execute the application. Rather, the focus is on the functional requirements of the application,

allowing for easier conceptual analysis.

During the analysis phase the systems analyst creates the OR diagram for the basic object
model, by identifying the important objects in the 6rganisation being modelled, and the
relationships between them. This is also different from the DFD approach, in that basic objects
are identified, for example, Employee or Order. With Data Flow Design on the other hand, the

upper level of functional decomposition is the starting point.

For the function model in OMD, the analyst starts by breaking down the roor function into
supporting functions, to create an application structure which is navigated using a main menu
and sub menus.

During the Design phase, Object Modeler creates and edits the default designs necessary for
implementation of the object. For example, a relationship type might be changed, or another

object might be specified to be the main object in a specific relationship.

The basic object model and the function model together result in the Sapiens application
definitions which are executed as a working application. After implementation, a table can be
tested immediately using the default input forms; data can be inserted into the database,

modified or deleted.

57

3.2.4

3.25

Because the Sapiens CASE-tool supports Rapid Application Development (RAD), the end
users should be involved frequently during all phases of development, to ensure the correct

end results and satisfaction.
Advantages of RAD

Because user specifications can change so rapidly and unexpectedly, changes are difficult with
a traditional CASE approach using a variant of the waterfall model. With Sapiens's RAD
environment no program code needs to be changed, only the business rules. This allows for

easier and faster maintenance.

Compared to DFDs which are relatively volatile, objects in the organisation are very stable and
don't change easily. Therefore, an object model remains relatively stable. Changes in one
object don’t affect other objects, because each object's information and behaviour is hidden

from other objects. This is an important Object-Oriented pillar called encapsulation.

Security analysis and design capabilities

OMD/Sapiens support the concept of multi-level secure (MLS) databases described by Jajodia
and Dandhu [Jajodia, Dandhu - 1991], by allowing the systems analyst to specify security
classifications on the level of an individual data field. Security ‘worlds’ can be defined. Each
target user is assigned to a 'world' with a specific classification which can only access certain

items with the same classification level in the Sapiens knowledge base.

The question s, is this type of security classification enough? Because of encapsulation of
object data, there is less information flow in an object-oriented application system than in a
functional application system, but there are lots of messages going to and from objects,
perhaps requesting data from objects and receiving output. These need to be investigated with

the same vigour that data flow should be analysed in a DFD.

OMD doesn't provide the capability to analyse the flow of messages between objects. Direct
and indirect information flow should be investigated. This should take place according to the
security classification of objects and the access types between objects and databases.

OMD/Sapiens provides the security classification and support for information hiding by means

58

33

of different user data views as well as by means of the object-oriented feature encapsulation.

There remains then the need for direct and indirect information flow analysis between objects.

Conclusion

Although some of the CASE-tools on the market support integrity and design checking
facilities, virtually none of them specifically provides any security analysis, design or
checking facilities which can be used to improve the security state of the application system
under development on a logical level as proposed by Baskerville [Baskerville - 1993] and the
author. This constitutes a major lack of ability in terms of design assistance to the sofiware
analyst concerning application information security. It is this need that was identified in

Chapter 2 while investigating different approaches to the design of more secure applications.
In Chapter 4, the design of the approach is presented that indeed checks for direct and indirect

information flow on a DFD. Rules and principles that are needed in order to enable such

analysis and design activities are described, together with the different stages of the approach.

59

Chapter 4
Proposed Approach to Secure Design:

Rules and principles to be considered

Introduction

In Chapter 2, the theoretical approach of Eckmann has been studied [Eckmann - 1994]. as
well as the more practical approaches of Baskerville [Baskerville - 1988] [Baskerville - 1993]
and Pernul [Pernul - 1994b]. In Chapter 3, two commercial CASE-tools have been studied in

terms of design quality assistance and security capabilities.

The goal of this chapter is to describe in detail the proposed approach to the secure design ot

an application system on the DFD level.

Section 4.1 presents some basic logical quality rules that can be used to automatically check
for logical errors on a DFD. Some of them are used in the prototype that the author of this

dissertation has developed.

Various concepts have been adopted from the three approaches of Baskerville, Pernul anc

Eckmann. Section 4.2 examines these concepts.

Section 4.3 describes the proposed approach from Booysen, Kasselman and Eloff [Booyser.
Ka:sselman, Eloff - 1994] that states security stages that can be integrated with an exisinz

design methodology such as the one of Gane and Sarson [Gane - 1990].

The Automated Software Generation Environment diagram is extended to form the Exter.dec
ASGE with the proposed security analysis and design activities added to it. All of thess
security activities will be implemented in the prototype and will allow for the increzse:

assurance of the information security of a DFD.

4.1

Rules for effective Data flow design

Firstly, some basic rules, called syntax rules by Gane [Gane - 1990], will be presented. These
rules are basic integrity checking rules to confirm that a DFD doesn't contain any "syntax
errors" in terms of design. They assist the systems analyst in determining that the DFD is error

free in terms of design quality.

Table 4.1 shows the rules which Gane defines as being representative of a correctly defined
DFD. The rules are practical, easy to understand and relatively simple to implement. Yet they
provide powerful analysis capabilities to the CASE—todl used by the analyst, and they can
automate some of the mundane checking, reducing effort that could be expedited more

fruitfully in other areas of the design of the system.

1. Do all objects (external entities, processes, and data stores) have identifiers?

2. Do all objects and data flows have names?

3. Do all processes and data stores have at least one inflow and one outflow?
If not, why not?

4. Do all data flows start or end with a process?
If not, what makes them happen? Data flows from extemnal entities direct to data stores or
to other external entities are not correct.

5. Do all data flows have a directional arrow?

Table 4.1: Syntax rules which can be verified by CASE-tools [Gane - 1990]

The way that errors in a DFD or in other words, breaches of the rules, are handled by CASE-
tools varies from tool to tool. Some tools prevent breaching in an upfront manner. For
example, they don't allow the designer to create a data flow on the diagram when there is not
a parent and a child object under the start and endpoints of the arrow (respectively). In that
way, rule 4 in Table 4.1 is sustained. Some tools allow breaching, and give a warning message
immediately, while still allowing the analyst to continue. Other tools might allow the breach
and only give an error message when the diagram is verified, for instance, by selecting a

"verify integnity” option.

61

4.2

4.2.1

The CASE-tool Silverrun utilises the last method, allowing almost any modification to the
DFD, and analysing afterwards. Object Modeler is lenient in allowing extensive changes to the
Object-relationship diagrams that the analyst produces. It prevents illegal design actions from
occurring, by dynamically disabling all the menu options that aren't appropriate for the
currently selected objects. The prototype that is designed in this chapter and illustrated in
Chapter 5, will allow certain implemented breaches to take place, after first warning the

systems.analyst.

Adopted concepts from the theory

Introduction

The proposed method can be classified as a 7Third-Generation method as defined by
Baskerville [Baskerville - 1993]. This means that it is a Logical Transformational Method of
which the main objective is to abstract the problem and solution space By creating a logical

model of the problem and solution, as has been illustrated in Table 2.1 in Chapter 2.

The proposed method is called Extended Automated Software Generation Environment
(EASGE). It is an extension of the ASGE defined in Section 2.1 with security analysis and
design facilities being added to ASGE. The prototype which will implement the principles and
activities of the approach is illustrated in Chapter 5. It is called DFDSEC, the name being an
acronym for ‘DFD Security’. It is designed to form part of an existing ASGE, as illustrated in

Figure 4.1. The block called Security Activities represents the activities of our approach.

Figure 4.1: Extended Automated Software Generation Environment

4.2.2 Concepts adopted from Baskerville's approach

a. Design phases

The design phases that are adopted in the approach are the two security-related design
phases defined by Baskerville for his method, the Logical Controls Design method

[Baskerville - 1993]. These design phases are Phases Two and Three (Identify Risks and
Identify controls).

Identify Risks

Identify Controls

Figure 4.2: Design phases adopted from Baskerville

63

b. Risks

Some risks will be present when the final tipplication system is used in the production
environment, and should be provided for and prevented during the analysis and design
stages of the application system, in other words, during the Upper-CASE environment as
defined in Chapter 1. The risks that are concentrated on are those defined by Baskerville,

i.e. the unauthorised modification, deletion or disclosure of data in an application system.

Modification
Deletion

Disclosurc

Figure 4.3: Risks adopted from Baskerville

Apart from that, another risk that we also consider during the security activities, is one

defined by Hsieh [Hsieh - 1992]: indirect information flow.

c. Controls

The user will also be allowed to add controls onto the DFD he is editing, although not in as
much detail as Baskerville. In the prototype, graphical objects called Sanitiser Objects can
be inserted onto the DFD, which then serve as theoretical security processes in the final
system, allowing the passing of data between two objects of different security classifications
when recessary. These controls are only theoretical because the prototype operates on the

analysis and design levels only.

4.23 Concepts adopted from Eckmann's approach

a. Security labels

The concept of security labels that Eckmann assigned to state variables and transforms, is
used in the approach. The analyst will be allowed to specify the security level of each object
on a DFD. For example, a data store can be classified as Secret and a process reading data
from that data store as Top Secret. This facilitates the analysis of the system under
development in terms of the secure flow of data between objects on the DFD, and allows it

to be scrutinised in order to classify it as ‘secure’ when the design stage is completed.

b. Flow Conjectures

Flow Conjectures as defined by Eckmann, which are suspected indirect data flows
between 'non-neighbouring’ objects, can also be highlighted by the proposed approach,
together with direct insecure data flows between 'neighbouring’ objects. As mentioned in
Section 2.3.5, Eckmann's method can only be applied to formal system specifications,
whereas the proposed approach is more practical in that actual DFDs can be analysed for
security. Chapter 5 will give detailed examples of this capability with the discussion of the

prototype.

42.4 Concepts adopted from Pernul’s approach

a. Bell and LaPadula's Security Policy

The B;ll and LaPadula security policy is extended to include rules not only for read and
write, but for all the data access types, i.e. read, append, update, delete and insert. The new
set of rules is called Binary Access Rules, for they are applied to each consecutive pair of
objects when analysing the security of the data flow in the system. These rules are described

in Section 4.3.5.

65

b. Multi-level Security

Multi-level secure (MLS) databases support the assignment of a security label to an
individual data field. The MLS concept is defined by Pernul as a possible combination of
mand:atory security and the Bell-LaPadula paradigm. It is formalised by Jajodia and Sandhu
[Jajodia, Sandhu - 1991], and used by Pernul and his team in their semantic model of MLS.
The proposed methodology will not implement MLS directly, but will adopt the notion of
Pernul’s security object, and call it a sanitiser prbcess object, which will filter information

down to lower classification objects.
c. Extensions to the DFD

The following extensions to the DFD are adopted, defined by Pernul [Pernul - 1994b]:

(i) Labelling of DFD concepts.
All DFD objects should be classified as Unclassified, Confidential, Secret, or Top
Secret) in order to enable security analysis of the system being described in the
diagram. Pernul labels a data store according to the sensitivity of the information
that is contained within it, as well as according to the frequency with which it is
used. A process or external entity that reads from that data store must have a
clearance greater than that of the data store, as described in Section 2.3.3. In the
approach, data stores will only be classified according the level of the sensitivity of

the data contained in it.

(it) Choice of a formal security policy
Another extension to the DFD concept is that for security analysis, a formal
security policy should be chosen according to which analysis can be performed. In
the proposed approach, we use Binary Access rules and Compound Access rules

as a combined policy. These rules are described in Section 4.2.5.
d. Design Phases from AMAC

We adopt two design phases from the Adapted Mandatory Access Control method as
defined by Pernul and described in Section 2.3.5:

66

e Design phase 3: The AMAC Security Object

This phase is adopted for the proposed approach, together with MLS. A Sanitiser
Object is defined in the approach as a security handling object which should apply

MLS and filter the information to be passed to lower-classified objects.

e Design phase 4: Support of automated security labelling

In the proposed approach, partial support is given for automatic labelling of
objects in the DFD which don't have a security label. This is done by suggesting a
security classification for an object if its current classification results in an
information flow between objects of varying security classifications. Before
suggesting a security class, an analysis of neighbouring objects that access the

currently examined object is executed, to deduce a possible security class.

4.2.5 Concepts Adopted from the Work of Hsieh

4.3

The method that was devised by the author in conjunction with Booysen [Booysen,
Kasselman, Eloff - 1994] to generate information sets indicating indirect information flows
between objects, is built on the work of Hsieh [Hsieh - 1992]). This method is listed in
Annexure A.

Proposed Approach: Security Activities of EASGE

In this section, the proposed methodology as defined by Booysen, Kasselman and Eloff is laid
out. Six security activities to be added to the ASGE are defined. These activities should be
executed during the analysis and design of the system, when the DFD is created. The security
activities can be seen as added requirements to the existing user requirements for the system
under development. An example of such a security requirement is that Process A should be

classified as Confidential.

67

The recommended security activities presented in this section are listed in Table 4.2. The first
three columns summarise the suggested security activities by Baskerville, Eckmann and
Pernul. The last column summarises the security activities that are proposed by the author.
They were developed in conjunction with Booysen and Eloff [Booysen, Kasselman, Eloff -

1994]. The proposed security activities are described in detail in Sections 4.3.1 to 4.3.7.

Proposed by | Proposed by Proposed by Proposed by Kasselman,
Baskenfille Eckmann Pernul Booysen, EIoff
1. Identify 1. Identify infor- 1. Security 1. Get security classes for objects
risks mation flows objects from analyst
2. Identify 2. Clarify with 2. Automated 2. Get information flow types
controls opaque security (database access types) from
definitions labelling analyst

3. Create an Object Matrix

4. Construct a Revised Object
Matrix

5. Construct a Security Revised
Object Matrix

6. Strengthen Security/Sanitiser
Object.

Table 4.2: Proposed Security Phases in the EASGE

The table shows similarities between the approaches. This is natural, since the secunty
activities in the proposed approach were developed based on the activities presented in the

literature.

The proposed security activities of Booysen, Kasselman and Eloff (Phases 2 to 5 in Table 4 2)
are built upon Baskerville's Phase 1 (Identify risks), Eckmann's Phases 1 and 2 (Idenuty
information flows and Clanify with opaque definitions) and Pernul’s Phases 1 and 2

(Determine database access types and Logical Design). The proposed activity Strengthen

68

s
iy

Security/Sanitiser Object are similar to Baskerville's Phase 2 (Identify controls) and Pernul's

Phases 3 and 4 (Security objects and Automated security labelling).

Figure 4.4. shows how the Automated Software Generation Environment is expanded to
include these 6 security activities (stages). The user requirements serve as input to the system
development process. Using a DFD to represent the requirements, they are stored in the
repository. The DFD is constructed by analysing the requirements. After analysis, the security
stages come into action. Security classes are inquired by the prototype, data access types are
determined, the various analysis tables are generated by DFDSEC, analysing the security of
the diagram. Some suggestions are presented to the analyst by the prototype and can be
adopted or rejected. After the security stages have been completed, a new DFD is constructed
automatically by DFDSEC. This whole process can be repeated if necessary until the analyst
and the prototype are both content that the system is secure. Now the normal ASGE stages

can be continued, generating database tables and program code, and testing the application.

Security activities
Get object security classes from analyst

Get information flow types from analyst
Create an Object Matrix

Construct a Revised Object Matrix
Construct a Security Revised Object Matrix
Strengthen Security - Sanitiser Object

Figure 4.4: The Extended Automated Software Generation Environment

with security stages

69

4.3.1

4.3.2

5

The security stages will now be examined in more detail.

Allocate Security Classes to Objects

DFDSEC will assist the designer in assigning a security class to each object on the DFD,
based on his assessment of the sensitivity level of the information that is either conained in the
object, if it is a data store, or generated by the object if it is a process or external entity.

Objects can be classified as being in the set [Unclassified ... Top Secret].

Determine Information Flow Types

Objects on the DFD, which can be processes, external entities or data stores, are connected by
data flows, which are arrow symbols. By studying the direction of flow, DFDSEC can
automatically determine whether there is a read or a write action occurring between two
objects. For example, if information flows from a process to a data store, it can be determined
that the flow type is a write action. Similarly, information flowing from a data store to a

process is a read action.

A slight drawback to the advantage of this automatic approach is that only two flow types are
considered, i.e. the read and write actions. However, in a commercial database application
system, the designer needs to specify various write actions, i.e. append, insert, update, or
delete. Because of the different nature of these actions, they have different security
implications. For example, a higher classified (i.e., secret) process should be able to read from
a lower classified (i.e., confidential) database, but the same process should not be able to

append to that database, because that would imply a disclosure risk [Baskerville - 1993].
Therefore, input from the designer is necessary to clarify or expand the automatically
determined write actions, before a complete security analysis can be done. DFDSEC uses the

set of arrow symbols depicted in Figure 4.5 to represent the different actions.

Figure 4.6 presents an example of what a DFD would look like with the data access types

indicated as in Figure 4.5. Objecty reads information from Object, (a data store) and Object-

70

(also a data store) is updated by Objects. Similarly, Objectp reads information from Objectc

and deletes data from Objectg: (a data store).

Read >
Append / Insert o—)
Update —)
Delete ¥X—>
Figure 4.5: Information Flow Types
Object A Object E
Read Delete
s e Rt [
Figure 4.6: Example DFD with indicated access types to databases

4.3.3 Create an Object Matrix

-

An Object Matrix is a rectangular array in which objects from which information flows, i.e.
origin objects, are mapped onto objects 70 which information flows, i.e. target objects. The
entry for a particular row and column reflects the information flow type (read, append, insert,

update, delete, or simply a flow of information - flow) between the corresponding objects.

An Object Matrix can contain both valid and invalid information flows between objects. For
example, if a Top Secret object reads information contained in a Confidential database, the
flow action between the objects would be valid, but if a Confidential object reads information

from a Top Secret object, the flow action would be invalid.

71

For example, in Table 4.3, which is an example of an Object Matrix, Objecta appends
information to Objectp which should be a data store on the DFD. Likewise, Object; reads

information from Objectg, and Objectg reads information from Objecta.

S Object, Objects Objectc Objecty
£ Ob.ICCtA " Read
: Objeét.nb . Append
Ob.ledc Read
"~ Objecty

4.3.4

Table 4.3: Example Object Matrix

Construct a Revised Object Matrix

As an Object Matrix contains only direct information flows (for example, between Objecta
and Objectp), it cannot reveal situations where indirect information flow is taking place (for
example, where Objecta sends information to Objects, and Objectg sends information to
Objectc, so that Objectc indirectly receives information from Object,). The objective of a
Revised Object Matrix is to summarise all valid and invalid direct and indirect information

flow.

In the proposed approach, direct information flows are called Binary Accesses, or binary
information flows, because they are flows between mwo neighbouring objects. Indirect
information flows are called compound information flows, because they are flows

accumulated between more than two objects.

An information flow between a process and a data store is actually a type of access to that
data store. For example, a read access occurs when a process reads data from a data store.
and a write access occurs when a process appends or inserts or deletes data to or from a dzia

store. Consequently, we also use the term compound accesses for indirect database accesses

Object, Objectp Objectc Objectp
Object Read Compound Compound access
' access
* Objectp _ Append — Compound access
Objeck : Read
 Objects

Table 4.4: Example Revised Object Matrix

For example, in Table 4.4 there are three occurrences of compound database accesses. A
problem arises, because we need to know what the indirect (compound) access type should
be.

In determining the compound access type, the rationale of the “grant” right in the Take-Grant
model is used [Lipton, Snyder - 1977].

For example, on the DFD in Figure 4.7, the objective is to determine the “combined” access
type that could exist between Objecty and Objectc, Objecta and Objectp, and Objectp and

Objectp"in the example.

Read J ObjectB

Object A

Obyect D

Figure 4.7: Example Compound Data Flow Diagram

73

In order to determine the compound access type that exists between Objecta and Objectc, it is
necessary to substitute the append flow type between Objectg and Objectc with write. This
allows the analyst to indicate a specific binary and compound access type in terms of the actual
action that occurs. As an update action requires information to be read before it is written to

another-object, the update action type can be substituted with read-write.

The delete access type is not considered, because when information is deleted, the information
no longef exists and cannot be transferred to other objects. If only some of the attributes are
deleted, it would indicate that the remaining information can flow to other objects. The
prototype presented in Chapter 5 doesn’t implement this fine granularity, although a Sanitiser
Object can be inserted on the DFD to allow (on a logical level only) such information flows to
other objects to occur. The concept of multilevel databases [Pernul - 1994b] [Jajodia, Sandhu
- 1991] will assist the developer. in enforcing security down to an attribute level. Possible

combinations of compound access types between objects are depicted in Table 4.5.

Between Object, and Between Objects and Objectc
Objects

Read Append (i.e., Write)

Read Update (i.e., Read-Write)
Read Read

Append {i.e., Write) Read

Append (i.e., Write) Append (i.e., Write)
Append (i.e., Write) Update (i.e., Read-Write)
Update (i.e., Read-Write) Read

Update (i.e., Read-Write) Update (i.e., Read-Write) -
Update (i.e., Read-Write) Append (i.e., Write)

Table 4.5: Possible Compound Access combinations

From Table 4.5 it should be clear that a compound access type can only exist between at lezst

three objects. A compound access type is determined by studying the compound access

between three objects. These three objects need not be neighbouring objects, i.e. linked

directly to one another by means of a data flow.

A compound access type is then determined between the first object and the third object, using

the outcome of the combinations as summarised in Table 4.5.

The “newly” formed access type is then used as the first access type in determining the
compound access type between the next two objects. For example, if the flow type between
Objecta and Objectp is Read, and the access type between Objects and Objectc is Append
(Write), we obtain a Read-Write access iype. Read-Write indicates an update action, therefore
the compound access between Objects and Objectc is Update. The access type between
Object, and Objectc now serves as the first access type in determining the compound access
type between Objecta and Objectp. If the access type between Objectc and Objectp is Read,
then the compound access type between Object, and Objectp would be Read. (The
combination of Update - between Objecty and Objectp - and Read between Objectc and

Applying the compound access types in Table 4.5 to the example in Figure 4.7, compound
access types in the Revised Object Matrix in Table 4.4 can now be substituted with these
access types. Thus, the Revised Object Matrix for the example in Figure 4.5 is presented as in
Table 4.6: .

Objects Objecty Objectc Objectp
Objecta Read Update Read
Objectp Append Read
Objectc : Read
Objectp

Table 4.6: Adjusted Revised Object Matrix

75

4.3.5 Construct a Security Revised Object Matrix

A security revised object matrix is used to summarise all valid information flows and accesses,
both direct (binary) and indirect (compound). The question arises as to when the binary and
compound information flows determined in the Object Matrix and Revised Object Matrix

~ would be valid or invalid.

Valid information flows are determined by using the security classes assigned to the objects

‘(see paragraph 4.2.2), and by applying access rules stating when a flow is valid or invalid.

The author formulates the following access rules:

a. Binary Access rules

e Read: Objecta can only read information stored in Objects, if the security class of

Object, is equal or greater than the security class of Objects.

e Append/Insert: Objects can append or insert information to Objects, if the security

class of Objecta is equal or smaller than the security class of Objects.

e Update: Usually when an object updates another object, only a few attributes are
updated. The object updating another object thus needs to have clearance to update the
required attributes of the other object. In other words, Objecta can update information
stored in Objectg, if the security class of Object, is equal or greater than the security
class of Objects. The concept of multi-level secure databases [Pernul - 1994b] [Jajodia

Sandhu - 1991] makes this possible. This concept is not demonstrated in the prototype.

¢ Delete: When an object deletes information contained in another object, either the
entire object or some attributes in the object are deleted. Depending on the type of
deletion, the object deleting information stored in another object must have clearance tc
delete the information. Therefore, Objecta can delete information stored in Objecta. 1=

the security class of Object, is equal or greater to the security class of Objecty.

76

The binary access rules are summarised in Table 4.7:

4.3.6

Security class of the object to which information
flows (or target object)

U C S TS

U R,U,D,AI Al Al Al

C R,UD RUDAI| Al Al

' S R,U,D R,UD RUDAJI|[Al
 (orsourceobject) | TS | RUD RUD | RUD RUD,A]

Key: U -Unclassified C - Classified S - Secret TS- Top Secrct
R -Read A - Append I - Insent U - Update D- Delete

Table 4.7: Binary Access Rules .

b. Compound Access Rules

‘Since a single access type (or information flow) can be deducted between objects with
compound access types (or compound information flows) between them, the binary access
rules can be applied to check whether the compound access type or information flow is

valid or not.

Strengthen Security/Add Sanitiser Objects

DFDSEC should be able to point out invalid information flows by comparing the Revised
Object Matrix and the Security Revised Object Matrix. Entries that are not in the Security

Revised Object Matrix are invalid. It then presents the user with a choice. He can either:
(i) 1nsert a Sanitiser Object; or

(ii) change the security class of one of the objects where an invalid information flow

is taking place.

77

4.3.7

4.4

4.5

A Sanitiser Object is a process that is classified by default as Top Secret, and which has the
function of filtering information received from a higher classification object in order to let all
information which has the same security classification as the lower classified object, through to
the lower classification object. The concept of multi-level databases is once again very
important here. The prototype doesn't consider the fine granularity of information down to the
field level. Rather, it demonstrates the security stages on a higher level only, i.e. that of

analysis and design.

Repeat the Cycle

After Stage 6 in the proposed method, the analyst can restart the security analysis cycle,
starting at Stage 1 (Allocate security classes to objects). The cycle can be repeated until he is
satisfied, with the security of the system, and no more insecure areas of information flow are

revealed on the DFD.

General Advantages of the Proposed Approach

Eckmann's method reveals covert or indirect information flow in formally specified systems
descriptions. The added advantage in the proposed method is that indirect information flow is

detected and revealed to the systems analyst on a logical design level.

Automation of the security flow checking process can be achieved. This allows the analyst to

utilise his time more productively on design issues.

Conclusion

In this chapter, analysis and design rules and principles were presented, as well as security
activities, which should be incorporated in the Automated Software Generation Environment
(ASGE) to enable the improvement of the security level and design quality of DFDs. The
proposed approach EASGE (Extended ASGE), was explained in more detail through the

addition’of security activities to the ASGE diagram.

Binary access rules and Compound access rules were presented, which actually form the

security policy on which the DFD-prototype DFDSEC is built. It forms the backbone of the

78

security stages, since it assists in constructing the various tables that are used to determine the

security state of the DFD, and to determine where improvements should be made.
The activities and rules represent the logic of the prototype DFDSEC, which will be illustrated

in Chapter 5 with detailed examples. DFDSEC utilises some of the rules and principles for

effective design, and implements all of the discussed security stages.

79

5

Chapter 5
Prototype implementation:

the DFDSEC tool

Introduction

The author of this dissertation has developed a prototype tool called DFDSEC, the name
being an acronym for 'DFD Security’. DFDSEC is a scaled-down DFD CASE-tool which
incorporates all the security activities and rules described in Section 4.1. Some of the rules for
effective design which were described in Chapter 4 are implemented as well, for example,

checking that all data flows have connected processes or external entities.

DFDSEC embarks on the journey of striving to combine the two ficlds of Information
Security and Computer-Aided Software Engineering, by integrating information security

principles with the normal analysis and design activities of CASE-tools.

The tool demonstrates the concept of high-level security analysis and design which was
described in the previous chapters, allowing the designer to assign security classes to objects
in a DFD, then analysing direct and indirect information flows between such objects, pointing

out invalid information flows, and suggesting changes to the analyst concerning the DFD.
Chapters 4 covered the theoretical detail of the security principles upon which DFDSEC
operates, and its security stages. This chapter illustrates the theoretical with practical
examples. Detailed descriptions of how DFDSEC operates, as well as examples and
demonstrative screens sampled from DFDSEC analysing the example DFD, are presented.

The layout of the chapter is as follows:

Section 5.1 describes the purpose of DFDSEC in terms of security analysis. Section 5.2

presents the goals of DFDSEC and Section 5.3 lists the Security Stages. Section 5.4

80

S.1

+

introduces sample DFDs, firstly as they would have appeared in the CASE-tools Silverrun and
OMD and secondly as represented by DFDSEC. Section 5.5 continues to explain the examples

by highlighting the security stages performed by the tool and the recommendations given by it.

Purpose of the Prototype.

The golden thread that is woven through all the discussed approaches in Chapter 2 and the
i)roposed approach in Chapter 4 is the goal to prevent invalid information flow between
objects with differing security classes. DFDSEC addresses the security issues surrounding the
development of new applications systems, embodied by the shaded area in Figure 5.1, as well

as the maintenance of existing application systems in terms of security features.

1

1

[

]

1

1

§

I

}

i Create an Object Matrix :

Construct a Revised Object Matrix ! Re-Analyze
Construct a Security Revised Object :
4 matrix :
) Strengthen Sccurity - Sanitizer Object | |
i
1
'
t
§

Application system

Figure S.1: Domain of the Prototybc in the

Extended Automated Software Generation Environment

The aim is to demonstrate that principles from the approaches of Baskerville, Eckmann :n¢

an

)

Pemul, can be implemented in the form of a working prototype, and that security stages

exist as part of an existing, commercially used, CASE methodology. DFDSEC helps the

5.2

designer to define a DFD using Gane and Sarson’s methodology. The DFD is then analysed in

terms of secure data flow by applying the steps listed in Section 5.3.

DFDSEC is primarily concerned with high-level design, since it represents an example of
security extension to high-level design. Therefore, it doesn't reach down to the implementation

level.

DFDSEC will analyse the types of information flows between processes and the types of
accesses between data files on a DFD and will then highlight security weaknesses identified. It
will also suggest improvements to the DFD in order to improve the security of information
flow on the DFD.

Goals of the prototype

The goals of DFDSEC are as follows:

(i) to indicate insecure information flows between processes and data stores, for example
information flowing from a "top secret” classified data store to a “secret" or

"confidential” classified process.

(ii) to identify and display insecure indirect information flows. For instance, if Process A
sends information to Process B via a shared database/file, and Process B sends
information to Process C via a shared database, as shown in Figure 5.2, then Process A is
providing information to Process C indirectly via B. If the security class of Process A is
more secretive than that of C (even if the security' class of B is equal to that of A), then a

- potentially insecure flow of information between processes exists. The prototype will

identify these indirect flows.

DB DB

Indirect information flow

Figure 5.2: Indirect Information F low between Data Stores and Processes.

(1ii) to present warnings in the case of detection of ineffective design. For example, to detect
when information flows directly between two processes, instead of via a shared database
from ‘one process to the other. According to Gane [Gane - 1990] it is a good design
principle to consistently use shared databases to store information flow, instead of having

direct information flow between processes.

(iv) to suggest appropriate processes to be added to the DFD for handling security. For
example, with the addition of a Sanitiser Process to the DFD that can handle security.
According to Baskerville [Baskerville - 1993], a new security control procedure should be
inserted as a sub-process of a current process in cases where the disclosure or destruction
risks are present. However, in cases where the modification risk is present, security
checking should be done by an independent process, because of the nature of the

modification risk [Baskerville - 1988].

For example, the two risks disclosure and destruction of data, can be handled efficiently
by positioning the control process internally within the relevant process that causes the
“ risk. This is the case because the security monitoring that needs to be performed under
these circumstances to prevent the realisation of the risk ‘can be done by the same process
or a sub-process of the process which accesses the data. However, in the instance where
the modification risk is present, the integrity of the data cannot be guaranteed when
security checking is done locally (within the same process). Baskerville suggests an
independent security process to monitor the modification of data by process objects
[Baskerville - 1988]. In the scope of this study, we can look at the situation in the

following way: if an object which is classified as Secret modifies the data in a Secret

83

53

5.4

database, it would not be safe for that process to handle the security, simply because when
other objects which is Secret or Top Secret are added to the system later on, the security
process must be duplicated for each process. More importantly, when it is a malicious
object with intent to destroy or illegally modify the data (e.g. an object from another,
outside program), it is vital that the data in the database be protected by an independent

secﬁrity object, which can always perform security monitoring for the database.
DFDSEC only allows the addition of independent processes, for illustration purposes.

(v) to allow the analyst to continue editing the DFD until he is satisfied with the security state

of the DFD.

Security Stages of DFDSEC

The security activities in DFDSEC consist of the following security analysis and design

stages, discussed in Chapter 4:

1. Allocate security classes to objects.

Determine information flow types.

.

Create an Object Matrix.
Construct a Revised Object Matrix.

Construct a Security Revised Object Matrix.

SR W N

Strengthen Security/Add Sanitiser objects.
Example with different representations (SILVERRUN, OMD and DFDSEC).

Consider the following user requirements, for an example DFD. This example will be used

extensively in the remainder of this chapter.

84

5.4.1 User requirements

An application is needed with a process that can calculate salaries for employees of a large
company. There is an existing database containing employee data, for instance personal data
and rate per hour paid. The process appends salary data to a data file. A salary clerk needs
access lo the salary data so as to resolve ad hoc enquiries, for example to calculate average

salaries.

5.4.2 Silverrun Representation

Figure 5.3. shows the way that the example requirements could be represented in Silverrun,

using the Gane and Sarson methodology.

4 1 N
Calculate Salaries
[s1 E Data : |
mployee Da F-1g . 2 S-2 Salary data
__ J F-3
EE-1
Salary Clerk

Figure 5.3: Silverrun Representation of the Example

5.4.3 Object Modeler Representation

Figure 5.4. shows the way that the example requirements could be designed using OMD. The
reader should remember that OMD uses an evolutionised EAR diagram which is Object-
oriented. An OMD OR diagram is represented in the figure. The basic relationship between
the objects are shown in the centre object (Emp-Salary). The logic of the requirements are

translated into OMD rules, which will signify the following meaning;

85

e At the end of the month, for each iimployee, fetch the data attribute Payment
Category (from object Employee).

e Fetch data attribute Payment per hour from Payment Rates.

e Calculate Salary as (Hours worked x Payment per hour).

e Update salary data in the object Salary Data.

The above-mentioned rules can be linked to the Employee object or to the Salary object, for

example.

Figure 5.4: OMD Representation of the Example

S.4.4 DFDSEC Representation

Figure 5.5 shows the way that DFDSEC would handle the situation. A security classification
has been added to each object, according to the sensitivity of the information that it contains
(if it is a data store), calculates (if it is a process), or is allowed to access (if it is an external

entity). .

86

5.5

Description of DFDSEC in terms of Security A‘ctivities and Recommendations.

When DFDSEC is loaded it presents the designer with a Graphical User Interface (GUI) as
depicted in figure 5.6. The GUI consists of three parts, namely a DFD window (A), a toolbar
(B), and an options bar (C).

The DFD window is used by the designer to represent user requirements in a visual way, i.e.,
by means of a data flow diagram. Drawing tools are contained within the toolbar and are
presented by the process icon, Sanitiser Process icon, External Entity, Data Store and Data
Flow objects. The D in Figure 5.6 indicates the drawing tools. The E in the figure indicates
utility tools, for example loading or saving a DFD. The options bar, indicated by C in Figure
5.6 allows the designer to change the line style, width and drawing colours. The F symbol in

Figure 5.6 indicates tools that can be used to analyse the DFD.

Analysing a DFD causes the information flow between objects on the diagram to be examined
in terms of security and integrity requirements according to the steps listed in Section 5.3. The
remaining tools are utility tools, used to save or load a diagram, exit the prototype, or start

creating a new data flow diagram.

The Gane and Sarson modelling technique [Gane - 1990] serves as basis for DFDSEC.

According to this technique, the objects in the DFD are represented as shown in Figure 5.7

P-1
{8
Process | B-l Dals siors ¢ Flow |

Figure 5.7: Objects in a DFD (Gane and Sarson representation)

Using the drawing tools of DFDSEC, the designer has transformed the user requirements
listed in Section 5.4.1 into a visual representation as depicted in Figure 5.8. Objects on the
DFD are connected by means of arrow symbols, so as to indicate the direction of information

flow within the system.

88

*

After the designer has placed the objects on the ‘drawing board and connected them by means
of arrows, DFDSEC automatically determines the information flow type between objects on
the DFD. This is done by analysing the direction of the data flow arrows between two
objects. Only Read and Write actions can be deducted automatically. DFDSEC then
automatically labels the flow type between "Employee data" and “"Calculate salaries" as read.
the flow type between "Calculate salaries" and "Salary data" as write etc. When the DFD is
analysed for security, the user is requested to supply more complete information concering
the type of information flow. For example, if a write action has been deducted, the analyst

must specify whether it is an update, insert, append or delete action.

As the user requirements indicate that data is appended from the "Calculate salaries” object to
the "Salary data" object, the designer changes the write action to an append action, as
portrayed in Figure 5.9.

Dzt Flow Dissrxn

e e e e =]
==

Figure 5.8: Example Data Flow Diagram as created on DFDSEC

The designer now selects the analyser icon (indicated by F in Figure 5.6) to indicate to
DFDSEC that the DFD can now be analysed in terms of security and integrity requirements.

The analysing process occurs internally and consists of the steps listed in Section 5.3 ..

The allocation of security classes to objects is depicted in Figure 5 10 The project leader has
indicated that the following security classes should be assigned to the process, data files and

external entity objects:

¢" Calculate salaries (process) ; Top Secret

e Employee data (data store) : Confidential
. ¢ Salary data (data store) ; Secret

* Salary clerk (external entity) Confidential

* Retrieve data (process) ; Secret

The matrices presented below will not be presented 1o the designer. because they are meant to
be used internally for determining insecure flows They are merely shown here for explanation

purposes

90

Figure 5.10: Allocation of Security Classes to Objects

Calculate

salaries

Employee
data

Retrieve

data

Salary
data

Salary

clerk

Calculate

salaries

Append

Employee
data

Read

Retrieve

data

Read

Salary

data

Read

Salary

clerk

Table 5. 1: Object Matrix for the Example

Calculate Employee Retrieve Salary Salary
salaries data data data clerk
Célc_‘ulate Append Read
: salarles
itf_:'_Employee ‘! Read Read Update Read
Read
Read Read
Table 5.2: Revised Object Matrix for the Example
f__-Calcu‘late Employee | Retrieve Salary Salary
Fs‘a!ariw data data data clerk
‘Calculate.
salaries
Employee Read Read Update Read
data -
Retrieve
data
Salary Read
data
Salary
clerk

Table 5.3: Security Revised Object Matrix for the Example

92

DFDSEC now compares the Revised Object Matrix and the Security Revised Object Matrix to
determine invalid information flows. DFDSEC would point out that the binary flow from
“Retrieve data" to "Salary clerk" is invalid, (indicated by the thick line from "Retrieve data" to
"Salary clerk” in Figure 5.11) as the Salary clerk can only read information which has a
confidential or unclassified clearance. DFDSEC would suggest that the security class of the
Salary clerk be raised to be at least the same as the security class of "Retrieve data", i.e.

Secret.

DFDSEC prompts the designer to indicate whether he would like to change the security class
of the Salary clerk. As the user requirements stated that the salary clerk requires read access
to "Salary data” via the "Retrieve data" object, to resolve ad hoc enquiries, the designer has
reasoned that he needs to change the security class of the Salary clerk to Secret. This is

indicated in Figure 5.11.

Figure 5.11: Pointing out Invalid Information Flow Types

93

DFDSEC prompts the designer to indicate whe£her he would like to insert a Sanitiser Object
between the "Calculate salaries” and "Salary data" objects. Examining the user requirements,
the designer concluded that once salaries have been calculated, it is necessary to append a
subset <;f the salary data from the TS process (Calculate Salaries) to the Salary data store
which is secret (S), so that the Salary clerk can resolve queries. Therefore, the designer has

opted to insert the Sanitiser Object. This is indicated in Figure 5.12,

The Sanitiser Object will facilitate the flow of information from a higher classified object to a
lower classified object (by definition), in order to override the rule that information cannot be
appended from a object with a higher security class to an object with a lower security class
(see the append rule in Section 4.3.5). Since DFDSEC is currently implemented as an analysis
and design tool, the implementation detail of the Sanitiser Object has not been addressed. One
possibility for implementing a Sanitiser Object can include multilevel security database
concepts [Baskerville - 1993] [Jajodia, Sandhu - 1991]. The Sanitiser Object is also similar to

Pernul's Security object, described in Section 2.4.5.(iii)..

Figure 5.12: Inserting a Sanitiser Object

94

DFDSEC would also point out that the binary flow from "Calculate salaries" to "Salary data”
is invalid, as information flows from a Top Secret object ("Calculate salaries") to a Secret
object ("Salary data"). Due to the downflow of information DFDSEC suggests that a Sanitiser

Object be inserted between the "Calculate salaries" and "Salary data" objects.

Having changed the security class of the Salary clerk and inserted a Sanitiser Object, DFDSEC

automatically re-analyses the DFD. The various matrices constructed internally are presented

below:
Calculate Employee Sanitiser Retrieve Salary Salar
salaries ' data" : object data data y
T o clerk
- Calculate salaries. Flow
ey
¢ obj Append
Read
“Salaryclerk

Table 5.4: Reconstructed Object Matrix for the Example

Note: The flow type between "Calculate salaries” and the "Sanitiser object” is indicated as

Flow, as information is transferred from the "Calculate salaries” object to the

“Sanitiser object” to prevent information flow from an object with a higher security

class to an object with a lower security class. The security class of any "Sanitiser

object" defaults to Top Secret.

Calculate Employee Sanitiser Retrieve Salary Salan
salaries data object data data clerk
Calculate salarices Flow
Employce data Read Flow
Sanitiser object Read Append Rcac
Retrieve data Reac
Salary data Read Rcac
Salary clerk

Table 5.5: Reconstructed Revised Object Matrix for the Example

5.6

Calculate Employee Sanitiser Retricve Salary Salar
salaries data object data data y
clerk
- Calculate salaries Flow
- Employee data. Recad Flow
.- Sanitiser object Read Append Read
~ Rerievedata Read
“Salarydata Read Read
«: Salary clerk

Table 5.6: Reconstructed Security Revised Object Matrix for the Example

According to the binary access rules in Table 4.8, a TS object may only append to a TS data
store. This means that the Append between the "Sanitiser object” (TS) and "Salary data" (S) is
invalid. However, the Sanitiser Object would only allow secret information to flow to the
"Salary data" object. It would, in other words, filter the information, so that only data fields
classified as secret are allowed to pass to the lower object. Therefore the flow would be valid.
The same argument applies to the flow between the "Sanitiser object” and the "Retrieve data”

and "Salary clerk" objects.

DFDSEC now compares the Revised Object Matrix (Table 5.5) and the Security Revised
Object Matrix (Table 5.6) to determine invalid information flows. As no invalid information
flows exist, i.e., the Revised Object Matrix is identical to the Security Revised Object Matrix,

the real environment (EASGE) would proceed to generate databases tables and code.

Conclusion

The advantages of using an EASGE tool when developing a system are numerous. Firstly, an
EASGE tool allows most object interactions to be determined automatically using the high-
level design diagrams such as DFDs of the system. Secondly, a Revised Object Matrix ensures
that all valid and invalid combinations of information flow are considered during system
development. This is the aim of all three of the approaches in Chapter 2 (Baskerville, Eckmann

and Pernul). Thirdly, the security class assigned to an object is considered while developing

96

the system. This allows security definition activities to become an integrated part of

application system development.

97

6.1

Chapter 6

Design and Implementation of the Prototype.

Introduction

This chapter covers some of the details of how DFDSEC was designed and implemented.

Section 6.1 presents the requirements specifications for DFDSEC, i.e. what is was required to

do, as well as detailed specifications for each stage of DFDSEC.

Section 6.2 presents the requirements design for DFDSEC. This section explores the more

detailed design of DFDSEC. Each stage of the prototype is explained in more detail.

Section 6.3 gives some important implementation details, such as the kind of memory

structures used and data stored for each object in the DFD.

Requirements Specification

The goal of DFDSEC can be summarised on a very high level as in Figure 6.1. The input to the
prototype is a DFD (defined by the analyst). The prototype analyses it according to principles and

rules for secure design, discussed in Section 4.3. The output is a more secure DFD.

PROCESSING
Get original DFD _Security stages of EASGE Secure DFD

Figure 6.1: The Main Goal of DFDSEC

A short description of each of the three main steps (stages) is now given.

98

6.1.1

6.1.2

Get original DFD

In this phase of the prototype, the DFD is input from the analyst with the aid of drawing tools.

Processing

The aim of this phase of the prototype is to perform the security stages of EASGE. This means that
the DFD is processed step by step according to a set of security stages. The security stage activities

include generation of the following:

(1) An Object Matrix, which maps source objects of direct information flows or direct
access types onto target objects.

(i) A Revised Object Matrix, which maps source objects of indirect information flows
or indirect access types onto target objects. This matrix contains both valid (secure)
and invalid (insecure) information flows or access types.

(i) A Security Revised Object Matrix, which maps source objects of valid (secure)

information flows or access types onto target objects.

The Revised Object Matrix and Security Revised Object Matrix are compared, and entries which
are not on the security revised object matrix are pointed out as dangerous or illegal information
flows. The analyst may then insert a Sanitiser Object to handle downflow of information betw een
objects of varied security classifications, or he may change the security class of a security breaching

object. -

The ideal is that user interaction should be minimised, because the aim is to automate the secirity
checking process. However, the user (analyst) will still have to assign a security class to <ach

object in order to continue with the security analysis.

After generation of the matrices, a new DFD must be constructed if necessary. This will be cone

from the original DFD and the matrices.

It makes sense to apply the security activities on the DFD level, because a DFD is more analysable
by a computer than normal language text. The part that the prototype performs can then also
become part of an existing CASE-tool, i.e. the part of handling the security analysis and design,

integrated with the normal analysis and design activities.

6.1.3 Secure DFD

The output of the Processing phase is a new, security-adjusted DFD which should be shown to the

user so that he can see the difference in design that has been achieved.

6.2 Requirements Design

6.2.1 Get Original DFD

The DFD definition (drawing) tool should have the following capabilities:

e Drawing processes, data flow arrows, external entities and data stores. Names should
be given to these objects.
e Each object must be moved interactively. Therefore, for each object the data in Figure

6.2 must be stored in the memory workspace. The area underneath the object shouldn’t

be disturbed by the movement.

6.2.2 Processing

Processing of the DFD is to be done by the following software processes.

a. Information Flow Controller

This process should allow the user to assign security classes to the objects on the DFD (for
example, Confidential or Top Secret). This Controller analyses direct information flow between
different objects on the DFD and generates an Object Matrix. The Object Matrix also contains the
information flow types or access types. For example, Read or Write access types. This is

determined by the direction of the arrow heads of each pair of objects.

100

b. Information Flow Enforcer

This process generates a Revised Object Matrix from the Object Matrnix, indicating the indirect
data flows between different modules on the DFD. This is done by a method which was deducted
from the work of Hsieh [Hsieh - 1992], generating information sets indicating between which

objects there exist indirect information flows.

From the Revised Object Matrix the Security Revised Object Matrix is generated. The type of
access between processes and databases should also be considered when checking the security,

because an update action has different implications from an append or a read action.

From the combination of these two matrices, the secure DFD is generated.

6.2.3 Secure DFD

The following component is needed in the prototype code in order to be able to construct a new
DFD:

a. Automated Diagramming System

By this component a new DFD can be generated from the comparison between the Revised

Object Matrix and the Security Revised Object Matrix, which should be secure.

The user should be able to iterate the process of editing the DFD and commanding DFDSEC to

analyse it, until he is totally satisfied that the DFD of the target application system is secure

6.3 Some implementation details

6.3.1 Memory structures for the storage of the DFD.

When DFDSEC is executed by the computer, the management of data concerning the vz=.ous

objects on the DFD is done by a doubly linked list memory structure, illustrated in Figure ¢ 2

101

Each object points to the previous and the next object, to speed up internal referencing when

analysing the information flow.

@

Pointer to first Object Object Object
object data | @ ©® i (@ daa | @
o

Figure 6.2: The Nodes Connecting Objects on the DFD

. Each node of the linked list stores the data for one object on the DFD. Figure 6.3 shows a
more detailed diagram of one node in the linked list. Each object can have more than one child
or more than one parent. For example, if a process reads data from two data stores, it is linked

to two parent objects.

lCode flm SecLevel+Group Flype Deser NxiLevPlr PrvLevPr Visible Coords Size Colors Puen(l?odu Chlld+aCoda l

vy l *T.fl‘—
:l?: _»:[I_—_.
Co\kL Codc‘——
-
="

Figure 6.3: Extension of "Figure-Data" in Figure 6.2

Figure 6.4 shows detail data stored in each node of the linked list.

Object Code (e.g. EE-1 for External Entity 1)

IS

Object Name (supplied by the user)

o

Object Type (e.g. Process/Data flow/Entity/Store)

d. Security class of element (One of "Top secret/ Secret/ Confidential/
Unclassified" - this information is supplied by the user.
Description of the object (optional)

Visibility (e.g. is Object currently visible?)

x1, yl, x2, y2 (relative co-ordinates - relative to the actual design page)

= oo

Sx, Sy (size of element on design page)

FColor, BColor (foreground and background colors)

j. Parent elements (pointers to other objects. E.g. a pointer to a process if the
current element is an information flow arrow)
k Children elements (pointers to other elements. For example from a current process

to one or more arrows, or from a current arrow to a process)

Figure 6.4: Record of Data Stored for Each Object/DFD element

A current process or arrow or other object which is current means the object which is the
selected one in the memory workspace at a point in time, either during analysis of the DFD, or

during editing of the DFD.

6.4 Conclusion

This chapter examined some of the implementation details of DFDSEC.

In Section 6.1, detailed requirements specifications were presented for DFDSEC, illuminating
what had to be done by each stage of the prototype, especially the Processing stage, in which

the DFD is scrutinised to check how secure it is.

In Section 6.2, detailed requirements design was subjected to the spotlight. The Information
Flow Controller and Information Flow Enforcer were described, which are. the two software

processes which generates the matrices used for analysing the security level of the DFD.

103

In Section 6.3, explicit implementation details were given concerning the type of memory
structures used in storing the DFD objects created using DFDSEC. The role of the doubly
linked list in DFDSEC memory usage was highlighted in this section.

Chapter 7 presents a basic user manual for DFDSEC.

104

Chapter 7

User manual for DFDSEC

Introduction and structure of this user manual

In this chapter, a simple user manual is supplied for use when operating the prototype.

Section 7.1 contains instructions for the installation of DFDSEC onto the hard disk of a PC,

and the required and recommended computer system to be able to run the tool.
Section 7.2 explains how to activate the tool from the DOS prompt.

Section 7.3 describes the DFDSECT environment and user interface, including how to use the
mouse when operating DFDSEC, and the various shapes of the mouse pointer on the screen

during different types of operation.

Section 7.4 describes each icon on the user menu in detail, using the following structure:
o Identification
e Purpose
e Use

e Other important details when using this icon

Section 7.5 explains what the user (the systems analyst) should do when an error messzge

appears on the screen.
Section 7.6 expands on how to enter information in an input window on the screen.

Section 7.7 explains the procedure to define a sanitiser object It is necessary to ente: a
sanitiser object when information is flowing on the DFD from a higher classified object (¢ ¢
Top Secret process) to a lower classified object (e.g. Confidential database) and the secunty

classification can not be changed because of user requirements

<
n

7.1 Installation

The files for the DFDSEC program are supplied on a single 1.44 MB stiffy diskette,

DFDSEC can be installed on the hard disk of a computer by copying all the files on the
diskette to a directory on the hard disk. For example, if the diskette is in drive A, and the
target directory on the hard disk is c:\\DFDSEC then type

copy A:** c\dfdsec <Enter>

7.2 Activating the tool and System requirements

Switch to the c:\DFDSEC directory (or the user-specified directory) and type:
DFDSEC <Enter>

This will load the tool into the computer’s memory and start executing it.
It should be noted that the following system requirements are applicable. The user must have

a computer with a minimum of the following requirements (left column of Table 7.1). The

recommended specifications for efficient performance are given in the right column of Table

7.1.
Minimum requirements Recommended specifications
386SX processor 386DX or 486DX processor
VGA screen VGA screen
Mouse Mouse
2 MB memory 4 MB memory
1 MB free hard disk space 2 MB free hard disk space

Table 7.1: System requirements and recommended specifications to run DFDSEC

106

7.3 Drawing a DFD with DFDSEC: General Information and Tools

7.3.1 DFDSEC Main Screen

When DFDSEC is loaded it presents the designer with a Graphical User Interface (GUI)-as
depicted in Figure 7.1. The GUI consists of three parts, namely a DFD window (A), a-toolbar
(B), and an options bar (C).

The DFD window is used by the designer to represent user requirements visually, i.e., by
means of a data flow diagram. Drawing tools are contained within the toolbar and are
presented by the Process, Sanitiser Process, External Entity, Data Store and Data Flow icons.
The D in Figure 7.1 indicates the drawing tools. The E symbol in the figure indicates utility
tools, for example, loading or saving a DFD. The optidns bar, indicated by C in the figure
allows the designer to change the line style, width and drawing colours. The F symbol

indicates tools that can be used to analyse the DFD.

The remaining tools are utility tools, used to save and load a diagram, exit the prototype and

start creating a new DFD.

Figure 7.1: DFDSEC Main Screen

127

s

7.3.2 Cursor Shape

733

7.3.4

It is useful for the user (the systems analyst) to note the shape of the mouse pointer on the
screen. When the mouse is in drawing mode, i.e. waiting for the analyst to draw an object,
the cursor is a cross. When the mouse is in command mode, i.e. waiting for the analyst to

choose a drawing tool in the tools window, the cursor is an arrow shape.

Currently Active Drawing Tool

One drawing tool can be active at a time, for example a process. Then the analyst can define
processes, until he selects another drawing tool. When a tool is active, and the analyst moves
the cursor over the command area , that tool stays active, although the cursor shape will
change to an arrow. The tool will stay active until a new one is selected. Otherwise, if the
cursor is moved over the working area again, the arrow will once again be a cross and the

analyst can continue drawing processes (or use whichever tool was active before).

The Mouse in Drawing Mode

The left button (LB) draws the object at the current position. Holding the right button (RB)
and moving the cursor (by moving the mouse) sizes the object. For example, press and hold
the RB down and move the mouse in the direction into which you want to size the object.
Release the button when sizing is completed.

The middle button (MB) also has a special function. When defining a process, and the MB is
pressed and held, and the pointer is moved, then the corner radius changes, i.e. the corners are

mzide bigger or smaller.
If the analyst presses and holds the LB button while moving the mouse pointer over the

command area, the drawing tool will not deactivate, in other words the tool stays active and

can still be used when moving to the working area again.

108

7.4

7.4.1

>

If no button is pressed, and the mouse pointer is moved over the tools area, the pointer

temporarily becomes an arrow again, until moved back to the drawing area.
Choosing Another Tool

If the left button is pressed when the pointer (arrow) is on the menu area, the selected drawing
tool is deactivated, and the one under the mouse pointer (arrow) is selected as the new current

drawing tool.

The Menu Options

The individual options for defining a DFD are as follows:

The Process icon

Identification:

Purpose: Allows the analyst to define new process objects on the working area.

Use: Select the Process drawing tool by clicking the mouse when the mouse pointer is on the
Process icon. Size the process with the right mouse button, if necessary. Place the process
onto the working area by pressing the left mouse button when the object is at the required
position. After placing, a code will be assigned to the process and displayed inside it. The

analyst keeps on defining new processes until he selects a new tool.

Selecting an existing process on the working area: When the mouse pointer is in comma-nd
mode (arrow-shaped), the analyst may click on a process. The details of that process will thzn
be displayed in an editing window, and can be edited. Please refer to Section 7.6 for mcre

information on editing data.

199

7.4.2 The Flows Icon

7.4.3

Identification: 3

Purpose: Lets the analyst define and place new data flow arrows between entities.

Use: Select the Flow drawing tool by pressing the LB when the mouse pointer is on the flow
icon. Define the flow by clicking the left button first inside a SOURCE entity, then inside the
TARGET entity. If either the start OR end point isn't inside an object (Process, Data store, or
External entity), the arrow is INVALID an is erased from the screen.

After placing, a code will be stored for the flow. It will not be displayed. The analyst keeps on

defining new arrows until clicking on the menu area, selecting a new tool.

Selecting a flow: When the mouse pointer is in command mode, the analyst may click on a

flow. The details of that flow will then be displayed, and can be edited.

Entering data: Data will only be required for an arrow when the program has analysed the
Revised Object Matrix. Only the information flow type (or access type) will be required by the
program. Use the same input method as for Security classes, i.e. use the <Left>/<Right>

arrow keys to select the correct type.

The External Entity Icon

Identification: (Wl

Purpose: Lets the analyst define and place new external entities.

Use: Select the External Entity (EE) drawing tool by clicking the mouse when the mouse
pointer is on the EE icon. Size the EE with the right mouse button. Place the EE with the left

mouse button. After placing, a code will be displayed inside the EE. The analyst keeps on

defining new EEs until clicking on the menu area, selecting a new tool.

110

7.4.4

7.4.5

Selecting an External Entity: When the mouse pointer is in command mode, the analyst may
click on an EE. The details of that EE will then be displayed, and can be edited. Please see

Section 7.6. for information on editing data.

The Data Store Icon

Identification:
Purpose: Lets the analyst define and place new data stores.

Use: Select the data store drawing tool by clicking the mouse when the mouse pointer is on
the icon. Size the data store with the right mouse button. Place the data store with the left
mouse button. After placing, a code will be displayed inside the data store. The analyst keeps

on defining new data stores until clicking on the menu area, selecting a new tool.

Selecting a data store: When the mouse pointer is in command mode, the analyst may click

on a data store. The details of that data store will then be displayed, and can be edited.

Entering data: Please refer to Section 7.6. for more information concerning the editing of

data.

The Load Icon

Identification:

Purpose: Lets the analyst load a saved DFD from the active directory (the one from which the

program was executed).

Use: Click on icon. A window is displayed, asking for a filename. Enter a filename. Include a

DFD extension. For example, DFD1.DFD. The file is then loaded, and the DFD is drawn.

111

7.4.6

7.4.7

The Save Icon

Identification: Eﬁ

Purpose: Lets the analyst save the current DFD in the active directory (the one from which

the program was executed).

Use: Click onicon. A window is displayed, asking for a filename. Enter a filename. Include a

DFD extension. For example, DFD1.DFD. The file is then saved.

The Printed Page Icon/ Screen Icon

Ideﬁtification: D E

Purpose: Activates the analyser, and outputs the generated sets to the specified output device.

(Printer or Screen).
Note: Choosing the Printer makes comparison with the DFD on the screen easier.

Use: Click on icon. The program will start asking information concerning each object, if th.at
object's Security Classification is Undefined. Enter information as described in Section 7 9.

Pressing <Esc> will skip the details of the current object and move on to the next one.

After every object's data has been retrieved from the analyst, construction of the Object Mat-ix
is started. Immediately thereafter, construction of the Revised Object Matrix is started These

two tables are then printed or displayed.

DFDSEC then proceeds with the construction of the Security Revised Object Matrix. Firstv,
the analyst is asked every flow's information flow type (or access type if the fiow s
connected to a data store) (e.s. Read/Write/All/Update/Delete/Flow). Analysis is th<n
finalised, constructing the Security Revised Object Matrix, and displaying it on screzn. or

printing it.

7.4.8

7.4.9

The Pen Icon

Identification:

Purpose: Redraws the DFD.

The Pen Icon with the S in the Corner

Identification:

Purpose: Shows security breaching problems by drawing the security-breaching information

flows (or access types), one at a time.

Use: Press left mouse button between each invalid display, or right mouse button to quit

function.

7.4.10 The End Icon

7.5

7.6

Identification: @

Purpose: Exits the tool

Error message and information message windows

When the analyst tries to execute an action that is not applicable or invalid, an error message
appears. The window of an error message is red, the message is displayed in yellow, and there
is a blue OK button. To close the window, the analyst can either:

1) click on the OK button; or

2) press any key on the keyboard.

Input Windows for Entering Information

Example: When a filename or other data has to be entered.

113

Use: The analyst can move the cursor between input fields by pressing the <Up> and <Down>

arrow buttons, or the <<Tab.> or <Shift>+<<TAB.> buttons.

Entering data: The <Tab>. key moves the text cursor to the following field. The <Up> ané

<Down> cursor keys moves the text cursor to the previous or next input field, respectively.

Hints:
® Type the name in normally.
® Select the security class by pressing the left/right cursor keys until the correct class
is displayed. Then press <Enter>.

® Select the information flow type only for a data flow.

Press <Enter> or <Down> when a field is correct. The cursor moves to the next input field

<Esc> may be pressed to escape the current input window.

Closing the window: When clicking the mouse pointer outside of the window, the window

will close. This has the same effect as pressing <Esc>.

7.7 Defining a Sanitiser Object

After the analyser has been activated and the DFD has been analysed (by clicking on either the
Printed Page tool or the Screen tool), DFDSEC will make some suggestions. It may suggesa
the insertion of a sanitiser object between two objects when a dewnflow of information occurs
(for example, from Top Secret to Confidential). It will specify the problematic objects and
their security classifications. The analyst can then confirm that he wants a sanitiser objec:
inserted. DFDSEC prompts him to indicate the position of the new Sanitiser Object (Se=
Figure 7.1). After the analyst presses the left mouse button on the required position. the
Sanitiser Object is put on the working area, and the information flow links or access links arz

redrawn to go via the Sanitiser Object to the target object.

114

Figure 7.2: Inserting a Sanitiser Object on the DFD

7.8 Conclusion

This chapter supplied the user manual for DFDSEC. The following chapter will look at the

future prospects of the incorporation of computer security into the world of CASE tools

8

8.1

Chapter 8

Future Prospects and Conclusion

Introduction

The structure of this concluding chapter is as follows:

Section 8.1 lists some of the most important advantages of the Extended Automated Software

Generation Environment (EASGE) discussed in this dissertation.

Section 8.2 describes some prospects concerning the general feasibility of implementing

security activities as part of a commercial CASE tool.

Section 8.3 presents the author’s views on the viability of creating a similar prototype to

DFDSEC which can analyse object-oriented analysis and design diagrams.

Section 8.4 describes the views of the author in terms of analysing control flow which occurs

in DFDs.

Section 8.5 shortly focuses on the suitability and capabilities of DFDSEC for the analysis and

design of larger, more complex, secure data flow diagrams.

Section 8.6 concludes this dissertation with some suggested research directions.

General advantages

Using an EASGE tool when developing a system, has several benefits to the security state of
the system under development. Firstly, it allows most object interactions to be determined
automatically using the high-level design diagrams (i.e. DFDs) of the system. Secondly, a
Revised Object Matrix ensures that all valid and invalid combinations of information flow are

detected for scrutiny during system development. Thirdly, the security class assigned to an

116

object is considered during the development of the system, instead of afterwards. This brings
security to the Upper-CASE phases, namely analysis and design, away from being an
implementation detail ‘to be left for later’. In other words, security features can be added as an
integrated part of application system development, instead of being an ad hoc addition to

existing applications.

8.2 Implementation prospects

DFDSEC is an example of a possible mechanism which automatically enforces secure
information flow during the high-level development of an application system. The insertion of
a security handling object (Sanitiser object) onto the DFD allows for more realistic design, in
that information is allowed to flow down to objects with a lower security classification, under
the watchful eye of both the designer and the security CASE-tool, DFDSEC. Although
DFDSEC doesn’t facilitate the implementation of a process, data store or external entity on
the DFD, nor the implementation of a sanitiser process, it is assumed that the sanitiser process
couid be implemented had DFDSEC been a real CASE tool. Work done by Baskerville
illustrates a possible way of implementing processes to handle security, although he describes
it on a theoretical basis, in other words, not as being an activity of a CASE tool [Baskerville -
1993].

Concerning field-level security, DFDSEC doesn't consider the fine granularity of information
security down to the data field level, although it is implied (on a logical level) by the filtering
activities of information on field level. DFDSEC demonstrates the security activities on the
logical lével only, i.e. that of analysis and design. With the increasing quality of multi-level
secure databases (MLS databases) as suggested by Pernul in {Pernul - 1994b] and CASE-
tools that use some form of MLS already (for example Object Modeler by Sapiens
International), the ease of implementation of a security strategy such as EASGE (implemented

in the tool DFDSEC), results in security implementation becoming more viable by the day.
It is hoped that this prototype will serve as an example of what powerful features can be

incorporated into the computer aided software environment to facilitate security enhancement

of design diagrams and to automate as much of this as possible.

117

8.3 Object-oriented implementation of a prototype

It is also believed by the author of this dissertation that an object-oriented prototype can be
constructed using the exact same security principles contained in EASGE (described in
Chapter 4) which were implemented in DFDSEC. The following guidelines could be followed:
¢ Object-oriented analysis and design assumes that an object operates by sending
messages to other objects which causes certain behaviour to be performed by the
addressed object. In Sapiens, which is an object-oriented CASE tool, messages between
objects take the form of transactions. An example of a transaction is the following:
3000,1,40,ABC. The 3000 is the number of a transaction linked to an object by the
object-oriented concept of encapsulation. The / is an operation code specifying that the
following data should be inserfed in the data table with the same number as the
transaction (i.e. 3000). The data is the key of the table (which in this case has the value

of 40) and a description field (which in this case has the value of ABC).

In an object-oriented prototype similar to DFDSEC, the information flow between
objects on the DFD can easily be replaced by messages flowing between objects, which
may or may not contain information such as in the above example. Security analysis will
be done on the information contained in the messages. In the case of a tool such as
Sapiens, the database access type which is used in the analysis (see Section 4.3.4) can be

inferred by the operation code contained in the transaction (for example I for Insert).

e The objects on the DFD (i.e. processes, data stores, external entities) will be replaced by
the objects that is being designed as objects in the target system. For example instead of

processes and data stores, the diagram will consist of objects such as Employee and Order.

8.4 Analysing Control Flow in DFDs.

It is the view of the author that control flow analysis is similar to the analysis of object-
oriented diagrams and the analysis of normal data flow. Control flow analysis can quite easily

be achieved using a tool built on the exact same security activities as DFDSEC.

118

Control flow in a data flow diagram is similar to messages flowing between objects in an
object-oriented system. Control flow and object messages have the same goal: to cause
action by other objects, be they DFD objects (i.e. processes or data stores) or objects on an
object diagram (e.g. Order), respectively. Therefore, the type of data flowing between the
objects would, in both cases, be quite similar. It would be information concerning the expected
behaviour of the target object, with perhaps some database data/information accompanying

the control data, as in the case of the Sapiens transaction.

8.5 Analysing Bigger DFDs.

Although the examples of DFDs analysed in Chapter 5 represent relatively simple information
flow in a small demonstration application system, the capabilities of DFDSEC isn’t stretched

by this example DFD.

In experiments done by the author, one DFD was created which contained the following
objects: |

e 18 Process objects

* 17 Data store objects

¢ 41 information flows and database access types.

The resulting Revised Object Matrix contained roughly 150 direct and indirect information
flows which consisted of both binary (direct) information flows and compound (indirect)
information flows. The Security Revised Object Matrix concluded that roughly 130 of those

information flows were valid and roughly 20 were indicated to be insecure.

Theoretically, the size of the DFD isn’t a concern to DFDSEC, because of the use of
pointers. The number of objects on the DFD is only limited by memory space available and
screen size. However, screen size can become a problem because the current version of
DFDSEC doesn’t support the scrolling of objects on the workspace (the DFD window on the

screen).

The time needed to analyse the security for the DFD increases with each addition of an object

to the DFD. The actual analysis time for the tested DFD with 18 process objects and 17 data

119

stores was around 2 minutes on a 486DX4-100Mhz computer. This is because ALL possible
information flows are taken into account during the construction of the matrices for analysing

the security of the DFD.

8.6 Possible research directions

Possible research directions include the following:

e information flow and security analysis in object-oriented systems engineering;

¢ control flow analysis in data flow diagrams.

e the implementation of multi-level secure (MLS) DBMSs in a tool such as the one described
in this dissertation. _

e exploring possible ways of facilitating the implementation of objects such as sanitiser

objects in a commercial CASE environment.

Chapter 9

Bibliography

[Baskerville - 1988] Baskerville R, Designing information systems security, John-

Wiley Press, 1988

[Bell, LaPadula - 1976] Bell, D.E., and LaPadula, L.J., Secure Computer System: Unified
Exposition and Multics Interpretation. Technical Report MTR-
2997. MITRE Corp. Bedford, Mass, 1976

[Booysen, Eloff - 1993] Booysen H.A.S, and Eloff J.H.P., ‘Integrating information security

into the development of an application system’, 1993

[Booysen, Kasselman,
" Eloff - 1994] Booysen H.A.S, Kasselman A, and Eloff J.H.P., ‘Enforcing
Information Security during the development of Application

Systems’, 1994

[Eckmann, Cowal - Eckmann S.T., Cowal J., ‘Ina Flow User's Guide’. Technical
1992] - report TM-8416/000, Paramax Systems Corporation,
Reston, VA, 1992

[Eékmann - 1994] Eckmann S.T., ‘Eliminating Formal Flows in Automated
Information Flow Analysis’, presented at the 1994 IEEE

Symposium on Research in Security and Privacy

[Farquhar - 1991] Farquhar B., *One approach to risk management’,
Comput.Sec, Vol 10, No 1, 1991, p 21-23

121

[Gane - 1990]

[Hsieh - 1992]

Gane C., ‘Computer aided Software Engineering: The
methodologies, the products and the future’, Prentice Hall

International Editins, 1990

Hsieh C.S., Unger E.A, Mata Toledo R.A_, ‘Using Program
Dependence Graphs for Information Flow Control’, Journal of

Systems Software, Vol 15, No 1, 1992

[Jajodia, Sandhu - 19911Jajodia, S., and Sandhu R., Toward a multilevel secure relational

[LSC Dic-92]

[Sodhi - 1991]

[ObjMod - 1994]

[Ozier -'1989]

[Pernul - 1994a]

[Pernul - 1994b]

[Vliet - 1993]

[Wood - 1990]

data model. Proc. ACM SIGMOD Conf., Denver, Colorado, (1991)

Longley, Shain, Caelli, Information Security: Dictionary of

concepts, standards and terms, Macmillan Publishers Ltd, 1992

Sodhi J., Software Engineering Methods, Management, and CASE
Tools, TAB. Professional and Reference Books, 1991

Sapiens Technologies Ltd, Object Modeler User's Guide, Sapiens
Technologies Ltd, 1994

Ozier W, ‘Risk quantification problems and Bayesian Decision

Support System solutions’, Inf. Age, Vol 11, No 4 (Oct.), p 229-234

Pernul G., ‘Database Security’, Advances in Computing, Vol 38, p.

1 - 69, Academic Press Inc,1994
Pernul G, Modelling Multileve! Data Security, 1994

Van Vliet H., Software Engineering: Principles and Practice, Johr.

Wiley and Sons Ltd, 1993

Wood C.C., ‘Principles of Secure Information Systems Design’,

Computers and Security, Vol 9, p.13-24, 1990

[Yourdon, Constantine Constantine L.L. and Yourdon E., ‘Structured Design’, Englewood

- 1979] Cliffs, NJ: Prentice-Hall, 1979

123

Annexure A

Security Agorithms Implemented in DEFDSEC

The algorithms for security analysis and enforcing in DFDSEC' are listed below. The main

procedure is ProcessDFDForSecurity, which executes the following steps:

e Initialises the sets which store the matrices' data;

e Ensures that for each object, all the necessary data has been entered, before analysis

starts;
® Activates the Information Flow Controller, which generates an Object Matrix;

® Activates the Information Flow Enforcer, which generates a Revised Object Matnx
and Security Revised Matiix, and suggests Sanitiser objects or changes to the securty

classification of an object;

® Redraws the DFD.

procedure ProcessDEDForSecurity;
begin
INITIALISE LISTS (Objt,
Orig, Dest
R _Orig,R_Dest
SR_Orig, SR_Dest)

GET COMPLETE DATA FOR EACH OBJECT
if th; object is a flow: Ask the user to expand the infarmati~n flow
type 1€ it is Write.
if it is a process, data store, or external entity:

Ask the user for the security =lizsz.

INFORMATION FLOW CONTROLLER

Create Cbject Matrix. Stere in Crig and Dest

INFORMATION FLOW ENFORCER

Create Revised Object Matriz. Stzre in R Orig atd R Joov

Print Revised Orig and Des: zetx

Create Security-Revised Cbject Matirix. Store in Sk Crig, 3k Dest

PrintSecKevisedOAndDSets

Sujjestions: Create Sanitiser Cbjects or suggest Changje of Security Class.

124

DRAW REVISED DFD

end; {ProcessDFDForSecurity)

procedure CreateOAndDSets;
begin
Repeat for every object in the object database
Retrieve the record of the object
if there are Children for the Object {the Parent) then begin
repeat for every Child
Retrieve the record of the Child object
Add the key of the Parent to the Orig set
Add the key of the Child to the Dest set
end; {CreateOAndDSets)

procedngg CreateRevisedOAndDSets;
begin
DelBranchActive := false;

For every Object key in the Orig set
Retrieve the record of the current object in the Orig set

Retrieve the record of the current object in the Dest set

If the information flow type between Parent (in Orig) and Child (in Dest)
is not Delete, AND
there does not yet exist a pair (Parent,Child) for the currtent objects in
the R_Orig and R_Dest sets, then
Add the key of the Parent to the R _Orig set
Add the key of the Child to the R_Dest set
Add the information flow type between Parent and Child to the FlowTypeList

i1f information flow is Delete, then set DelBranchActive := true;

{Traze Indirect Flow}

tResetCount := 0;

tStoredKey := Parent key; {tStoredKey is the Original criginalj}
tKey := Child hey: {trey is to be the new Urig}

repeat for each obiect key in the Orig set

Retrieve the Key ~f the current object in the Orig set (int~ tC::g¥ey)

if tOrigKey = they then begin

Ketrieve the KHey of the Zurrent “bject 1n the Dest zst {jrr- Clestiey)
KeyListU.KFindith{Dest,TPosc); Keylizti HRetrleve (lest, tDesttoy;
Go to the beginning of the Orig and Desr lists

Increase tResetount;
if tResetomnt » {Ori13,0est) Lizts i« then
break;
If the informati~n flow type between Parernt an Oriz) ana The.1 1n Dest)
is Delete then

DelBranchActive := true;

if DelBranchActive then

125

break:;

if there does not yet exist a pair (tStoredKey,tbDesiKey) and
Flow <> Delete then
Add the key of the Parent to the R_Orig set
Add the key of the Indirect Child to the R Dest set
Determine the Compound Access type between Parent and Indirect Child
Add Cempound Access type to the R_FlowTypelist
Make the Child key the new parent

if tResetCount > (Orig,Dest) Lists sizes then

break;

Do the whole process again, but for every Object key in the R Orig set
The objective here is to ensure that, for example, had (C,D) been added to
R_Orig and R_Dest, that (B,D} and (A,D) will also be added 1if there is
information flow between (A,B) and (B,C).

Until no new indirect flows (backwards) has been added.

end; (CreateRevisedOAndDSets}

procedure CreateSecRevisedOAndDSets;
begin {L2ok for parent and children entities}
for every Object Key in the R_Orig set do
Test the security classed of Parent (in R_Orig) and the Child (in R_Dest)
Test if the information flow is clear
i1f the security classes are legal, then
Insert the keys of the objects from R_Orig and R_Dest sets into SR _Oriqg
and SR_Dest (4if it doesn't already exist)
Add Compound Access type to the SR_FlowTypelList
end; {CreateSecRevisedOAndDSets)

procedure GetPossibleInfofFlowType(tOrigKey, tDestKey: HKeyType:;
var tIFT: String5);

begin
case tUrigKey([1l] of {4f the first letter of the object code is a: |}
'P': begin
case tDestleyil] of
'D': tIFT := 'W'; {Should be changed tc U, 'D' 5r 'A' Juiing
security anaiysis =tajel
P otIFT = ',
end; {Taxe]
end;
‘E': begin
case tDestleyiii ~f
A AR A 1 'R '
TET: shw st e omessa3e o Tillearl Do crmatpon Floaws et owes
rets .ot tiestt;
end;
end;
'D': begin

case tDesthey il o

‘PU: tIFT = 'k '

.

c

'D': {Show an error message : 'lllegal Iri:rmation Flow: Betwecen I Data
Stores!'}
end;
end;
end;

end; {GetPossibleInfoFlowType}

procedure TestForCorrectInfoFlow{ tOrig,tDest: StdElement;
var ChFlow: boolean);

begin

ChFlow := false;

{Determine which information flow type is present betweer, 1Crig and TDest. Update the

data flow's information flow type (InfoFlowType) according to the table}

for Each Parent of the current object do

for Each Child of the current object do
Get the flow that connect them

tOrigSec :

The Security class of then Parent;
tDestSec :

]

The Security class of then Child;
tFlow :

The Information flow type of the data flow;
tOrigfFigType := Parent Figuretype;
tDestFigType := Child FigureType;

{Determine flows according to object types})
1f ((tOrigFigType = tDestFigType) (the same object)
and

(tOrigFigType = AProc)) then Postlows := ' '

else begin {
{Determine possible flows according to security classes;

if tOrigSec = '. ‘ then begin
if tDestSec = °'. ' then Posflows := 'All ' else
1f tDestSec = 'U ' then PosFlows := 'A ' else
if tDestSec = 'C ' then PosFlows := 'A ' else

" if tDestSec = 'S ' then PosFlows := 'A ' cisc
if tDestSec = 'TS ' then Postlows := 'A ':

end else

if tCrigSec = ‘U ' then begin
if tDestSec = °'. ' then PosFlows = "R/U/D' eiszz
if tDestSec = 'U ' then Postlows := 'Al1 ' ei:zs
1f tDestSec = *'C ' then FaosFicws = A Celes
if tDestSec = 'S * then PosFlows := 'A ¢ elce
if tDestSec = 'TS ' then Postlows = 'A '

end else

if 10rig3ec = *'C ' then begin
if tDestSec = °. * then PusFlowe 1= "R/AG/DY s
if +DextSec = ‘U * then i .-F] oen 1= TR/ 5 o
if tDestSec = 'C ' Y-S I R
if tlestSec = 'S ' = 'h L
if tDestSec = 'TS ' then PosFiows = 'A '

end else

if tOrigSec = 'S ' then begin
if tDestSec = *. ' then PosFlows := 'K/U/D' e.:=

127

.

*R/U/D' else

[}

if tDestSec = 'U ' then PosFlows

if tDestSec = 'C ' then PosFlows := 'R/U/D' eise
if tDestSec = 'S ' then PosFlows := 'All ' else
if tDestSec = 'TS ' then PosFlows := 'A ':
end else
if tOrigSec = 'TS ' then begin
if tDestSec = '. ' then PosFlows := 'R/U/D' else
1f tDestSec = 'U ' then PosFlows := 'R/U/D' else
if tDestSec = 'C ' then Posftlows := 'R/U/D' else
if tDestSec = 'S ' then PosFlows := 'R/U/D' else

if tDestSec = 'TS ' then PosFlows := 'All ';
end;

end; {else)

{Check for legal infermation flow between objects}
Result := CompareFlows(tFlow,PosFlows);
if Result <> true then begin
TString := '*;
Flow type has to be changed
if TFlow = 'W ' then begin
Ask the user to expand the flow type of the data flow to U or D or A.
end
else
if (TFlow = 'R ') and (tOrigFigType<>AData store) then
Warn the user that the flow type is invalid and that
it should be the one of the combinations of PosFLows;
else
Flow type doesn't need to be changed;
end;
end
Else begin {Test for special cases)
41f (TFlow = 'R ') and not{tOrig.Key{l] in ['D','2']}) then begin
‘Warn the user that a Wrong Read direction was found
Flow type has to be changed;
break;
end; {1if}
end‘{Else)

end

end; {if}

end;

{TestForCorrectInfoFlow)

procedure CreateSanitisetCoiest;

begin

Prompts the user to define the pusitian ~f the 331t i.e] e

Gets position via mouse

Draw Sanitiser object

Change positions of flows ©r aToe35 fypes Proat they oroun fpopn tne g e
through the Sanitiser to the tarjet ~bie ', instead =f zirectiy froo & euroc
target

Redraw links

end;

{CreateSanitiserObject]

‘Annexure B

Pascal Source Code

for DFDSEC

unit SecliuncU; {Contains all the Security Checking Functions}
INTERFACE

uses KeyListU,DFDGlob;

function CompareFlows(tFlow: S&ings; var tPosFlows: String$5): boolean;

(#
procedure GetObjectsConnected (tObject],tObject2: KeyType;
var tFlow: StdElement;
var Result: Integer),
*
procedure GetFlowConnected(tFlow: StdElement;
var tOrigFig,tDestFig: StdElement;
var Result: Integer);

procedure GetPossibleInfoFlowType(tOrigKey, tDestKey: KeyType:
var tIFT: String5:
var ErrorChoice: byte);
probedure. TestForCorrectinfoFlow(tOrig.tDest: StdElement;
var ChFlow: boolcan).
function ValidSecClasses(tmpOrig.tmpDest: KeyType): boolcan:

function PairExists(tmpOrig,tmpDest: KeyType): boolean;
function RPairExists(tmpOrig.tmpDest: KeyType): boolcan:

function SPairExists(tmpOrig.,tmpDest: KeyType): boolcan;

129

function FlowTypeBetweenObjects(1OrigKey,tDestKey: Keytype): String5,

function CompFlowTypcBetweenObjects(Objl,0bj2,0bj3: KeyType): String$;

procedure GetParents(tFigurc: StdElement;
var Parents: KeyListU.RelationList;

var Result: Integer),

procedure GetChildren (tFigure: StdElement;

var Children: KeyListU.RelationList;

var Result: Integer);
IMPLEMENTATION

uses ErrorHan,WinGlobU,DFDDfawU;

function CompareFlows(tFlow: String5; var tPosFlows: String5): boolcan;

var tmpBool: boolean;
tLoop: byte;
begin
tmpBool ;= false;

if tFlow ="All ' then tmpBool := falsc
else
for tLoop := 1 to 5 do begin
if (PosFlows=" “or
(tFlow[1] = tPosFlows(tLoop]) then begin
lmpBéol = true,
break:
t_:nd {if}
cise
if (tPosFlows="All ') then begin
if (tFlow[1] in ['W".".")) then tmpBool = false
else tmpBool = true;
end; {if}
end; {for}

ComparcFlows := tmpBool;

130

end; { ComparcFlows}

(*
procedurc GetObjectsConnected (tObject1,tObject2: KeyType;
var tFlow: StdElement;

var Result: Integer);

var TPos: word;

begin
Result :=0;
{save current position}

TPos := KeyListU.CurPos(FigurcList);

{find Orig}
KeyListU.FindKey(FigureList,tObject1,ElFound);
if EIFound then begin)
KeyListU.Retrieve(FigureList OrigFig);
end
else
Result ;= -1;

{find Dest}

tDestFig.Key := tFlow.Data.ChildrenElcments{1];

KeyListU.FindKey(FigurcList,tDestFig.Key,ElFound),

if ElFound then begin
KcyListq.Rclrievc(FigurcList,chstF ig):

end

else

Resull =-1;

{return position to original}
KeyListU.Findith(FigurcList. TPos). R

end; {GetObjectsConnected)

*)

procedure GetFlowConnected(tFlow: StdElecment;
var tOrigFig.tDcstFig: StdElcment;

131

var Result: Integer);
var TPos: word;
begin
Result ;= 0;
{save current position}

TPos := KeyListU.CurPos(FigureList),

{find Orig}
tOrigFig Key = tFlow.Data.ParentElements[1]; {pyl het nct ccn parent}
KeyListU.FindKey(FigureList,tOrigFig Key,ElFound);
if ElFound then begin
KeyListU.Retrieve(FigureList,tOrigFig);
end
else
Result := -1;

{find Dest}
{DestFig. Key := tFlow.Data.ChildrenElements{1]; {pyl het net cen child}
KeyListU.FindKey(FigureList,tDestFig.Key,ElFound),
if EIFound then begin
KeyListU.Retrieve(FigureList,tDestFig);
end
else
Result :=-1;

{return position to original}
KeyListU.Findith(FigureList, TPos),
end; {GetFlowConnected}

procedurc GetPossibleInfoFlow Type(tOrigKey, tDestKey: KeyvType:
var tIFT: String5:
var ErrorChoice: bytc).

begin

case tOrigKey([1] of
'S": i)egin
case tDestKeyf1] of
‘D AIFT ;='W " {iUpdate/iDelete/iAppend)

132

PUFT ="'

‘E"UFT =R "
end; {case}
end;
‘P': begin
case tDestKey[1] of

‘D UFT ='W °; {iUpdate/iDelete/iAppend}
'P": ErrorHandler. GDisplayMessage(MErrorChoice,0,0.
‘Illegal Information Flow: Between 2 Processes! Continuc?',2,falsc,0,ErrorChoice);
‘STHFT ="'
‘E:tFT:=R '
end; {case}
énd;
'E": begin
case tDestKey[1] of
PUSUFT:=R
'E'": ErrorHandler. GDisplayMessage(MErrorChoice,0,0,
' ‘Hlegal Information Flow: Between 2 External Entitics! Continuc?',2,false,0,ErrorChoicc);
‘D': ErrorHandler. GDisplayMessage(MErrorChoice,0,0,
‘Illegal Information Flow: Between External Entity and Data Store! Continuc?'.3,falsc,0
,ErrorChoice);
end;
end;
'D': begin
case tDestKey[1] of
PUSHUFT =R
..'D": ErrorHandler.GDisplayMessage(MErrorChoice.0,0.
‘Illegal Information Flow: Betwceen 2 Data Stores! Continuc?'.2.falsc.0.ErrorChoice):
'E'": ErrorHandler. GDisplayMessage(MErrorChoice,0,0,
‘lllcgal Information Flow: Between Data Store and External Entity! Continuc?.3 falsc.0
.ErrorChoice):
end,
end;
end:

cnd: {GetPossiblcInfoFlowType}

procedure TestForCorrectinfoFlow((Orig.tDest: StdElement:
var ChFlow: boolcan);

133

var tOrigCount, tDestCount: byte;
ElFound: boolean;
tFlow,
PosFlows: String5;
tOrigSec, tDestSec: String5;
tOrigFigType, tDestFigType: FigureTypes;
Result: Boolean; |

tmpfigure: StdElement;

begin
ChFlow := false;
{Détemline what type of flow exists between tOrig en tDest. Update flow’s infoflowtype}
for tOrigCount := 1 to MaxParents do begin
for tDestCount ;= 1 to MaxChildren do begin
if (tOrig.Data.ChildrenElements[tOrigCount] =
tDest.Data.ParentElements[tDestCount)) AND
(tOrig.Data.ChildrenElements{tOrigcount] < *) then {found common {low}
begin
{kry pyl in tmpFigure}
tmpFigure Key := tOrig.Data.ChildrenElements{tOrigCount);
KeyListU.FindKey(FigureList tmpFigure Key, ElFound);
if EIFound then begin
KeyListU. Retrieve(FigureList,tmpFigurc);

tOrigSec := tOrig.Data.SecClass;
tDestSec := tDest.Data.SecClass;
tFlow := tmpFigure.Data.InfoFlowType,
tOrigFigType := tOrig.Data.FigureType;
tDestFigType = tDest.Data.FigureType:

{Determine possible flow types according to sccurity ckasses}
{According to object types}
if ((tOrigFigTvpe = tDestFigTvpe) {samc object}
and
(tOrigFigTypc = AProc)) then PosFlows :=*
clse begin {Test according to security classcs}

if tOrigSec ='. ' then begin

134

if tDestSec =". ' then PosFlows :='All *else
if tDestSec = ‘U ' then PosFlows :='A 'clse
if DestSec ='C ' then PosFlows :='A 'clsc
if tDestSec ='S ' then PosFlows :='A 'else
if tDestSec =TS ' then PosFlows :='A ',

. end else
if tOrigSec ='U ' then begin
if tDestSec=". ' then PosFlows := ‘'R/U/D' else

if tDestSec ="U ' then PosFlows :="All 'else
if tDestSec ='C ' then PosFlows :='A 'else
if tDestSec="'S ' then PosFlows :='A 'else
if tDestSec ='TS ' then PosFlows :='A ',

end else
iftOrigSec ='C then begin
if tDestSec ="'. ' then PosFlows := 'R/U/D’ elsc

if tDestSec ='U ' then PosFlows := 'R/U/D" elsc
if tDestSec ='C ' then PosFlows :='All * else
if tDestSec ='S ' then PosFlows :='A ‘else
if tDestSec = 'TS *then PosFlows :='A *;

end else

iftOrigSec="'S ' then begin
if tDestSec =". ' then PosFlows := ‘R/U/D' clse
if DestSec ='U ' then PosFlows := ‘R/U/D’ elsc
if tDestSec ='C ' then PosFlows := ‘R/U/D' elsc
if tDestSec ='S ' then PosFlows :="All *clse
if tDestSec ='TS ' then PosFlows :='A

end else

if tOrigSec = ‘TS ' then begin
il tOrigFigType = ASan then PosFlows :='All * clsc {bctween Sanitiscr and other object}
if tDestSec ="'. ' then PosFlows := 'R/U/D’ clse
if tDestSec ='U ' then PosFlows := 'R/U/M’ clse
if tDestSec ='C ' then PosFlows := 'R/U/D’ elsc
if tDestSec ='S * then PosFlows = 'R/U/MD" elsc
if tDestSec =TS ' then PosFlows ="All

end;

end; {else}

{Dcterminc valid informatio flow between objects}

AP)

‘e

Result ;= CompareFlows(tFlow,PosFlows);
if Result <> true then begin
TString :=";
’ ChFlow := true;
if TFlow ='W ' then begin
TString =
'Please expand the flow type of the arrow connecting ['+1Orig.Key+'] and ['+tDest.Key+'] toU or D or A"
ErrorHandler.GDisplayMessage(MInfo,0,0, TString,3,false,0, WindowOptionsChoicc);
break;
end
else
if TFlow ="All ' then begin
TString =
'Pleasc specify the flow type of the arrow connecting {*+tOrig.Key+'] and [+tDest. Key+'].";
ErrorHandler. GDisplayMessage(MInfo,0,0, TString,3,falsc,0, WindowOptionsChoice):
break; '
end
else
if TFlow='A ' then begin
TString :=
"[llegal Append action between ['+tOrig.Key+'] and ['+tDest. Key+']. Please check.';
ErrorHandler. GDisplayMessage(MInfo,0,0, TString,3 falsc,0, WindowOptionsChoice);
. break;
end
clse
if TFlow="U ' then begin
_TString :=
'Illegal Update action between ['+tOrig.Key+'] and |'+tDest. Key+']. Pleasc check.”.
ErrorHandler.GDisplayMessage(MInfo.0.0. TString.3.false,0, WindowOptionsChoice):
break;
end
clse
if (TFlow="'R ') then begin
if (10rigFigTypc<>ADS) then begin
TString := 'Invalid flow tyvpe! Flow type must be "+PosFlows+'. Continuc?';
ErrorHandler. GDisplayMessage(MErrorChoice,0.0, TString,2.falsc.0. WindowOptionsChoicc).
break;

end

136

" else
ChFlow := false:
end;
(*
elsc begin
TString := 'Error.";

ErrorHandler.GDisplayMessage(MError,0,0, TString. 1 false,0, WindowOptionsChoice):

end;
*)
end
Else begin {test for special casecs}
if (TFlow='R ') and
not((tOrig.Key[1] in ['D','E"}) or

((tOrig.Key[1] ="'P") and (tDest.Key[1]='E")) then begin

TString := 'Wrong Read direction!";
ChFlow = true;

ErrorHandler. GDisplayMessage(MError,0,0, TString, 1,{alse,0, WindowOptionsChoicc):

break;
end; {if}
end {Else}
end
else begin
beep;
exit;
end;

end; {if}

end; {for}
if Result <> true then
break:
end; {for}
end: {TestForCorrectinfoFlow}

function ValidSecClasscs(tmpOrig.tmpDest: KeyTyvpe): boolcan;

var tmppos, {In original Ong and Dcsl scts}
SvdPos: word.
tEIFound: boolean;
tmpOrigFig.

137

tmpDestFig: StdElcment;
tNumEntities: word;
begin
ValidSecClasses := false:
tNumEntities := KeyListU.Size(FigureList).
SvdPos := KeyListU.CurPos(FigureList);

{Get security class of orig entity}
tElFound := fa'lse;
KeyListU.FindKey(FigureList,tmpOrig tElFound);
if TELFound then begin
KeyListU Retrieve(FigureList,tmpOrigFig);
end
else
beep;
{Get security class of dest entity}
tElFound := false;
KeyListU.FindKey(FigureList,tmpDest tElFound);
if TELFound then begin
KeyListU.Retrieve(FigurcList,tmpDestFig);
end
else

beep;

if (tmpDestFig.Data.SecClass {Dcst} >=
tmpOrigFig Data.SecClass {Orig}) OR
(impOrigFig Key[1] = 'S") {flow between TS Sanitiscr and other
object} then
ValidSecClasses := true
_else begin

end;

KeyListU. Findith(FigurcList.SvdPos):
end; {ValidSecClasses}

function PairExists(tmpOrig.tmpDest: KeyType): boolcan:

var tmppos,
SvdPosO,

138

SvdPosD: word;
tKeyFound: boolean;
tmpOrig2,
tmpDest2: KeyType;
tNumEntities: word;
begin
PairExists := false;
tNumEntities := KeyListU.KSize(Orig);
SvdPosO := KeyListU.KCurPos(Orig);
SvdPosD := KeyListU.KCurPos(Dest);

tKeyFound := false;

for tmppos := 1 to tNumEntities do begin
KeyListU KFindith(Orig,tmppos);
KeyListU.KRetrieve(Orig,tmpOrig2);

KeyListU.KFindith(Dest,tmppos);’
KeyListU.KRetrieve(Dest,tmpDest2);
if (tmpOrig2 = tmpOrig) and (tmpDest2 = tmpDest) then begin
PairExists := true;
break;
end;

end;

KeyListU.KFindith(Orig,SvdPosO);
KeyListU.KFindith(Dest,SvdPosD);
end; {PairExists}

function RPairExists(tmpOrig.tmpDest: KeyType): boolcan:
var tmppos,
SvdPos: word:
tKeyFound: boolean;
tmpOrig2,
tmpDest2: KeyTvpe:
tNumEntitics: word;
begin
RPairExists := falsc;

139

tNumEntities := KeyListU.KSize(R_Orig);
SvdPos := KeyListU.KCurPos(R_Orig);

tKeyFound := false;

for tmppos := 1 to tNumEntitics do bcgin
KeyListU.KFindith(R_Orig,tmppos);
KeyListU.KRetrieve(R_Orig,tmpOrig2);

KeyListU KFindith(R_Dest,tmppos);
KeyListU.KRetrieve(R_Dest,tmpDest2),
if ((;npOrigZ = tmpOrig) and (tmpDest2 = tmpDest) then begin
RPairExists ;= true;
break;
end;

end;

KeyListU.KFindith(R_Orig,SvdPos),

KeyListU KFindith(R_Dest,SvdPos),

KeyListU KFindith(R_FlowTypeList,SvdPos);
end; {RPairExists}

function SPairExists(tmpOrig,tmpDest: KeyTypce): boolcan;
var tmppos, {In Sec Revised sets}
SvdPos: word;
tKeyFound: boolean;
tmpOrig2,
tmpDest2: KeyType;
tNumEntities: word;
tResetCount: Integer;
begin |
SPairExists := false;
tNumEntities := KeyListU.KSizc(SR_Orig):
SvdPos := KeyListU.KCurPos(SR_Orig):

tKeyFound := false;

for tmppos := 1 to tNumEntitics do begin
KeyListU.KFindith(SR_Orig.imppos);

140

KeyListU KFindith(SR_Dest,tmppos);

KeyListU.KRetrieve(SR_Orig, tmpOrig2);
KeyListU.KRetrieve(SR_Dest,tmpDest2);
if (tmpOrig = tmpOrig2) and (tmpDest = tmpDest2) then begin
SPairExists := true;
break:
end;

end; {SPairExists}

KeyListU.KFindith(SR_Orig,SvdPos);

KeyListU.KFindith(SR_Dest,SvdPos);

KeyListU.KFindith(SR_FlowTypeList,SvdPos);
end; {SPairExists}

function FlowTypeBetweenObjects(tOrigKey.(DestKey: Keytype): String5:
var TPos: word;)

TString: String5;

TCount: byte;

tFigure: StdElement;

tLoop : byte;

FlowFound: boolean;

begin
TString :=*
FlowFound := false;
{save current position}
TPos := KeyListU.CurPos(FigureList),
TSize := KeyListU.Size(FigureList);

{find Dest}
TCount :=1:
repeat
KeyListU.Findith(FigurcList.tCount):
KeyListU.Retricve(FigurcList.{Figure).
if tFigure Key]1] = 'F" then begin
{Flow found. Test children and parcnts}
for TLoop := 1 to MaxChildren do

141

if tFigure.Data.ChildrenElements[TLoop] = tDestKcy then begin
FlowFound := true;
TString := tFigure.Data.InfoFlowType;
break;
end;
if FlowFound then break;
end; {if}
inc(tCount);

until tCount > TSize;

If not Flowfound then

tString :='0
{return position to original }
KeyListU.Findith(FigureList, TPos);

FlowTypeBetweenObjects := TString;
end; {FlowTypcBetweenObjects}

function CompFlowTypeBetweenObjects(Obj1,0bj2,0bj3: KeyType): String$;
var TPos: word;
Flovfrypel,
FlowType2,
FlowType3: Strings;
TCount: byte;
tFigure: StdElement;
tLoop!,TLoop2 : byte;
FlowTypel_Found,
FlowType2_Found: boolcan;
TRPos : word;
tOrig Dest: KeyType:

begin
FlowType3 :='
FlowTypcl_Found := falsc:
FlowType2_Found := falsc:
{save current position}
TPos := KeyListU.CurPos(FigureList);
TRPos := KeyListU. KCurPos({R_Orig}R_FlowTypcList):

142

TSize :¥ KeyListU.Size(FigurcList);

{find FlowTypel betwecn Objl and Obj2}
TCount := 1; ’
repeat
KeyListU.Findith(FigureList,tCount);
KeyListU.Retrieve(FigurcList (Figure);
if tFigure.Key[1] ='F then begin
{Flow found. Test children and parents}
if not(FlowTypel_Found) then begin
for TLoopl = I to MaxChildren do
if ((Figure.Data.ParentElements[TLoop1] = Objl)
and (tFigure.Data.ChildrenElements[TLoop1] = Obj2) then begin
FlowTypel := tFigure.Data.InfoFlowType;
FlowTypel_Found := true;
break;
end
else
if tFigure.Data ParentElements{TLoop1] = " then break;
end; gFlow’I' ypel_Found?}
if not(FlowType2_Found) then begin
for TLoop2 := 1 to MaxChildren do
if (tFigure.Data.ParentElements[TLoop2] = Obj2)
and (tFigure.Data.ChildrenElements{TLoop2] = Obj3) then begin
FlowType2 := tFigure.Data.InfoFlowTypc;
FlowType2_Found := true;
break;
end
else
if tFigure.Data. ParentElements{ TLoop2] = " then break:
end; {FlowType2_Found}
if FlowType!_Found and FlowType2_Found then break:
end; {if}

inc(tCount);
if (tCount> TSizc) and not(FlowTypcl_Found) then begin {Find compound
access type in

R_FlowTypcList}

143

for 'I'Loop.l = 1 to KeyListU.KSize(R_FlowTypcList) do begin
{Get Set in Revised Matrix}
KeyLislU.KFindith(I/l&Orig,TLoopl); KeyListU KRetrieve(R_Orig tOrig).
KeyListU.KFindith(R_Dest, TLoopl); KeyListU.KRetrieve(R_Dest,tDest):
KeyListU.KFindith(R_FlowTypeList, TLoop1);
if (10rig = Obj1) and (tDest = Ob;j2) then begin
KeyListU KRetrieve(R_FlowTypcList,FlowTypel);
if FlowTypel ='. ' then begin
FlowTypel_Found := falsc;
beep;
break;
end
else begin
FlowTypel_Found := truc;
break;
end;
end;

end; {for}

end; {find compound access type in R_FlowTypeList}
until (FlowTypel_Found) and (FlowType2_Found) or (tCount > TSize),

If not((FlowTypel_Found) and (FlowType2_Found)) then begin
FlowType3 :='00
end

else begin {Determine Compound Access type}

if (FlowTypel ='R ’) and (FlowType2 ='R ') then FlowType3 :='R ‘clsc
if (FlowTypel ='R ') and (FlowType2 ='A ') then FlowType3 :='U ‘eclsc
if (FlowTypel ='R ") and (FlowType2 ='U ‘) then FlowType3 :='U ‘ecisc
if (FlowTypel ='A ') and (FlowTypc2 ='R ') then FlowType3 :='R 'clsc
if (FlowTypel ='A ') and (FlowType2 ='A ') then FlowType3 :=’A 'clsc
if (FlowTypel ='A ') and (FlowType2 ='U ') then FlowType3 :='U 'eclsc
if (FlowTypel ='U ") and (FlowType2 ="R) then FlowTvpe3 :='R "clsc
if (FlowTypel ='U ‘) and (FlowType2 ='A ‘) then FlowType3 :='R ' clsc
if (FlowTypel ='U ‘) and (FlowType2 ='U ') then FlowTyvpe3 ;="

ELSE
{if (FlowTypel =".

") then)

FlowType3 := FlowType2.

144

end,

{return position to original}
KeyListU.Findith(FigureList, TPos);
KeyListU KFindith(R_Orig, TRPos);
KeyListU.KFindith(R_Dest, TRPos):
KeyListU.KFindith(R_FlowTypcList, TRPos);

CompFlowTypeBetweenObjects := FlowType3;
end; {CompFlowTypeBetweenObjects}

procedure GetParents(tFigure: StdElement;
var Parents: KeyListU.RelationList;
var Result: Integer),

begin

end; {GetParents}

procedure GetChildren (tFigure: StdElement;
var Children: KeyListU.RelationList,
var Result: Integer),

begin '

end; {GetChildren}

begin

end.

145

unit DFDDrawU; {Automated Diagramming System; contains program code to

draw and redraw DFD objects from data in the linked list nodes)

INTERFACE
uses KeyListU;

procedure RedrawEntity(tFigure: StdElement);
procedure DrawDFD;
procedure DrawRevisedDFD;

IMPLEMENTATION

uses AMouse, WinGlobU,GWinsU,DFDGlob,Graph,GToolsU,GFigures,
GDrawerU,
ErrorHan,
SecFuncU,
MathsU,
Crt, .
MenuTIsU;

procedure RedrawEntity(tFigure: StdElement),
begin
{Display new data}
SetWriteMode(NormalPut);
with tFigure do
case Data. FigureType of
AProc: begin
AProcess.Init(Data.x!1,Data.yl,Data.x2.Data.y2.round(Data.Radius). Data FColor):
GMouse.Show(false); AProcess.DrawFigure:
AProcess.DisplayData(tFigure. false):
GMousc.Show(truc);
AProcess.Done;
end;

ASan : begin

146

ASanitizer.Init(Data.x1,Data.y1,Data.x2,Data.y2 round(Data.Radius).Data.FColor);
GMouse. Show(falsc), ASanitizer.DrawFigure;
ASanitizer.DisplayData(tFigure, faisc);
GMouse.Show(true);
ASanitizer.Done;
end;
AFlow: begin

ADataFlow.Init(Data.x1,Data.y1,round(Data. Angle),round(Data.Radius), DFDGlob.FlowColor{Data.FColor});
ADataFlow.SetLimits(0,0,GetMaxX,GetMaxY);
GMouse.Show(falsc); ADataFlow.DrawFinalFigure;
ADataFlow.DisplayData(tFigure, false);

GMouse.Show(true);
ADataFlow.Done;
end;

AnEE : begin .

) AnExtEnu‘ty.Ini((Data.xl,Daﬁ.yl,Data.x2,Dala.y2,Dala.FColor);
' GMouse.Show(false); AnExtEntity.DrawFigure;
AnExtEntity.DisplayData(tFigure, falsc),
GMouse.Show(true),
AnExtEntity.Done;
end;

ADS : begin
ADataStore.Init(Data.x1,Data.y1,Data.x2,Data.y2,Data.FColor);
GMousc.Show(falsc); ADataStore.DrawFigure:
ADataStore.DisplayData(tFigure.false):

GMouse. Show(true);
ADataStore.Dong;
end;
end; {casc}
end; {RedrawEntity}

procedure DrawDFD;
var TLoop.ChildrenCount,
NumEntitics: Word:
TPos: word;
begin
GMousc.Show(falsc);

147

ASolFH.SetLimits(0,0,GetMaxX.GetMaxY);

GTools.FillSquare(Pictx I+1,Picty [+1 Pictx2-1.Picty2-1,SolidFill, BColor.BColor):
StatusBar.Init(1,GetMaxY-TextHeight('Y")-5,GetMaxX-1,GetMaxY-1,15.7{MBColor},7{MBColor});

SetWritcMode(NormalPut);

TPos = KeyListU.CurPos(FigureList);
NumEntities := KeyListU.Size(FigureList);
KeyListU. Findith(FigureList,1);

for TLoop := 1 to NumEntities do begin
KeyListU.Retrieve(FigurcList,Figure);
RedrawEntity(Figure);
KeyListU.FindNext(FigureList);

end;

{GMouse.SetPosition(GetMaxX div 2,GetMaxY div 2);}

GMouse.Show(true); ’

KeyListU.Findith(FigureList, TPos),

end; {DrawDFD}

procedure TGetError(1OrigSec,tDestSec: String5; var Mcssage:. string);
begin {TS S C U}
if ((1OrigSec(1} in ['T",'S",'C']) and (tDestScc(1] = 'U)) OR
((tOrigSec[1] in ['T",'S']) and (DestSec{1] in {'U,'C'])) OR
((tOrigSec[1] in ['T"]) and (tDestSec{1] in ['U','C",'S'])) then
Message := 'Problem: DOWNFLOW OF INFORMATION, *
else
if ((tOrigSec[1] in {'U’}) and (tDestSec]1] in ['T",'S",'C'])) then
Message := 'Problem: ILLEGAL FLOW ACTION. *
else
Message := 'Unknown problem. *:
end; {TGetError}

procedure CreateSanitizerObject(var tOrig,tDest: StdElement).

var tSmidx.ASmidy: Integer: {middle x and y of Sanitizer objcct}
tDmidx.tDmidy: Integer; {middle x and y of destination object}
tPos: word;

tInitx.tInityl: Intcger.

148

Result: Integer;
tDataFlow: StdElement;
tCount: byte;
tOCount,tDCount: byte;
begin
tPos := KeyListU.CurPos(FigurcList);
{definc position (user)}

tInitx] := PictX1+(PictX2-PictX1) div 2;
tInityl := PictY 1+(PictY2-PictY1) div 2;

ASanitizer.Init(tInitx1-25,Unity 1-25,tInitx1+25,tInity 1+25,15,0bjectColor);
ASanitizer.DefineFigure(Pictx1+1,Picty1+1,Pictx2-1,Picty2-1,Figure,1);
ASanitizer.Done;

{Get flow from TOrig. Make that flow = tOrig}
for tCount := 1 to MaxChildren do begin
tOrig.Key := tOrig.Data.ChildrenElements{tCount];
KeyListU.FindKey(FigureList,tOrig. Key, KeyFound),
if not KeyFound then break
else begin
KeyListU.Retrieve(FigurcList,tOrig);

end;

{Flow's child = Sanitizer)
tOringala.Childranlemcms[1] := Figurc.Key:
{3
{Sanitizer's parent = Flow Key}
Figurc.Data ParentElements[1] := (Orig.Key:
KeyListU.FindKey(FigureList.Figurc.Key.KeyFound):
if not KeyFound then break
else begin

{Clear infoflowtype}

tDest.Data. InfoFlowTypc := tOrig.Data.InfoFlowTvpc:

tOrig.Data.InfoFlowType :=". .

Figurc.Data.InfoFlowTvpe :=".
KeyListU.Updatc(FigurcList.Figurc):

149

end;

{3
{Dest's parcnt = Sanitizer}
for tDCount := 1 to MaxParents do begin
for tOCount := 1 to MaxChildren do begin
if tD_est.Data.ParemElemems[tDCoum] = tOrig.Key then begin
lDést.Data.ParemElemenls[tDCounl] ="
break;
end,
end; {for tOCounr}
if tDest. Data. ParentElements[tDCount] = " then break;
end; {for tDCount}

KeyListU.FindKey(FigureList,tDest.Key,KeyFound);
if not KeyFound then break
else

KeyListU.Update(FigureList,tDest),

tOrig.Data.x2 ;= Figure.Data.xl;
tSmid~ ;= (Figure.Data.x1+Figure.Data.x2) div 2;
tSmidY := (Figure.Data.yl+Figurc.Data.y2) div 2;

tDMidx := (tDest.Data.x1+tDest.Data.x2) div 2;
tDMidy := (iDest.Data.yl+tDest.Data.y2) div 2;

if tOrig.Data.x1 < Figurc.Data.x1 then begin {Orig links van SP}
tOrig.Data.x2 := Figurc.Data.x1:
tOrig.Data y2 := tSmidY:
end
else begin
tOrig.Data.x2 := (Smidx:
tOrig.Data.y2 ;= Figurc.Data.y2:

end;

with (Orig.Data do
MathsU.CalcRadiusAndAngle(x1.y1,x2,v2.Radius Anglc):

150

KeyListU.FindKcy(FigureList,tOrig.Key, KeyFound),

if KeyFound then
KeyListU.Update(FigureList,tOrig);

KeyListU.Findith(FigureList,Size(FigureList)):

{Add new arrow from Sanitizer to tDest}
if tDest.Data.x1>Figure. Data.x2 then begin {calculate (Dest's (arrow's) Radius and Angle}
MathsU.CalcRadiusAnd Angle(Figure.Data.x2,tSmidY,tDest. Data.x1,(Dmidy.,
tDest.Data.Radius,tDest.Data.Angle);
ADataFlow. Init(Figure.Data.x2,(Smidy,round(tDest. Data. Anglc).round(tDest. Data. Radius), ObjectColor);
end
else begin
MathsU.CalcRadiusAndAngle(tSmidx,Figurc. Data.y1,tDmidx,tDest. Data.y2,
{Dest.Data.Radius,tDest. Data. Angle);
ADataFlow.Init(tSmidx,Figure.Data.yl,round((Dcst. Data. Anglc),round(tDcst. Data.Radius),ObjectColor);

end;

ADataFlow. AddFigRecToList(tDest,Result falsc);
if Result =0 {OK} then begin {Draw final arrow, wait for
click release, etc. before
starting with next arrow
definition}
{Draw final arrow}
GMouse.Show(falsc),
SetWriteMode(NormalPut),
ADataFlow.DrawFinalFigure,
ADataFlow.DisplayData(Figure.falsc).
Figure.Data.ChildrenElements| 1] := tDest. Key;
KeyListU.FindKey(FigureList. Figurc Kcy KevFound):
if not KeyFound then break
else

KeyvListU.Update(FigurcList. Figure):
end:
ADataFlow.Donc;

end; {for 1Count}
KeyListU.Findith(FigurcList.tPos).

151

SetWriteMode(XORPut);
GMousc.Show(true);
end; {CrcateSanitizerObject}

procedure DrawRevisedDFD;

var TLoop,ChildrenCount,

NumiIndFlows, {Numer of indirect flows = # in R_Orig and R_Dest}
NumFlows: Word;

tKeyOrig,

tKeyDest: KeyType;

tFigureQ,

tFigurcD: StdElement;

EFound: boolean;

tmpAngle,tmpRadius: real;

tOrigSec,tDestSec: StringS5:

tx1,tyl, {tx1 en tyl = middel van Orig figuur se x1 en x2, cn yl cn y2}
x2,ty2 {tx2 en ty2 = middel van Dest figuur se xI en x2, enyl cny2}
: Integer;

Confirm: Boolean;

Neighbours: Boolean;

begin
GMousc.Show(false);
ASolFH.SetLimits(0,0,GetMaxX,GetMaxY);

NumiIndFlows := KeyListU.KSize(R_Orig):

if NumindFlows = 0 then begin
beep;
ErrorHandler. GDisplayMcessage(MError.0.0,'DFD not
yet!'.1.falsc.0.WindowOptionsChoice):
exit;

end;

for TLoop := 1 1o NumlndFlows do begin

processed

Neighbours := false;
KeyListU.KFindith(R_Orig,TLoop);
KeyListU.KRetrieve(R_Orig,tKeyOrig);
KeyListU.KFindith(R_Dest, TLoop);
KeyListU KRetrieve(R_Dest,tKeyDest);

{Check for existence of combination (tKcyParent,tKeyChild)

if not(SecFuncU.SPairExists(tKeyOrig,tKeyDest)) then begin {draw in red}
KeyListU.FindKey(FigureList,tKeyOrig, EFound);
KeyListU.Retrieve(FigureList,tFigureO);

KeyListU FindKey(FigureList,tKeyDest,EFound);
KeyListU Retrieve(FigureList, tFigureD);

tx1 := ((FigureO.Data.x1 + tFigureO.Data.x2) div 2;
tyl := (tFigureO.Data.yl + tFigureO Data.y2) div 2;

X2 = (FigureD Data.x1 + (FigureD.Data.x2) div 2;
ty2 := (tFigureD.Data.yl + tFigureD.Data.y2) div 2;

{Draws Red Arrow}

MathsU.CalcRadiusAndAngle(tx1,ty1,4x2,ty2, tmpRadius,tmpAnglc);
ADalaFlow.Init(txl,tyl,mmd(MpAnélc),mmd(lmpRadim),lZ{Data.FColor});
ADataFlow.SetLimits(0,0,GetMaxX,GetMaxY);

SetWriteMode(NormalPut);

GMouse.Show(false);

ADataFlow.DrawFinalFigure:

tOrigSec := tFigureO.Data.SecClass;

tDestSec := {FigureD.Data.SecClass;

TGetError(tOrigSec,tDestSec.tString).
DFDGlob.StripTrailspace(tOrigScc);
DFDGlob.StripTrailspace(tDestScc):

tString := (String + ‘from '+OrigSec+' object ['+FigurcO.Kcey+'} 1o "+DestSec+
* object ["+tFigureD.Key+] "
if (tFigurcO.Data.FigureType = AProc) and
(tFigureD.Data.FigureType = AProc) then

153

tString := tString + ‘DUE to direct or indirect information flow between two PROCESS objects.’

else

tString := tString + ‘DUE to an Append, Update or Read action.’;

if SecFuncU.PairExists(tFigureO.Key,FigureD.Key) then {objckte I langs mckaar} begin
Neighbours := true;
tString := tString + ' SUGGESTION: Insert a Sanitizer object.”;

end;

ErrorHandler. GDisplayMessage(MInfo,0,0,tString, 5, false,0, WindowOptionsChoice);
GMoiise.Show(truc);

{wait for click release}

repeat

GMouse.GetPosition(ButStatus,mx1,my1),

until ButStatus=0;

{erases red arrow}
GMouse.Show(false);
SetColor(DFDGlob.BColor);

ADataFlow.DrawFinalFigure;

if Neighbours then begin
Confirm := MenuTools.GetConfirm ('Query’,'Do you want to inscrt a Sanitizer object NOWT',
14,2);
case Confirm of
true : CreateSanitizerObject(tFigureO,(FigureD),
false: begin
tString := 'Suggestion: Change sccurity class of *;
tString := tString + tFigureO Key + * to *+tFigureD.Data.SccClass+, or *;
tString := tString + tFigureD Key + ' to “+tFigurcO.Data.SecClass+' ",
GMouse.Show(false);
ErrorHandler. GDisplayMessage(MInf0.0.0.(String.4 false.0, WindowOptionsChoicc);
GMouse.Show(true).
end; {false}

end: {case}

GMouse.Show(true);

end; {if}
ADataFlow.Done;

154

end; {if}
end; {for}
DrawDFD;
end; {DrawRevisedDFD}

begin
end. {DFPDrawU}

155

Unit LListU; {Contains all the codc to manage thc double linked list}
INTERFACE

Const

None =",

{record type to be stored}

ListTypes = (StringVal,Name_Cost);
ItemRectype = record
case Kind: ListTypes of
Name_Cost: (Name : string[20]; Cost : double);
StringVal: (Strltem: String); .
end;

{List}
ListPtr = AltemList;
ItemList = Record -
I.temR.ec: ItemRectype;
cht : ListPtr;
End;

TableClass =OBJECT
{Pointers}
Temp, Before,After,NodeOut: ListPtr:
NewStr,BefStr. AAStr: string; {Strings for testing where
to put new itcm}
ItemList : ListPtr;
ItemCount: Word:

procedure Init(TKind: ListTypes);

procedure Done;

Procedure ConvertString(Var ConvertInput: string);
Procedure ListALL;

156

Procedure AddEntry(ItemRec : ItemRectype);

Procedure Edit(ItemRec : ItemRectype);

Procedure DeleteEntry(ItemRec: ItemRecType);

Procedure GetNewTempValues(ItemRec: ItemRecType);
End;

Var
ItemTable : TableClass;
ItemRec : ItemRecType;
EmptyRec : ItemRecType;

IMPLEMENTATION
uses DFDGlob;

procedure TableClass. Init(TKind: List’l’j!pm);
begin |
(skepleenode)
New(ltemTable.ItemList);
New(Temp);

case TKindof
Name_Cost: begin
ItemList®. ItemRec.Name := None;
ItemList* ItemRec.Cost := 0.00;
Temp”.ItemRec.Name := None;
Temp”.ItemRec.Cost := 0.00;
end;
StringVal: begin
ItemList®.ItemRec.Stritem := None;
Temp.ItemRec.Stritem = None;
end,

end; {case}

ItemList*.Next := Temp;
ItemCount := 0,

Temp”.Next := nil;

157

end; {Init}

procedure TableClass.Done;
var Ptr: ListPtr;
begin
Ptr = ItemList*.Next;
while Ptr*.Next < nil do
begin
Dispose(Ptr);
Pir ;= Ptr*. Next;
end;

end; {Done}

Procedure TableClass.ConvertString(Var Convertlnput : String),
Var | '
TempStr : String;
Len : Integer;
I :Integer,
VTempStr := Convertlnput,
Len = Length(TempStr);
For1:=1toLenDo
Begin
ConvertInput(l] := Upcase(TempStr{l]);
End;
End;

Procedure TableClass. ListALL;
Var

Ptr : ListPur;

i:byte;
Begin

Writeln;
If ItemList~ Next = NIL Then
Writeln(* ItemList is Empty ')
Else -

Begin

158

Writeln(* List of Items');
Writeln;
End;
Ptr := ItemList*.Next;

case Ptr*.ItemRec Kind of
Name_Cost: begin
While'Pﬁ' <> NIL Do
Begin
Writeln(Name = *,Ptr*.ItemRec. Name: 10);
Writeln(' Cost = ', Ptr®. ItemRec.Cost:5:2),
* Ptr = Ptr*.Next,
end;
StringVal: begin
. While Ptr < NIL Do
Writeln(Strltem = *,Ptr*.ItemRec. Stritem);
- Pr= Ptr"Next;
End;
end; *
end; {case}

End;

procedure TableClass.GetNewTemp Values(ltemRec: ItemRecType);

begin
case ItemRec.Kind of
Name_Cost: begin
ItemTable.NewStr := ItemRec. Name;
if ItemTable.After < nil then

ItemTable. AftStr ;= ltemTable. After*.ItcmRec. Name
- else
ItemTable. AfiStr := ™,
if (temTable.Before <> nil) and
(ItemTable.Before®.Next <> nil) then
ItemTable.BefStr := ItemTable.Before®. Next™. ItemRec. Name

159

else
ItemTable.BefStr :=";
» end; {Name_Cost}
StringVal: begin
 ItemTable.NewStr := ItemRec.Strltem;
 if ItemTable. After <> nil then
ItemTable. ARRStr := ItemTable. After* ItemRec. Strltem
else | |
ItemTable. AftStr =",
i ’(Ityem'lv‘able.‘Before < nil) and
* (temTable Before® Next <> nil) then
" ItemTable BefStr := ltemTable.Before® Next™ ItemRec.Strltem
: - else : '
.. ltemTableBefStr ="
' end; {case}.
ety Gt

i i’rocedmeTableClassAddEntxy(ItemRec : ItemRectype);
* Duplcate +Boolea;
byt |
Begin
{ConvertString(Name);}
New(Temp);
ItemTable.Aﬁer = ItemList;
ItemTable Before = ItemList;

case Iten.lRec.Kind of
Name;Cost: begin
Temp” . ItemRec.Name := ItemRec.Name;
Temp”.JtemRec.Cost := ItemRec.Cost;
end;
StringVal: begin
Temp”.ItemRec.Stritem := ItcmRec.Stritem;
end;

end; {casc}

160

Duplicafes := False;
GetNewTempValues(ItemRcc); {give values to temporary variables}

While (ItemTable. After < nil) and (ItemTable.NewStr >= ItemTable.AfiStr) and
(ItemTable. After* Next < Nil) And (Not Duplicates) Do
If not(ItemTable.Before = nil) then
begin ‘
if (ItemTable. Before" Next <> nil) and
(ItemTable.BefStr <> ItemTable.NewStr) Then
Begin
ItemTéblc.iBefore := ItemTable.After;
ItemTable. After = ItemTable. ARer.Next;
GetNewTempValues(ltemRec);
End
" Else Duplicates := True;
end {ItemTable.Before < nil}
else
break;
End;

IF (ItemTable. Afier < nil) and (ItemTable.NewStr < ItemTable. AfiStr) and
(ItemTable.Before”.Next < nil) and (ItemTable.BefStr < ItemTable.NewStr) Then
Begin -
ItemTable. Before* Next := Temp;
Temp”. Next := ltemTable. After;
GetNewTempValues(ItemRec);
End
Else
Begin {nuwe rckord aan cindc van lys}
(t
if (ItemTable. Before < nil) then
begin
if (ItemTable. Before® Next < nil) and
(ItemTable.BefStr < ItemTable.NewStr) Then

161

Begin*)
ItemTable. After* Next := Temp;
Temp”.Next ;= Nil;
GetNewTemp Values(ItemRec);
(*
End;
end; {ItemTable Before <> nil}*)
End, ’ o
if not Duplicates tﬁcn incﬂ;equunﬁ) v
else Beép; :
‘End; -

* Procedure TableClass Edit(ltemRec : ItemRectype);

Var R |

Found ':Boolm;'

Begin

| {Convens:rmg(Name).}

: {VERANDER prowdure om alle velde tevcrander!}
Found =Fals; =

| ItcmTable Before —Itelest,

GetNewTempValug(itémRec);

While NOT Found) AND (ItemTable.Before®.Next < Nil) DO
If ItemTable.BefStr = ItemTable. NewStr Then
Begin
Found =T me',
case ItemRec.Kind of
Name_Cost: begin
{Writeln(' Fbund * ItemRec.Name); }
ItemTable Before® Next. ItemRec. Name := ItemRec.Name; -
end;
StringVal: begin
{Writeln(’ Found ‘. ItcmRec.Strltem); }

ItemTable.Before™ Next” ltemRec.Stritem := ItemRec.Stritem:

end;
end; {case}
End

162

El

Else |
ItemTable.Before := ItemTable.Before®.Next;
IF NOT Found Then beep; { Writeln(" NOT IN ItemList !11!");}
End;

Procedure TableClass.DeleteEntry(ItemRec: ItemRecType);
Var

Found - : Boolean;

Begin "
{ConvextStxing(Name);} .
Found : False
ItemTable.Before —Itclest,

GetNewTempValues(ltemRec);

thle (NOT Found) AND (ItemTable Bcfote" Next < Nil) DO
If ItemTabchefStr ItcmTable NewStr Then
Begin't‘u_m
Found : = True;
‘NodeOut := Item Table BeforeA Next;
ItemTable.Before”* Next := ItemTable.Before Next”.Next;
Dispose(NodeOut);
dec(itemCount);
End
Else
ItemTable.Before := ItemTable. Before* Next;

IF NOT Found Then Beep;{ Writcin(' NOT IN ItemList 1111');}
End,

BEGIN

END. {Unit LListU}

163

Annexure C

List of Abbreviations

Following is a list of abbreviations used often in this dissertation:

AMAC
ASGE
‘ASSDM
BDSS .
CCTA

" CRAMM

- pAC
Data Flow
Deta Store
DBMSs
DFD
DFDSEC
EASGE
ERX -
Lower-CASE
MLS

MMI
OMD

00

RAD

RDM
SSADM-CRAMM

- Adapted Mandatory Access Control

' Automated Soﬁware Generatxon Environment

Automated Secure System Development Methodology

Bayesian Decxsnon Support System

UK Govemment Central Computer and Telecommumcatlons

'- Agency

CCTA's Risk Analys15 and Management Methodoleogy

o Dlscretlonary Accws Control

Flow of data or ,mformat.lon between Objects on a DFD

Logical file that may contain data

Database Managerheht Systems

Data Flow Diagram

DFD Security (prototype discussed in this dissertation)
Extended Automated Software Generation Environment
Entity Relationship eXpert

Program Code generation stage in software engineering
Multi-level Secure (Databases)

Man-Machine Interface

Object Modeler .

Object-Oriented

Rapid Application Development

Relational Data Modeler

CCTA'’s Structured Systems Analysis and Design Method,
interfacing with CRAMM

164

3

Silverrl.xln Silverrun CASE-tool
Sanitiser Top Secret Object on DFD, inserted by DFDSEC. Similar to

Pernul’s Security Object and Baskerville’s Control Process.

Upper-CASE Analysis and Design stages of sotware engineering

165

Annexure D

Article by Booysen, Kasselman and Eloff

166

Enforcing Information Security

during the development of Application Systems

HAS Booysen'
- A Kasselman'

~ JHP Eloff

' Rand Afrikaans University, PO Box 524, Aucklandpark, 2006, South Africa
. Tel:+27114892842 © © Fax: +2711489-2138

. EMail: eloff@rkw.rau.ac.za

“Abstract

ThlS 'pabér presents the research work yt;mde‘rtaken to ihveétiga;te the relevance of using an
_ .’a'l.‘xtomated‘ ébproach to"include iﬁfonnaﬁon security activities‘ as part of application system
dévelopment [1]. "I'he.prototype préséﬁfed (named DFDSEC) , expands user requirements by
introducing secunty arid integrity rgqi_{i;éments to the system under design. ‘DFDSEC
s;:;eciﬁcally utilizes data flow dlagramsasa mechanism of representing user requirements:

Furthermore, data flow diagrams are used as input in the process of automatically analysing

the’secure movement of data within an application system.

Keywords: CASE tools, information flow, information security.

Enforcing Information Security during the development of Application Systems

1. Introduction

_In the 1970s, structured methods for system analysis and design evolved as a possible
solution to tnesoftware crisis. Structured methods employ graphical notations, for o

' 'example Entity relationship and Data flow diagrams, to focus on-parts of the system
E - development lrfe cycle During the mid-1 980s Computer Aided Software Engmeenng
B (CASE) tools emerged from structured methods as an integrated support environment

S for soﬂware‘deyelope_rs. CASE tools were deﬁned as:

“the use of a tool wnloh brings relief during any stage of the system development life-
' cycle (21" Thrs deﬁnrtron was used synonymously with support tools (compilers, code
L j"‘generators) for system analysrs and design. Consequently, CASE tools were defined -

as.

"a tool which will’oenerate code automatically from the design specifications. [3]" This
deﬁnition implies that there was artificial intelligence in a CASE tool. The user could
develop models and the CASE tool would correct mistakes, because "the CASE tool is
intelligent”. When it was recognised that all CASE users must have knowledge of
system development methods and methodologies before attempting to work with a

CASE tool, new definitions for CASE tools were formalised, namely:

"CASE technology is the automation of step-by-step methodologies for software and
system development [4]". This definition covers different stages of the software

development life cycle. These phases are integrated through a data dictionary

Booysen, Kasselman, Eloff 1

Enforcing Information Security during the development of Application Systems

(repository) to share common information. As various CASE tools appeared to support
different phases of the system life cycle, the term upper (front), middle, lower (back) and

-integrated CASE were used to refer to these CASE tools.

, Probable the best way to define a CASE tooi is;'as a tool that assi;ts its uséf m the
accdfnh!ishment of a given ’(aék,* by 'pro‘v’idiﬁg support for one or more of the activities
of t‘hev:'system' life cyclé. Evenﬁxélly bné or more of these activities will be automated.
When the ideé of médelling [4] is applied to system development, fundion§ to be

: pérforr_hgd by the sy_steﬁ are abstracted énd depidéd ‘in avisual Way using conventional
diagrgrﬁiniﬁg ted1’r1fque$; <Using a process-déta approach, three types of diagramé’ aré
used. ta 'depic‘:t' the fﬁhcﬁonélity ‘-of the vsystefn, ‘namely a context diagrém, entity

relaﬁonship diagram and various typeé of data flow diagfams.

Today CASE tools are used as a standard in system development to draw various data
modelling dlagrams and to deplct the movement of data throughout a system However,
most of the mamstream CASE tools have a Iack of security definition facilities. The

main reasons for this are [6]:

* loss of performance of the final application with the additi_on of security features,

* loss of flexibility because of restrictions and confinements on the target system's
behaviour, and

* higher costs in system creation to account for analysis of the seanrity

requirements, design and implementation of the security specifications, and

Booysen, Kasselman, Eloff 2

.

Enforcing Information Security during the development of Application Systems

maintenance of security in the syste‘m.

. As a data flow diagram represents the end user's view of the apphcatron system the
best it can also serve as mput mechamsm in analysing the logical movement of data
throughoqt a system. It would also be feasible to add security features to the
'app'lioationsystem under'de\-/e;lopm’ent -dr.rring"the high level design of the application

. system, i.e., when drawmg and 'deﬁnin'g' the various data flow diagrams.

This paper presents the research work undertaken to investigate the relevance of using
an Automated Soﬁware Generatlon Envrronment (ASGE) toinclude rnformatxon secunty
as part of appluztlon systems To avord confusxon the term ASGE is usedin th:s paper

to denote CASE tools that SUpport the entrre Irfe cycle.
w2 Security within ASGE

Fi gure 1 presents an overview of the components of an generalised automated software

u.';: ,,_ . P T

generatron envnronment Th.ese components form a set of dependent processes with
~ an external interface, the user, and an internal interface between the processes, the
. repository. The user requirements are taken as input and an application system is
provided as output. The scope of the components covers the phases of an integrated

CASE tool.

An automated software generation environment (ASGE) provides the analyst/designer

with facilities for drawing, describing and defining initial user requirements. After

Booysen, Kasselman, Eloff 3

)

Enforcing Information Secunty during the developn;)ent of Application Systermns

Revise

e Y

| Y

_ '.‘V
>
L
B 4

I

Fignr I: Auiomsted Softwars Geoerston Envirommact (ASGE)

- vz
il :)
R .
el 8T
B L

ahbiguﬁes and platitudes have Been removéé:from initial user requirements, thé analyst
transforms writtén user requirements into vis;ial represéntations. Entity rélationship and
" data flow diagrams are mainly used to present ihe end users view of the systemin a
ﬁsual way. Thesé diagrams are revi_sed&unt_il:.%he:user is satisfied that his requirements
are met. Ti;e final versions of these diagrams are stored in an integrated form in a
central repository. The system definition as a whole is checked for consistency and
completeness, by using the repository to analyse the content of each diagram. After
consistency checks have been performed, database tables and code are generated,

before the live database is loaded. [4][7][8](9]

Various ASGE tools are available for automated software design, but none of these

Booysen, Kasselman, Eloff 4

Enforcing Information Security duning the development of Application Systemns

make any attempt to consider security and integrity as part of system development. As
a result, a need arises for an Extended Automated Software Generation Environment

(EASGE) which addresses security during the development of Application Systems.

Figure 2 presents an overview of EASGE.

Figure 2: EmdedAmdSoﬁmemEmum(EASGE)

The yellow part in figure 2 represents the “traditional” development activities of an ASGE
(see figure 1). As mentioned an ASGE provides the analyst with facilities for drawing,
describing and defining user requirements by means of dataflow diagrams. After the
dataflow diagram has been analysed for completeness and consistency, the EASGE

expands on the standard user requirements, by introducing 5 security requirements,

Booysen, Kasselman, Eloff 5

Enforcing Information Security during the development of Application Systems

[y

RN

2.1.

namely:

Determine information flow types: Obijects are connected on a data flow diagram by
means of an arrow symbol. By studymg the direction of the arrow symbol EASGE can

automat:cally dxstmgulsh whether the actton between two Objects is a read ora wnte

: E actlon For example lf mformatlon flows from a process to a data store, it can be

- ~_" "automatxnlly determmed that the flow type is a write action. Srmnlarly, information flowing

’ _"A shortoommg of these flow actlons is

Do _-4‘_f,_rom a data.store to a process isa read actlon._», :

e Read
‘ that only two ﬂow types are N
C o') - ' —_
. oonsrdered namety read and wnte ln ' Ap{md A - |
_ aoommercral appl‘wtlon system one | Update —_— 0
 should be able to distinguish betw
A- ou beapeto rnglrt een Delete "
read, wiite, appénd, update and delete | .-
' Figure 3: Information flow types

actions. When inspecting the action
in\rolved in an append,.update and delete.a'ction itis evident that these actions require
a speciﬁc write action. For example, when appending information to a file, a complete
new record is added to the file, without reading any information. When a file is updated,
a read action is required to view the information before changes are made (write) to the
information. Similarly, a delete action requires a "blank" write to a file. Therefore it is
necessary for EASGE to prompt the analyst to indicate the specific “write" action that is
involved, i.e., delete, update or append. Figure 3 portrays the various arrow symbols that

can be used in EASGE to indicate the action that an Object performs.

Booysen, Kasselman, Eloff

Enforcing Information Security during the development of Application Systems |

performs.-

2.2. Allocate security classes to objects: EASGE will assist the analyst in allocating a
security r':lass_ to each objecf(ex’(ernal entity, process, data store) on the data flow

’ dlagram baeed on his aSsessmenl of the sensitivity level of the information conta‘lned_

in the object. The securrty class allocated to an object. rndrcates the amount of
rnformatron contarned in the object that can be regarded sensitive. Objects, for

E example, can be classrﬁed as top secret,. secret, confidential or unclassrﬁed.

2.3. Object Matrm A data ﬂow dragram portrays the direction of information flow in a
| system The drrectron of rnformatnon flow shows actrons (read, append etc) of certain’
objects on other objects These actrons can be used to construct an Object Matrix. An

object matnx isa rectangular array in whrch objects from which rnfonnatron ﬂows are
mapped onto objects to whrch rnformatron flows. The entry for a partrcular row and
column reflects the rnformatron ﬂowtype (read, append update or delete) between the
corresponding objects. This kind of access where information flows directly between
objects, is referred to as binary access. Binary access only focuses on the operations

that cause information to flow between two neighbouring objects, linked to one another

by means of an arrow symbol. Thus, an object matrix contains both valid and invalid

binary flow actions between objects. For example, if a top secret object reads
information contained in a confidential object, the binary flow petween the two objects

would be valid, but if a confidential object reads information from a top secret object, the

binary flow woud be invalid.

Booysen, Kasselman, Eloff 7

v

Enforcing Information Securnity during the development of Application Systems

For example, in figure 4, Objecty is

Secret
reading information contained in R Top Secret
. {Object A Object B Object C

Object, (indicated by the arrow | confidential T
symbol! pointing from Object, to :
. T 1 . ObjectD
Objecte).. This. is indicated by - S
Top Secret

" lnsertmg Read in the Object Matnx

o Figum4 Examplc data flow diagram
: (table 1), at the mtersectlon of Row e .

‘_1 Column 2 The‘ Append m table 1 (row 2, column 3) indicates that Objecty is
.iappencf ing lnfomlatxon to Objectc Slmnlarty the mtersectzon of Row3 Column 4, (Read)

: mdlwtes that mformatlon contalned in Objectc IS read by Object,. ‘ .

23 ﬁbolumng ;f

i, Wxn«m

Table 1: Object Matnx

2.4. Revised Object Matrix: As an Object Matrix only contains valid and inv;c\lid binary
information flows, it »has no intelligence to detect a situation as: Object, O Object; O
Object. OObject,, to conciude that there is an indirect information flow between Object,
and Object, Therefore, it is also necessary to consider the flow type that exists between
objects not linked directly to each other, but rather indirectly by means of intermediate

objects. We refer to this kind of information flow as Compound Information

Booysen, Kasselman, Eloff e

[y

-

Enforcing Information Security during the development of Application Systems -

" Flow. The objective of a revised object matrix is to summarise all valid as well as invalid
binary and compound information ﬂows. Therefore the revised object matrix in table 2
includes all valid and invalid .binary information flow (table 1) as well as valid and invalid
compound information flow, for our example in figure 4.

The algon’thrﬁ for detennihing valid and invalid binary énd compound information flow

- can be‘kfbiqhd' in Annexure A. K B .

Compound information fiow Compound information flow

Appénd - - - Compound information flow "
' Read

P s i
[Row 4> DE| - _
able 2:- Revised Object Matrix

C‘dmpéring the contenf of table 1 and table 2, it is evident that in table 1, the type of
‘binary inforriation flow between objects is indicated as either read, append, update or
delete, whereas, in table 2, the compound information fiow between objects is indicated

as "Compound information flow". From this it is evident that a problem arises as to

what the indirect flow action should be.
2.4.1. Compound information flow types

In determining the compound information flow type, the rationale of the "grant" right in

Booysen, Kasselman, Eloff 9

Enforcing Information Security during the development of Application Systems =~

the Take-Grant [10] model is used. The objective is to determine the “combined” flow

type that could exist between:

* Object, and Object;, Object, and |

Object,, and Objecty and Objecty in | iObicta :
' B L a :
the example presented in figure 5. . |.:oo o0 . o IM -

:ln determmmg the compound ﬂowf};

type that exxst between Object, and‘f FighmeS: Exaumple compoand data flow disgram

Objectc it is necessary to substntute the append flow type between Object; and ObjEdc

with wrrte Thrs allows one to lnd‘ tzte a specrﬂc bmary and compound ﬂow type in terms
of the actual actron that occurs. As an update ﬂow requrres rnformatron to be read before 4

rt is wntten to another object the update ﬂow type can be substrtuted with read-wnte

The delete flow type is not co'nsidered.‘ as, when idformation is deleted, the information
no longer exists, therefore information cannot be' transferred to other objects. If only
. some of the attrit)utes are deleted, it wout_d_,indicate.tnet the remaining information can
flow to-other objects. The prototype presentéd in this paper, doesn't consider this t‘me
granularity, but assume that all information contained in the object is deleted. However
it is recognised in this paper, that the concept of multilevel databases [11] will assist the

developer in enforcing security down to an attribute level.

Possible combinations of compound access between objects are depicted in table 3.

Booysen, Kasselman, Eloff 10

Enforcing Information Security during the development of Application Systems

|| Between Objact, arid Object; ™

*| Between Object, and Object;

"Read Append (i.e., Write)
| Read Update (ie., Read-Write) |
" Read Read. . . - " ,
' Append (i.e., Write) Read = . o "
Append (i.e.; Write) - Append (ie., Write) |
o Append (i.€., Write) Update (i.e., Read-Wnte) J‘
Update (i.e., Read-Write) - ‘Read : : ,
Update-(ie., Read-Write) o _Update'(l-e-‘ Read-Write) - " a

Fdeate (i.e. Read-Wnte)

Table 3: Possnble compound combmatlons

- ‘-'-f From table 3it should be c!ear that a compound ﬂow type can only exists between at
o least 3 objects A compound ﬂow type is determmed by studylng the compound flow

between three objects These objects need not to be neighbouring objects, i.e., hnked

Append (i. e Wnte) "

directly to one another by means o_f an arrow symbol.

- A compound flow type is then determined between the first object and the third object,

using the outcome of the combinations as summarized in table 4.

Booysen, Kasselman, Eloff

Enforcing Information Security during the 'development of Application Systems

. Table 4: Compound access rules

= Between (:)'pj.é;g ‘a;}d‘ .
Read Append (i.e., Write) Update _
~ ||Read _Update (i.e‘.,‘Read-Write) Up_date:. R
- IRead Read = Read = |
~JAppend (e, Wiite). - Read ‘i fReadil . - 0
ff‘lﬁijfﬂ"Ahpend'(i.e.. Write) . pend(e Wnte) Append “ N
Append (i.e., Write) " Update (i€ Read—Wnte) Update - - '
Update (lv.e.;f.REad‘-ﬁWﬁte) “ .. | Read . *‘ ‘Read i v
Update (i.e., Read-Write) | Update (i.e., Read-Write) ~ |-Update | 4
‘f Update (i.e., 'Reéd-Write)' .Append (i.e. Wnte) Read'_'___'_;;ﬂ-j':ﬁ"i'

The"newly" 'fo'rmed fnformatiori ﬂowtype is‘thenvhs.ﬂed as the "ﬁrst' ﬂoW"typ'e’; ir‘i:.‘r""'5 :
detennining the combopnd ﬂew tybe between the next 2 objects VFvor example if the
flow type 'betvveen Object, and »Objectz is Read, and the flow type between Object, and
Object, is Append (write), we obtain a Read-Write ﬂow”type Read-Write indicates an
update action, therefore the compound actlon between Object1 and Object, is Update.
The ﬂow type between Object, and Object:,. now serves as the f' rst information flow
type, to determine the compound flow type between Object, and Object,. If the flow
type between Object, and Object, is Read, then the compound flow between Object,
and Object, would be Read. (The combination of Update - between Object, and Object,

- and Read between Object, and Object,).

Applying the compound flow types (table 4) to our example in figure 5, compound

information flow types (table 2), can now be substituted with information flow types

Booysen, Kasselman, Eloff 12

Enforcing Information Security during the development of Application Systems

: '} | 'Table 5 Revused Object Matrix

(figure 3). Thus, the Revised Object Matrix for our example (figure 5) is presented as

follows (table 5):

":-Column A%

Security Revised Object Matrix

So far EASGE has determmed the mformatlon flow types (read, update, append or
~delete) between objects ona dataﬂow diagram. Also binary and compound mformatnon

flows were determined. However these information flows contain vahd as well as

' invalid information flows (see paragraph 2 3) From a security viewpoint, the question

arises as to when the btnary and compound mformatlon flows would be valid or mvaltd

Valid binary and valid compound information flows are determined by using the security
classes assigned to objects (see paragraph 2.2), and by applying access rules stating
when a flow is valid or invalid. In EASGE a Security Revised dbject Matrix is used to
summarise all valid binary and valid compound information flows. Before determining
the valid flows for our example in figure 5, it is necessary to formulate rules (access

rules) stating when a binary or compound information flow would be valid, or invalid.

Booysen, Kasselman, Eloff 13

Enforcing Information Security during the development of Application Systems

2.5.1.

Binary access rules
Binary access rules as defined in context of EASGE are as follows:

Read: Object, can only read information contained in Object,, if the security class of

object, is equal or greater than the security class of Object,.

Append: Object, can append information to Objects, if the security class of object, is

equal or smaller than the security class of Object,.

Update: Usually when an object updates another object, only a few attributes are

updated. The object updating another object thus needs to have clearance to update

" the required attributes of the other object. In other words, Object, can update

information contained in Object,, if the security class of the object, is equal or greater
than the security class of Object,. Although the updating of information requires one to
consider information in an object on an attribute level, the prototype as proposed in this
paper, will not consider this fine granularity of information. However it is recognised in
this paper, that the concept of multilevel databases [;1] will assist the developer in

enforcing security down to an attribute level.

Delete: When an object deletes information contained in another object, either the
entire object or some attributes in the object are deleted. Depending on the type of
deletion, the object deleting information contained in another object, must have

clearance to delete the required information. Therefore, Object, can delete information

Booysen, Kasselman, Eloff 14

P

Enforcing Information Security during the development of Application Systems

contained.in Objects, if the security class of Object, is equal or greater than the security

class of Object,.

The binary access rules for the for security classes, namely unclassified, confidential,

secret and top secret, are summarised in the table 6.

T s A T R R L g e Te - L g g gt g el et o e
|| security €IaSSBF e Sbject to which information flows’

u . c, S TS
v R,UD.A A A A
Security-class o c R,UD | R,UD,A A A
RUD R,UD |RUDA [A
RUD R,UD RUD |RUDA
Note: U - Uncla'ssiﬂed C - Classified S - Secret TS- Top secret
R - Read A - Append U-Update D -Delete

" In our éxample in figure 4, a conf;dential security class was assigned to Object,, a
secret security class to Object, , a top secret security class to Object., and a top secret
security class to Object,. As Objecty is reading information contained in Object,, the
security class of Object; must be equal or greater than the security class of Object,.
according to the binary access rules (see table 6). As the security class of Object is
secret and the security class of Object, is confidential, a valid binary flow exists between

Object, and Object.

Booysen, Kasselman, Eloff 15

o

Enforcing Information Security during the development of Application Systems

As Object, is appending information to Object, the security class of Object. must be
equal or greater than the security class of Objectg, according to the binary access rules.
As the security class of Objecty is secret and the security class of Object,. is top secret,

a valid binary flow exists between Object, and Object..

As Object, is reading information contained in Object,, the security class of Object,
must be equal or greater than the security class of Object., according to the binary
access rules. As the security class of Object, is top secret and the security class of

Object, is top secret, a valid binary flow exists between Object. and Object,.
2.5.2. Compound access rules

As a single flow type exists between compound flows, the binary access rules can be

applied to check whether the compound flow is valid or not.

A compound information flow type (update) exists between Object, and Object, (see
figure 5). As Object, is updating Object, the se.cur.i.ty class of Object, must be equal or
greater than the security class of Object,, according to the binary access rules (table
6). As the security class of Object, is confidential and the security class of Object, is
top secret, an invalid binary flow exists between Object, and Object.. Therefore the
compound information flow between Object, and Object. must be removed from the

revised object matrix. EASGE would point out this error to the analyst.

Also a compound information flow type (read) exists between Object, and Object,. As

Booysen, Kasselman, Eloff 16

Enforcing Information Security during the development of Application Systems

Object, is reading information contained in Object, the security class of Object, must

be equal or greater than the security class of Object,, according to the binary access

rules. As the security class of Object, is confidential and the security class of Object,,

is top secret, a valid compound information flow exists between Object, and Object,,.

Also a compound information flow type (read) exists between Object, and Object,. As

Object, is reading information contained in Object, the security class of Object, must

be equal or greater than the security class of Object,, according to the binary access

rules. As the security class of Object; is secret and the security class of Object, is top

secret, a valid compound information flow exists between Object; and Object,,.

A Security Revised Object Matrix is constructed to summarize valid binary and valid

ct;mpound information flow types. For our example, the Security Revised Object Matrix

in table 7 can be constructed.

Column COlum?l:lZ Column 3°.*| Column 4.
. S Nl - : = C] N Je SN
“ Row1 .| A Read Update
1B~ Append
,C .
[Row4 | D

Table 7: Security Revised Object Matrix

2.6. Remainder EASGE activities

Booysen, Kasselman, Eloff

17

Enforcing Information Security during the development of Application Systems

Having determined all valid binary and valid compound information flow types (see table
7), EASGE compares the Revised Object Matrix (table 5) and the Sec_urity Revised
Object Matrix (table 7) with one another, to determine invalid ‘binary and invalid
' compouhd information flows. A flow is inva;li’d if an entry is found in the revised object
matrix and not in the security revised object matrix. EASGE highlights these invalid
flows on the data flow diagram, by means of connecting the origin and destination

objects responsible for an invalid flow.

EASGE now presents the analyst with suggestions to address invalid flows so as to
improve the security of the application system under development. Suggestions could
inciude recommendations to change the security classes assigned to objects. For
example, if an invalid binary information flow. occurs, EASGE would recommend that a
change in the security class of the object responsible for the invalid binary information
flow, would allow for a valid binary flow. If the security class of Object, in our example
. was unclassified, the binary information flow between Object. and Object, would have
been invalid. EASGE would then have recommended to change the security class of

Object, to top secret. Another suggestion might be to propose the use of a sanitizer

object.

A sanitizer object will ensure that only valid information received from an object with a
higher security class are filtered through to an object with a lower security class and that
only valid information received from an object with a lower security class are filtered
through to an object with a higher security class . For example, EASGE can suggest

a sanitizer object where an object has read information before appending information.

Booysen, Kasselman, Eloff 18

ey

Enforcing Information Security during the development of Application Systems

If a sanitizer object is inserted between Object; and Object,, it will only allow secret
information contained in Object; to be appended to Object., as Object; has read

confidential information from Object,.

It should be noted that EASGE models user requirements on a high level. Although
EASGE suggest that information should be filtered form objects with a higher security
classification to objects with a lower security classification, the prototype presented

doesn't implement information filtering in detail.

The analyst is now presented with the option to change the design diagrams, based on
the security issues mentioned above, or to proceed to generate database tablgs. llf he
decides to execute the "change design” option, he will have the opportunity to
"rédesign" the system diagrams with the added security requirements. When satisfied
with the security level of the application system, database tables and code is generated

before the live database is loaded.
3. Discussion of the prototype (DFDSEC)

A prototype EASGE tool has been developed which addresses the grey part in figure
6. The prototype is named DFDSEC, as it only concentrates on including security
activities as proposed by EASGE to the high level design diagrams (data flow diagrams)

of an application system.

Booysen, Kasselman, Eloff 19

Iy

Enforcing Information Security duning the development of Application Systems

MUBHERIHH AR IO

Figure 6: DFDSEC in context of EASGE

When DFDSEC is loaded it presents the designer with a Graphical User Interface (GUY)

as depicted in figure 7. The GUI consists of three parts, namely a DFD window (A), a

toolbar (B), and an options bar (C).

The DFD window is used by the designer to represent user requirememé in a visual way,
i.e., by means of a data flow diagram. Drawing tools are contained within the toolbar and
are presented by the process icon, sanitizer process icon, extemal entity, data store and
data flow objects. The "D" symbol in figure 7 indicates the drawing tools. The "E" symbol
in figure 7 indicates utility tools. The options bar (indicated by “C" in figure 7) allows the
designer to change the line style, width and drawing colours. The "F" symbol in figure 7

indicates tools that can be used to analyze the data flow diagram. Analysing a data flow

Booysen, Kasselman, Eloff 20

Enforcing Information Security during the development of Application Systems

diagram entities that the information flow between objects on the DFD are examined ir
terms of secunty and integnty requirements as described in paragraph 2.1t0 2.6. The
remainder of tools are utility tools, used to save and load a diagram, exit the prototype

and start a new data flow diagram.

The Gane-.Sarson modelling technique serves as basis for DFDSEC. A detailec

description of this technique can be found in reference [12].

To illustrate how DFDSEC works, an example will now be presented

31 Working of DFDSEC

Consider the following user requirements:

28]

Booysen, Kasselman, Elcf

IRREEN
L

Enforcing Information Security during the development of Application Systems

An application is needed with a process that can calculate salaries for employees
of a large company. There is an existing database containing employee data,
for instance personal data and rate per hour paid. The process appends salary
data to a data file. A sélary clerk needs access to the salary data so as to

resolve ad-hoc enquinies, for example average salanes.

Y G

it ——————

Figore 8: Enmpkﬂ:lan ﬂaw diagram

Using the drawing tools of DFDSEC, the designer has transformed the user requirements
into a visual representation as depicted in figure 8. Objects on the data flow diagram
(figure 8) are connected by means of arrow symbols, so as to indicate the direction of

information flow within the system.

Booysen, Kasselman, Eloff 22

iy

Enforcing Information Security during the development of Application Systems

After the designer had placed the objects on the drawing board and connected them by
means of amows, DFDSEC automatically determines the information flow type between
objects on the data fiow diagram. DFDSEC then automatically labels the flow type
between "Empioyee data" and “Calculate salanes” as Read, the flow type between

"Calculate salaries” and "Salary data" as write etc.

DFDSEC can only determine whether the information flow type between objects are Read
or Write. Therefore, once a flow type is labelled as write, DFDSEC prompts the designer
to expand the Write action to indicate whether it is an Append, Delete or Update action.
As the user requirements indicates that data is appended from the "Calculate salaries”

object -to the "Salary data” object, the designer changes the write action to an Append

action, as portrayed in figure 9.

Figare 9- Changing of infarmation flow types

8}
w

Booysen, Kasselman, Eloff

unt

Enforcing Information Security during the development of Application Systems

"=

The designer now selects the analyzer icon (indicated by "F" in figure 7) to indicate to
DFDSEC that the data flow diagram can now be analyzed in tarms of security and
integrity requirements. The analysing process occurs internally, as described in

paragraphs 2.2 to 2.5.2.

The allocation of security classes to objects (described in paragraph 2.2) is depicted in
figure 10. The project leader has indicated that the following security classes should be

assigned to the process, data files and external entity objects:

Calculate salaries (process): Top Secret
Employee data (data file): Confidential
Salary data (data file): ‘ Secret
Salary clerk (extemal entity): Confidential
Retrieve data (process): Secret.

Booysen, Kasselman, Eloff 24

Y
i

Enforcing Information Security duning the development of Application Systems

e e Ll

Figore 10: Aﬂoanmofmdmmob;wu

The matrices presented below will therefore not be presented to the designer. They are

merely shown here for explanation purposes.

Object Matrix:

Caiculate Employee Retrieve Salary Salary clerk
salaries data data data

Calculate salaries Append :

Employee data Read }

Retrieve data Read

Salary data Read ;

Salary clerk |]

Booysen. Kasselman, Eloff

iy

Enforcing Information Security during the development of Application Systems

Revised Object Matrix:

Calculate . Retrieve | Salary . Salary

salaries data - clerk

Read . Append | Read
Read Read Update | Read
Retrieve data Read

=iy

e 7

"'Sgélarj 'da‘_ta .

| Salary clerk

DFDSEC now compares the Revised Object Matrix and the Security Revised Object
Matrix to determine invalid information flows. DFDSEC would point out that the binary
flow from "Retrieve data" to "Salary clerk" is invalid, (indicated by the red line from
"Retrieve data" to "Salary clerk” in figure 10) as the Salary clerk can only read
information which has a confidential or unclassified clearance. DFDSEC would suggest

that the security class of the Salary clerk be raised to be at least the same as the

Booysen, Kasselman, Eloff 26

Enforcing Information Secunty during the developmefzt of Application Systems

security class of "Retrieve data”, i.e. Secret.

DFDSEC prompt the designer to indicate whether he would like to change the security
class of the Salary clerk. A; the user requirements stated that the salary clerk requires
read access to “Salary data” via the "i"-Zetrieve data” object, to resolve ad-hoc enquiries,
the designer has reasoned that he h'é.éds to change the security class of the Salary clerk

to Secret. This is indicated in figure 11.

2 = >
Lo s 7 v»- o
% 2 T e =
A SRS “"* '.;:'.":—3:':-“-——-—»-—-,
e T s SRR 2 "
g e R
nay-tinsk’s

o B e i 15
et g

e s e s = AT
P e ST a T T

e R e

A
P Y o
R ot i s T

AT

Figurc 11: Pointing out invalid infornation flow types

DFDSEC would also point out that the binary flow from "Calculate salaries” to "Salary
data” is invalid, as information flows from a top secret object ("Calculate salaries”) to a
secret object ("Salary data”). Due to the downflow of information DFDSEC suggests that

a sanitizer object be inserted between the “Calculate salaries” and "Salary data”

Booysen, Kasselman, Eloff 27

Enforcing Information Security during the development of Application Systems

objects.

'DFDSEC prompt the designer to indicate whether he would like to insert a sanitizer
object between the "Calculate salaries” and "Salary data" objects. Examining the user
requirements, the designer concludéd that once salaries have been calculated; it is
necessary to append salary data to the Salary data file, so that the Salary clerk can
resolve enquiries. Therefore, the designer has opted to insert the sanitizer object. This

is indicated in figure 12.

The justification for inserting a sanitizer object is due to an information flow between the’
"Calcuiate salaries” object (whicéh is top secret) and the "Salary data" object (which is
secret). The sanitizer object will facilitate the flow of information from a top secret to a
sécret object, in order to over right the rule that information cannot be appended from
a object with a higher security class to a object with a lower security class (see append
rule in paragraph 2.5.1). Since DFDSEC is currently implemented as a design tool the
implementation detail of the sanitizer is as yet not been addressed. Possibilities for

implementing a sanitizer object can include multilevel database concepts [11].

Booysen, Kasselman, Eloff 28

Py

Enforcing Information Secunty during the development of Apphcation Sysiemns

Having changed the security class of the Salary clerk ana inserted a sanitizer objec:

DFDSEC automatically re-analyses the data fiow diagram depicted in figure i1 The
various matrices constructed intemally are presented below:
Object Matrix:
Calculate | Employee | Sanitizer | Salary | Retrieve | Salary !
salaries data object data data clerk)
Calculate salaries Flow)
Employee data Read '
Sanitizer object Aopend i :
Salary data Reac | ‘
Retrieve data : T s
Salary clerk I - ﬁl‘

Booysen, Kasselman, Eloff

Enforcing Information Security during the development of Application Systems

Note: The flow type between "Calculate salaries” and the "Sanitizer object” is indicated
as flow, as information is transferred from the "Calculate salaries" object to the
"Sanitizer object" to prevent information to flow from an object with a higher
security class to an object with a lower security classification. The security class

of any "Sanitizer object” defaults to Top secret.

Revised Object Matrix:

Calculate ::| Employeée -|:Sanitizer .| Salary : | Retrieve ‘| Salary
e el g, LTI T e T e e e ':“.‘.'.'-‘ ,:.-,':.'4

B xR

bl e w

A data | clerk_

Rt P P

Calculate Salries, Flow

Read Flow

Append | Read Read
Read Read

[Rstrieve data’ Read
| Satary clerk =577
. Security Revised Object Matrix:.. . . . S
C_:alc_?!gte! E’mplo;ee_‘ Sanitizer | Salary | Retrieve | Salary

" ccien | amtn 5 oot aata | cata |

" Calculate salaries - Flow

" Employee data = || Read Flow

“ Si_'ahitizervo_lijeé;ftf";; Append | Read Read
Salary data~ - = Read Read
Retrieve data =~ Read
Sélary clerk = .~

Booysen, Kasselman, Eloff 30

[AEasant

Ehforcing Information Security during the development of Application Systems

Although the Append between the "Sanitizer object” and "Salary. data" are invalid
'according to table 6, the sanitizer object would only allow secret information to flow to
the "Salary data" object. Therefore the flow would be valid. The same argument
applies to the flow between the "Sanitizer object” and the "Retrieve data" and "Salary

clerk" objects.

DFDSEC now compares the Revised Object Matrix and the Security Revised Object
Matrix to determine invalid information flows. As no invalid information flows exist, i.e.,
all entries in the Revised Object Matrix is contained in the Security Revised Object
Matrix, the real environment (EASGE) would proceed to generate databases tables and

code.
4, Conclusion

The advantage of using an EASGE tool when developing a system, has several benefits
to the security state of the system under development. First, it allows most objéct
interactions to be determined automatically using the high-level design aiagrams (data
flow diagrams) of the system. Secondly, a revised object matrix ensures that all valid
and invalid combinations of information flow are considered during system development.
Thirdly, the security class assigned to an object is considered while developing the
system. This allows security to become an integrated part of application system

development.

Booysen, Kasselman, Eloff 31

R

Enforcing Information Security during the development of Application Systems

DFDSEC is an example of a possible mechanism which automatically enforces secure
information flow during the high-level development of an application system. The
insertion of a security handling object (Sanitizer object) allows for more realistic design,
in that infon;nation is allowed to flow down to objects with a lower security classification,

under the watchful eye of both the designer and the security CASE tool, DFDSEC.

DFDSEC is a prototype which contributes to the enhancement of existing CASE
environments so to automatically (as far as possible) enforce security aspects into

application systems designed with the assistance of CASE tools.

5. References

1. Booysen HAS, Eloff JHP, "A Methodology for secure development of Application
Systems", Proceedings of the 6th Annual Canadian Computer & Security Symposium,
Ottawa, Canada, May 1984.

2. Fisher AS, "CASE using software development tools", John-Wiley & Sons, 1988.

3. Slabber G, "Can CASE deliver the goods ?*, Computer Mail, 1993.

4 Chikofsky EJ, Rubestein BL, "CASE: Reliability Engineering for Information Systems”,
IEEE Software, 1988.

5. Lehert S, Moeller E, "Data and Information Modelling", Proceedings of the BERKOM
Workshop in Hochst-Annelsbach/Odenwald, 9-13 July 1920.

6. Baskerville R, "Designing information systems security”, John-Wiley Press, 1983.

7. Oman PW, "CASE Analysis and Design tools", IEEE Software, 1990.

8. Focus report, "The case for CASE tools", IEEE Software 27 (11), 1990.

9. Pfleeger CP, "Security in Computing”, Addison Wesley, 1983.

Booysen, Kasselman, Eloff 32

Enforcing Information Security during the development of Application Systems

10. Lipton RJ,-Snyder L, "A Linear Time Algoritm for Deciding Subject Security”, Joumnal
of the Association for Computing Machinery, 24(3), 1977.

11. Pemul G, "Database Security”, Advances in Computing (38), p 1- 69, Academic Press
Inc, 1994.

12. Gane C, "Computer-aided Software Engineering: The methodologies, the products and
the future”, Prentice-Hall intemational Editins, 1990.

13. Hsieh- CS, Unger EA, Mata-Toledo RA, "Using Program Dependence Graphs for

Information Flow Control”, Journal of Systems Software (17), 1992.

Booysen, Kasselman, Eloff 33

e

