

COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION

o Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

o NonCommercial — You may not use the material for commercial purposes.

o ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

How to cite this thesis

Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/
M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved
from: https://ujdigispace.uj.ac.za (Accessed: Date).

http://www.uj.ac.za/
https://ujdigispace.uj.ac.za/

Design and Implementation

of a Prototype

to include security activities

as part of

Application Systems Design

A Kasselman

Nt\\O
\(ASS

DESIGN AND IMPLEMENTATION

OF A PROTOTYPE

TO INCLUDE SECURITY ACTIVITIES

AS PART OF

APPLICATION SYSTEMS DESIGN

by

ANDRe KASSELMAN

DISSERTATION

submitted in accordance with the requirements for

the degree of

MAGISTER COMMERCII

in the subject

INFORMATION SYSTEMS

in the

FACULTY OF ECONOMICAL AND MANAGEMENT SCIENCES

at the

RAND AFRIKAANS UNIVERSITY

SUPERVISOR: PROF J.B.P. ELOFF

MAY 1995

Financial assistance by the Center for Scientific development (SRC, South Africa) for this research is
hereby acknowledged. Opinions raised and conclusions reached are those ofthe author and should
not necessarily be attributed to the Center for Scientific development.

Geldelike bystand gelewer deur die Sentrunt vir Wetenskapontwikkeling (RGN, Suid-Afrika) vir
hierdie navorsing word hiennee erken. Menings uitgespreek en gevolgtrekkings waartoe geraak is, is
die van die outeur en moet nie noodwendig aan die Sen/rum vir Wetenskapontwikkeling toegeskryf
wordnie.

TITEL

aUTEUR

STUDIELEIER

GRAAD

DEPARTEMENT

TAAL

Ontwerp en Implementering van 'n Prototipe om

sekuriteitsaktiwiteite in te sluit as deel van

Toepassing Stelselsontwerp

Andre Kasselman

Prof J.H.P. Eloff

M.Com.

Rekenaarwetenskap

Engels

~

-'

OPSOMMING

Die studie het sy oorsprong in die groeiende behoefte aan inligtingstelsels wat as 'veilig'

beskou kan word. Met die toenemende gebruik van rekenaargesteunde sagteware

ingenieurswese hulpmiddels ('CASE-tools') in die ontwerp van toepassingstelsels vir

kornmersiele gebruik, het die risiko's wat daar bestaan in terme van inligtingsekuriteit, al hoe

meer prominent geword.

Dit word al hoe belangriker om sekuriteit in ag te neem tydens die analise en ontwerp van 'n

stelsel, m.a.w. op 'n logiese vlak, in plaas van om dit op 'n ad hoc basis by bestaande

toepassingstelsels te probeer voeg. Sekuriteitsontwerp-aktiwiteite behoort op so 'n logiese vlak

deel te word van stelselanalise en -ontwerpsaktiwiteite dat daar volkome integrasie tussen die

twee vakgebiede sekuriteit en rekenaargesteunde sagteware-ontwerp bereik word.

Die doelwit van die verhandeling is om die teorie te bestudeer vir bestaande benaderings tot die

integrasie, en dan aile relevante sterkpunte daaruit te haal en dit uit te brei indien nodig, ten

einde 'n benadering daar te stel wat ten volle implementeerbaar is in die vonn van 'n prototipe

datavloei-ontwerp hulpmiddel ('DFD CASE-tool'). Die voorgestelde benadering tot die sekure

analise en ontwerp van 'n toepassingstelsel of 'n logiese vlak, wat in Hoofstuk 4 aangebied

word, is ontwerp in samewerking met H.A.S. Booysen en J.H.P. Eloff [Booysen, Kasselman,

Eloff - 1994].

Bestaande rekenaargesteunde sagteware-ontwerp hulpmiddels is deur die outeur bestudeer om

te bepaal wat hul huidige vermoens is in terme van veral die definiering van sekuritcit, maar

ook in terme van steun aan die stelselanalis tydens die analise en ontwerps-fases van die

projeklewensiklus wanneer 'n toepassingstelsel ontwikkel word.

Sekuriteitsbeginsels word ook daargestel wat nodig sou wees vir die sekure en effektiewe

ontwerp van 'n toepassingstelsel. Hierdie beginsels word gebruik in die ontwerp van die

prototipe en geillustreer met voorbeelde. Daar word gepoog am met hierdie studie aan te toon

dat dit prakties moontlik is om sekuriteitsaktiwiteite te integreer met 'n bestaande metodologie

vir die analise en antwerp van inligtingstelsels.

4

SUMMARY

This study has its origin in the growing need for information systems to be classified as

'secure'. With the increasing use of Computer Aided Software Engineering (CASE) tools in

the design of application systems for commercial use, the risks that exist in terms of

information security have become more prominent.

The importance of considering security during the analysis and design of an information

system, in other words, on a logical level, is increasing daily. Usually security features are

added to existing application systems on an ad hoc basis. Security design activities should

become such an integrated part of systems analysis and design activities on a logical level, that

a complete integration of the two fields, security and computer aided software engineering,

can be achieved.

The aim of this dissertation is to study the literature to discover existing approaches to this

integration, and to extract the strengths from them and expand on those strengths in order to

compile an approach that is completely implementable in the form of a prototype data flow

design tool (DFD tool). The proposed approach to the secure analysis and design of an

application system of a logical level, which is presented in Chapter 4, is designed in

conjunction with H.A.S. Booysen [Booysen, Kasselman, Eloff - 1994].

Existing CASE-tools have also been studied by the author to determine their current

capabilities, especially in terms of security definition activities, but also in terms of their

support to the systems analyst during the analysis and design phases of the project life c: ~k

when developing a target application system.

Security principles that would be necessary for the secure and effective design of ';'I1

application system are determined. These principles are used in the design of the prototvoc

and illustrated with examples The aim of this study is to prove that it is possible to inregr.: t'

security activities with existing methodologies for analysis and design of information sysie:n­

in a practical way.

DESIGN AND IMPLEMENTATION OF A PROT07YPE TO INCLUDE SECURllY

ACTIVITIES AS PART OF APPLICATION SYSTEMS DESIGN

CONTENTS

Contents 6

List of Figures 10

List of Tables 11

Chapter 1 12

Introduction 12

1 Introduction to this study 12

1.1 State of the art situation 13

1.2 Definitions 13

1.3 Problem statement 16

1.4 Grey areas to be resolved when attempting a combination of security and CASE-tools 16

1.5 Motivation 1H

1.6 Short overview of each chapter 19

Chapter 2 21

Theoretical approaches to the design of a 'secure' application system 21

2 Introduction 21

2.1 Presentation of the approaches 21

2.2 Baskerville 23

2.3 Eckmann 3-t

2.4 Pernul -t 1

2.5 Positioning of The Proposed Approach -tH

2.6 Conclusion SO

Chapter 3 51

A critical review of some CASE-tools 51

3 Introduction ~ 1

3.1 SILVERRUN

3.2 Ohject Modeler

3.3 Conclusion

Chapter 4

Proposed Approach to Secure Design: Rules and principles to be considered

4 Introduction

4.1 Rules for effective Data flow design

4.2 AdolJted concepts from the theory

4.3 Proposed Approach: Security Activities of EASGE

4.4 General Advantages of the Proposed Approach

4.5 Conclusion

ChapterS

Prototype implementation: the DFDSEC tool

5 Introduction

5.1 Purpose of tbe Prototype.

5.2 Goals of tbe prototype

5.3 Security Stages of DFDSEC

5.4 Example with different representations (SILVERRUN, OMD and DFDSEC).

5.5 Description of DFDSEC in terms of Security Acth'ities and Recommendations.

5.6 Conclusion

Chapter 6

Design and Implementation of the Prototype.

6 Introduction

6.1 Requirements Speclflcation

6.2 Requirements Design

6.3 Some implementation details

6.4 Conclusion

Chapter 7

User manual for DFDSEC

51

55

59

60

60

60

61

62

6i

78

78

80

80

80

81

82

98

9S

1It.:

1111

10:;

lO~

7 Introduction and structure of this user manual

7.1 Installation

7.2 Activating the tool and System requirements

7.3 Drawing a DFD with DFDSEC: General Information and Tools

7.4 The Menu Options

7.5 Error message and information message windows

7.6 Input Windows for Entering Information

7.7 Defining a Sanitiser Object

7.8 Conclusion

Chapter 8

Future Prospects and Conclusion

8 Introduction

8.1 General advantages

8.2 Implementation prospects

8.3 Object-oriented implementation of a prototype

8.4 Analy'sing Control Flow in DFDs.

8.5 Analysing Bigger DFDs.

8.6 Possible research directions

Chapter 9

Bibliography

Annexure A

Security Agorithms Implemented in DFDSEC

Annexure B

Pascal Source Code for DFDSEC

Annexure C

List of Abbreviations

105

106

106

107

109

113

113

114

115

116

116

116

116

117

118

118

119

120

121

121

124

124

129

164

164

Annexure D

Article by Booysen, Kasselman and ElofT

166

166

List of Figures

Figure I. I: Infonuation Systems Security

Figure 1.2: Five stages to a secure application system (ASSDM)

Figure 2.1: Automated Software Generation Envirorunent (ASGE)

Figure 2.2: ASGE and Baskerville's Approach

Figure 2.3: Indirect infonuation flow

Figure 2.4: Ina Jo specification example

Figure 2.5: Example of a security-extended Ina Jo specification.

Figure 2.6:, Ina Flow output for the system above

Figure 2.7: ASGE and Eckmann's Approach

Figure 2.8: Classifying System Functions [Pernul- 1994b)

Figure 2.9: ASGE and Pemul's Approach

Figure 2.10: Positioning of the Proposed Approach's Prototype Tool

Figure 3.1: Syntax rules verified by Silverrun CASE-tool

Figure 3.2: Object diagram ofObjects 'Order' and 'Item-In-Order'

Figure 4.1: Extended Automated Software Generation Environment

Figure 4.2: Design phases adopted from Baski...rville

Figure 4.3: Risks adopted from Baskerville

Figure 4.4: The Extended Automated Soil ware Generation Environment

Figure 4.5: lnfonnation Flow Types

Figure 4.6: Example DFD with indicated access types to databases

Figure 4.7: Example Compound Data Flow Diagram

Figure 5.1: Domain of the Prototype in the Extended Automated Soilware Generation Environment

Figure 5.2: Indirect Infonuation Flow between Data Stores and Processes.

Figure 5.3: Silverrun Representation of the Example

Figure 5.4: OMD Representation of the Example

Figure 5.5: OFDSEC Representation of the Example

Figure 5.6: OFOSEC Initial Screen

Figure 5.7: Objects in a DFO (Gane and Sarson representation)

Figure 5.8:. Example Data Flow Diagram as created on OFOSEC

Figure S.9:.Change of Information Flow Type (Access Type)

Figure 5.10: Allocation of Security Classes to Objects

Figure 5.1 I: Pointing out Invalid Information Flow Types

Figure 5.12: Inserting a Sanitiser Object

Figure 6.1: TIle Main Goal of DFDSEC

Figure 6.2: The Nodes Connecting Objects on the DFD

Figure 6.3: Extension of "Figure-Data" in Figure 62

Figure 6.4: Record of Data Stored for Each ObjccllDFO clement

Figure 7.1: DFDSEC Main Screen

Figure 7.2: Inserting a Sanitiser Object on the OFD

15

19

22

32

33

37

38

39

40

44

49

49

53

56

63

6.'

64

69

71

71

73

81

83

85

86

87

87

88

89

90

91

93

94

98

102

102

103

107

115

10

List of Tables

Table 2.1: Three Generations of Systems Development and Security Development Methods

Table 2.2: Generic Second-Generation Security Project Stages

Table 2.3: Security design phases according to Baskerville

Table 2.4: Type of risks to be considered for different design levels.

Table 2.5: Logical Controls Design data dictionary entries with security controls

Table 2.6: Projects

Table 4.1: Syntax rules which can be verified by CASE-tools [Ganc - 1990)

Table 4.2: Proposed Security Phases in the EASGE

Table 4.3: Example Object Matrix

Table 4.4: Example Revised Object Matrix

Table 4.5: Possible Compound Access combinations

Table 4.6: Adjusted Revised Object Matrix

Table 4.7: Binary Access Rules

Table 5.1: Object Matrix for the Example

Table 5.2: Revised Object Matrix for the Example

Table 5.3: Security Revised Object Matrix for the Example

Table 5.4: Reconstructed Object Matrix for the Example

Table 5.5: Reconstructed Revised Object Matrix for the Example

Table 5.6: Reconstructed Security Revised Object Matrix for the Example

Table 7.1: System requirements and recommended specifications to run DFDSEC

20t

25

29

3D

31

ot3

61

68

72

73

70t

75

77

91

n
n
95

'J5

'J6

106

1:

Chapter 1

Introduction

1 Introduction to this study

Security· is one of the fields in computer science that is being researched with increased

intensity. This is due to the fact that systems need to be more secure against unauthorised

access, since the level ofuse ofcomputers is increasing in the business world.

Imagine the following scenario: An idea or need for an application is conceived, the user

requirements are assimilated, the system is analysed, designed, implemented and tested. It is

set up in the production environment of the business, and used by people. Months after being

put into the production environment, some vital, secure data is discovered by the wrong

people (disclosed), because of one or more loopholes in the logic of the application which was

overlooked by the systems analysts, designers and programmers. The reason for this is that

security features were added to the application as a separate activity from the programming

and testing activities. Although the security features have been tested extensively as well,

those tests were still not rigorous enough to pick up ALL the security loopholes in the system.

This situation, which is not very uncommon, could have been avoided had security features

been an .integral part of the systems analysis and design. If this was the case, security

mechanisms would have been a much more integral part of the normal program logic

mechanisms, and the resulting security features and strengths in the application could have

been sufficient to prevent breaches such as the one described in the scenario above.

Parallel with the growth in business computing, there has been an increase in the number of

programs created with CASE-tools. CASE (Computer Aided Software Engineering) is also a

field in computer science which is expanding daily, so that currently almost all new business

software is created by system analysts using CASE-tools. This situation has led to a need for

some sort of integration between computer security and computer aided software engineering.

12

1.1 State ofthe art situation

After a literature overview, the author has found that there is a general absence of security

enforcement facilities in mainstream CASE-tools used in business environments. The main

reasons for this, according to Baskerville, are the following:

(i) Loss of performance of the final application with the addition of security features;

(ii) Loss of flexibility because of restrictions and confinements on the target system's

behaviour;

(iii) Higher costs in system creation to account for:

- analysis of the security requirements;

- design and implementation of the security specifications;

- maintenance ofsecurity properties in the system [Baskerville - 1988].

Charles Cresson Wood [Wood - 1990], states that computer systems designers and analysts

are usually very aware of and concerned about information systems security, but that they still

don't incorporate control measures into the systems they create and maintain. This is because

they don't. have a set ofprinciples ofsecure information systems design that they can adhere to

when selecting or creating control measures. This view supports the finding that security

design is not part of the process ofdesigning information systems.

Most of the mainstream CASE-tools in use in the commercial world today don't have any

facilities.for ensuring information flow security in the models and systems created. However,

the author has tested one CASE-tool that comes close to facilitating a secure information

system, but only in the area ofaccess control. Chapter 3 investigates this CASE-tool in detail.

1.2 Definitions

Some definitions are presented now which will be useful when reading this dissertation. They

represent important concepts in the study of CASE-tools and information systems security

a. Software Engineering

The disciplined application of engineering, scientific, and mathematical principles and

methods in the economical production of quality software [Sodhi - 1991].

13

b. Computer Aided Software Engineering (CASE)

The application of tools in the whole of the software development process [Vliet - 1993].

(i) Upper-CAS~

Tool support during the analysis/design phases ofCASE [Vliet - 1993].

(ii) Lower-CASE

Tool support during the implementation/test phasesof CASE [Vliet - 1993].

c. Data Flow Diagrams (DFDs)

Data flow diagrams are used to illustrate data flow between data entities in a data flow

design. In its simplest form it is a functional decomposition with respect to the flow of data.

This design technique originated with Yourdon and Constantine [Yourdon - 1975] and is

also known as composite design or structured design. In a DFD, four types of data entities

are distinguished [Vliet - 1993]:

• External entities are the source or destination of a transaction. These entities are

located outside the domain considered in the DFD.

• Processes transforms the data in some way.

• Data flows occurs between processes, external entities and data stores. A data flow is

indicated by an arrow. Data flows are paths along which data structures travel.

• Data stores are where data structures are stored until needed. They should be placed

between processes [Gane - 1990]

Note: For the remainder of this dissertation, external entities, processes and data stores

will be referred to as objects. A data flow is used to connect the objects.

d. Information system Security.

It is necessary to distinguish information system security from normal computer security

in order to implement it as an extension to existing CASE methodologies.

14

According to Baskerville [Baskerville - 1988], computer security can be defined as

identifying threat concepts and the physical and logical techniques applied in the protection

of the electronic computer and communication systems; while information security can be

defined as the broader view, incorporating systems analysis and design methods, information

systems, managerial issues, and social and ethical problems. Thus, computer security is

viewed by Baskerville [Baskerville - 1993] as a component of information systems security.

Booysen and Eloff further defines information security as consisting of the following two

major components: technological security and applications information security

[Booysen, Eloff - 1993]. The two views are summarised in Figure 1.1 in order to obtain a

definition for information systems security to be used throughout this dissertation.

(Baskerville) (BooyscnlElofl)

Figure 1.1: Information Systems Security

Technological security addresses both logical and physical aspects. Physical secuntv IS

defined as the action that prevents physical harm to the resources of a computer syS!CI11.

while logical security is the protection of data and access to and between programs

[Booysen, Eloff - 1993]. The security overhead programs Top Secret and RACF which arc

used extensively on most mainframe systems in the world, are good examples of logical

security in action, allowing the definition of access lists to application programs, as well as

the definition of all the possible users or user groups which must have access to those

programs.

I ~

Applications information security addresses the security Issues surrounding the

development of new applications systems as well as the maintenance of existing application

systems in terms of security features. This dissertation will focus on this area.

Note: To simplifythe terminology, applications information security will hereafter be

referred to as information security.

1.3 Problem statement

The main problem in information security is that in the specification and design of an

information application system, the addition of security features to the system is postponed

until one of the following stages in the traditional waterfall-model is reached [Baskerville ­

1988]:

• the implementation stage, or

• the maintenance stage, when the system has already been installed and put to use.

The second case (adding security features during the maintenance stage) is even worse than

the first, because although both approaches involve a large measure of risk, the second one

usually amounts to considerable change to the original system design, and also causes

unrealistic system expectations [Booysen, Eloff - 1993].

Security features should be added to the system during the high-level design of the system, in

other words during the Upper-CASE design phase, not the Lower-CASE design phase.

1.4 Grey areas to be resolved when attempting a combination of security and CASE-tools

When attempting to combine computer security and CASE, several important questions must

be kept in mind for which answers must be found. The author attempts to answer the

following important questions using the literature and own experience with CASE-tools:

16

a. What do security requirements for commercial information systems look like?

In other words, what requirements should an information system satisfy in order to be

classified as 'secure'? This issue is covered in Chapter 4, which presents some rules and

principles for design to ensure the general security and consistency in the developed

system. It also presents the framework for the design of the security activities of the

prototype.

b. Why are there virtually no CASE-tools on the market that support information

security in terms of such security requirements?

Section 1.1 has stated the main reasons for this question. Chapter 2 looks at previous

approaches in the research for the design of a 'secure' application system. Chapter 3 also

reviews two commercial CASE-tools that the author has tested.

c. When are security features normally added to an application system? When should

such features be added to a system?

Section 1.4 examined these issues shortly. Baskerville proposes the addition of security

features to an application system during analysis and design. The proposed method

presented in Chapter 4 also propagates this viewpoint.

d. How .can the existing CASE environment be adapted to incorporate security

definition and enforcement facilities?

Section 2.2 investigates the positioning of security activities within a development

environment. The suggested security activities of the three approaches from literature are

also positioned in this development environment to facilitate easier comparison.

Chapter 4 describes the proposed approach developed by the author of this dissertation for

expanding the development environment to include security facilities.

17

e. What kind of rules can be defined in terms of objects on a DFD, information flow

between them, and their security properties? Which of these rules can be automated?

Chapter 2 investigates the work done in the field of security. Chapter 4 specifies security

classification for objects on a DFD in order to make security analysis possible, and lists

some requirements for a secure system. Binary and compound access rules between DFD

objects are defined, which are also automated in the prototype.

f. What are the prospects of integrating security capabilities into a commercial CASE

tool?

Chapter 5 covers the detail of the implementation of the prototype, looking at its purpose,

some DFD examples, security activities and recommendations done by it. A critical

evaluation is given in Chapter 8, describing the possible commercial use ofsuch a tool.

1.5 Motivation

The goal in the research done by Booysen and Eloff [Booysen, Eloff - 1993] was to propose a

methodology for integrating application information security with CASE. The proposed

methodology, called ASSDM (Automated Secure System Development Methodology) defined

five stages to reach a secure application system. These stages are listed in Figure 1.2 on the

following page.

ASSDM was just a theoretical idea. At a later stage, together with the author of this

dissertation, they developed a revised model, the EASGE model (Extended Automated

Software Generation Environment) [Booysen, Eloff, Kasselman - 1994] which forms the core

of the proposed approach presented in Chapter 4.

..
A model is of little practical use if it cannot be implemented. The possibilities in terms of

implementation of a model can be seen as an indication of its present usefulness If

implementation of the EASGE model is possible, then there must be merits to its

implementation in the real world of CASE today.

18

Phase 1: User needs

Phase 2: Network of functions

Phase 3: Information flow controller

Phase 4: Information flow enforcer

Phase 5: A secure application system

Figure 1.2: Five stages to a secure application system (ASSDM)

The author of this dissertation has developed a prototype tool to demonstrate the possibilities

brought to light by EASGE. This prototype is a partial DFD tool that a systems analyst can

use for drawing DFDs which can be analysed by it. It is partial because it is not a fully fledged

CASE package, but a demonstration tool. The prototype will examine the data flow occurring

on the diagram and make some suggestions to the analyst on improving the security of this

data flow on the diagram.

1.6 Short overview of each chapter

In Chapter 2 theoretical approaches to the design of 'secure' application systems will be

presented. The approaches ofBaskerville, Austria, and Eckmann will be discussed [Baskerville

- 1993] [Eckmann - 1994] [Pemul - 1994]. The proposed methodology, EASGE, developed

by Booysen, Eloff and the author [Booysen, Kasselman, Eloff, - 1994] is presented in Chapter

4.

In Chapter 3 two commercial CASE-tools will be critically reviewed in terms of design

assistance to the user and security definition and enforcement capabilities.

In Chapter 4 some rules and principles will be defined that should be present in a CASE-toJI

in order to design a 'secure' application system. The design framework of the prototype is also

presented in this chapter in terms of such rules, because it uses them for analysing the secun.y

aspects ofa DFD.

!9

Chapter 5 presents an example that is analysed by the prototype. Aspects discussed in this

chapter include the purpose of the prototype, security activities that it performs, possible

recommendations that it suggests, and several examples of DFDs analysed by it.

Chapter 6 covers some details on the design and implementation of the prototype.

Chapter 7 presents a user manual for the prototype, explaining basic features and how to

operate the tool.

Chapter 8 investigates the future prospects of information security in the design of application

systems, evaluating the prototype in terms of the implementation feasibility of its security

activities in the real world ofCASE today, and Chapter 9 concludes the dissertation.

Annexure A lists the security algorithms used in the prototype and Annexure B gives a listing

ofall the Pascal source code for the prototype.

Annexure C presents the article by Booysen, Eloff and the author [Booysen, Kasselman, Eloff

- 1994].

20

Chapter 2

Theoretical approaches to the design of a 'secure' application system

2 Introduction'

There is a gap in application software development. What is this gap? Security. The smallest

lack of security provides a possible loophole for the computer hacker who could possibly be a

thief or a terrorist.

There are. virtually no commercial packages available on the market that support the analysis

and design of secure application systems, and this lack of security has been identified and

analysed to some extent by, among others, Baskerville [Baskerville - 1993], Pemul [Pemul ­

1994] and Eckmann [Eckmann - 1994]. In their research and development, they have tried 10

incorporate the field of information security into the field of general information systems (IS)

development. Their efforts have led to the development of approaches that attempt to integrate

the two fields.

These approaches are described and critically discussed in this chapter. In Section 2.5, a

diagram is presented which illustrates the position of the proposed approach in terms of the

three approaches from the literature. The diagram also illustrates the role of the prototype DFD

tool that the author has developed.

The proposed approach is presented in detail in Chapter 4. This approach by Booysen,

Kasselman and Eloff [Booysen, Kasselman, Eloff - 1994] adopts some of the elements of lie

other three approaches in terms of security, and expands them to a level that can oe

computerised and incorporated into an existing CASE-tool.

2.1 Presentation of the approaches

During development, an application goes through different stages in its life cycle, for exam; le

analysis, design, implementation and testing. Booysen proposes an Automated Software

21

Generation Environment (ASGE) that denotes CASE-tools which support the entire life cycle

[Booysen, Kasselman, Eloff - 1994].

Figure 2.1 is a diagram representing an ASGE. The user requirements serve as input to the

ASGE and the final application system is the output. Diagrams are used to describe the user

requirements in a format that can be readily understood by both users and systems designers.

They might be Data Flow Diagrams, Entity Attribute Relationship diagrams, or other design

diagrams.

Revise

User
Diagrams ._-.......:.o----t Requirements

(input)

Applicationsystem
(output)

Figure 2.1: Automated Software Generation Environment (ASGE)

The diagrams are stored in the repository of the CASE-tool which was used to generate them.

They evolve during the analysis and design stages, and are normally used during the

implementation of the application logic. During this implementation stage, program code is

22

generated for the application and database tables are created on a secondary storage medium

The tables are then populated with data. After that, the application system is ready for testing.

Note: This Environment will serve as a basis for comparing the different approaches

presented in this chapter. Each approach will be diagrammaticallyrepresented similar

to the ASGE, to facilitate easier comparison. Wherever an approach suggests any

security activities, those will also be indicated on the relevant ASGE diagram.

Note: This diagram is not presented as a proposed systems development life cycle, but is

used merely as a skeleton of systems design to which security activities can be

attached during the discussion of the various approaches.

"

2.2 Baskerville

- 2.2.1 Analysis of the evolution of security analysis and design methods

In his paper, Baskerville first gives an analytical description of the evolution of IS security

analysis and design methods' [Baskerville - 1993]. He distinguishes three generations of

systems development and security development methods and compares them. Table 2.1

summarises the three generations in terms of primary features and gives key examples o.~

methods and tools available in each generation. A short discussion of each generation

follows.

2.2.l.a First Generation: Checklist Methods

Checklist methods are still used in some areas of information systems development.

especially in the personal computer marketplace, where independent systems analysis :s

often not cost-effective. Sales representatives configure a combination of available

hardware and software to form a solution to the customer's needs or problems. A C0S:­

benefit analysis is needed to ensure control over the total cost. Because this methc.i c:­

systems "development" is still used today, there is no end date to this generation if. ,~~

table.

-­...

Checklist security methods generally begin the design of security with an examination

ofall known risks and controls, instead of a view of what risks are involved in the case

at hand. A list is provided to the analyst, containing every conceivable control that can

be implemented in an application system. He first checks to see whether or not the

control has been implemented already. If it hasn't been found, he analyses the necessity

for the control, and if required, implements it.

Generation of Principle Objective Primary Systems Security

System Features Development Development

Development Methods and Typical and Typical

Methods Tools Tools

First Generation: The selection of the Mapping of Vendor's technical Security

Checklist various solution limited solutions sales procedures and checklists and

Methods components, to onto the literature risk analysis

(From 1972) create a sum solution information

problem

Second- The partitioning of A partitioned Top-down CRAMM·,

Generation: complex systems complex solution engineering. rapid BDSS·, control

Mechanistic solutions: identify that matches prototyping, system point and

Engineering and solve each functional and logic flowcharts exposure analysis

Methods detailed functional requirements matrices.

(From 1981) requirement computer

questionnaires

Third- The abstraction of Highly abstracted Structured analysis. Logical Controls

Generation: the problem and design expressing data modelling. Design. data Ilow

Logical solution space: both the problem information diagrams.

Transformation create a logical and solution space engineering, data SSADM-

al Methods model of the now and entity- CRAMM.

(From 1988) problem and solution attribute relationship

diagrams.

Key: CRAMM - CCTA's Risk Analysts and Management Methodology

CCTA = UK Government Central Computer and Telecommunications Agency

BDSS = Bayesian Decision Support System

SSADM-CRAMM =CeTA's Structured Systems Analysis and Design Method interfacing with

CRAMM

Table 2.t: Three Generations of Systems Development and Security Development Methods

24

2.2.l.b Second Generation: Mechanistic Engineering Methods

These methods aim at finding an ideal system solution by breaking up the problem into

sub-problems which can be analysed in detail. Solution elements can then be integrated

to form a coherent solution.

Engineering concepts form the core of these methods. The process of "building" an

application system is broken down into logical steps which are performed in a specific

sequence. The classical "waterfall" or "bottom-up" approach forms the basic project

life cycle which is the integral substance of many current design methodologies. Other

examples of engineering-based systems development methods are top-down

engineering, rapid prototyping, and system and logic flowcharts.

Stage 1: Identify and evaluate system assets.

Stage 2: Identify and evaluate threats

Stage 3: Identify possible exposures
.'

Stage 4: Risk analysis

Stage 5: Prioritise controls for implementation

Stage 6: Implement and maintain controls

Table 2.2: Generic Second-Generation Security Project Stages

The engmeenng perspective of the second generation causes security analvsis

techniques to focus on physical specifications such as control points and access

procedures. An existing mechanistic engineering life cycle is the security waterfall the;

consists of the stages listed in Table 2.2 on the previous page.

Concerning security development, there are vanous examples of fully cornp.ncr­

supported security analysis and design methods which provide an extensive database ..::­

possible threats, assets, and controls, from which the analyst selects a subset during tbe

analysis and design phases of the application's life cycle. Three examples wi.I ce

described briefly.

• CRAMM (CCTA's Risk Analysis and Management Methodology) [Farquhar

- 1991] is a method which was adopted by the UK Government Central

Computer and Telecommunications Agency (CCTA) as a government-wide

standard to risk analysis and security management. This method uses data on

asset groups, risk levels, existing controls and an internal database of 900

possible counter-measures to compile a list of additional controls that can be

added. It follows all of the generic stages in second generation security

methods listed in Table 2.2.

• BDSS (The Bayesian Decision Support System) [Ozier - 1989] is a complete

computer-supported information security design method that has its roots

firmly fixed in quantitative risk analysis techniques. Its output has the

following reports:" an executive summary which focuses on the design process

VUlnerabilities, decision support in terms of foregoing or accepting each

security control, and a technical analysis which provides detailed

documentation from the security analysis and design project. Each. report

contains relevant graphs to support the findings of the method.

• RISKPAC is a method which utilises questionnaires to deductively compile

the security controls necessary for the application. Security designers, system

professionals and information system users can all give their input to the

program. The questionnaire employs linguistic variables, and in this way

enables qualitative user evaluations. The final output is also of a qualitative

nature [Computer Security Consultants - 1988].

26

2.2.l.c Third Generation: Logical Transformational Methods

The main objective of these methods is to abstract the problem space and the solution

space, in order to distantiate analysis and design concerns from physical limitations.

This distinguishes the methods from first and second generation methods, which start

the analysis by looking at the physical limitations.

The most significant challenge to' designers in the third generation is to select the

correct attributes to be abstracted in the model. Friedman describes this phase as one in

which the primary criterion for a successful system becomes "producing the right

system, rather than producing the system right" [Friedman - 1989].

Baskerville [Baskerville - 1993] classifies the third generation models into two

categories:

Three distinguishing characteristics of third-generation security methods are defined by

Baskerville [Baskerville - 1993]. Firstly, the emphasis will be on producing the right

types of security for the system, not just implementing the security correctly. Secondly.

the security design method will either be characterised by logical models or

transformational models (or both). Thirdly, cost-benefit risk analysis will be ce­

emphasised as abstract models are increasingly used. .

The work in the third generation of security methods is still formative. However, there

are two methods that have been published that approach the criteria described abo. e

the CCTA SSADM-CRAMM interface and the Logical Controls Design method

The CCTA which has developed the second generation CRAMM security method, ,.. as

also responsible for the UK Government standard called 'Structured Systems Analysis

27

and Design Method' (SSADM). They have extended the CRAMM method into an

overall systems development process by developing an interface between CRAMM and

SSADM. CRAMM is the only second-generation method which has been transformed

into a total information systems development method which allows for security

definition activities. The SSADM-CRAMM interface is a unique combination of

second generation security design and a third generation systems development method.

The disadvantage of this combination, is that, in order to produce recommended

security risk countermeasures that can be compared, broad assumptions must be made

about the physical assets that can be expected for the target application system. This

means that CRAMM can only be used during the logical modelling phases of SSADM

if the systems designers create an assumed physical model.

The Logical Controls Design approach is Baskerville's own approach to secure

information system analysis and design. It builds on the YourdonlDe Marco

methodology to facilitate the addition of security features to information systems

[Baskerville - 1988]. It focuses the security design process on the software and work

procedures that access and manipulate information, in other words, away from

hardware aspects. This focus shift emphasises logical controls that can endure longer

than physical controls in an organisation.

Baskerville [Baskerville - 1993] notes that the people responsible for researching

systems development methods seem to view security as a separate issue from analysis

and design. It was noted in Section 1.4 that security features are normally added to an

application system on an ad hoc basis, if necessary.

It is suggested by him that the best approach to the development of a security analysis

and design methodology would be to nest it as a component part of an existing,

established, successful overall information systems analysis and design methodology

[Baskerville - 1988]. This existing methodology points to the Upper-CASE

environment as defined in Section 1.3, because it focuses on the analysis and design

phases of information systems development, i.e. on the logical development activities.

28

Security definition features should be present on this level. This means that logical

security processes should be added to an application system during the Upper-CASE

phases in the life cycle, in order to become an integral part of the eventual application

system.

He also suggests that the availability of an integrated security design methodology

would encourage the increased use of such a methodology as an application system

design tool, with important implications for the security and integrity of resulting

information systems in general.

2.2.2 Baskerville's suggested security design methodology (Logical Controls Design)

Baskerville [Baskerville - 1988] expands the methodology of YourdonlDe Marco to include

security tools in the following way:

First ofall he identifies five security design phases as listed in-Table 2.3:

Phase One: Identify entities

Phase Two: Identify risks

Phase Three: Identify controls

Phase Four: Evaluate controls

Phase Five: Implement

Table 2.3: Security design phases according to Baskerville

Phase One is where the analyst identifies the important software entities to be implemented in

the application system. Phase Two is where risks are identified, such as disclosure or

modification of data. During Phase Three, controls are created to protect data against the

risks. Phase Four involves evaluating the controls in terms of implementability and cost znd

Phase Five concerns the implementation of the system.

29

Baskerville then argues that Phase One, identify entities, is a natural activity of structured

specification, and Phases Four and Five, evaluate and implement, are not structured design

considerations since these phases involve feasibility and physical implementation.

His conclusion is that only Phases Two and Three, identify risks and identify controls, need

to be added to an existing methodology such as the one of YourdonlDe Marco. Since the

specification of a DFD occurs on a logical level instead of a physical level, one only needs to

consider logical risks when attempting to ,extend this logical methodology. Table 2.4

illustrates these levels. The risks are described in the following section.

A DFD is also the ideal starting point for analysing and designing security features for a target

application system, since it represents the high-level view that the software engineer and the

end user have of the system under development.

Design scope Activity Risks to be considered

Physical design Consider physical Unauthorised entry to computer room.

risks

Logical design Consider logical Unauthorised modification, deletion or

risks disclosure of data in an application system.

Table 2~4: Type ofrisks to be considered for different design levels.

2.2.3 Baskerville's method focuses on software instead of hardware

The Logical Controls Design method focuses the process of security design away from the

hardware to the software and work procedures that access and manipulate information. This is

an important shift in focus, because the focus is now set on logical controls that should stand

the test of time much better than physical controls.

The lack of physical (hardware related) aspects in the logical model have the effect that the

type of risks to be concerned about in the model is limited to logical risks. Baskerville

identifies three classes of logical risks which can be present in such a model: destruction,

modification, or disclosure of information to unauthorised users or entities: The destruction

risk signifies the risk of data being deleted, either by intent or by accident. The modification

30

risk signifies the risk of data being altered without authorisation, and the disclosure risk

signifies the risk of data being made available to unauthorised people.

The Logical Controls Design method makes provision for controls as well. A control is

inserted on the overall systems logical model in the form of a control process with possible

control data. In this way, the logical security model is part of the logical systems model.

For example, if we have a data flow Verified Timecharts in a data dictionary, the three risks

modification, disclosure and destruction have to be addressed. The analyst can add controls to

the data dictionary, like those in the example entry into the dictionary represented by Table

2.5.

For completeness of the set of security controls, the method adds cross-references in each

data dictionary entry. A cross-reference takes the form of a threat class together with the

logical process that contains the control for that threat class. For example, in the example data

dictionary entry below the risks together with their control processes are listed for the data

flow Verified Timecharts. The exact structures of the security process elements are also

documented, just like any normal process" This results in the security control processes being

an element in the overall data flow diagram in the same way and on the same level as normal

systems processes,

For each process in the model, there are up to three relevant control processes to prevent any

of the three risks from realising.

Data Flow Name: Verified Timecharts

Composition: Timecard-Header-Record

* (Timecard-Record)

* Timecard-Hash-Record

Modification Control: Process 2.2 (Print Paycheques)

Destruction Control: Process 1.3 (Transcribe Timecards)

Disclosure Control: Process 2.1 (Sort Timecards)

Table 2.5: Logical Controls Design data dictionary entries with security controls

y t

2.2.4 Graphical positioning of Baskerville's method in the ASGE

The additions of Baskerville are shown on the diagram (Figure 2.2). The security stages

'Identify risks' and 'Identify Controls' are added to the normal ASGE.

Identify risks

Identify controls

Figure 2.2: ASGE and Baskerville's Approach

2.2.5 Critical discussion of Baskerville's approach

The Logical Controls Design method is distinguished from the CCTA SSADM-CRAMM

method described in Section 2.1. I by the fact that security design activities are raised to the

same level as application design activities, i.e. a logical level instead of a physical level.

The advantages of the Logical Controls Design method are that security design features are

integrated with system design activities on the Upper-CASE level (analysis and design). This

performance is accomplished by Baskerville through the addition of detailed security controls

32

to the system design. The analyst gets a logical view of the security design that isn't limited by

any physical considerations. The security control processes are analysed and designed on the

same level as normal application processes and documented in the same way. Security controls

are linked to the processes that use them and cross-referenced in a proper way, in order to

ease their implementation during the implementation phase of the application.

Disadvantages are that, as a third generation method, this approach is only formative.

Furthermore, although it checks for breach<:s of security during direct information flow

between entities in the form of the three risks described in Section 2.2.2 being breached, it

doesn't check for the three risks in the situations where indirect information flow occurs. For

example, as shown in Figure 2.3, ifwe have the situation where information flows from Object

A to Object B, as well as from Object B to Object C, it implies that information is also flowing

indirectly from Object A to Object C. This kind of situation isn't addressed by the Logical

Controls Design method.

An implementation could analyse such indirect flows and indicate possible materialisation of

the above-mentioned risks. For example, the disclosure-risk could' cause harm to the

confidentiality of information in a database when Top .Secret-classified data is allowed to flow

to Confidential-classified Objects.

2...
Key: 1 = Direct information flows

2 = Indirect information flow

Figure 2.3: Indirect information flow

Although the approach of Baskerville is relatively formal, many aspects of it are

implementable. The proposed approach that is presented in Chapter 4 adopts some concepts

from Baskerville's approach. The two design phases Identify Risks and Identify Controls are

33

incorporated into the proposed approach. The risks that are addressed by it include the three

classes oflogical risk defined by Baskerville (i.e. disclosure, modification and destruction). It

facilitates the addition of controls on a logical analysis level, similar to Baskerville's approach.

2.3 Eckmann

2.3.1 Eckmann's approach (Formal flows)

In his paper on automated information flow' analysis, Eckmann discusses flow tools that

analyse covert information flow in formal specification languages [Eckmann - 1994]

Informally, the concept "covert information flow" denotes a hidden information flow or an

information flow which are difficult to detect manually, i.e. without using information flow

analysis tools. Also informally, the term "security label" as used by Eckmann is a security

classification that is assigned to a state component in the formal specification. For example, a

state component A can be assigned a security label "high-level" or "low-level".

Although flow tools automate much of the work of analysing covert channels for information

flow, existing flow tools typically report large numbers of formal flows. Eckmann [Eckmann ­

1994] defines a formal flow as a flow that was found in the specification, but is not in the

system being specified. In other words, we can see it as a flow that was identified as ar:

indirect or covert flow not originally specified. Such flows must then be proved to be only

formal (due to the specification), or they must be treated as real flows and consequently

proved to be secure as well.

Eckmann states that an important goal for flow tool builders is to reduce the number c:

reported formal flows. His paper examines the causes of formal flows and describes .=.

technique for eliminating many of them, which results in automated flow analysis which ;~

practically more useful to the analyst.

Using flow tools, application systems can be analysed in terms of security, formally specriec

and an attempt can be made to prove security using automated flow analysis. Covert char.nels

for information flow can then be exposed to the analysis team for scrutinisation. Tools used b:.

~ ,
.'-

Eckmann are lila Jo [Scheid, Holtsbers - 1992] as formal specification language and lila Flow

[Eckmann, Cowal- 1992] as flow analysis tool.

Eckmann describes two security policies as defined by Fine [Fine - 1989]: the ft-policy (flow

tool policy) and the ni-policy (non-interference policy). The ft-policy is a policy enforced by

certain flow tools. The policy requires that each target's new and old security labels must be

higher than the old label of each of its sources. A target is any state component of which the

value or label changes, and a source is anything that affects the new value or new label of a

target. The ni-policy requires that "Iow"-classed subjects do not see any change in their

environment as a result of actions taken by "high"-classed subjects. This is what is meant by

non-interference (oi).

2.3.2 Eckmann's extended ft-policy

Fine showed that many formal flows are the result of flow tools enforcing a security policy

that is too strict [Fine - 1989]. Eckmann proceeds to extend the ft-poIicy, describing a

technique for eliminating the unnecessary formal flows identified by the policy. He also

presents a way of implementing his extended ft-policy in flow tools. The presented technique

allows the specification writer to specify a security policy together with the functional

specification. This is accomplished by assigning security labels to state variables and

transforms in the formal specification. The specification writer also suggests security levels for

unclear formulas, which the tool checks and uses. Eckmann calls a suggested security level an

opaquedefinition, and defines it as a hint given by the specification writer to the flow tool,

suggesting semantic information that might be useful in the flow analysis [Eckmann - 1990].

2.3.3 Example of Eckmann's extended policy

Firstly, an example system from Eckmann's work is presented. This is called the AB system.

Secondly, an Ina 10 formal specification of the system is given. Thirdly, the Ina 10

specification is extended to specify a security policy. Lastly, the output of the Ina Flow

security checking tool is presented for the system.

3S

2.3.3.a System definition

The AB system has two state components, A and B. The system contains read and write

operations for integer values, with the following behaviours:

• When a high-level subject writes a value v, the following assignments are

performed: B. B - A + v

A := v

• When a high-level subject reads a value, the current value of A is returned.

• When a low-level subject writes a value v, the following assignment is performed:

B := A + v

• When a low-level subject reads a value, the current value of B - A is returned.

The AB system is defined to be secure if and only if no high-level information can ever be

observed by a low-level subject. The system must therefore be scrutinised to determine

whether there is any information flow from a high level subject to a low-level subject.

2.3.3.b Ina Jo specification

The Ina Jo formal specification for the AB system is represented in Figure 2.4 [Eckmann ­

1994].

2.3.3.c Extended Ina Jo specification'
>"-~

To specify the system's security policy, labels are assigned to the state variables and

transforms. An example of this is given in Figure 2.5. In the figure, vertical lines on the

left-hand side of the text means that changes have been made here from the original formal

specification.

36

specification AB

level top

variable A, B: integer

variable 10Jeturn, hiJeturn: integer

transform hi_write (v: integer)

effect N"B = B-A+v

& N"A=v

transform hi read

effect N"hi return = A

transform 10_write (v: integer)

effect N"B = A + v

transform 10 read

effect N"lo return = B - A

end top ~

endAB

Figure 2.4: Ina 10 specification example

37

specification AB

level top

I type mlsIabel = (syslo, syshi)

I constant

Idominates (L1:m1sJabel, L2:m1sJabel)

=LI <=L2

variable A, B: integer

variable 10Jeturn, hiJeturn: integer

I label A @ syshi,

I B @ syshi,

110Jetum @ syslo,

Ihireturn @ syshi

transform hi_write (v: integer)

effect N"B=B-A+v & N"A=v
.'

transform hi read

effect N"hi return = A

transform lo_write (v: integer)

effect N"B = A + v

transform 10 read

effect N"lo return = B - A

I label hi_write(v) @ syshi,

hiread @ syshi,

lo_write (v) @ syslo,

10_read @ syslo

end top end AB

Figure 2.5: Example of a security-extended Ina Jo specification.

2.3.4.d Flow Analysis using Ina Flow

An example of flow analysis by Ina Flow is given in Figure 2.6. For the AB system, there is

only output for the last transform, which changes a sys l o variable. The analysis identifies a

suspected flow, called a conjecture, which seems to exist between A and B to 10_return.

Flow Conjecture (1) for Transform

10 read

Transform Preserves Correctness- -
& 10 read

-> (Nil 10Jeturn = 10Jetum

--> dominates(syslo, syshi))

Figure 2.6: Ina Flow output for the system above

2.3.5 Graphical positioning of Eckmann's method in the ASGE

In order to illustrate which principles from Eckmann's approach can be added to the analysis

and design stages of an application system life cycle (as denoted by the ASGE in Figure 2.1),

Figure 2.7 has an analysis stage, a design stage, and the output of the stages is a formal

application definition. The additional block on the right-hand side of the figure contains the

security activities Identify informationflows and Clarify with opaque definitions of Eckmann.

In the case of Eckmann, the analysis and design stages are formal and therefore theoretical.

Addition of Eckmann's mechanisms to the ASGE is therefore also theoretical.

2.3.6 Critical discussion of Eckmann's approach

A strong point of Eckmann's approach is that a security policy can be incorporated into a

formal specification in the form of security labels.

Another" advantage is that information flow is identified between different classes of subjects.

Direct information flow is detected, for example, between the two state variables A and B in

39

the discussed example. Indirect information flow is also detected, for example, between A

and B to 10 return in the example.

Identify information flows

Clarifywith opaque definitions

Figure 2.7: ASGE and Eckmann's Approach

.'

The greatest advantage of Eckmann's approach is in terms of a decrease of the number of

formal flows. This is accomplished by opaque definitions which are given by the specification

writer as hints to the flow tool.

The main disadvantage is in practical use. The tools Ina 10 and Ina Flow operate on formal

specifications only. Formal specifications are good for theoretical studies, but a great distance

away from implementability. The security policy is also specified on a formal level, and only

has two security levels, syslo and syshi. For practical, commercial use in the form of additions

to a CASE-tool, Eckmann's method is not directly applicable in the CASE-tool environment.

although certain concepts are usable. In Chapter 4, the proposed approach extends the

concept of security labels and will allow it to be used it on a logical level. It also uses the

concept of an opaque definition in the form of a user-suggested security classification on a

logical level.

40

2.4 Pernul

.'

2.4.1 Pernul's approach (Data and Function design)

Pernul's paper describes a semantic data model used as an actual design environment for

designing multilevel secure database applications. Security classification down to a single data

field is supported in the multilevel database concept [Pernul - 1994b].

Pernul and his team proposes a combined data- and function-driven design of information

systems [pernul - 1994a]. Pernul uses Entity Relationship techniques to model the structural

(i.e. data) part of information systems, and Data Flow Diagrams to model the behaviour. Both

techniques have been extended to capture the security semantics that he proposes. The study

concentrates on the DFD section of his model, since the aim in the proposed model is to

extend security on the logical (i.e. DFD) level and to be able to implement this improved

security in a practical way. Pernul and his team have developed a prototype implementation of

their model, using the tools Interviews and Unidraw [Pernul - 1994b].

2.4.2 Adapted Mandatory Access Control (AMAC) model for secure information systems

design-

According to Pernul [Pernul - 1994b], discretionary access controls are concerned with

defining, modelling, and enforcing access to information in the database. These types of access

controls are implemented in most database management systems (DBMS). Mandatory access

controls are, in addition, concerned with enforcing security onto the information flow in the

system being developed. For mandatory security, both the accessed data items and the subjects

(users and their transactions) are assigned security labels, for example top-secret, secret,

confidential, classified.

Pernul [Pernul - 1994b] has developed a model to fit mandatory access controls into

commercial application systems. Called the Adapted Mandatory Access Control Model

(AMAC) for information systems security, the goal of Pernul's model is to adapt mandatory

access controls to fit better into commercial data processing practice. Moreover, the AMAC

model does not only support access controls but is mainly a total design environment for

41

secure information systems that are designed for implementation in DBMS which supports

either DAC (Discretionary Access Control), MAC (Mandatory Access Control), or both.

The technique combines concepts from the field of data modelling (specifically the ER

modelling technique) with concepts from the field of data security research, such as the Bell

and LaPadula security policy, which are formalised by two rules [Bell, LaPadula - 1976]. The

first rule, called the simple property, protects the database information from unauthorised

disclosure, and the second (*-property) protects data from contamination or unauthorised

modification by not allowing any information flow from high to low.

(i) Subject s is allowed to read from data item d ifc1ear(s) > =, c1ass(d).

(ii) * Subject s is allowed to write to data item d ifc1ear(s) < = class(d).

The disclosure and modification risks mentioned here are two of the risks identified by

Baskerville in his paper, and described in Section 2.2.3 [Baskerville - 1988].

As the read and write checks are both mandatory controls, successful protection is given by

the simple security property and the *-property against undesired information flow among

subjects with different security clearances.

Pemul [Pemul- 1994b] describes a useful design concept called Multi-Level Secure (MLS)

databases as a possible combination of mandatory security and the Bell-LaPadula paradigm.

The concept ofMLS relational properties has been carefully formalised by Jajodia and Dandhu

[Jajodia, Dandhu - 1991], but several ambiguities still exist, according to Pemul.

MLS supports the assignment of a security label to an individual attribute value in a database.

For example, suppose we have the following data table, represented in Table 2.6, which has

the attributes Title, Subject, Client and Total Classification. The Total Classification is the

highest of the security classifications of each tuple (data occurrence).

42

Title Subject Client Total Classification

Alpha, S Development, S A,S S

Beta, U Research, S B,S S

Celsius, U Production, U C,U U

Alpha, U Production, U D,U U

Key: S = Secret

U = Unclassified

Table 2.6: Projects

The first tuple's Title attribute has the value ofAlpha and the security label for this attribute is

secure (S). All the values of the first tuple are classified as secret, thus the tuple's Total

Classification has the value of S. However, the tuple with the title Beta has a label of

unclassified (0), but the tuple's Total Classification is S, because the security classification of

its Subject attribute is secret.

Pemul and his team have developed a semantic data model for multilevel security. The MLS

model underlying it is the one developed by Jajodia and Sandhu [Jajodia, Sandhu - 1991].

They define three types of classification constraints to express the security semantics of the

database application, integrity constraints (responsible for secure update of the database),

secrecy constraints (responsible for data classification) and access control requirements

(regulate the type of access to data by people). They also propose security relevant extensions

for Entity-Relationship modelling and Data Flow modelling. A discussion of the DFD

extension follows.

2.4.3 Extensions to the DFD

Pernul [Pernul - 1994b] defines extensions that are needed, including the labelling of DFD

objects and the choice of a formal security policy such as Bell and LaPadula.

43

·In a DFD, data stores are labelled as the sensitivity of the information contained in it, ranging

from Unclassified to Top Secret. Any process that reads data from a data store must have a

clearance greater than the classification of the data store.

Similarly, if there is a data flow from process P I to process P2 and P I has a classification of

Top Secret and P2 a classification of Unclassified only, that data flow might be a source for an

undesired information flow, from a high level downward to a lower level security classified

DFD object.

For example, in Figure 2.8, process PI reads data from data store DI, which has a security

classification of Unclassified to Top Secret, because of multi-level security of the various data

attributes or fields that it is composed of Process PI thus needs a clearance greater than that

ofdata store DI, in other words Top Secret (TS) .

. ,. ~ """--1:-I Datastore 1

[U..TSJ

I----:~:~ Request
Log

TS

Figure 2.8: Classifying System Functions [Pernul - 1994b]

2.4.4 Advantages of extending DFDs

Pernul defines several advantages of extending DFDs by adding security concepts:

• It helps in identifying and positioning security critical parts of an application.

• It may help to identify 'dangerous' information flow channels by pointing out

information flows between processes of different security clearances.

• It may help in determining appropriate security clearances for subjects. This can be a

big help when developing a complex database application system.

2.4.5 Design phases for security critical databases using AMAC

The following design phases are discussed because they represent a useful method which is

similar to the one that will be used in the proposed method. They are used in AMAC for the

design ofsecurity critical databases:

(i) Requirements analysis and conceptual design

This results in a conceptual database model that is described by a single ER-schema

extended by security flags or classifications indicating security requirements for certain user

roles. For example, if a database contains secret (8) information, a user must have a

clearance ofat least Secret to access the data in the database.

(ii) Logical Design

AMAC contains general rules for the translation of ER schemata into the relational data

model or into the multilevel relational data model. Output of the transformation process is a

set of relational schemata, global dependencies defined between schemata and necessary

for database consistency during further design steps, and a set of views describing access

rules on relational schemata.

(iii) The AMAC security object

When it is necessary to enforce mandatory security, a security object and security subject

must be defined. Security levels are then assigned to them. In AMAC a security object is a

database fragment and a subject is a view. Fragments are derived by using structured

database composition and views are derived by combining resulted fragments.

4S

(iv) Support of automated security labelling

In most commercial, civil information technology applications, data which is labelled with

security classifications is not available. AMAC offers a supporting policy for the automated

security labelling of security objects and security subjects. Automated labelling is based on

the following assumption: The greater the number of views accessing a particular.

fragment. the lower is the sensitivity ofthe containeddata. This effects the level ofsecurity

classification that needs to be assigned to the fragment. For example, if a fragment isn't

accessed by many views, then it might be classified as top secret (highly sensitive).

Similarly, if a fragment is accessed by many views, it might be labelled as unclassified or

confidential.

(v) Security Enforcement

In AMAC fragments are physically stored. Security is enforced by using trigger

mechanisms that are supported by many commercial DBMS products. Triggers are hidden

rules that can be fired (activated) if a fragment is effected by certain database operations.

Security critical actions in databases are the select command (for read access), the append,

insert, delete, and update (for write access) commands. In AMAC select-triggers are used

to route queries to the proper fragments, insert-triggers are responsible to decompose

tuples and to insert corresponding sub-tuples into proper fragments, and update- and

delete-triggers are responsible for protecting against unauthorised modification by

restricting information flow from high to low in cases that could lead to an undesired

information transfer.

2.4.6 Security advantages of AMAC

Pemul sees the following security advantages for AMAC:

• It supports all the phases of the design of a database and can be used for construction cf

databases which are protected on a discretionary basis, as well as databases which are

protected on a mandatory basis.

46

• Uniform labelling is possible by using fragments as the granularity of the security object.

Furthermore, a supporting policy to derive single level fragments from multilevel base

relations is provided.

• Automated labelling as implemented in AMAC, leads to candidate security labels that can

be refined by a human security administrator if necessary. This overcomes the limitation

that labelled data often is not available in civil environments.

• By using triggers security enforcement can be fine-tuned to meet the security requirements

of the specific application system under development.

2.4.7 Critical discussion of Pernul's approach

Pemul [Pemul - 1994b] proposes extensions to the data flow diagram definition activities to

include security activities. In this way, security activities are added on a logical level, i.e.

without physical limitations. He notes the following advantages when extending DFDs:

• Security critical parts of the application can be identified

• 'Dangerous' information flow channels can be identified

• Appropriate security clearances for subjects can be determined.

The proposed approach uses the following stages of AMAC:

• Phase 3, defining a Sanitiser Object, which enables information flow between

objects with different security classifications.

• Phase 4, support of automated security labelling, is supported partially in the

"proposed method, in that security labels will be suggested to the user. It is not

based on the frequency of use of the data, however, but on the classification of the

objects around it.

The concept of MLS databases will be adopted in theory for the proposed approach, but only

on a logical level, i.e. the analyst will be able to add security handling objects on the DFD

level.

47

The Bell and LaPadula security policy will also be used, but will be extended to be less

militaristic and more commercially practical, by expanding the write action to allow for

different types ofwrite actions to occur, i.e. insert, append, delete and update.

Pemul's classification of DFD objects will be adopted, i.e. objects will be labelled from

Unclassified to Top Secret. In Chapter 4, different types of access to the database will also be

considered, because the access type actually influences the type of risks which are at stake for

the system security. For example, a read action implies the risk of disclosure as defined by

Baskerville [Baskerville - 1988], while an update action implies both a disclosure risk (through

the read action) and a modification risk (through the write action).

2.4.8 Graphical positioning of Peroni's approach in the ASGE

In positioning Pemul's approach in the ASGE (Figure 2.9), the five stages of AMAC are

added to the Automated Software Generation Environment. These stages are executed during

the Analysis and Design stages ofASGE. Both occur on a logical level.

2.5 Pesitioning of The Proposed Approach

Figure 2.10 illustrates the proposed approach's target niche. The approach is built upon

several pillars that are principles and mechanisms taken in full or in part from the three

approaches presented in this chapter, and extended to be implementable. The prototype

implements the security principles and activities of the proposed approach. These principles

and activities are described in detail in Chapter 4.

Some elements of a DFD CASE tool are also adopted. For example, a Graphical User

Interface (GUI) and the ability to create and edit DFDs. These elements are combined with tr.~

security principles and activities from the Information Security domain. The result is a tool

which allows for secure DFDs to be generated. The prototype tool which was developed ty

the author is presented in Chapters 5 and 6.

48

Requirements Analysis and Design

Logical Design

Security Object

Automated Security Labeling

Security Enforcement

Figure 2.9: ASGE and Pernul's Approach

~----1CASE-tools

Booysen/ElofT/

Kasselman

Pemul

Eckmann

Baskerville

DFD
ROTOTYPnformationL-.,....--,.,.,....----I

Security

Figure 2.10: Positioning of the Proposed Approach's Prototype Tool

/

2.6 Conclusion

The three approaches presented in this chapter represent a great amount of work done in the

research related to the incorporation of security definition activities with application system

analysis and design activities. In the critical discussion of each, some attributes of the approach

have been identified by the author that need to be implemented in a prototype program to

enable the systems analyst to accomplish security analysis and design on a logical level. Those

attributes will be fully dwelled upon in Chapter 4 and if necessary, expanded to reach a level

that is sufficient for implementation.

According to Baskerville [Baskerville - 1993] it is worth the effort to try to combine an

information security-methodology with an existing software engineering methodology such as,

for example, that of Yourdon and De Marco or Gane and Sarson, so that security checking

facilities can become an integral part ofsuch a methodology. That is the goal of the proposed

method in Chapter 4.

In Chapter 3, some CASE-tools are discussed in terms of their capabilities concerning the

effective and secure analysis and design ofan application system. This provides an overview of

the state of the art in the commercial market for CASE-tools.

50

Chapter 3

A critical review of some CASE-tools

3 Introduction

Two commercial CASE-tools will be reviewed in this chapter to evaluate their security

analysis and definition capabilities, and their support for effective analysis and design.

The first tool is Silverrun for Windows, which gives the systems analyst a Data Flow Diagram

definition tool, amongst other tools. The second, Object Modeler for Windows built on the

Sapiens mainframe CASE-tool, has a different approach; a combination of Entity-Relationship

modelling and Object-Oriented methods. Object Modeler is discussed because its security

features are quite comprehensive. For example, security down to the individual data field level

is supported.

."

The following structure is followed in discussing the tools:

• General information;

• Assistance to the analyst in bettering the quality of the design;

• Assistance to the analyst in defining an application system's design diagrams: and

• Security analysis and design capabilities (if present).

3.1 SILVERRUN

3.1.1 General

Silverrun is distributed by Computer Systems Advisers. It is a multi-platform CASE

Workbench which can run on MS-Windows, OS/2 and Apple Macintosh systems.

51

Silverrun consists of 4 modules, namely Silverrun-ERX (Entity-Relationship eXpert),

Silverrun-DFD ('Data Flow Diagram Diagrammer'), Silverrun-RDM ('Relational Data

Modeler') and Silverrun-WRM ('Workgroup Repository Manager').

3.1.2 Quality overall design

The Silverrun modules ERX, RDM and DFD allows fast access to application definition

information. This information is divided into two parts:
. ,

• The Project Dictionary (Repository) contains information which can be used

in all four modules, for example data structures, base types and domains.

• The Model or Schema Dictionary contains the relevant information for each

type of diagram, for example the objects that are part of the DFD, such as

processes and data flows.

Silverrun offers some functions to enhance information integrity and confidentiality, especially

when working in group format over a local area network. The first function is parameterised

update operations, which can be one of the following: addition, modification, or deletion of

the model or project data. It is however not possible to use this facility for analysis or design

of the target system's database accesses. The second function is the choice of either

individual or group selection of concepts to be updated. For example, the user can select

objects on the diagram to be updated. The third function is the capability of hierarchical

selections, where selection of a concept retrieves all the information that is connected to it,

such as tower-level processes. Fourth is an update history for project or model data. The fifth

function is the facility of impact reports, where a trial update is done and a report is produced

specifying the impact on the rest of the project team. Sixth is password protection on save or

read. Seventh, a creation and a modification date for each information process. Lastly, a

selective clean-up function is provided, to facilitate relatively easy deletion of objects that are

not in use anymore.

One outstanding feature concerning the design quality in data flow diagrams in Silverrun DFD

is the verification of the integrity of the DFD according to rules which test the quality of the

design. These rules are presented in Figure 3.1. They can be checked by Sil~errun on request

by the analyst. These rules are called 'syntax rules' in Silverrun and, dependant on which

52

formalism is used for representing the DFD, different combinations of the rules are activated

for checking the diagram. A report is then generated to a text file, stating which, if any, of the

rules were found to be breached.

The following features are also provided by Silverrun:

• Selective clean up to remove objects that are meaningless to the project, for example

objects that are no longer used in the model;

• A report writer with flexible formatting; .

• An import/export function that enables data exchange with other programs, via ASCII

files;

• The facility to generate relational database table definition schemata with the RDM tool

from the EAR diagram.
.'

Arells there:

1.Any processes without a synchronisation rule? 14. Flows without an emission condition?

2. Processes without a name? IS. Data stores with the default name?

3. External entities with the default name? 16. Flows with the default numericalID?

4. Processes which are not graphically present? 17 Data stores which arc not graphically present?

5. External entities which are not graphically present? 18. Processes linked to processes?

6. Data stores linked to a data store? 19. Data stores linked to an external entity?

7. External entities linked to an external entity? 20. Orphan processes (not linked to an object)?

8. Orphan data stores (not linked to an object)? 21. Orphan external entities (not linked to an object)?

9. Orphan flows (not linked to an object)? 22. Flows linked to only one object?

10 Processes without input flows? 23. Processes without output flows?

II. Data stores without input flows? 24. Data stores without output flows?

12. An external entity with an input flow? 25. An external entity with an output flow?

13: Flows which are in the hierarchy of the process

to which they are linked?

Figure 3.1: Syntax rules verified by Silverrun CASE-tool

53

3.1.3 Assisting the designer with design diagrams

Dictionary information can be entered graphically, or imported from other sources such as file

descriptions, screen and· report specifications, or from other dictionaries. This means that

objects in a model can be entered by importing text descriptions. For example objects such as

data files, external entities, or processes can be described in structured English and engineered

to graphical entities.

Silverrun-DFD supports the methodologies of Gane and Sarson, Yourdon and DeMarco, and

Merise. The analyst can also customise the representation of objects to facilitate the

customisation ofa methodology.

A user-friendly option is the capability to choose any object from a palette, for example, a

common item, data structure, or process can be selected from the list of available objects.

Depending on the tool in use, the 'selection can be used to automatically generate a sub model

or an object, add or replace the attributes ofan existing entity, or create duplicates.

An innovative feature in Silverrun is the expert system which assists the analyst during analysis

when using the ERX tool. The expert system asks questions concerning entities and the

relationships between them, to aid in clarifying what type of relationship is applicable between

entities on the ER diagram.

3.1.4 Security. analysis and design capabilities

The ease of use of Silverrun makes it a user-friendly tool, but in terms of security it comes

short. It has no security analysis and design options, except on the dictionary update level. 1\0

facility exists for tracing direct or indirect information flow on the DFD, nor is there the ability

to specify what type of access (for example read, update, append, insert, or delete) occurs

between a process object and a data store object. These are facts which are needed to enable

the analyst to check that information flows in the developed system are secure and that

security in the system allows no risk such as unauthorised disclosure, modification or

destruction as defined by Baskerville [Baskerville - 1988].

54

3.2 Object Modeler

3.2.1 General

Object Modeler (OMD) is distributed by Sapiens International Corporation N.V., and is a

development tool that enables one to build applications, starting at the analysis stage, and

continuing the development through to production. It is built on a mainframe-environment

CASE-tool which is also called Sapiens. Although OMD is operated on a PC workstation

under MS-Windows or OS/2, it communicates with the mainframe every time that the user

(the systems analyst) changes something on the graphical model of the system developed on

the workstation [ObjMod - 1994].

The main strength of OMD is that it enables the analyst to concentrate on the data modelling

of the system under development. Implementation of the model is transparent to the analyst,

except if he wants to change the way of implementation.

OMD doesn't use DFDs, but rather combines an Object-Oriented (00) approach with

conventional Entity-Attribute-Relationship methodologies. Its methodology differs from that

of Data Flow Diagrams, in that it facilitates a high level functional analysis, called Man­

Machine-Interface (MMI) which constitutes the application flow. MMI is similar to structure

diagrams in the functional methodology, but doesn't show any data flow details. Instead, it

shows only the menu structure of the application. All OMD applications are menu-driven.

OMD consists of the following tools:

• an extended EAR diagram, called an Object Relationship Diagram (OR diagram);

• business rules;

• MMI (man-machine interface) requirements, which represents the application flow.

The results of these three components are integrated by OMD to produce a fully functional

end user application.

55

3.2.2 Quality overall design

Sapiens, the CASE-tool that is the underlying heart of OMD, is an extremely powerful tool

which allows the development of a working prototype within a short time. The systems analyst

creates an object diagram on screen. This should include all the important objects in the target

organisation. An object can be linked to another object to become a child of that object. For

example, object Item-in-Order is a child of Order and can have many data occurrences. This is

illustrated in Figure 3.2.

Order

Itc m-in-Order

4 I I

Figure 3.2: Object diagram ofObjects 'Order' and 'Item-In-Order'

3.2.3 Assisting the designer with design diagrams

3.2.3.a The modelling environment

Since OMD is positioned on top of the Sapiens CASE-tool on the mainframe, OMD is very

important as modelling tool. It places an enormous amount of analytical power and control in

the hands of the analyst in the generation of a working prototype.

The analyst models the OR diagram and the business rules in OMD as a basic object model,

and the MMI as a function model. The basic object model contains objects which, during

implementation stage, translate into database tables in the Sapiens knowledge base. Each of

the table objects has embedded within it the following items:

• associated data fields (called object attributes);

• default data input forms, which are created automatically during the implementation

phase;

S6

• default transactions to. modify data in the table, created together with the data input

forms;

• optional business rules which are triggered for execution by a transaction; and

• optional security classification properties, which will be discussed later.

3.2.3.b Analysis, design and implementation approach

The development methodology differs from the Data Flow Design methodology of Yourdon

and Constantine [Yourdon, Constantine - 1979], in that there is no low-level functional

analysis, because low-level functions aren't needed in Sapiens. It uses interpreted code to

execute the application. Rather, the focus is on the functional requirements of the application,

allowing for easier conceptual analysis.

During the analysis phase the systems analyst creates the OR diagram for the basic object

model, by identifying the important objects in the organisation being modelled, and the

relationships between them. This is also different from the DFD approach, in that basic objects

are identified, for example, Employee or Order. With Data Flow Design on the other hand, the

upper level offunctional decomposition is the starting point.

For the function model in OMD, the analyst starts by breaking down the roof function into

supporting functions, to create an application structure which is navigated using a main menu

and sub menus.

During the Design phase, Object Modeler creates and edits the default designs necessary for

implementation of the object. For example, a relationship type might be changed, or another

object might be specified to be the main object in a specific relationship.

The basic object model and the function model together result in the Sapiens application

definitions which are executed as a working application. After implementation, a table can be

tested immediately using the default input forms; data can be inserted into the database,

modified or deleted.

57

Because the Sapiens CASE-tool supports Rapid Application Development (RAD), the end

users should be involved frequently during all phases of development, to ensure the correct

end results and satisfaction.

3.2.4 Advantages of RAD

Because user specifications can change so rapidly and unexpectedly, changes are difficult with

a traditional CASE approach using a variant of the waterfall model. With Sapiens's RAD

environment no program code needs to be changed, only the business rilles. This allows for

easier and faster maintenance.

Compared to DFDs which are relatively volatile, objects in the organisation are very stable and

don't change easily. Therefore, an object model remains relatively stable. Changes in one

object don't affect other objects, because each object's information and behaviour is hidden

from other objects. This is an important Object-Oriented pillar called encapsulation.

3.2.5 Security analysis and design capabilities

Ol\.1D/Sapiens support the concept of multi-level secure (MLS) databases described by Jajodia

and Dandhu [Jajodia, Dandhu - 1991], by allowing the systems analyst to specify security

classifications on the level of an individual data field. Security 'worlds' can be defined. Each

target user is assigned to a 'world' with a specific classification which can only access certain

items with the same classification level in the Sapiens knowledge base.

The question is, is this type of security classification enough? Because of encapsulation of

object data, there is less information flow in an object-oriented application system than in a

functional application system, but there are lots of messages going to and from objects,

perhaps requesting data from objects and receiving output. These need to be investigated with

the same vigour that data flow should be analysed in a DFD.

Ol\.1D doesn't provide the capability to analyse the flow of messages between objects Direct

and indirect information flow should be investigated. This should take place according to the

security classification of objects and the access types between objects and databases.

Ol\.1D/Sapiens provides the security classification and support for information hiding by means

58

.'

of different user data views as well as by means of the object-oriented feature encapsulation.

There remains then the need for direct and indirect information flow analysis between objects.

3.3 Conclusion

Although some of the CASE-tools on the market support integrity and design checking

facilities, virtually none of them specifically provides any security analysis, design or

checking facilities which can be used to improve the security state of the application system

under development on a logical level as proposed by Baskerville [Baskerville - 1993] and the

author. This constitutes a major lack of ability in terms of design assistance to the software

analyst concerning application information security. It is this need that was identified in

Chapter 2 while investigating different approaches to the design ofmore secure applications.

In Chapter 4, the design of the approach is presented that indeed checks for direct and indirect

information flow on a DFD. Rules and principles that are needed in order to enable such

analysis and design activities are described, together with the different stages of the approach.

59

Chapter 4

Proposed Approach to Secure Design:

Rules and principles to be considered

4 Introduction

In Chapter 2, the theoretical approach of Eckmann has been studied [Eckmann - 1994]. as

well as the more practical approaches of Baskerville [Baskerville - 1988] [Baskerville - 1993}

and Pemul [Pemul- 1994b]. In Chapter 3, two commercial CASE-tools have been studied in

terms ofdesign quality assistance and security capabilities.

The goal of this chapter is to describe in detail the proposed approach to the secure design of

an application system on the DFD level.

Section 4.1 presents some basic logical quality rules that can be used to automatically check

for logical errors on a DFD. Some of them are used in the prototype that the author of this

dissertation has developed.

Various concepts have been adopted from the three approaches of Baskerville, Pernul anc

Eckmann, Section 4.2 examines these concepts.

Section 4.3 describes the proposed approach from Booysen, Kasselman and Eloff [Boo: ser,

Kasselman, Eloff - 1994] that states security stages that can be integrated with an exis.in.;

design methodology such as the one of Gane and Sarson [Gane - 1990].

The Automated Software Generation Environment diagram is extended to form the Exter.Je.;

ASGE with the proposed security analysis and design activities added to it. All of l~,cs­

security activities will be implemented in the prototype and will allow for the increased

assurance of the information security ofa DFD.

4.1 Rules for effective Data flow design

Firstly, some basic rules, called syntax niles by Gane [Gane - 1990j, will be presented. These

rules are basic integrity checking rules to confirm that a DFD doesn't contain any "syntax

errors" in terms ofdesign. They assist the systems analyst in determining that the DFD is error

free in terms ofdesign quality.

Table 4.1 shows the rules which Gane defines as being representative of a correctly defined

DFD. The rules are practical, easy to understand and relatively simple to implement. Yet they

provide powerful analysis capabilities to the CASE-tool used by the analyst, and they can

automate some of the mundane checking, reducing effort that could be expedited more

fruitfully in other areas of the design of the system.

1. Do all objects (external entities, processes, and data stores) have identifiers?

2. Do all objects and data flows have names?

3. Do all processes and data stores have at least one inflow and one outflow?

Ifnot, why not?

4. Do all data flows start or end with a process?

Ifnot, what makes them happen? Data flows from external entities direct to data stores or

to other external entities are not correct.

5. Do all data flows have a directional arrow?

Table 4.1: Syntax rules which can be verified by CASE-tools [Gane - 1990]

The way that errors in a DFD or in other words, breaches of the rules, are handled by CASE­

tools varies from tool to tool. Some tools prevent breaching in an upfront manner. For

example, they don't allow the designer to create a data flow on the diagram when there is not

a parent and a child object under the start and endpoints of the arrow (respectively). In that

way, rule 4 in Table 4.1 is sustained. Some tools allow breaching, and give a warning message

immediately, while still allowing the analyst to continue. Other tools might allow the breach

and only give an error message when the diagram is verified, for instance, by selecting a

"verify integrity" option.

61

The CASE-tool Silverrun utilises the last method, allowing almost any modification to the

DFD, and analysing afterwards. Object Modeler is lenient in allowing extensive changes to the

Object-relationship diagrams that the analyst produces. It prevents illegal design actions from

occurring, by dynamically disabling all the menu options that aren't appropriate for the

currently selected objects. The prototype that is designed in this chapter and illustrated in

Chapter 5, will allow certain implemented breaches to take place, after first warning the

systems-analyst.

4.2 Adopted concepts from the theory

4.2.1 Introduction

The proposed method can be classified as a Third-Generation me/hod as defined by

Baskerville [Baskerville - 1993]. This means that it is a Logical Transformational Method of

which the main objective is to abstract the problem and solution space by creating a logical

model ofthe problem and solution, as has been illustrated in Table 2.1 in Chapter 2.

The proposed method is called Extended Automated Software Generation Environment

(EASGE). It is an extension of the ASGE defined in Section 2.1 with security analysis and

design facilities being added to ASGE. The prototype which will implement the principles and

activities of the approach is illustrated in Chapter 5. It is called DFDSEC, the name being an

acronym for 'DFD Security'. It is designed to form part of an existing ASGE, as illustrated in

Figure 4.1. The block called Security Activities represents the activities of our approach.

62

ACTIVITIES

Figure 4.1: Extended Automated Software Generation Environment

4.2.2 Concepts adopted from Baskerville's approach

a. Design phases

The design phases that are adopted in the approach are the two security-related design

phases defined by Baskerville for his method, the Logical Controls Design method

[Baskerville - 1993]. These design phases are Phases Two and Three (Identify Risks and

Identify controls).

Identify Risks

Identify Controls

Figure 4.2: Design phases adopted from Baskerville

63

b. Risks

Some risks will be present when the final application system is used in the production

environment, and should be provided for and prevented during the analysis and design

stages of the application system, in other words, during the Upper-CASE environment as

defined in Chapter 1. The risks that are concentrated on are those defined by Baskerville,

i.e. the unauthorised modification. deletion or disclosure ofdata in an application system.

Modification

Deletion

Disclosure

Figure 4.3: Risks adopted from Baskerville

Apart from that, another risk that we also consider during the security activities, is one

defined by Hsieh [Hsieh - 1992]: indirect information flow.

c. Controls

The user will also be allowed to add controls onto the DFD he is editing, although not in as

much detail as Baskerville. In the prototype, graphical objects called Sanitiser Objec~' can

be inserted onto the DFD, which then serve as theoretical security processes in the final

system, allowing the passing of data between two objects of different security classifications

when necessary. These controls are only theoretical because the prototype operates on the

analysis and design levels only.

64

4.23 Concepts adopted from Eckmann's approach

a. Security labels

The concept of security labels that Eckmann assigned to state variables and transforms, is

used in the approach. The analyst will be allowed to specify the security level of each object

on a DFD. For example, a data store can be classified as Secret and a process reading data

from that data store as Top Secret. This facilitates the analysis of the system under

development in terms of the secure flow of data between objects on the DFD, and allows it

to be scrutinised in order to classify it as 'secure' when the design stage is completed.

b. Flow Conjectures

Flow Conjectures as defined by Eckmann, which are suspected indirect data flows

between 'non-neighbouring' objects, can also be highlighted by the proposed approach,

together with direct insecure data flows between 'neighbouring' objects. As mentioned in

Section 2.3.5, Eckmann's method can only be applied to formal system specifications,

whereas the proposed approach is more practical in that actual DFDs can be analysed for

security. Chapter 5 will give detailed examples of this capability with the discussion of the

prototype.

42.4 Concepts adopted from Pernul's approach

a. Bell and LaPadula's Security Policy

The Bell and LaPadula security policy is extended to include rules not only for read and

write, but for all the data access types, i.e. read, append, update, delete and insert. The new

set of rules is called Binary Access Rules, for they are applied to each consecutive pair of

objects when analysing the security of the data flow in the system. These rules are described

in Section 4.3.5.

65

,.

b. Multi-level Security

Multi-level secure (MLS) databases support the assignment of a security label to an

individual data field. The MLS concept is defined by Pernul as a possible combination of

mandatory security and the Bell-LaPadula paradigm. It is formalised by Jajodia and Sandhu

[Jajodia, Sandhu - 1991], and used by Pernul and his team in their semantic model of MLS.

The proposed methodology will not implement MLS directly, but will adopt the notion of

Pernul's security object, and call it a sanitiser process object, which will filter information

down to lower classification objects.

c. Extensions to the DFD

The following extensions to the DFD are adopted, defined by Pernul [Pernul - 1994b]:

(i) Labelling of DFD concepts.

All DFD objects should be classified as Unclassified, Confidential, Secret, or Top

Secret) in order to enable security analysis of the system being described in the

diagram. Pernul labels a data store according to the sensitivity of the information

that is contained within it, as well as according to the frequency with which it is

used. A process or external entity that reads from that data store must have a

clearance greater than that of the data store, as described in Section 2.3.3. In the

approach, data stores will only be classified according the level of the sensitivity of

the data contained in it.

(ii) Choice of a formal security policy

Another extension to the DFD concept is that for security analysis, a formal

security policy should be chosen according to which analysis can be performed. In

the proposed approach, we use Binary Access rules and Compound Access rules

as a combined policy. These rules are described in Section 4.2.5.

d. Design Phases from AMAC

We adopt two design phases from the Adapted Mandatory Access Control method as

defined by Pernul and described in Section 2.3.5.:

66

• Design phase 3: The AMAC Security Object

This phase is adopted for the proposed approach, together with MLS. A Sanitiser

Object is defined in the approach as a security handling object which should apply

MLS and filter the information to be passed to lower-classified objects.

• Design phase 4: Support of automated security labelling

In the proposed approach, partial support is given for automatic labelling of

objects in the DFD which don't have a security label. This is done by suggesting a

security classification for an object if its current classification results in an

information flow between objects of varying security classifications. Before

suggesting a security 'class, an analysis of neighbouring objects that aecess the

currently examined object is executed, to deduce a possible security class.

4.2.5 Concepts Adopted from the Work of Hsieh

The method that was devised by the author In conjunction with Booysen [Booysen,

Kasselman, Eloff - 1994] to generate information sets indicating indirect information flows

between objects, is built on the work of Hsieh [Hsieh - 1992]. This method is listed in

Annexure A.

4.3 Proposed Approach: Security Activities of EASGE

In this section, the proposed methodology as defined by Booysen, Kasselman and Eloff is laid

out. Six security activities to be added to the ASGE are defined. These activities should be

executed during the analysis and design of the system, when the DFD is created, The security

activities can be seen as added requirements to the existing user requirements for the system

under development. An example of such a security requirement is that Process A should be

classified as Confidential.

67

The recommended security activities presented in this section are listed in Table 4.2. The first

three columns summarise the suggested security activities by Baskerville, Eckmann and

Pemul. The last column summarises the security activities that are proposed by the author.

They were developed in conjunction with Booysen and Eloff [Booysen, Kasselman, Eloff ­

1994]. The proposed security activities are described in detail in Sections 4.3.1 to 4.3.7.

Proposed by Proposed by Proposed by Proposed by Kasselman,

Baskerville Eckmann Pernul Booysen, ElofT

1. Identify 1. Identify infor- 1. Security 1. Get security classes for objects

risks mation flows objects from analyst

2. Identify 2. Clarify with 2. Automated 2. Get information flow types

controls opaque security (database access types) from

definitions labelling analyst

3. Create an Object Matrix

4. Construct a Revised Object

Matrix

5. Construct a Security Revised

Object Matrix

6. Strengthen Security/Sanitiser

Object.

Table 4.2: Proposed Security Phases in the EASGE

The table shows similarities between the approaches. This is natural, since the security

activities in the proposed approach were developed based on the activities presented in the

literature.

The proposed security activities of Booysen, Kasselman and Eloff (Phases 2 to 5 in Table 4 2)

are built upon Baskerville's Phase 1 (Identify risks), Eckmann's Phases 1 and 2 (Idemify

information flows and Clarify with opaque definitions) and Pemul's Phases I and ::

(Determine database access types and Logical Design). The proposed activity Strengthen

68

Security/Sanitiser Object are similar to Baskerville's Phase 2 (Identify controls) and Pemul's

Phases 3 and 4 (Security objects and Automated security labelling).

Figure 4.4. shows how the Automated Software Generation Environment is expanded to

include these 6 security activities (stages). The user requirements serve as input to the system

development process. Using a DFD to represent the requirements, they are stored in the

repository. The DFD is constructed by analysing the requirements. After analysis, the security

stages come into action. Security classes are inquired by the prototype, data access types are

determined, the various analysis tables are generated .by DFDSEC, analysing the security of

the diagram. Some suggestions are presented to the analyst by the prototype and can be

adoptedor rejected. After the security stages have been completed, a new DFD is constructed

automatically by DFDSEC. This whole process can be repeated if necessary until the analyst

and the prototype are both content that the system is secure. Now the normal ASGE stages

can be continued, generating database tables and program code, and testing the application.. .

Get objca securityclasses fromanalyst

Get information flowtypesfromanalyst

Create an Object Matrix

Construct a Revised Obj~1 Matrix

Construct a SecurityRevised Object Matrix

Strengthen Security- Sanitisa Object

Figure 4.4: The Extended Automated Software Generation Environment

with security stages

69

The security stages will now be examined in more detail.

4.3.1 Allocate Security Classes to Objects

DFDSEC will assist the designer in assigning a security class to each object on the DFD,

based on his assessment of the sensitivity level of the information that is either contained in the

object, if it is a data store, or generated by the object if it is a process or external entity.

Objects can be classified as being in the set [Unclassified ... Top Secret].

4.3.2 Determine Information Flow Types

Objects on the DFD, which can be processes, external entities or data stores, are connected by

data flows, which are arrow symbols. By studying the direction of flow, DFDSEC can

automatically determine whether there is a read or a write action occurring between two

objects. For example, if information flows from a process to a data store, it can be determined

that the flow type is a write action. Similarly, information flowing from a data store to a

process is a read action.

A slight drawback to the advantage of this automatic approach is that only two flow types are

considered, i.e. the read and write actions. However, in a commercial database application

system, the designer needs to specify various write actions, i.e. append, insert, update, or

delete. Because of the different nature of these actions, they have different security

implications. For example, a higher classified (i.e., secret) process should be able to read from

a lower Classified (i.e., confidential) database, but the same process should not be able to

append to that database, because that would imply a disclosure risk [Baskerville - 1993].

Therefore, input from the designer is necessary to clarify or expand the automatically

determined write actions, before a complete security analysis can be done. DFDSEC uses the

set of arrow symbols depicted in Figure 4.5 to represent the different actions.

Figure 4.6 presents an example of what a DFD would look like with the data access types

indicated as in Figure 4.5. Objects reads information from Object; (a data store) and Object-

70

(also a data store) is updated by Objects. Similarly, Objects reads information from Object­

and deletes data from Object; (a data store).

Read ~

Append I Insert 0 ~

Update ,---.
Delete v "-

Figure 4.5: Information Flow Types

IObject A IObj.:ct E

Read ,'"
Delete l'-

~

Update ReadObject B ,.... ...1 • Object D'-' 1 ObjectC •

Figure 4.6: Example DFD with indicated access types to databases

4.3.3 Create an Object Matrix

An Object Matrix is a rectangular array in which objects from which information flows, i.e.

origin objects, are mapped onto objects to which information flows, i.e. target objects. The

entry for a particular row and column reflects the information flow type (read, append, insert,

update, delete, or simply a flow of information -flow) between the corresponding objects.

An Object Matrix can contain both valid and invalid information flows between objects. For

example, if a Top Secret object reads information contained in a Confidential database, the

flow action between the objects would be valid, but if a Confidential object reads information

from a Top Secret object, the flow action would be invalid.

71

For example, in Table 4.3, which is an example of an Object Matrix, Objectx appends

information to Object-, which should be a data store on the DFD. Likewise, Object- reads

information from Objects, and Objects reads information from Object,.

..

Object, Objects Objecte Objects

···.ObjeetA Read
.

Objects Append
..

Objecte
. ..

Read

ObjectD >
.•• .c:.

Table 4.3: Example Object Matrix

4.3.4 Construct a Revised Object Matrix

As an Object Matrix contains only direct information flows (for example, between Obiectx

and Objects), it cannot reveal situations where indirect information flow is taking place (for

example, where Object; sends information to Objects, and Objects sends information to

Object-; so that Objectc indirectly receives information from Objects). The objective of a

Revised Object Matrix is to summarise all valid and invalid direct and indirect information

flow.

In the proposed approach, direct information flows are called Binary Accesses, or binary

information flows, because they are flows between two neighbouring objects. Indirect

information flows are called compound information flows, because they are flows

accumulated between more than two objects.

An information flow between a process and a data store is actually a type of access to that

data store. For example, a read access occurs when a process reads data from a data store.

and a write access occurs when a process appends or inserts or deletes data to or from a data

store. Consequently, we also use the term compound accesses for indirect database accesses.

72

ObjectA Objecti, Object- Objectn

Objects, Read Compound Compound access

access

Objecto Append Compound access

> ()bjecte Read

.• ()bjecto

Table 4.4: Example Revised Object Matrix

For example, in Table 4.4 there are three occurrences of compound database accesses. A

problem arises, because we need to know what the indirect (compound) access type should

be.

In determining the 'compound access type, the rationale of the "grant" right in the Take-Grant

model is used [Lipton, Snyder - 1977]. .

For example, on the DFD in Figure 4.7, the objective is to determine the "combined" access

type that could exist between Object, and Object-, Object; and Objects, and Objects and

Objecto in the example.

?

IObject A
-Read Object B Append ..I .1 ObJ.:(;1 C

R.:ad

?

? : Ohj.:(;ID

Figure 4.7: Example Compound Data Flow Diagram

73

In order to determine the compound access type that exists between Objects, and Object-, it is

necessary to substitute the append flow type between Objects and Object- with write. This

allows the analyst to indicate a specific binary and compound access type in terms of the actual

action that occurs. As an update action requires information to be read before it is written to

another object, the update action type can be substituted with read-write.

The delete access "type is not considered, because when information is deleted, the information

no longer exists and cannot be transferred to other objects. If only some of the attributes are

deleted, it would indicate that the remaining information can flow to other objects. The

prototype presented in Chapter 5 doesn't implement this fine granularity, although a Sanitiser

Object can be inserted on the DFD to allow (on a logical level only) such information flows to

other objects to occur. The concept of multilevel databases [Pemul- 1994b] [Jajodia, Sandhu

- 1991] will assist the developer. in enforcing security down to an attribute level. Possible

combinations ofcompound access types between objects are depicted in Table 4.5.

Between Object, and Between Objecto and Objecte

Objecto

Read Append (i.e., Write)

Read Update (i.e., Read-Write)

Read Read

Append (i.e., Write) Read

Append (i.e., Write) Append (i.e., Write)

Append (i.e., Write) Update (i.e., Read-Write)

Update (i.e., Read-Write) Read

Update (i.e., Read-Write) Update (i.e., Read-Write) -

Update (i.e., Read-Write) Append (i.e., Write)

Table 4.5: Possible Compound Access combinations

From Table 4.5 it should be clear that a compound access type can only exist between at least

three objects. A compound access type is determined by studying the compound access

74

between three objects. These three objects need not be neighbouring objects, i.e. linked

directly to one another by means of a data flow.

A compound access type is then determined between the first object and the third object, using

the outcome of the combinations as summarised in Table 4.5.

The "newly" formed access type is then used as the first access type in determining the

compound access type between the next two objects. For example, if the flow type between

Object; and Objects is Read, and the access type between Objects and Object- is Append

(Write), we obtain a Read-Write access type. Read-Write indicates an update action, therefore

the compound access between Object, and Object- is Update. The access type between

Object, and Objecte now serves as the first access type in determining the compound access

type between Object; and Objects. If the access type between Object- and Objects is Read,

then the compound access type between Object; and Objects would be Read. (The

combination of Update - between Object, and Objects - and Read between Object- and

Objects).

Applying the compound access types in Table 4.5 to the example in Figure 4.7, compound

access types in the Revised Object Matrix in Table 4.4 can now be substituted with these

access types. Thus, the Revised Object Matrix for the example in Figure 4.5 is presented as in

Table 4.6:

"0 Object; Object, Objecte Objects

ObjectA. Read Update Read

Objects Append Read

Object- Read

Objects

Table 4.6: Adjusted Revised Object Matrix

7S

4.3.5 Construct a Security Revised Object Matrix

A security revised object matrix is used to summarise all valid information flows and accesses,

both direct (binary) and indirect (compound). The question arises as to when the binary and

compound information flows determined in the Object Matrix and Revised Object Matrix

would be valid or invalid.

Valid information flows are determined by using the security classes assigned to the objects

.(see paragraph 4.2.2), and by applying access rules stating when a flow is valid or invalid.

The author formulates the following access rules:

a. Binary Access rules

• Read: Object, can only read information stored in Objects, if the security class of

Object; is equal or greater than the security class ofObjects.

• AppendlInsert: Object, can append or insert information to Objects, if the security

class ofObject, is equal or smaller than the security class ofObjects,

• Update: Usually when an object updates another object, only a few attributes are

updated. The object updating another object thus needs to have clearance to update the

required attributes of the other object. In other words, Object; can update information

stored in Objects, if the security class of Object; is equal or greater than the security

class ofObjectg. The concept of multi-level secure databases [Pemul - 1994b] [Jajodia.

Sandhu - 1991] makes this possible. This concept is not demonstrated in the prototype.

• Delete: When an object deletes information contained in another object, either the

entire object or some attributes in the object are deleted. Depending on the type 0:­

deletion, the object deleting information stored in another object must have clearance tc

delete the information. Therefore, Object; can delete information stored in Objects. i:­

the security class of Object" is equal or greater to the security class of Object.,

76

The binary access rules are summarised in Table 4.7:

Security class of the object to which information

flows (or target object)

U C S TS

.S~ctJ.rity~lass of U R,U,D,A,I A,I A,I A,I
...

o~j~tt.·fr~~·.·which C R,U,D R,U,D,A,I A,I A,I

infol1l1atl()ri flows S R,U,D R,U,D R,U,D,A,I A,I
.-.:"'.:.>::--.-... ".::::<-.:.:.::

·(or.#ollrc¢.·.object) TS R,U,D R,U,D R,U,D R,U,D,A,I

.'

Key: U - Unclassified C - Classified

R - Read A - Append

Table 4.7: Binary Access Rules .

b. Compound Access Rules

S - Secret

I -Insert

TS- Top Secret

U - Update D- Delete

Since a single access type (or information flow) can be deducted between objects with

compound access types (or compound information flows) between them, the binary access

rules can be applied to check whether the compound access type or information flow is

valid or not.

4.3.6 Strengthen Security/Add Sanitiser Objects

DFDSEC should be able to point out invalid information flows by comparing the Revised

Object Matrix and the Security Revised Object Matrix. Entries that are not in the Security

Revised Object Matrix are invalid. It then presents the user with a choice. He can either:

(i) insert a Sanitiser Object; or

(ii) change the security class of one of the objects where an invalid information flow

is taking place.

77

A Sanitiser Object is a process that is classified by default as Top Secret, and which has the

function of filtering information received from a higher classification object in order to let all

information which has the same security classification as the lower classified object, through to

the lower classification object. The concept of multi-level databases is once again very

important here. The prototype doesn't consider the fine granularity of information down to the

field level. Rather, it demonstrates the security stages on a higher level only, i.e. that of

analysis and design.

4.3.7 Repeat the Cycle

After Stage 6 in the proposed method, the analyst can restart the security analysis cycle,

starting at Stage 1 (Allocate security classes to objects). The cycle can be repeated until he is

satisfied,with the security of the system, and no more insecure areas of information flow are

revealed on the DFD.

4.4 General Advantages of the Proposed Approach

Eckmann's method reveals covert or indirect information flow in formally specified systems

descriptions. The added advantage in the proposed method is that indirect information flow is

detected and revealed to the systems analyst on a logical design level.

Automation of the security flow checking process can be achieved. This allows the analyst to

utilise his time more productively on design issues.

4.5 Conclusion

In this chapter, analysis and design rules and principles were presented, as well as security

activities, which should be incorporated in the Automated Software Generation Environment

(ASGE) to enable the improvement of the security level and design quality of DFDs. The

proposed approach EASGE (Extended ASGE), was explained in more detail through the

addition'of security activities to the ASGE diagram.

Binary access rules and Compound access rules were presented, which actually form the

security policy on which the DFD-prototype DFDSEC is built. It forms the backbone of the

78

security stages, since it assists in constructing the various tables that are used to determine the

security state of the DFD, and to determine where improvements should be made.

The activities and rules represent the logic of the prototype DFDSEC, which will be illustrated

in Chapter 5 with detailed examples. DFDSEC utilises some of the rules and principles for

effective design, and implements all of the discussed security stages.

79

Chapter 5

Prototype implementation:

the DFDSEC tool
..

5 Introduction

The author of this dissertation has developed a prototype tool called DFDSEC, the name

being an acronym for 'DFD Security'. DFDSEC is a scaled-down DFD CASE-tool which

incorporates all the security activities and rules described in Section 4.1. Some of the rules for

effective design which were described in Chapter 4 are implemented as well, for example,

checking that all data flows have connected processes or external entities.

DFDSEC embarks on the journey of striving to combine the two fields of Information

Security and Computer-Aided Software Engineering, by integrating information security

principles with the normal analysis and design activities ofCASE-tools.

The tool demonstrates the concept of high-level security analysis and design which was

described in the previous chapters, allowing the designer to assign security classes to objects

in a DFD, then analysing direct and indirect information flows between such objects, pointing

out invalid information flows, and suggesting changes to the analyst concerning the DFD.

Chapters 4 covered the theoretical detail of the security principles upon which DFDSEC

operates, and its security stages. This chapter illustrates the theoretical with practical

examples. Detailed descriptions of how DFDSEC operates, as well as examples and

demonstrative screens sampled from DFDSEC analysing the example DFD, are presented.

The layout of the chapter is as follows:

Section 5.1 describes the purpose of DFDSEC in terms of security analysis. Section 5.2

presents the goals of DFDSEC and Section 5.3 lists the Security Stages. Section 5.4

80

introduces sample DFDs, firstly as they would have appeared in the CASE-tools Silverrun and

OMD and secondly as represented by DFDSEC. Section 5.5 continues to explain the examples

by highlighting the security stages performed by the tool and the recommendations given by it.

5.1 Purpose of the Prototype.

The golden thread that is woven through all the discussed approaches in Chapter 2 and the

proposed approach in Chapter 4 is the goal to prevent invalid information flow between

objects with differing security classes. nFDSEC addresses the security issues surrounding the

development of new applications systems, embodied by the shaded area in Figure 5.1, as well

as the maintenance ofexisting application systems in terms of security features.

Security activities
Oc:t objectsecurityclasses fromuser

Oc:t illfonnation now types

Crate anObjectMatrix

Conslruc:t a Revised ObjectMatrix

Conslruc:t a Security Revised Object

matrix
Strengthen Security - Sanitizer Object

FigureS.I: Domain of the Prototype in the

Extended Automated Software Generation Environment

-I
I
I
I
I

The aim is to demonstrate that principles from the approaches of Baskerville, Eckmann znc

Pemul, can be implemented in the form of a working prototype, and that security stages can

exist as part of an existing, commercially used, CASE methodology. DFDSEC helps the

81

designer to define a DFD using Gane and Sarson's methodology. The DFD is then analysed in

terms of secure data flow by applying the steps listed in Section 5.3.

DFDSEC is primarily concerned with high-level design, since it represents an example of

security extension to high-level design. Therefore, it doesn't reach down to the implementation

level..

DFDSEC will analyse the types of information flows between processes and the types of

accesses between data files on a DFD and will then highlight security weaknesses identified. It

will also suggest improvements to the DFD in order to improve the security of information

flow on the DFD.

5.2 Goals of the prototype

The goals ofDFDSEC are as follows:

(i) to indicate insecure information flows between processes and data stores, for example

information flowing from a "top secret" classified data store to a "secret" or

"confidential" classified process.

(ii) to identify and display insecure indirect information flows. For instance, if Process A

sends information to Process B via a shared database/file, and Process B sends

information to Process C via a shared database, as shown in Figure 5.2, then Process A is

providing information to Process C indirectly via B. If the security class of Process A is

more secretive than that of C (even if the security class of B is equal to that of A), then a

. potentially insecure flow of information between processes exists. The prototype will

identify these indirect flows.

82

Indirect information flow

Figure 5.2: Indirect Information Flow between Data Stores and Processes.

(iii) to present warnings in the case ofdetection of ineffective design. For example, to detect

when information flows directly between two processes, instead of via a shared database

from one process to the other. According to Gane [Gane - 1990] it is a good design

principle to consistently use shared databases to store information flow, instead of having

direct information flow between processes.

(iv) to suggest appropriate processes to be added to the DFD for handling security. For

example, with the addition of a Sanitiser Process to the DFD that can handle security.

According to Baskerville [Baskerville - 1993], a new security control procedure should be

inserted as a sub-process ofa current process in cases where the disclosure or destruction

risks are present. However, in cases where the modification risk is present, security

checking should be done by an independent process, because of the nature of the

modification risk [Baskerville - 1988].

For example, the two risks disclosure and destruction of data, can be handled efficiently

by positioning the control process internally within the relevant process that causes the

- risk. This is the case because the security monitoring that needs to be performed under

these circumstances to prevent the realisation of the risk'can be done by the same process

or a sub-process of the process which accesses the data. However, in the instance where

the modification risk is present, the integrity of the data cannot be guaranteed when

security checking is done locally (within the same process). Baskerville suggests an

independent security process to monitor the modification of data by process objects

[Baskerville - 1988]. In the scope of this study, we can look at the situation in the

following way: if an object which is classified as Secret modifies the data in a Secret

83

database, it would not be safe for that process to handle the security, simply because when

other objects which is Secret or Top Secret are added to the system later on, the security

process must be duplicated for each process. More importantly, when it is a malicious

object with intent to destroy or illegally modify the data (e.g. an object from another,

outside program), it is vital that the data in the database be protected by an independent

security object, which can always perform security monitoring for the database.

DFDSEC only allows the addition of independent processes, for illustration purposes.

(v) to allow the analyst to continue editing the DFD until he is satisfied with the security state

oftheDFD.

5.3 Security Stages of DFDSEC

The security activities in DFDSEC consist of the following security analysis and design

stages, discussed in Chapter 4:

1. Allocate security classes to objects.

2. Determine information flow types.

3. Create an Object Matrix.

4. Construct a Revised Object Matrix.

5. Construct a Security Revised Object Matrix.

6. Strengthen Security/Add Sanitiser objects.

5.4 Example with different representations (SILVERRUN, OMD and DFDSEC).

Consider the following user requirements, for an example DFD. This example will be used

extensively in the remainder of this chapter.

84

..

5.4.1 User requirements

An application is needed with a process that can calculate salaries for employees of a large

company. There is an existing database containing employee data, for instance personal data

and rate per hour paid The process appends salary data to a data file. A salary clerk needs

access to the salary data so as to resolve ad hoc enquiries.for example to calculate average

salaries.

5.4.2 Silverrun Representation

Figure 5.3. shows the way that the example requirements could be represented in Silverrun,

using the Gane and Sarson methodology.

1
Calculate Salaries

1~1 IEmployee Data ._2--Eo=J;~~da~-F-1.

F-3,-
EE-1

Salary Clerk

_... Figure 5.3: Silverrun Representation of the Example

5.4.3 Object Modeler Representation

Figure 5.4. shows the way that the example requirements could be designed using OMD. The

reader should remember that OMD uses an evolutionised EAR diagram which is Object­

oriented. An OMD OR diagram is represented in the figure. The basic relationship between

the objects are shown in the centre object (Emp-Salary). The logic of the requirements are

translated into OMD rules, which will signify the following meaning:

85

• At the end of the month, for each Employee, fetch the data attribute Payment

Category (from object Employee).

• Fetch data attribute Payment per hour from Payment Rates.

• Calculate Salary as (Hours worked x Payment per hour).

• Update salary data in the object Salary Data.

The above-mentioned rules can be linked to the Employee object or to the Salary object, for

example.

Figure 5.4: OMD Representation of the Example

5.4.4 nFDSEC Representation

Figure 5.5 shows the way that DFDSEC would handle the situation. A security classification

has been added to each object, according to the sensitivity of the information that it contains

(if it is a data store), calculates (if it is a process), or is allowed to access (if it is an external

entity).

86

EE-I

: Salmyclcrl::
I

Figure 5.5: DFDSEC Representation of the Example

Figure 5.6: DFDSEC Initial Screen

.
5.5 Description of DFDSEC in terms of Security Activities and Recommendations.

When DFDSEC is loaded it presents the designer with a Graphical User Interface (GUI) as

depicted in figure 5.6. The GUI consists of three parts, namely a DFD window (A), a toolbar

(B), and an options bar (C).

The DFD window is used by the designer to represent user requirements in a visual way, i.e.,

by means of a data flow diagram. Drawing tools are contained within the toolbar and are

presented by the process icon, Sanitiser Process icon, External Entity, Data Store and Data

Flow objects. The D in Figure 5.6 indicates the drawing tools. The E in the figure indicates

utility tools, for example loading or saving a DFD. The options bar, indicated by C in Figure

5.6 allows the designer to change the line style, width and drawing colours. The F symbol in

Figure 5.6 indicates tools that can be used to analyse the DFD.

"

Analysing a DFD causes the information flow between objects on the diagram to be examined

in terms ofsecurity and integrity requirements according to the steps listed in Section 5.3. The

remaining tools are utility tools, used to save or load a diagram, exit the prototype, or start

creating a new data flow diagram.

The Gane and Sarson modelling technique [Gane - J990] serves as basis for DFDSEC.

According to this technique, the objects in the DFD are represented as shown in Figure 5.7

EE-I GJExternal
[, Dat.. ..Oft I ~," Process I

Enllty • flow I

.
Objects in a DFD (Gane and Sarson representation)Figure 5.7:

Using the drawing tools of DFDSEC, the designer has transformed the user requirements

listed in Section 5.4. J into a visual representation as depicted in Figure 5.8. Objects on the

DFD are connected by means of arrow symbols, so as to indicate the direction of information

flow within the system.

88

·After the designer has placed the objects on the drawing board and connected them by means

of arrows, DFDSEC automatically determines the information flow type between objects on

the DFD. This is done by analysing the direction of the data flow arrows between two

objects. Only Read and Write actions can be deducted automatically. DFDSEC then

automatically labels the flow type between "Employee data" and "Calculate salaries" as read.

the flow type between "Calculate salaries" and "Salary data" as write etc. When the DFD is

analysed for security, the user is requested to supply more complete information concerning

the type of information flow. For example, if a write action has been deducted, the analyst

must specify whether it is an update, insert, append or delete action.

As the user requirements indicate that data is appended from the "Calculate salaries" object to

the "Salary data" object, the designer changes the write action to an append action, as

portrayed in Figure 5.9.

I EE-l I
jsay:= I

U ' i~
I ~ If----.;I

ldD)

p-}

wOreCIJaIIate ·1D-2Isarciaa1Idcs

t
1lcall

Figure 5.8: Example Data Flow Diagram as created on DFDSEC

89

(" pol ~,

A.
I
I
I

;R.e8d

!
IDol iEmployeedata

EE-I I
' Selary clal:
I I

I
I

I
I

Read I
I

I
r po:! I

'------..-,~~i ~cve ~
--/

Figure 5.9: Change ofInfonnation FlowType (Access Type)

The designer now selects the analyser icon (indicated by F in Figure 5.6) to indicate to

DFDSEC that the DFD can now be analysed in terms of security and integrity requirements.

The analysing process occurs internally and consists of the steps listed in Section 5.3.

The allocation of security classes to objects is depicted in Figure 5 10 The project leader has

indicated that the following security classes should be assigned to the process, data files and

external entity objects:

•4"

Calculate salaries (process) Top Secret

• Employeedata (data store) Confidential

• Salary data (data store) Secret

• Salary clerk (external entity) Confidential

• Retrieve data (process) Secret

The matrices presented below will not be presented III the dcsiuner. because thev arc meant tll- .

be used internally for determining insecure nov.. s They arc merely sho» n here for cxplanat ion

purposes

<)0

1'$

P-l

. Dal.Sn....~···· . . .

s
EE-l

~'cled:

r P-l,
'-------J~~I Remeve

ldaal
\

.~----

I

. Read

Figure 5.10: Allocation of Security Classes to Objects

Calculate Employee Retrieve Salary Salary

salaries data data data clerk

Calculate Append

salaries

Employee Read

data III,
i

Retrieve Read ii
It

data I!
I'il
i

Salary Read "11::
i:
"data 'i

I:
:j

Salary :I
11

i:
clerk

Table 5. I: Object Matrix for the Example

·..

Calculate Employee Retrieve Salary Salary

salaries data data data clerk

Calculate Append Read

salaries

.Elllpl(Jyee Read Read Update Read

..·..·.d~i;< ..

···Retrieve Read
..,--...-.. -.-•...,....

data ..•·•

.. 8.a1ary -: Read Read
. ,-,

",' - ,". '

<dabt·
-::~: ;

.. Salary
.:,:.:,.:';::;>./;-:":

.·c1erk. .:<:.; ...:.,::

Table 5.2: Revised Object Matrix for the Example

Calculate Employee Retrieve Salary Salary

salaries data data data clerk

Calculate

salaries

Employee Read Read Update Read

data -e-

Retrieve

data

Salary Read

data

Salary

clerk

Table 5.3: Security Revised Object Matrix for the Example

92

DFDSEC now compares the Revised Object Matrix and the Security Revised Object Matrix to

determine invalid information flows. DFDSEC would point out that the binary flow from

"Retrieve data" to "Salary clerk" is invalid, (indicated by the thick line from "Retrieve data" to

"Salary clerk" in Figure 5.11) as the Salary clerk can only read information which has a

confidential or unclassified clearance. DFDSEC would suggest that the security class of the

Salary clerk be raised to be at least the same as the security class of "Retrieve data", i.e.

Secret.

DFDSEC prompts the designer to indicate whether he would like to change the security class

of the Salary clerk. As the user requirements stated that the salary clerk requires read access

to "Salary data" via the "Retrieve data" object, to resolve ad hoc enquiries, the designer has

reasoned that he needs to change the security class of the Salary clerk to Secret. This is

indicated in Figure 5.11.

Figure 5.11: Pointing out Invalid Information Flow Types

93

DFDSEC prompts the designer to indicate whether he would like to insert a Sanitiser Object

between the "Calculate salaries" and "Salary data" objects. Examining the user requirements,

the designer concluded that once salaries have been calculated, it is necessary to append a

subset of the salary data from the TS process (Calculate Salaries) to the Salary data store

which is secret (S), so that the Salary clerk can resolve queries. Therefore, the designer has

opted to insert the Sanitiser Object. This is indicated in Figure 5.12.

The Sanitiser Object will facilitate the flow of information from a higher classified object to a

lower classified object (by definition), in order to override the rule that information cannot be

appended from a object with a higher security class to an object with a lower security class

(see the append rule in Section 4.3.5). Since DFDSEC is currently implemented as an analysis

and design tool, the implementation detail of the Sanitiser Object has not been addressed. One

possibility for implementing a Sanitiser Object can include multilevel security database

concepts [Baskerville - 1993] [J~jodia, Sandhu - 1991]. The Sanitiser Object is also similar to

Pemul's Security object, described in Section 2.4.5.(iii).

:5

s

EE·l

: Salary dcd:

J.

,
'-~--

; R.c:aicve

------l,..~: dam

TS

y

SP-t

5

,.:

P-I

A­
i

TS

.
:0-1 !EmpIoyce dzm

C

Figure 5.12: Inserting a Sanitiser Object

94

DFDSEC would also point out that the binary flow from "Calculate salaries" to "Salary data"

is invalid, as information flows from a Top Secret object ("Calculate salaries") to a Secret

object ("Salary data"). Due to the downflow of information DFDSEC suggests that a Sanitiser

Object be inserted between the "Calculate salaries" and "Salary data" objects.

Having changed the security class of the Salary clerk and inserted a Sanitiser Object, DFDSEC

automatically re-analyses the DFD. The various matrices constructed internally are presented

below:

••••••••••••••••••••••••••••

Calculate Employee Sanitiser Retrieve Salary Salar

salaries data object data data y

.../ ... clerk
./

Calculate salaries . Flow

Employee data < Read

Sanitist;~ obj~ Append

Retrieve data<··· Read

Salaryctati• Read

Salaqderl(••

Table 5.4: Reconstructed Object Matrix for the Example

Note: The flow type between "Calculate salaries" and the "Sanitiser object" is indicated as

Flow, as information is transferred from the "Calculate salaries" object to the

"Sanitiser object" to prevent information flow from an object with a higher security

class to an object with a lower security class. The security class of any "Sanitiser

object" defaults to Top Secret.

Calculate Employee Sanitiser Retrieve Salary Salary

salaries data object data data clen..

Calculate salaries Flow

Employee data Read Flow

Sanitiser object Read Append RCdC

Retrieve data Rcac

Salary data Read RCdC

Salary clerk

Table 5.5: Reconstructed Revised Object Matrix for the Example

Calculate Employee Sanitiser Retrieve Salary Salar

salaries data object data data y

clerk

.' Calculate salaries Flow

Employee data Read Flow

Sanitiser object Read Append Read

•.•.....• Retrieve data Read

Salary data . . Read Read

I·.Salary clerk

Table 5.6: Reconstructed Security Revised Object Matrix for the Example

According to the binary access rules in Table 4.8, a TS object may only append to a TS data

store. This means that the Append between the "Sanitiser object" (TS) and "Salary data" (S) is

invalid. However, the Sanitiser Object would only allow secret information to flow to the

"Salary data" object. It would, in other words, filter the information, so that only data fields

classified as secret are allowed to pass to the lower object. Therefore the flow would be valid.

The same argument applies to the flow between the "Sanitiser object" and the "Retrieve data"

and "Salary clerk" objects.

DFDSEC now compares the Revised Object Matrix (Table 5.5) and the Security Revised

Object Matrix (Table 5.6) to determine invalid information flows. As no invalid information

flows exist, i.e., the Revised Object Matrix is identical to the Security Revised Object Matrix,

the real environment (EASGE) would proceed to generate databases tables and code.

5.6 Conclusion

The advantages of using an EASGE tool when developing a system are numerous. Firstly, an

EASGE tool allows most object interactions to be determined automatically using the high­

level design diagrams such as DFDs of the system. Secondly, a Revised Object Matrix ensures

that all valid and invalid combinations of information flow are considered during system

development. This is the aim of all three of the approaches in Chapter 2 (Baskerville, Eckmann

and Pernul). Thirdly, the security class assigned to an object is considered while developing

96

the system. This allows security definition activities to become an integrated part of

application system development.

97

Chapter 6

Design and Implementation of the Prototype.

6 Introduction

This chapter covers some of the details of how DFDSEC wasdesigned and implemented.

Section·6.1 presents the requirements specifications for DFDSEC, i.e. what is was required to

do, as well as detailed specifications for each stage ofDFDSEC.

Section 6.2 presents the requirements design for DFDSEC. This section explores the more

detailed design ofDFDSEC. Each stage of the prototype is explained in more detail.

Section 6.3 gives some important implementation details, such as the kind of memory

structures used and data stored for each object in the DFD.

6.1 Requirements Specification

The goal of DFDSEC can be summarised on a very high level as in Figure 6.1. The input to the

prototype is a DFD (defined by the analyst). The prototype analyses it according to principles and

rules for secure design, discussed in Section 4.3. The output is a more secure DFD.

PROCESSING

Get original DFD Security stagesofEASGE

Figure 6.1: The Main Goal ofDFDSEC

Secure DFD

A short description of each of the three main steps (stages) is now given.

98

6.1.1 Get original DFD

In this phase of the prototype, the DFD is input from the analyst with the aid of drawing tools.

6.1.2 Processing

The aim ofthis phase of the prototype is to perform the security stages ofEASGE. This means that

the DFD is processed step by step according to a set of security stages. The security stage activities

include generation ofthe following:

(i) An Object Matrix, which maps source objects of direct information flows or direct

access types onto target objects.

(ii) A Revised Object Matrix, which maps source objects of indirect information flows

or indirect access types onto target objects. This matrix contains both valid (secure)

and invalid (insecure) information flows or access types.

(iii) A Security Revised Object Matrix, which maps source objects of valid (secure)

information flows or access types onto target objects.

The Revised Object Matrix and Security Revised Object Matrix are compared, and entries which

are not on the security revised object matrix are pointed out as dangerous or illegal information

flows. The analyst may then insert a Sanitiser Object to handle downflow of information between

objects ofvaried security classifications, or he may change the security class of a security breaching

object.

The ideal is that user interaction should be minimised, because the aim is to automate the securitv

checking process. However, the user (analyst) will still have to assign a security class to each

object in order to continue with the security analysis.

After generation of the matrices, a new DFD must be constructed if necessary This will be c onc

from the original DFD and the matrices.

99

It makes sense to apply the security activities on the DFD level, because a DFD is more analysable

by a computer than normal language text. The part that the prototype performs can then also

become part of an existing CASE-tool, i.e. the part of handling the security analysis and design,

integrated with the normal analysis and design activities.

6.1.3 Secure DFD

The output of the Processing phase is a new, security-adjusted DFD which should be shown to the

user so that he can see the difference in design that has been achieved.

6.2 Requirements Design

6.2.1 Get Original DFD

The DFD definition (drawing) tool should have the following capabilities:

• Drawing processes, data flow arrows, external entities and data stores. Names should

be given to these objects.

• Each object must be moved interactively. Therefore, for each object the data in Figure

6.2 must be stored in the memory workspace. The area underneath the object shouldn't

be disturbed by the movement.

6.2.2 Processing

Processing of the DFD is to be done by the following software processes.

a. Information Flow Controller

This process should allow the user to assign security classes to the objects on the DFD (for

example, Confidential or Top Secret). This Controller analyses direct information flow between

different objects on the DFD and generates an Object Matrix The Object Matrix also contains the

information flow types or access types. For example, Read or Write access types. This is

determined by the direction of the arrow heads of each pair of objects

100

b. Information Flow Enforcer

This process generates a Revised Object Matrix from the Object Matrix, indicating the indirect

data flows between different modules on the DFD. This is done by a method which was deducted

from the work of Hsieh [Hsieh - 1992], generating information sets indicating between which

objects there exist indirect information flows.

From the Revised Object Matrix the Security Revised Object Matrix is generated. The type of

access between processes and databases should also be considered when checking the security,

because an update action has different implications from an append or a read action.

From the combination of these two matrices, the secure DFD is generated.

6.2.3 Secure DFD

The following component is needed in the prototype code in order to be able to construct a new

DFD:

a. Automated Diagramming System

By this component a new DFD can be generated from the comparison between the Revised

Object Matrix and the Security Revised Object Matrix, which should be secure.

The user should be able to iterate the process of editing the DFD and commanding DFDSEC to

analyse it, until he is totally satisfied that the DFD of the target application system is secure

6.3 Some implementation details

6.3.1 Memory structures for the storage of the DFD.

When DFDSEC is executed by the computer, the management of data concerning the \~:',)1I~

objects on the DFD is done by a doubly linked list memory structure, illustrated in Figure 6:

101

Each object points to the previous and the next object, to speed up internal referencing when

analysing the information flow.

•ointer to first +--+BI
object

•
Figure 6.2: The Nodes Connecting Objects on the DFD

. Each node ofthe linked list stores the data for one object on the DFD. Figure 6.3 shows a

more detailed diagram ofone node in the linked list. Each object can have more than one child

or more than one parent. For example, if a process reads data from two data stores, it is linked

to two parent objects.

, I: ICode ~amc SccLcYeI+Group fType Oeser Nll.1Lni'Ir I'n1.cvPltVisible Coords SizeColon Pwcnl/:odcs C1ul<lrJncodes I : I I
I I

'tl> ICode I ICode I
~I I

ICode I ICode I
I I

IC'ode I ICode I

Figure 6.3: Extension ofFigure-Data" in Figure 6.2

Figure 6.4 shows detail data stored in each node of the linked list

102

a. Object Code (e.g. EE-I for External Entity I)

b. Object Name (supplied by the user)

c. Object Type (e.g. ProcesslData flowlEntity/Store)

d. Security class ofelement (One of "Top secret! Secret! Confidential!

Unclassified" - this information is supplied by the user.

e. Description of the object (optional)

f Visibility (e.g. is Object currently visible?)

g xl, yl, x2, y2 (relative co-ordinates - relative to the actual design page)

h Sx, Sy (size ofelement on design page)

FColor, BColor (foreground and background colors)

J. Parent elements (pointers to other objects. E.g. a pointer to a process if the

current element is an information flow arrow)

k Children elements (pointers to other elements. For example from a current process

to one or more arrows, or from a current arrow to a process)

Figure 6.4: Record ofData Stored for Each ObjectlDFD element

A current process or arrow or other object which is current means the object which is the

selected one in the memory workspace at a point in time, either during analysis of the DFD, or

during editing of the DFD.

6.4 Conclusion

This chapter examined some of the implementation details ofDFDSEC.

In Section 6.1, detailed requirements specifications were presented for DFDSEC, illuminating

what had to be done by each stage of the prototype, especially the Processing stage, in which

the DFD is scrutinised to check how secure it is.

In Section 6.2, detailed requirements design was subjected to the spotlight. The Information

Flow Controller and Information Flow Enforcer were described, which are the two software

processes which generates the matrices used for analysing the security level of the DFD.

103

In Section 6.3, explicit implementation details were given concerning the type of memory

structures used in storing the DFD objects created using DFDSEC. The role of the doubly

linked list in DFDSEC memory usage was highlighted in this section.

Chapter 7 presents a basic user manual for DFDSEC.

."

104

Chapter 7

User manual for DFDSEC

7 Introduction and structure of this user manual

In this chapter, a simple user manual is supplied for use when operating the prototype.

Section 7.1 contains instructions for the installation of DFDSEC onto the hard disk of a PC,

and the required and recommended computer system to be able to run the tool.

..
Section 7.2 explains how to activate the tool from the DOS prompt.

Section 7.3 describes the DFDSEC environment and user interface, including how to use the

mouse when operating DFDSEC, and the various shapes of the mouse pointer on the screen

during different types ofoperation.

Section 7.4 describes each icon on the user menu in detail, using the following structure:

• Identification

• Purpose

• Use

• Other important details when using this icon

Section 7.5 explains what the user (the systems analyst) should do when an error message

appears on the screen.

Section 7.6 expands on how to enter information in an input window on the screen.

Section 7.7 explains the procedure to define a sanitiser object It is necessary to enre: a

sanitiser object when information is flowing on the DFD from a higher classified object (e g

Top Secret process) to a lower classified object (e.g. Confidential database) and the secunry

classification can not be changed because of user requirements

7.1 Installation

The files for the DFDSEC program are supplied on a single 1.44 MB stiffy diskette,

DFDSEC can be installed on the hard disk of a computer by copying all the files on the

diskette to a directory on the hard disk. For example, if the diskette is in drive A, and the

target directory on the hard disk is c:\DFDSEC then type

copy A: *.* c:\dfds'ec <Enter>

7.2 Activating the tool and System requirements

Switch to the c:\DFDSEC directory (or the user-specified directory) and type:

DFDSEC <Enter>

This will load the tool into the computer's memory and start executing it.

It should be noted that the following system requirements are applicable. The user must have

a computer with a minimum of the following requirements (left column of Table 7.1). The

recommended specifications for efficient performance are given in the right column of Table

7.1.

Minimum requirements Recommended specifications

386SX processor 386DX or 486DX processor

VGA screen VGA screen

Mouse Mouse

2 MB memory 4 MB memory

1 MB free hard disk space 2 MB free hard disk space

Table 7.1: System requirements and recommended specifications to run DFDSEC

106

7.3 Drawing a DFD with DFDSEC: General Information and Tools

7.3.1 DFDSEC Main Screen

When DFDSEC is loaded it presents the designer with a Graphical User Interface (GUI)-as

depicted in Figure 7.1. The GUI consists of three parts, namely a DFD window (A), a-toolbar

(B), and an options bar (C).

The DFD window is used by the designer to represent user requirements visually, i.e., by

means of a data flow diagram. Drawing tools are contained within the toolbar and are

presented by the Process, Sanitiser Process, External Entity, Data Store and Data Flow icons.

The D in Figure 7.1 indicates the drawing tools. The E symbol in the figure indicates utility

tools, for example, loading or saving a DFD. The options bar, indicated by C in the figure

allows the designer to change the line style, width and drawing colours. The F symbol

indicates tools that can be used to analyse the DFD.

The remaining tools are utility tools, used to save and load a diagram, exit the prototype and

start creating a new DFD.

.. -r, . .. " .•- - .., ':'''1 .. """. D~F1,,~DI~' ':"' .• ¥' • : •••'; I.,.' ::-:

TS

P-I

---------~

.~--

A.

Read

;0-1 :Employee dBl3

C

TS

SP-I------

l

s

s

EE-I

Salarydcd

Read

P-l

Rc:u-icve s
-----J~~i dala

Figure 7.1: DFDSEC Main Screen

];)7

7.3.2 Cursor Shape

It is useful for the user (the systems analyst) to note the shape of the mouse pointer on the

screen. When the mouse is in drawing mode, i.e. waiting for the analyst to draw an object,

the cursor is a cross. When the mouse is in command mode, i.e. waiting for the analyst to

choose a drawing tool in the tools window, the cursor is an arrow shape.

7.3.3 Currently Active Drawing Tool

One drawing tool can be active at a time, for example a process. Then the analyst can define

processes, until he selects another drawing tool. When a tool is active, and the analyst moves

the cursor over the command area , that tool stays active, although the cursor shape will

change to an arrow. The tool will stay active until a new one is selected. Otherwise, if the

cursor is moved over the working area again, the arrow will once again be a cross and the

analyst can continue drawing processes (or use whichever tool was active before).

7.3.4 The Mouse in Drawing Mode

The left button (LB) draws the object at the current position. Holding the right button (RB)

and moving the cursor (by moving the mouse) sizes the object. For example, press and hold

the RB down and move the mouse in the direction into which you want to size the object.

Release the button when sizing is completed.

The middle button (MB) also has a special function. When defining a process, and the MB is

pressed and held, and the pointer is moved, then the corner radius changes, i.e. the corners are

made bigger or smaller.

If the analyst presses and holds the LB button while moving the mouse pointer over the

command area, the drawing tool will not deactivate, in other words the tool stays active and

can still be used when moving to the working area again.

108

If no button is pressed, and the mouse pointer is moved over the tools area, the pointer

temporarily becomes an arrow again, until moved back to the drawing area.

Choosing Another Tool

If the left button is pressed when the pointer (arrow) is on the menu area, the selected drawing

tool is deactivated, and the one under the mouse pointer (arrow) is selected as the new current

drawing tool.

7.4 The Menu Options

The individual options for defining a DFD are as follows:

7.4.1 The Process icon

Identification: [81 [0]

Purpose: Allows the analyst to define new process objects on the working area.

Use: Select the Process drawing tool by clicking the mouse when the mouse pointer is on the

Process icon. Size the process with the right mouse button, if necessary. Place the process

onto the working area by pressing the left mouse button when the object is at the required

position. After placing, a code will be assigned to the process and displayed inside it. The

analyst keeps on defining new processes until he selects a new tool.

Selecting an existing process on the working area: When the mouse pointer is in command

mode (arrow-shaped), the analyst may click on a process. The details of that process will then

be displayed in an editing window, and can be edited. Please refer to Section 7.6 for mere

information on editing data.

109

7.4.2 The Flows Icon

Identification: g

Purpose: Lets the analyst define and place new data flow arrows between entities.

Use: Select the Flow drawing tool by pressing the LB when the mouse pointer is on the flow

icon. Define the flow by clicking the left button first inside a SOURCE entity, then inside the

TARGET entity. If either the start OR end point isn't inside an object (Process, Data store, or

External entity), the arrow is INVALID an is erased from the screen.

After placing, a code will be stored for the flow. It will not be displayed. The analyst keeps on

defining new arrows until clicking on the menu area, selecting a new tool.

Selecting a flow: When the mouse pointer is in command mode, the analyst may click on a

flow. The details of that flow will then be displayed, and can be edited.

Entering data: Data will only be required for an arrow when the program has analysed the

Revised Object Matrix. Only the information flow type (or access type) will be required by the

program. Use the same input method as for Security classes, i.e. use the <Left>/<Right>

arrow keys to select the correct type.

7.4.3 The External Entity Icon

Identification: [-I

Purpose: Lets the analyst define and place new external entities.

Use: Select the External Entity (EE) drawing tool by clicking the mouse when the mouse

pointer is on the EE icon. Size the EE with the right mouse button. Place the EE with the left

mouse button. After placing, a code will be displayed inside the EE. The analyst keeps on

defining new EEs until clicking on the menu area, selecting a new tool.

110

Selecting an External Entity: When the mouse pointer is in command mode, the analyst may

click on an EE. The details of that EE will then be displayed, and can be edited. Please see

Section 7.6. for information on editing data.

7.4.4 The Data Store Icon

Identification: (5

Purpose: Lets the analyst define and place new data stores.

Use: Select the data store drawing tool by clicking the mouse when the mouse pointer is on

the icon. Size the data store with the right mouse button. Place the data store with the left

mouse button. After placing, a code will be displayed inside the data store. The analyst keeps

on defining new data stores until clicking on the menu area, selecting a new tool.

Selecting a data store: When the mouse pointer is in command mode, the analyst may click

on a data store. The details ofthat data store will then be displayed, and can be edited.

Entering data: Please refer to Section 7.6. for more information concerning the editing of

data.

7.4.5 The Load Icon

Identification: r;I

Purpose: Lets the analyst load a saved DFD from the active directory (the one from which the

program was executed).

Use: Click on icon. A window is displayed, asking for a filename. Enter a filename. Include a

DFD extension. For example, DFDI.DFD. The file is then loaded, and the DFD is drawn.

III

7.4.6 The Save Icon

Identification: ~

Purpose: Lets the analyst save the current DFD in the active directory (the one from which

the program was executed).

Use: Click on icon. A window is displayed, asking for a filename. Enter a filename. Include a

.DFD extension. For example, DFDl.DFD. The file is then saved.

7.4.7 The Printed Page Icon! Screen Icon

Identification:

Purpose: Activates the analyser, and outputs the generated sets to the specified output device.

(printer or Screen).

Note: Choosing the Printer makes comparison with the DFD on the screen easier.

Use: Click on icon. The program will start asking information concerning each object, if that

object's Security Classification is Undefined. Enter information as described in Section 7 6.

Pressing <Esc> will skip the details of the current object and move on to the next one.

After every object's data has been retrieved from the analyst, construction of the Object Matrix

is started. Immediately thereafter, construction of the Revised Object Matrix is started The-se

two tables are then printed or displayed.

DFDSEC then proceeds with the construction of the Security Revised Object Matrix. First.v,

the analyst is asked every flow's information now type (or access type if the f:0\\ IS

connected to a data store) (e.g. ReadiWritelAJlfUpdateiDeletefFlow). Analysis is tr-en

finalised, constructing the Security Revised Object Matrix, and displaying it on screen. or

printing it.

I 12

7.4.8 The Pen Icon

Identification: •

Purpose: Redraws the DFD.

7.4.9 The Pen Icon with the S in the Corner

Identification: Iii

Purpose: Shows security breaching problems by drawing the security-breaching information

flows (or access types), one at a time.

Use: Press left mouse button between each invalid display, or right mouse button to quit

function.

7.4.10 The End Icon

Identification: ;~

Purpose: Exits the tool

7.5 Error message and information message windows

When the analyst tries to execute an action that is not applicable or invalid, an error message

appears. The window of an error message is red, the message is displayed in yellow, and there

is a blue OK button. To close the window, the analyst can either:

1) click on the OK button; or

2) press any key on the keyboard.

7.6 Input Windows for Entering Information

Example: When a filename or other data has to be entered.

113

Use: The analyst can move the cursor between input fields by pressing the <Up> and <Down>

arrow buttons, or the <<Tab.> or <Shift>+«TAB.> buttons.

Entering data: The <Tab>. key moves the text cursor to the following field. The <Up> and

<Down> cursor keys moves the text cursor to the previous or next input field, respectively.

Hints:

• Type the name in normally.

• Select the security class by pressing the left/right cursor keys until the correct class

is displayed. Then press <Enter>.

• Select the information flow type only for a data flow.

Press <Enter> or <Down> when a field is correct. The cursor moves to the next input field

<Esc> may be pressed to escapethe current input window.

Closing the window: When clicking the mouse pointer outside of the window, the window

will close. This has the same effect as pressing <Esc>.

7.7 Defining a Sanitiser Object

After the analyser has been activated and the DFD has been analysed (by clicking on either the

Printed Page tool or the Screen tool), DFDSEC will make some suggestions. It may suggest

the inser:tion ofa sanitiser object between two objects when a downflow of information occurs

(for example, from Top Secret to Confidential). It will specify the problematic objects and

their security classifications. The analyst can then confirm that he wants a sanitiser ObjCL~

inserted. DFDSEC prompts him to indicate the position of the new Sanitiser Object (S~

Figure 7.1). After the analyst presses the left mouse button on the required position. th-e

Sanitiser Object is put on the working area, and the information flow links or access links ar e

redrawn to go via the Sanitiser Object to the target object.

.- ' . .'.-' .. -.~F1t.'I::lup;IaI -- - - , ' '.' - . • '-. -'

TS

P-I

0.1 : Employ= dlQl

c

._---~

s

TS

SP-I

y

Append

Rcod

-----------~

!:.r::.j

Salsrv d:rl:

r-;

Figure 7.2: Insertinga SanitiserObject on the DFD

7.8 Conclusion

This chapter supplied the user manual for DFDSEC. The following chapter will look at the

future prospects of the incorporation of computer security into the world of CASE tools

Chapter 8

Future Prospects and Conclusion

8 Introduction

The structure of this concluding chapter is as follows:

Section 8.1 lists some of the most important advantages of the Extended Automated Software

Generation Environment (EASGE) discussed in this dissertation.

Section 8.2 describes some prospects concerning the general feasibility of implementing

security activities as part ofa commercial CASE tool.

Sections.a presents the author's views on the viability of creating a similar prototype to

DFDSEC which can analyse object-oriented analysis and design diagrams.

Section 8.4 describes the views of the author in terms of analysing control flow which occurs

inDFDs.

Section 8.5 shortly focuses on the suitability and capabilities of DFDSEC for the analysis and

design oflarger, more complex, secure data flow diagrams.
-.:.'.

Section 8.6 concludes this dissertation with some suggested research directions.

8.1 General advantages

Using an EASGE tool when developing a system, has several benefits to the security state of

the system under development. Firstly, it allows most object interactions to be determined

automatically using the high-level design diagrams (i.e. DFDs) of the system. Secondly, a

Revised Object Matrix ensures that all valid and invalid combinations of information flow are

detected for scrutiny during system development. Thirdly, the security class assigned to an

116

object is considered during the development of the system, instead of afterwards. This brings

security to the Upper-CASE phases, namely analysis and design, away from being an

implementation detail 'to be left for later'. In other words, security features can be added as an

integrated part of application system development, instead of being an ad hoc addition to

existing applications.

8.2 Implementation prospects

DFDSEC is an example of a possible mechanism which automatically enforces secure

information flow during the high-level development of an application system. The insertion of

a security handling object (Sanitiser object) onto the DFD allows for more realistic design, in

that information is allowed to flow down to objects with a lower security classification, under

the watchful eye of both the designer and the security CASE-tool, DFDSEC. Although

DFDSEC doesn't facilitate the implementation of a process, data store or external entity on

the DFD, nor the implementation ofa sanitiser process,· it is assumed that the sanitiser process

could be implemented had DFDSEC been a real CASE tool. Work done by Baskerville

illustrates a possible way of implementing processes to handle security, although he describes

it on a theoretical basis, in other words, not as being an activity of a CASE tool [Baskerville ­

1993].

Concerning field-level security, DFDSEC doesn't consider the fine granularity of information

security down to the data field level, although it is implied (on a logical level) by the filtering

activitie~_ of information on field level. DFDSEC demonstrates the security activities on the

logical level only, i.e. that of analysis and design. With the increasing quality of multi-level

secure databases (MLS databases) as suggested by Pernul in [Pernul - I 994b] and CASE­

tools that use some form of MLS already (for example Object Modeler by Sapiens

International), the ease of implementation of a security strategy such as EASGE (implemented

in the tool DFDSEC), results in security implementation becoming more viable by the day.

It is hoped that this prototype will serve as an example of what powerful features call be

incorporated into the computer aided software environment to facilitate security enhancement

ofdesign diagrams and to automate as much of this as possible.

II?

8.3 Object-oriented implementation of a prototype

It is also believed by the author of this dissertation that an object-oriented prototype can be

constructed using the exact same security principles contained in EASGE (described in

Chapter 4) which were implemented in DFDSEC. The following guidelines could be followed:

• Object-oriented analysis and design assumes that an object operates by sending

messages to other objects which causes certain behaviour to be performed by the

addressed object. In Sapiens, which is an object-oriented CASE tool, messages between

objects take the form of transactions. An example of a transaction is the following:

3000,I,40,ABC. The 3000 is the number of a transaction linked to an object by the

object-oriented concept of encapsulation. The I is an operation code specifying that the

following data should be inserted in the data table with the same number as the

transaction (i.e. 3000). The data is the key of the table (which in this case has the value

of40) and a description field (which in this case has the value ofABC).

In. an object-oriented prototype similar to DFDSEC, the information flow between

objects on the DFD can easily be replaced by messages flowing between objects, which

mayor may not contain information such as in the above example. Security analysis will

be done on the information contained in the messages. In the case of a tool such as

Sapiens, the database access type which is used in the analysis (see Section 4.3.4) can be

inferred by the operation code contained in the transaction (for example I for Insert).

• The objects on the DFD (i.e. processes, data stores, external entities) will be replaced by

the objects that is being designed as objects in the target system. For example instead of

processes and data stores, the diagram will consist ofobjects such as Employee and Order

8.4 Analysing Control Flow in DFDs.

It is the view of the author that control flow analysis is similar to the analysis of object­

oriented diagrams and the analysis of normal data flow Control flow analysis can quite easily

be achieved using a tool built on the exact same security activities as DFDSEC.

118

Control flow in a data flow diagram is similar to messages flowing between objects in an

object-oriented system. Control flow and object messages have the same goal: to cause

action by other objects, be they DFD objects (i.e. processes or data stores) or objects on an

object diagram (e.g. Order), respectively. Therefore, the type of data flowing between the

objects would, in both cases, be quite similar. It would be information concerning the expected

behaviour of the target object, with perhaps some database data/information accompanying

the control data, as in the case of the Sapiens transaction.

8.5 Analysing Bigger DFDs.

Although the examples ofDFDs analysed in Chapter 5 represent relatively simple information

flow in a small demonstration application system, the capabilities of DFDSEC isn't stretched

by this example DFD.

In experiments done by the author, one DFD was created which contained the following

objects:

• 18 Process objects

• 17 Data store objects

• 41 information flows and database access types.

The resulting Revised Object Matrix contained roughly 150 direct and indirect information

flows which consisted of both binary (direct) information flows and compound (indirect)

information flows. The Security Revised Object Matrix concluded that roughly 130 of those

information flows were valid and roughly 20 were indicated to be insecure.

Theoretically, the size of the DFD isn't a concern to DFDSEC, because of the use of

pointers. The number of objects on the DFD is only limited by memory space available and

screen size. However, screen size can become a problem because the current version of

DFDSEC doesn't support the scrolling of objects on the workspace (the DFD window on the

screen).

The time needed to analyse the security for the DFD increases with each addition of an object

to the DFD. The actual analysis time for the tested DFD with 18 process objects and 17 data

119

stores was around 2 minutes on a 486DX4-1 OOMhz computer. This is because ALL possible

information flows are taken into account during the construction of the matrices for analysing

the security of the DFD.

8.6 Possible research directions

Possible research directions include the following:

• information flow and security analysis in object-oriented systems engineering;

• control flow analysis in data flow diagrams.

• the implementation ofmulti-level secure (MLS) DBMSs in a tool such as the one described

in this dissertation.

• exploring possible ways of facilitating the implementation of objects such as sanitiser

objects in a commercial CASE environment.

12C

Chapter 9

Bibliography

[Baskerville - 1988] Baskerville R, Designing information systems security, John­

Wiley Press, 1988

[Bell, LaPadula - 1976] Bell, D.E., and LaPadula, L.J., Secure Computer System: Unified

Exposition and Multics Interpretation. Technical Report MTR­

2997. MITRE Corp. Bedford, Mass, 1976

[Booysen, Eloff - 1993] Booysen.H.A.S, and EloffJ.H.P., 'Integrating information security

into the development ofan application system', 1993

[Booysen, Kasselman,
.'

Eloff- 1994] Booysen H.A.S, Kasselman A, and Eloff1.H.P., 'Enforcing

Information Security during the development of Application

Systems', 1994

[Eckmann, Cowal ­

1992]

[Eckmann - 1994]

[Farquhar - 1991]

Eckmann S.T., Cowal 1., 'Ina Flow User's Guide'. Technical

report TM-84 I61000, Paramax Systems Corporation,

Reston, VA, 1992

Eckmann ST., 'Eliminating Formal Flows in Automated

Information Flow Analysis', presented at the 1994 IEEE

Symposium on Research in Security and Privacy

Farquhar 8., 'One approach to risk management',

Comput.Sec., Vol 10, No I, 1991, P 21-23

121

[Gane - 1990]

[Hsieh-1992]

Gane c., 'Computer aided Software Engineering: The

methodologies, the products and the future', Prentice Hall

International Editins, 1990

Hsieh C.S., Unger E.A., Mata Toledo R.A., 'Using Program

Dependence Graphs for Information Flow Control', Journal of

Systems Software, Vol IS, No 1, 1992

[Jajodia, Sandhu - 1991]Jajodia, S., and Sandhu R., Toward a multilevel secure relational

data model. Proc. ACMSIGMOn Conf., Denver, Colorado, (1991)

[LSC Dic-92]

[Sodhi - 1991]

[ObjMod - 1994]

[Ozier - '1989]

[Pernul - 1994a]

[Pernul - 1994bJ

[Vliet - 1993]

[Wood - 1990]

Longley, Shain, Caelli, Information Security: Dictionary of

concepts, standards and terms, Macmillan Publishers Ltd, 1992

Sodhi 1., Software Engineering Methods, Management, and CASE

Tools, TAB. Professional and Reference Books, 1991

Sapiens Technologies Ltd, Object Modeler Users Guide, Sapiens

Technologies Ltd, 1994

Ozier W., 'Risk quantification problems and Bayesian Decision

Support System solutions', Inr Age. Vol II. No 4 (Oct.), p 229-:34

Pernul G., 'Database Security', Advances in Computing, Vol 38, p

1 - 69, Academic Press Inc, 1994

Pernul G., Modelling Multilevel Data Security, 1994

Van Vliet H., Software Engineering: Principles and Practice, Joh •.

Wiley and Sons Ltd, 1993

Wood c.c., 'Principles of Secure Information Systems Design',

Computers and Security, Vol 9, p.13-24, 1990

."

[Yourdon, Constantine Constantine L.L. and Yourdon E., 'Structured Design', Englewood

- 1979] Cliffs, NJ: Prentice-Hall, 1979

."

123

Annexure A

Security Agorithms Implemented in DFDSEC

The algorithms for security analysis and enforcing in DFDSEC' are listed below. The main

procedure is ProcessDFDForSecurity, which executes the following steps:

• Initialises the sets which store the matrices' data;

• Ensures that for each object, all the necessary data has been entered, before analysis

starts;

• Activates the Information Flow Controller, which generates an Object Matrix;

• Activates the Information Flow Enforcer, which generates a Revised Object Matrix

and Security Revised Mattix, and suggests Sanitiser objects or changes to the security

classification ofan object;

• Redraws the DFD.

procedure ProcessDFDForSecurity:

beg1.n

INITIALISE LISTS IObjt,

Orig,Dest

R_Orig, R_Dest

SR_Orig,SR_Dest)

GET COMPLETE DATA FOR EACH OBJECT

if the object is a flow: Ask the usee to expand the i n I o r ms t. i: Ii f 1(''''

type if it is Weite.

if i~ is a process, data stoee, or exteenal entity:

As!': the usee for the secueity ::'",,".

INFORMATION FLOW CONTROLLER

CrE.He Object Hatrix. Storr, cr. or iq arid Des t

INFORMATION FLOW ENFORCER

Cr"ale Revised Object Matei:·:. St. :.:" i r. R_Oriq ,;; ..j j-,

Peint Revised Oeig and Des~ ~Pto

Cr e a t e Secueity-Revised Cb j ec t Matrix. Stoee in Sk_Gn·~,;'k. n,.:>t

Pe i ntSeckevisedOAndDSet s

Suggestions: Ceeate Sanitisel CbJ",cts or suggest Change of 5h"llity Class.

124

the R_Orig and R_Dest sets,

Add the key of the P,u'ent

Add the key of the Child

Add the information flow

DRAW REVISED DFD

end; (ProcessDFDForSecurity)

procedure CreateOAndDSets;

begin

Repeat for every object in the object database

Retrieve the record of the object

if there are Children for the Object (the ParETItl then begin

repeat for every Child

Retrieve the record of the Child object

Add the key of the Parent to the Orig set

Add the key of the Chi ld to the Dest set

end; (CreateOAndDSets)

procedu~ CreateRevisedOAndDSets;

begin

DelBranchActive := false;

For every Object key in the Orig set

Retrieve the record of the current object in the Orig set

Retrieve the ,record of the current object In the Dest set

If the information flow type between Parent (in Ori9) and Child (in Dest)

is not Delete, AND

there does not yet exist a paIr (Parent,Child) for the current objects In

then

to the R_Orlg set

to the R_Dest set

type between Parent and Child to the n~,wTypeList

if information flow is Delete, then set DelBranchActive :~ true;

(Tra~e Indirect Flow)

tResetCount := 0;

tStoredKey .= Parent l:"y; (tSt0redKey Is tt,f' Dr io i n a I :rl"1lna1)

tKey .- Ch i ld key; I U;",y Is to b", t~,e ,;(,w or q)

repeat for each ob j cc t Ley I n the Or ig s e t

Re t r i.e ve the t;ey '_'f th" current object HI the Or i q SEt (Int·~ le: :'~r:eyl

if t Or Lqr.e y = U:ey then begin

Retrieve the i<ey o f th~ cu r r er.t ~:·bJt::ct- i r: ~Lr- (IF'st .o:,="t !ir'.t_ - . ~f,.,;',-r:,,-:"·)·}

t~eyListlJ. t~Fi no i t h (De s t, TPosZ); r;{:yLl :~t!J. !':Rf::t I 1 ev ..-=. ::.'::5':., t~ [11---.3 '" r~·y

Go to the begulrllnq c f the Or iq ar.j D",st : ;:~ts

breal:;

If the in(orm:lt"l·-,rl fl.-:·w tYr'~ b~t.""·~F.'rl t'-}I"-r.~_ :lrl 01:"11 dr,,:) _~L;...1 'If! D~:;j'_j

is Delete then

DelBranchAct i ve .- t r ue :

if DelBraltchAct i vr. then

125

break;

if there does not yet exist a pair (tStoredKey,t.[)estKey) dlld

Flow <> Delete then

Add the key of the Parent to the R_Orig set

Add the key of the Indirect Child to the R Oest set

Determine the Compound Access type between Parent and I/ldirect Child

Add Compound Access type to the R_FlowTypeList

Make the Child key the new parent

if tResetCount > (Orig,Dest) Lists sizes then

break;

Do the whole process again, but for every Object key in the R_Orig set

The objective here is to ensure that, for example, had (C,D) been added to

R_Orig and R_Dest, that (B,O) and (A,O) will also be added if there is

information flow between (A,B) .and (B,C).

Until roo new indirect flows (backwards) has been added.

end; (CreateRevisedOAndDSets!

procedure CreateSecRevisedOAndDSets;

begin (L00k for parent and children entities!

for every Object Key in the R_OrOig set do

Test the security classed of Parent lin R_Orig) and the Child (in R_Dest)

Test if the information flow is clear

if the security classes are legal, then

Insert the keys of the objects from R_Orig and R Dest sets into SR_Orig

and SR_Dest (if it doesn't already exist)

Add Compound Access type to the SR_FlowTypeList

end; (CreateSecRevisedOAndDSets!

procedure GetPossibleInfoFlowTypel tOrigKey, tDestKey: KeyType;

var tIFT: String5);

begin

case tOrigKey(l) of lif til.: first letter of the obJ<oc:t c0de is a:)

:oP': begin

case tDestKeyili of

'D': tIIT := 'W'; {Sh0uld be.- r:h.:Hiqf:C:·j :': 'll','D' o r 'A' JUllri'1 c.:

5~curity ~nalysl~ ~~ale}

'P': t IF, 0­

end; ·~·.3;c~i

end;

'E': begin

. p': t I Fi" : ';";:

I I 1 1 ~.] 1 : :~ ~ lTi,l t 1 ': I ~. J ' : ~ ..t .' -.... < - I

end;

end;

'0': begin

~ .. -. ' i . :. 1; t· - . ' 1 r-:;:, , • ; ;

'P': tIFT: , k

126

'D': (Show an error mes s aqe

end;

end;

end;

end; (GetPossiblelnfoflowType)

'Illegal Ir.: ,rm3ti'JtI flow: Between ~ Data

Stores!'}

procedure TestforCorrectlnfoflow(tOriq,tDest: StdElement;

var Chflow: boolean);

begi.n

Chflow := false;

{Determine which information flow type is present be tweer. t or iq and TDest. Upda t.e the

data flow's information flow type (InfoflowTypeJ a cco r d i r.c ~o the table)

for Each Parent of the current object do

for Each Child of the current object do

Get the flow that connect them

tOrigSec := The Security class of then Parent;

tDestSec := The Security class of then Chi Id;

tflow := The Information flow type of the data f l c-..·;

tOrigFigType := Parent Figuretype;

tDestFigType ,- Child FigureType;

{Determine flows according to object types}

1f IltOrigFigType - tDestfigType) {the same object}

and

ItOrigFigType -AProc)) then Pas flows .~

else begj.n

{Determine possible flows according to security class€si

1£ tOriqSec - , , then beqin

1£ tDestSec
,

then Posflows :# 'All ,
el~-=

1£ tDestSec 'u ,
then Posrlows '= 'A , cis",

1£ tDestSec 'C
, then Posflows := 'A ,

f::L;~

1£ tDestSec 'S
,

then Pos FLows .- 'A t.'l .::0 r

1! tDestSec 'TS
, then posrl.;,ws := 'A ' ;

end else

1£ tOri.~Sec 'u , then begin

1£ tDestSec , then p,jsrlow3 ,- ' RIL'IO' {;l~~

1f tDestSec 'U ,
then P05 rl"w~' · - ' Al I el.:!"

1f tDestSec 'C
, then r-.:.", F'Ir·ws ·- 'A

if tOestSec 'S , then Po s FLows . - 'A r-~ •

1f tOestSec 'TS
, then 1'0sflc,ws · - 'A ' .

end else

if tOriqSec 'C , then begin

1f tD~stSec
, then ,·,·"n·'"': , - ' F~/l: I! I' ~

if ~ r;~;...t SeC 'V . then t' .,>Fl .-
"

~ "i\I ,;'J'

if ~De.stSec 'C , then i:-,..:.:Fl·~,·",;~ 'Al_

if t D(:.st.Se,:; 'S
, then t-'~.-r:f~ (jWS ," '/, ..

if tDestSec 'TS
,

then f'CisFlows . - 'A ' .

end else

1£ tOrlgSec 'S , then beqin

if tOestSec ,
then [>"'srlow:; · - ' K/lI/O' €' ~ E r:

127

if tDestSec 'U , then Po s F'Lows : = 'R/1i/0' else

if tDestSec 'e , then PosFlows · - ' R/li/D' £:lse

if tDestSec 'S , then PosFlows · - 'All , f:?:lsE

if tDestSec ITS , then PosFlows · - 'A ';

end else

if tOrigSec 'TS , then begin

if tDestSec , then PosFlows 'R/1l/0' else

if tDestSec 'll
, then PosFlows .- 'R/1l/0' else

if tDestSec 'C , then PosFlows := 'R/1l/0' else

if tDestSec 'S , then PosFlows := 'R/U/D' else

if tDestSec 'TS , then PosFlows : :::: 'All ' ;

end;

end; (else)

{Check for legal information flow between objects}

Result := CompareFlows(tFlow,PosFlows);

if Result <> true then begin

TString := ";

Flow type has to be changed

if TFlow - 'W 'then begin

Ask the user to expand the flow type of the data flow to U or D or A.

end

else

if (TFlow = 'R 'J and {tOr1gFigType<>AOata store} then

Warn the user that the flow type is 1nvalid and that

it should be the one of the combinations of PosEl.ows;

else

Flow type doesn't need to be changed;

end;

end

Else begin {Test for special cases}

if ITFlow - 'R 'J and not(tOrig.Key!IJ in l'O','L'I) then begin

Warn the user that a Wrong Read direction was found

Flow type has to be changed;

break;

end; (if)

end IElse}

end

end; (if)

end; {TestForCorrectlnfoFlow}

procedure Cr e a t e Sar.L t r s e r UbI ,"·ct;

begin

Promp t s the user to de-fir," t_he r.........-;:itl·'r, ~~ tL·· .-;.-1~.;.~ ;.-.~: ~, -6.

Gets (,"~sition via rt.0!J}>":'

Draw 5~~itis~r objel:t

Change pos i t i ons c·f Ll ow» ':.r d·:-·~"-~.5S ~,i'E>'~"5

through the Sanitisel t .• '-1'.0, td:'~', •. ";';"

target

Redraw links

end; (Cro,ateSanitiserObje·:t!

f: ;,, 1 ~ I 6.

12R

·Annexure B

Pascal Source Code

forDFDSEC

unit SecFUDCU; {Containsall the Security CheckingFunctions}
.'

INTERFACE

uses KeyListU,DFDGlob;

function CompareFlows(tFIow: StringS; var tPosFiows: StringS): boolean;

(*

procedureGetObjectsConnected (tObjectl,tObject2: KeyType;

var tFIow: StdElernent;

var Result: Integer);

*)

procedureGetFIowConnected(tFIow: StdElernent;

var tOrigFig,tDestFig: StdElernent;

var Result: Integer);

procedureGetPossibleInfoFlowType(tOrigKey. tDestKcy: KcyType:

var tIFT: StringS:

var ErrorChoice: byte);

procedure TestForCorrectInfoFlow(tOrig.tDcst: StdElernent:

var ChFlow: boolean):

function ValidSecClasses(tmpOrig.lrnpDcst: KeyTypc): boolean:

function PairExists(tmpOrig,tmpDcst: Key'Iype): boolean;

function RPairExists(trnpOrig.lmpDcst KeyTypc): boolean:

function SPairExists(tmpOrig,trnpDest KeyType): boolean:

129

function FlowTypeBetwecnObjccts(tOrigKey,tDcstKcy: Kcytypc): String5;

function C::ompFlowTypeBetwcenObjccts(Obj I.Obj2,Obj3: KcyTypc): String5;

procedure GetParcnts(tFigure: StdElement;

var Parents: KeyListU.RelationList;

var Result: Integer);

procedure GetChildren (tFigure: StdElement;

var Children: KeyListU.RelationList;

var Result: Integer);

IMPLEMENTATION

uses Errorlfan,WinGlobU,DFDDrawU;

function CompareFlows(tFIow: String5;"var tPosFlows: String5): boolean;

var tmpBool: boolean;

tLoop: byte;

begin

tmpBool := false;

iftFIow ='All' then trnpBooI := false

else

for tLoop := I to 5 do begin

if (tPosFlows=' ') or

(tFlow[I) = tPosFlows[tLoop» then begin

tmpBool := true;

break:

end {if}

else

if (tPosFlows='AII ') then begin

if(tFlow[l) in ('W'.'.'» then tmpBool := false

else tmpBool := true:

end; {if}

end; {for}

ComparcFlows:= tmpBool;

130

end; {ComparcFlows}

(*

procedure GetObjcctsConnected (lObjecll,lObjcct2: KeyTypc;

var tFlow: Stdlilement;

var Result: Integer);

var TPos: word;

begin

Result :=0;

{save current position}

TPos := KeyListU.CurPos(FigureList);

{find Orig}

KeyListU.FindKey(FigureList,tObject I,EIFound);

ifElFound then begin

KeyListU.Retrieve(FigureList.tOrigFig);

end .'

else

Result := -I;

{find Dest}

tDestFig.Key := tFIow.Data.ChildrcnElcmcnts(I);

KeyListU.FindKey(FigurcList,tDcstFig.Key,EIFound);

ifElFound then begin

KcyListU.Rctrievc(FigureList.tDcstFig):

end

else

Result := -I;

{return position to original}

KcyListU.Findith(FigureList.TPos):

end: {GctObjectsConnceted}

*)

procedure GetFlowConnccted(tFlow: StdElcment

var lOrigFig.tDestFig: Stdfilcmcnt;

131

var Result: Integer};

var TPos: word;

begin

Result:= 0;

{savecurrent position}

TPos := KeyListU.CurPos(FigureList};

{find Orig}

tOrigFig.Key := tFIow.Oata.ParentElements[I); {pyl het nct cen parent}

KeyListU.FindKey(FigureList,tOrigFig.Key,EIFound};

ifElFound then begin

KeyListU.Retrieve(FigureList,tOrigFig);

end

else

Result := -I;
.'

{find Oest}

tDestFig.Key := tFIow.Oata.CbildrenElements[I); {pyl bet nct cen child}

KeyListU.FindKey(FigureList,tDestFig.Key,ElFound);

ifElFound then begin

KeyListU.Retrieve(FigureList,tDestFig);

end

else

Result := -I;

{return position to original}

KeyListU..~indith(FigureList,TPos);

end; {GetFI~onn~ed}

procedureGctPossiblelnfoFlowType(tOrigKey, tDcstKcy: Key'Iypc:

var tlf'T: StringS:

var ErrorChoicc: b)1C}:

begin

case tOrigKey[I) of

'S': begin

case tDcstKcy[I) of

'0': tiFT := 'W ': {iUpdatcliDcletcliAppcnd}

132

'P': urr--: ,.

'E': tIFf := 'R ,.

end: {case}

end;

'P': begin

case tDestKey[1] of

'D': tIFf:= 'W '; {iUpdatcJiDeJcteJiAppend}

'P': ErrorHandler.GDisplayMessage(MErrorChoice,O,O.

'Illegal Information Flow: Between 2 Processes! Continue?',2,falsc,O,ErrorChoicc);

'S': tIFf := ' ,.,

'E': urr := 'R ';

end; {case}

end;

'E': begin

casetDestKey[1] of

'P','S':urr := 'R ';

'E': ErrorHandler.GDisplayMcssage(MErrorChoiee,O,O,

'Illegal Information Flow: Between 2 ExternalEntities! Continue1',2,false,O,ErrorChoicc);

'D': ErrorHandler.GDisplayMcssagc(MErrorChoice,O,O,

'Illegal Information Flow: Between ExternalEntityand Data Store! Continue1'.3,falsc,O

,ErrorChoice);

end;

end;

'D': begin

case tDestKey[l]of

'P','S': urr := 'R ';

•.'D': ErrorHandler.GDisplayMcssage(MErrorChoiee,O,O.

'Illegal Information Flow: Between 2 Data Stores! Continue?'.2.falsc.O.ErrorChoiee):

'E': ErrorHandJer.GDispIayMcssagc(MErrorChoicc,O,O.

'Illegal Information Flow: Between Data Storeand External Entity! Continue?'.J.falsc.O

.ErrorChoice):

end;

end;

end:

end: {GetPossiblclnfoFlowTypc}

procedureTestForCorrcctInfoFlow(tOrig.tDest: StdElcmcnt:

var ChFlow: boolean);

133

var tOrigCount, tDestCount: byte;

ElFound: boolean;

tFIow,

PosFlows: String5;

tOrigSec, tDestSec: String5;

tOrigFigType, tDestFigType: FigureTypes;

Result: Boolean;

tmpfigure: StdElement;

.'

begin

ChFlow := false;

{Determinewhat type of flowexistsbetween tOrig en tDest. Update flow's infoflowtypc}

for tOrigCount := 1 to MaxParents do begin

for tDestCount := 1 to MaxChildren do begin

if (tOrig.Data.ChildrenElements[tOrigCount] =
tDest.Data.ParentElements[tDestCountJ) AND

(tOrig.DataChildrenElements[tOrigcount) <> It) then {foundcommon now}

begin

{kry pyl in unpFigure}

unpFigure.Key := tOrig.Data.ChildrenElements[tOrigCount);

KeyListU.FindKey(FigureList,unpFigure.Kcy,EIFound);

ifElFoundthen begin

KeyListU.Retrieve(FigureList.trnpFigure);

tOrigSec := tOrig.Data.SecClass;

tDestSec := tDest.Data.SecClass;

tFIow := unpFigure.Data.InfoFlowTypc;

tOrigFigType := tOrig.Data.FigureT}-pe;

tDestFigType := tDcst.Data.FigureTypc:

{Determine possible now typesaccording to security ckasses}

{According to objecttypes}

if «tOrigFigTypc= tDestFigTypc) {same object}

and

(tOrigFigTypc = AProc» then PosFlows := '

else begin {Testaccording to security classes}

iftOrigSec = '. 'then begin

134

iftDestScc = '. 'then PosFlows:= 'All 'else

if tDcstScc = 'V 'then PosFlows:= 'A ' else

iftDestScc = 'C 'then PosFlows:= 'A 'else

iftDestScc = 'S 'then PosFlows := 'A 'else

iftDestSec = 'TS 'then PosFlows := 'A '.

end else

iftOrigSec = 'V 'then begin

iftDestSec = '. 'then PosFlows:= 'RlUID' else

iftDestSec = 'U 'then PosFlows := 'All' else

iftDcstSec = 'C 'then PosFlows:= 'A 'else

iftDestSec = 'S 'then PosFlows:= 'A 'else

iftDestSec = 'TS 'then PosFlows:= 'A ';

end else

if tOrigScc = 'C ' then begin

iftDestSec = '. 'then PosFlows:= 'RlUID'else

iftDestSec = 'V 'then PosFlows:= 'RlUID' else

iftDestSec = 'C 'then PosFlows:= 'All' else

iftDestSec = 'S 'then PosFlows:= 'A 'else

iftDestSec = 'TS 'then PosFJows := 'A ';

end else

iftOrigSec ='S ' then begin

iftDestSec = '. 'then PosFlows:= 'RlUID' else

if tDestSec = 'V 'then PosFlows := 'RlUID' else

iftDestSec = 'C 'then PosFlows:= 'RlUID' else

if tDestSec = 'S 'then PosFlows:= 'All 'else

iftDestSec ='TS 'then PosFlows := 'A ,.

end else

if tOrigSec = 'TS 'then begin

if tOrigFigTypc = ASan then PosFJows := 'All 'else {betweenSanitiscr and other object}

iftDestSec =', 'then PosFlows:= 'RlUID' else

iftDestSec = 'V 'then PosFlows := 'RlUID' else

if tDcstSec = 'C 'then PosFlows := 'RlUID' else

if tDcstScc = 'S ' then PosFlows := 'RlUID' else

iftDestScc = 'TS 'then PosFlows := 'All ';

end:

end; {else}

{Determine valid inforrnatio flow between objects}

135

Result := CompareFlows(tFlow,PosFlows):

if Result <> true then begin

TString := ";

ChFlow := true;

ifl"Flow = 'W 'then begin

TString :=

'Please expand the flow type of the arrow connecting ['+tOrig.Key+'] and ['+tDcst.Kcy+'] to U or D or A.':

ErrorHandler.GDisplayMessage(MInfo,O,O, TString,3,false,O,Windo\\OptionsChoicc);

break;

end

else

ifTFIow ='All 'then begin

TString :=

'Please specify the flow type of the arrow connecting ['+tOrig.Kcy+'] and ['+tDcst.Kcy+'J. ';

ErrorHandler.GDisplayMessage(MInfo,O,O, TString,3,false,O,WindowOptionsChoicc):

break;

end

else

if1Flow ='A ' then begin

TString :=

'Illegal Append action between ['+tOrig.Key+') and ('+tDcst.Kcy+'). Please cheek.';

ErrorHandler.GDisplayMessage(Mlnfo,O,O, TString,3,false,O,WindowOptionsChoicc);

break;

end

else

ifTFIow = 'U ' then begin

,TString :=

'lllegal Update action between ['+tOrig.Kcy+'J and ['+tDest.Kcy+'). Please cheek.':

ErrorHandler.GDisplayMcssage(MInfo.O.O. TString.3.false,O,WindonOptionsChoicc):

break;

end

else

if (TF1ow = 'R ') then begin

if (tOrigFigT}pc<>ADS) then begin

TString := 'Invalid now typcl Flow type must be '+PosFlo\\s+'. Continue?';

ErrorHandler.GDisplayMcssage(MErrorChoicc.O.O, TString.Lfalsc.O.Window OpuonsChoicc):

break;

end

136

else

ChFlow := false:

end;

(*

else begin

TString := 'Error.';

ErrorHandler.GDisplayMcssage(MError,O,O, TString.I ,false,O,WindonOplionsChoicc):

end;

*)

end

Else begin {test for special cases}

if (TFlow='R ') and

nOl«tOrig.Key[I] in ['D','E'])or

«tOrig.Key[I] ='P') and (tDest.Key[I]='E'))) then begin

TString:= 'Wrong Read direction!';

ChFlow := true;

ErrorHandler.GDisplayMesSagc(MError,0,0, TString.I .false.u,WindonOplionsChoicc):

break;

end; {if}

end {Else}

end

else begin

beep;

exit;

end;

end; {if}

end; {for}

if Result <> true then

break:

end; {for}

end: {TestForCorrectlnfoFlow}

function ValidSecClasscs(tmpOrig.lmpDcsl: Kcy'Iypc): boolean:

var tmppos, {In original Orig and Dcst sets]

SvdPos: word:

tEIFound: boolean:

tmpOrigFig.

137

tmpDestFig: StdElemcnt;

tNumEntities: word;

begin

ValidSecClasses := false:

tNumEntities := KeyLislU.Size(FigureLisl):

SvdPos:= KeyListU.CurPos(FigureList);

{Get securityclass of orig entity}

tElFound := false;

KeyListU.FindKey(FigurcList,tmpOrig,tElFound);

ifTELFound then begin

KeyListU.Retrieve(FigureList.tmpOrigFig);

end

else

beep;

{Get securityclass of dest entity}

tElFound ;= false;

KeyListU.FindKey(FigureList,tmpDest.tElFound);

ifTELFound then begin

KeyListU.Retrieve(FigureList.tmpDestFig);

end

else

beep;

if (tmpDestFig.Data.SecClass {Dcst} >=

tmpOrigFig.Data.SecClass {Orig})OR

(tmpOrigFig.Key(l) = 'S') {flow between TS Sanitiscrand other

object} then

ValidSecClasses := true

else begin

end;

KeyListU.Findith(FigureList.SvdPos):

end: {ValidSccClasses}

function PairExists(tmpOrig.tmpDest: Kcy'Iypc): boolean;

var tmppos,

SvdPosO,

138

SvdPosD: word;

tKcyFound: boolean;

tmpOrig2,

tmpDest2: KeyType;

tNumEntities: word;

begin

PairExists := false;

tNumEntities := KeyListU.KSize(Orig);

SvdPosO:= KeyListU.KCurPos(Orig);

SvdPosD := KeyListU.KCurPos(Dest);

tKeyFound:= false;

for ~ppos:= I to tNumEntitiesdo begin

KeyListU.KFindith(Orig.tmppos);

KeyListU.KRetrieve(Orig.tmpOrig2);

KeyListU.KFindith(Dest.tmppos);.

KeyListU.KRetrieve(Dest.tmpDest2);

if (tmpOrig2= tmpOrig) and (tmpDest2 = tmpDcst)then begin

PairExists := true;

break;

end;

end;

KeyListU.KFindith(Orig.SvdPosO);

KeyListU.KFindith(Dest.SvdPosD);

end; {PairExists}

function RPairExisls(lmpOrig.tmpDest: KcyTypc): boolean:

var tmppos,

SvdPos: word:

tKcyFound: boolean;

tmpOrig2.

tmpDcst2: Kcy'Iypc;

tNumEnlitics: word:

begin

RPairExists := false:

139

tNumEntilies:= KeyLislU.KSize(R_Orig);

SvdPos := KeyLislU.KCurPos(R_Orig);

tKeyFound := false;

for lmppos:= I to lNumEntilies do begin

KeyLislU.KFindith(R_Orig,lmppos);

KeyLislU.KRelrieve(R_Orig,lmpOrig2);

KeyLislU.KFindith(R_Dest.tmppos);

KeyLislU.KRelrieve(R_Desl,lmpDes12);
.'

if (lmpOrig2 = lmpOrig) and (lmpDest2= lmpDesl) then begin

RPairExists := true;

break;

end;

end;

KeyLislU.KFindith(R_Orig.SvdPos);

~eyLislU.KFindith(R_Dest.Svdl'os);

KeyListU.KFindith(R_FlowTypeList,SvdPos);

end; {RPairExists}

function SPairExists(lmpOrig,lmpDest KeyType): boolean;

var tmppos, {In Sec Revised sets}

SvdPos: word;

tKeyFound: boolean;

lmpOrig2,

lmpDesl2: KeyType;

tNumEnlitics: word:

tResel~ount Integer;

begin

SPairExists := false:

lNumEntities:= KeyLislU.KSizc(SR_Orig):

SvdPos:= KeyLislU.KCurPos(SR_Orig):

tKeyFound := false;

for lmppos:= I to lNumEnlilies do begin

KeyLislU.KFindilh(SR_Orig.tmppos);

140

KeyListU.KFindith(SR_Dest,tmppos);

KeyListU.KRetrieve(SR_Orig,tmpOrig2);

KeyListU.KRetrieve(SR_Dest.tmplrestz);

if (tmpOrig= tmpOrig2) and (tmpDest = tmpDest2) then begin

SPairExists:= true;

break;

end;

end; {SPairExists}

KeyListU.KFindith(SR_Orig,SvdPos);

KeyListU.KFindith(SR_Dest,SvdPos);

KeyListU.KFindith(SR_FlowTypeList,SvdPos);

end; {SPairExists}

function FlowTypeBetweenObjcets(tOrigKey,tDestKey: Keytype): String5;

var TPos: word;

TString: String5;

TCount: byte;

tFigure: StdElement;

tLoop : byte;

FlowFound: boolean;

begin

TString := 1 I.

FlowFound := false;

{savecurrent position}

TPos:= KeyListU.CurPos(FigureList);

TSize := KeyListU.Size(FigureList);

{find Dest}

TCount:= 1;

repeat

KeyListU.Findith(FigureList.tCount):

KeyListU.Rctricve(FigureList.tFigurc):

if tFigure.Key(I) = 'F' then begin

{Flowfound. Test children and parents}

for TLoop := I to MaxChildren do

141

iftFigure.Data.ChildrenElements[TLoop) = tDestKey then begin

FlowFound := true;

T'String :> tFigure.Data.lnfoFlowTypc;

break;

end;

ifFlowFound then break;

end; {if}

inc(tCount);

until tCount> TSize;

Ifnot Flowfound then

tString := '0 ';

{return positionto original}

KeyListU.Findith(FigureList,TPos);

FlowTypeBetweenObjects := TString;

end; {FlowTypcBetweenObjects}

function CompFlowTypeBelweenObjects(Obj I,Obj2,Obj3: KcyType): StringS;

var TPos: word;

FlowTypel,

FlowType2,

FlowT):pe3: StringS;

TCount:byte;

tFigure: StdElement;

tLoopl,TI..oop2 : byte;

FlowT~'pel_Founcl

FlowType2_Found: boolean;

TRPos : word;

tOrig,tDcst: Keyfype;

begin

FlowType3 := ' ';

FlowTypcl_Found := false:

FlowTypc2_Found := false:

{savecurrent position}

TPos := KeyListU.CurPos(FigurcList):

TRPOS := KcyListU.KCurPos({R_Orig}R_FlowTypcList):

142

TSize := KeyListU.Size(FigureList);

{find FlowTypel between Objl and Obj2}

TCount:= 1;

repeat

KeyListU.Findith(FigureList,tCount);

KeyListU.Retrieve(FigureList,lFigure);

iflFigure.Key[l] = 'F then begin

{Flow found. Test children and parents}

ifnot(FlowTypel_Found) then begin

for TLoop1 ;= I to MaxChildren do

if (lFigure.Data.ParentElements[TLoopI] = ObjI)

and (lFigure.Data.ChildrenElements[TLoopl] =Obj2) then begin

FlowTypel ;= lFigure.Data.InfoFlowType~

FlowTypel_Found:= true;

break;

end

else

if lFigure.Data.ParentElements[TLoopI] == " then break;

end;tFlovVrypel_Found?}

ifnot(FlowType2_Found) then begin

for TLoop2 ;== I to MaxChildren do

if (lFigure.Data.ParentElements[TLoop2) = Obj2)

and (tFigure.Data.ChildrenElements[TLoop2] == Obj3) then begin

FlowType2 ;= lFigure.Data.lnfoFJowType;

FlowTypc2_Found;= true;

break;

end

else

iftFigure.Data.ParentElements[TLoop2] ::: " then break:

end; {FJowType2_Found}

if FlowType I_Found and FlowType2_Found then break:

end; {if}

inc(tCounl):

if (tCount> TSizc) and not(FlowTypel]ound) then begin {Find compound

access type in

R_FlowTypcList}

143

for Tl.oopl := 1 to KeyListV.KSize(R]lowTypcList) do begin

{Get Set in RevisedMatrix}
I

KeyListV.KFindith(R_Orig,TLoopl); KeyListV.KRetrieve(R_Orig,tOrig);

KeyListV.KFindith(R_Dest,TLoop1); KeyListV. KRetrieve(R_Dcst.tlfcst):

KeyListV.KFindith(R_FlowTypcList,TLoop I);

if (tOrig =Objl) and (tOest = Obj2) then begin

KqListU.KRetrieve(R_FlowTypcList,FlowTypcl);

ifFlowTypel = I. 'then begin

FlowTypel_Found :=false;

beep;

break;

end

else begin

FlowTypel_Found := true;

break;

end;

end;

end; {for}

end; {find compoundaccess type in R_FlowTypeList}

until (FlowTypel_Found) and (FlowType2_Found) or (tCount > TSize);

lfnot«(FlowTypel_Found) and (FlowType2_Found» then begin

FlowType3 := '00 ';

end

else begin {Determine Compound Access type}

if(FlowTypel = 'R ') and (FlowTypc2 = 'R ') then FlowType3 := 'R I else

if(FlowTypel = 'R ') and (FlowTypc2 = 'A ') then FlowType3 := 'V I else

if (FlowTypel = 'R ') and (FlowTypc2 = 'V ') then FlowType3 := 'V I else

if (FlowTypel = 'A ') and (FtowType2 = 'R ') then FtowType3 := 'R I else

if (FlowTypel ='A ') and (FlowType2 = 'A ') then FlowTypc3 :='A I else

if (FlowTypel ='A ') and (FlowType2 = 'V') then F1owTypc3 := 'V I else

if (FlowTypel = 'U ') and (FlowType2 = 'R ') then FlowType3 := 'R ' else

if (FlowTypel = 'V') and (FlowTypcz = 'A ') then FlowType3 := 'R I else

if (FlowTypcl = 'V ') and (FlowType2 ='V ') then Flow Tvpc I := 'V '

ELSE

{if(F1owTypel = '. ') then}

FlowType3 := Flow'Iypcz;

144

end;

{return position to original}

KeyListU.Findith(FigureList,TPos);

KeyListlJ.KFindith(R_Orig,TRPos);

KeyListU.KFindith(R_Dest.TRPos);

KeyListU.KFindith(R]lowTypcList,TRPos);

CompFlowTypeBetweenObjects := FlowType3;

end; {CompFlowTypeBetweenObjccts}

procedure GetParents(tFigure: StdElement;

var Parents: KeyListU.RclationList;

var Result: Integer);

begin

end; {GetParents}

procedure GetChildren (tFigure: StdElement;

var Children: KeyListU.RelationList;

var Result: Integer);

begin

end; {GctChildren}

begin

end.

145

unit DFDDrawU;

INTERFACE

uses KeyListU;

{Automated Diagramming System; contains program code to

draw and redraw DFD objects from data in the linked list nodes}

procedureRedrawEntity(lFigure: StdElemcnt);

procedureDrawDFD;

procedureDrawRevisedDFD;

IMPLEMENTATION

uses AMouse,WinGlobU,GWinsU,DFDGlob,Graph,GToolsU,GFigurcs.

GDrawerU.

ErrorHan.

SecFuncU,

MathsU,

Crt. .'
MenullsU;

procedureRedrawEntity(lFigurc: StdElcmcnt);

begin

{Displaynew data}

SetWriteMode(NormalPut);

with tFigure do

caseData.FigureType of

AProc: begin

AProcess.Init(Data.x I,Data.yI.Data.xz.Data.y2.round(Data.Radius). Data. Feolor):

GMousc.Show(falsc); AProccss.DrawFigure:

AProccss.DisplayData(lFigure.falsc):

GMousc.Show(true);

AProcess.Done:

end;

ASan: begin

146

.'

ASanitizer.lnit(Data.x I,Data.y I,Data.x2,Data.y2,round(Data.Radiusj.Data.PColor);

GMousc.Show(falsc)~ ASanitizcr.DrawFigurc;

ASanitizer.DisplayData(tFigure,falsc);

GMouse.Show(true);

ASanitizer.Done;

end;

AFIow: begin

ADataFlow.Init(Data.x I ,Data.yI ,round(Data.Angle),round(Data.Radius),DFDGlob.FlowColor{Data.FColor}):

ADataFlow.SetLirnits(O,O,GetMaxX,GetMaxY);

GMouse.Show(faIse); ADataFlow.DrawFinaIFigure;

ADataFlow.DisplayData(tFigure,faIse);

GMouse.Show(tnJe);

ADataFlow.Done;

end;

AnEE: begin

AnExtEntity.Init(Data.x I,Data.y1,Data.x2,Data.y2,Data.FColor);
."

GMouse.Show(fa1se); AnExtEntity.DrawFigure;

AnExtEntity.DisplayData(tFigure,false);

GMousc.Show(tnJe);

AnE>.1Entity.Done;

end;

ADS : begin

ADataStore.lnit(Data.xl,Data.yl,Data.x2,Data.y2,Data.FColor);

GMousc.Show(falsc); ADataStore.DrawFigurc;

ADataStore.DisplayData(tFigure.falsc)~

GMousc.Show(true);

ADataStore.Donc~

end;

end~ {case}

end; {RcdrawEntity}

procedureDrawDFD;

var TLoop.ChildrenCount.

NumEntitics: Word:

TPos: word;

begin

GMousc.Show(falsc)~

147

ASolFH.SelLimits(O,O,GctMaxX.GctMaxY);

GTools.FilISquare(Pictx I+ I,Picty I+I.Pictxz-Ll'ictyz-I ,SolidFill,BColor.BColor):

StatusBar.lnit(I,GctMaxY-TcxtHeightCY')-5,GctMaxX-I,GctMaxY-l.15.7{MBColor},7{MBColor});

SetWritcMode(NormalPut)~

TPos := KeyListV.CurPos(FigureList);

NumEntities := KeyListU.Size(FigureList)~

KeyListV.Findith(FigureList, l)~

for TLoop := 1 to NumEntities do begin

KeyListV.Retrieve(FigurcList,Figure);

RedrawEntity(Figure);

KeyListV.FindNext(FigureList);

end;

{GMouse.SetPosition(GetMaxX div 2,GetMaxY div 2);}

GMouse.Sho"'~true)~

KcyListU.Findith(FigureList,TPos);

end; {DrawI?FD}

procedure TGetError(lOrigSec,tDestSec: StringS; var Message: string);

begin {TS S C V}

if «lOrigScc[1] in IT,'S','C'» and (tDcstScclll == 'V'» OR

«lOrigSec[l) in [T,'S'» and (tDcstSecII] in I'U','C))) OR

«tOrigSecll] in ['1"» and (tDestSecll] in I'U','C,'S'))) then

Message :== 'Problem: DOWNFLOW OF INFORMATION, ,

else

if«tOrigSec(l] in I'V')) and (tDeslScc(l] in [T,'S','C))) then

Message :== 'Problem: ILLEGAL FLOW ACTION. '

else

Message :== 'Unknown problem. ':

end; {TGetError}

procedure CreatcSanitizerObjcct(\'ar tOrig.tDcst: Stdlilement);

var tSmidx.tSmidy: Integer; {middle x and y of Sanitizer object}

tDmidx.tDmidy: Integer; {middle x and y of dcsti nation object}

tPos: word;

tlnitxl.tlnityl: Integer:

148

Result: Integer,

lDalaFlow: StdElement;

tCount byte;

tOCounl,lDCount: byte;

begin

lPos := KeyLislU.CurPos(FigurcList);

{define position (user)}

tlnitxl := PiClXl+(PiclX2-PiClXI) div 2;

tlnityl := PietY1+(pietY2-PictYI) div 2;

ASanitizer.lnit(tlnitxl-25,tlnily1-25,tlnitxl+25,tlnily1+25,15,ObjcctColor);

ASanitizer.DefineFigure(PictxI+I,PietyI+I,Pictx2-1,Piety2-I,Figure,I);

ASanitizer.Done;

{Get flow from TOrig. Make that flow= tOrig}

for tCounl := I to MaxChildren do begin

tOrig.Key := tOrig.Data.ChildrenElemenlS[ICounl);

KeyLiSlU.FindKey(FigureList,tOrig.Key,KeyFound);

ifnot Keyfound then break

else begin

KeyLiSlU.Retricve(FigureList,IOrig);

end;

{Flow's child =Sanitizer}

IOrig:Data.ChildrenElemenlS[I) := Figure.Key;

{}

{Sanitizer's parent = Flow Key}

Figure.Data.Parentlilements]I) := tOrig.Key:

KeyListU.FindKey(FigureLisLFigurc.Key.KeyFound):

if not KeyFoundthen break

else begin

{Clear infoflowtype}

lDcst.Data.lnfoFlowTypc := IOrig.Dala.InfoFlowTypc:

IOrig.Data.lnfoFlowTypc:= '. '.

Figurc.Data.lnfoFlowTypc := '. ,.

KeyListU.Updalc(Figurelist.Figurc):

149

end;

{}

{Dest's parent = Sanitizer}

for tDCount := I to MaxParents do begin

for tOCount := I to MaxChildren do begin

iftDest.Data.ParentElernents[tDCount] = tOrig.Key then begin

tDest.Data.ParentElernents[tDCount] := ";

break;

end;

end; {fortOCounr}

iftDeslData.ParentElernents[tDCount] =" then break;

end; {for tDCount}

KeyListU.FindKcy(FigureList.,tDcsl.Kcy,KcyFound);

if not KcyFound then break

else

KeyListU. Update(FigureList.,tDest);

tOrig.Data.x2 ;= Figure.Data.xl;

tSrnidx:= (Figure.Data.xI+Figure.Data.x2) div 2;

tSrnidY := (Figure.Data.yI+Figurc.Data.y2) div 2;

tDMidx := (tDcst.Data.xI+tDcst.Data.x2) div 2;

tDMidy:= (tDest.Data.yl+tDest.Data.y2) div 2;

if tOrig.Data.x I < Figurc.Data.x I then begin {Orig links van SP}

tOrig.Data.x2 := Figure.Data.x I:

·tOrig.Data.y2 := tSrnidY:

end

else begin

tOrig.Data.x2 := tSrnidx:

tOrig.Data.y2 := Figure.Data.y2:

end;

with tOrig.Data do

MathsU.CalcRadiusAndAngle(x l.y l.x2.y2.R.adius.Angle):

150

KeyLislU.FindKcy(FigureLisl,tOrig.Key,KeyFound);

if KeyFound then

KeyLislU.Updatetf'igurel.ist,lOrig);

KeyLislU.Findith(FigureLisl,Size(FigureLisl»;

{Add new arrow from Sanitizer to tDest}

iftDest.Data.xl>Figure.Data.x2 then begin {calculate tDest's (arrow's) Radius and Angle}

MathsU.CalcRadiusAndAngle(Figure.Data.x2,tSmidY,tDcsl.Data.xl,tDmidy.

tDeslData.Radius,tDesl.Data.Anglc);

ADataFlow.lnit(Figure.Data.x2,tSmidy,round(tDcslData.Anglc).round(lDcslData.Radius),ObjcctColor);

end

else begin

MathsU.CalcRadiusAndAngle(tSmidx,Figurc.Data.y l,tDmidx,tDcsl.Data.y2,

tDest.Data.Radius,tDest.Data.Anglc);

ADataFlow.Init(tSmidx,Figure.Data.yl,round(tDest.Data.Anglc),round(tDcst.Data.Radius).ObjcctColor);

end;

ADataFlow.AddFigRecToList(tDest,Resull,false);

ifResult =0 {OK} then begin {Draw final arrow, wait for

click release, etc. before

starting with nextarrow

definition}

{Draw final arrow}

GMouse.Show(false);

SetWriteMode(NormalPut);

ADataFlow.DrawFinalFigure;

ADataFlow.DisplayData(Figurc.falsc);

Figure.Data.ChildrenElcments(I) := tDcst.Kcy;

KeyLislU.FindKey(FigureLisLFigure.Kcy.KcyFound);

if not KeyFound then break

else

KcyListU. Updateif'igurcl.ist.Figurc):

end;

ADataFlow.Donc;

end; {for (Count}

KcyListU.Findith(FigurcList,lPos);

151

SetWriteMode(XORPut);

GMousc.Show(true);

end; {CrcateSanitizerObject}

procedureDrawRevisedDFD;

var TLoop,ChildrenCount.

NumIndFIows, {Numerof indirectflows = # in R_Orig and R_Dest}

NumFlows: Word;

tKeyOrig.

tKeyDest: KeyType;

tFigureO,

tFigureD: StdElement;

EFound:boolean;

tmpAngle,tmpRadius: real;

tOrigSec,tDestSec: StringS:

txl,tyl, {IXI en tyl =middelvan Orig figuurse xl en x2, en yl en y2}

tx2,ty2 {tx2 en ty2=middelvan Destfiguurse xl en x2, en yl en y2}

: Integer;

Confirm:Boolean;

Neighbours: Boolean;

begin

GMouse.Show(false);

ASoIFH.SctLimits(O,O,GetMaxX,GetMaxY);

NumlndFIows:= KcyListU.KSize(R_Orig);

if NumlndFIows = 0 then begin

beep:

ErrorHandler.GDisplayMessagc(MError.O.O.'DFD

yet!'.I.faIsc.O.Windo\\QptionsChoicc);

exit;

end:

for TLoop := I to NumlndFlows do begin

not processed

"

Neighbours := false;

KeyLislU.KFindith(R_Orig,TLoop);

KeyLislU.KRetrieve(R_Orig.tKeyOrig);

KeyLislU.KFindith(R_Dest,TLoop);

KeyListU.KRetrieve(R_Dest,tKeyDest);

{Checkfor existenceof combination (tKcyParcnt,tKeyChild)

ifnot(SecFuneU.sPairExists(tKeyOrig.tKeyDest» then begin {draw in red}

KeyListU.FindKey(FigureList,tKeyOrig.EFound);

KeyListU.Retrieve(FigureList,tFlgureO);

KeyListU.FindKey(FigureList,tKcyDest,EFound);

KeyListU.Retrieve(FigureList,tFigureD);

txl := (tFigureO.Dataxl + tFigureO.Datax2) div 2;

tyl := (tFigureO.Datayl + tFigureQ..Data.y2) div 2;

tx2 := (tFigureD.Dataxl + tFigureD.Datax2) div 2;

ty2 :=(~gureD.Datayl +·tFigureD.Data.y2) div 2;
.'

{DrawsRed Arrow}

MathsU.CaleRadiusAndAngle(txl.tyl.L'<2.ty2.tmpRadius.unpAngle);

ADataFlow.Init(txl.tyl.round(tmpAngle).round(lmpRadius).12{Data.FColor});

ADataFlow.SetLimits(O.O.GetMaxX.GetMaxy);

SetWrileMode(NormalPul);

GMouse.Show(false);

ADataFlow.DrawFinalFigure:

tOrigSec:= tFigureO.Data.SccClass;

tDestSec:= tFigureD.Data.SccClass;

TGetError(lOrigSec,tDestSec.tString);

DFDGlob.StripTrailspace(tOrigScc);

DFDGlob.StripTrailspacc(tDcstScc);

tString := tString + 'from'+tOrigSec+' object l'+tFigurcO.Kcy+') to '+tDcstScc+

, object ['+tFigureD.Kcy+') ';

if (tFigurcO.Data.FigureTypc = AProc) and

(tFigureD.Data.FigureTypc =AProc) then

153

tString := tString+ 'DUE to director indirect information flow between two PROCESS objects.'

else

tString := tString+ 'DUE to an Append, Updateor Readaction. ';

ifSecFuncU.PairExists(tFigureO.Key,tFigureD.Key) then {objekte r langs mekaar} begin

Neighbours := true;

tString := tString+ ' SUGGESTION: Insert a Sanitizerobject';

end;

ErrorHandler.GDispIayMessage(MInfo,O,O,tString,5,false,O,WindowOptionsChoiee);

GMoUse.Show(true);

{wait for click release}

repeat

GMouse.GetPosition(ButStatus,mxl,myl);

until ButStatus=O;

{erases red arrow}

GMouse.ShOw(~); .

SetColor(DFDGlob.BColor);

ADataFIow.DrawFinalFigure;

ifNeighbours then begin

Confirm:= MePuTools.GetConfirm ('Query','Do you want to inserta SanitizerobjectNOW?',

14,2);

case Confirmof

true: CrcateSanitizerObject(tFigureO,tFigurcD);

false: begin

tString := 'Suggestion: Changesecurityclass of';

tString:= tString + tFigureO.Key +' to '+tFigurcD.Data.SccClass+', or ':

tString := tString + tFigureD.Key + ' to '+tFigureO.Data.SccClass+'.':

GMouse.Show(false);

ErrorHandicr.GDisplayMessage(Mlnfo.O.O.tString.4,falsc.O,Windo\\QptionsChoice):

GMouse.Show(true):

end: {false}

cnd: {case}

GMouse.Show(true);

end; {if}

ADataAow.Done;

154

end; {if}

end; {for}

DrawDFD;

end; {DrawRevisedDFD}

begin

end. {DFDDrawU}

.'

155

Unit LListU; {Contains all the code to manage the double linked list}

INTERFACE

Const

None =";

-Type

{recordtype to be stored}

ListTypcs=(StringVal,Name_Cost);

ItemRectype=record

caseKind:~Types of

Name_Cost: (Name: string(20);Cost : double);

StringVal: (Strltem: String);

end;

{List}

ListPtr =AltemList;

ltemList =Record

ItemRec: ltemRectype;
.'.
Next : ListPtr;

End;

TableClass=OBJECT

{Pointers}

Temp, Before,After,NodeOut: ListPtr:

NewStr,BefStr,AftStr: string; {Strings for testing where

to put new item}

ltemList : ListPtr,

ItcmCount: Word;

procedure Init(fKind: List'lypes);

procedure Donc;

Procedure Con\,crtString(Var Convcrtlnput: string);

Procedure ListALL;

156

Procedure AddEntry(ItemRec: ItemRectype);

Procedure Edit(ItemRec : ItemRectype);

Procedure DeleteEntry(ItemRec: ItemRecType);

Procedure GetNewTempValues(ItemRec: ItemRecType);

End;

Var

ItemTable

ltemRec

EmptyRec

: TableClass;

: ltemRecType;

: ItemRecType;

IMPLEMENrATION

uses DfDGlob;

procedure TableClassoInit(TKind: ListTypes);

begin

{skep lee node}

New(ltemTable.ItemLut);

New(femp);
.0

0

case TKindof

Name_Cost: begin

ltemListl\.ItemRec.Name := None;

ItemListl\.ItemRec.Cost := 0.00;

Temp-".ItemRec.Name := None;

Temp-".ItemRec.Cost := 0.00;

end;

StringVal: begin

Iteml.iste.Itemkec.Strltem := None;

Temp-".ItemRec.StrItcm := None;

end;

end; {case}

ItemList".Next := Temp;

ItemCount:= 0;

Tempe.Next := nil;

o'

157

.'

end; {Inil}

procedure TableClass.Done;

var Pte: ListPlr,

begin

Ptr:= Iteml.iste.Next;

while Ptr".Next<> nil do

begin

Dispose(Ptr)~

Ptr := Pte".N~

end;

end; {Done}

ProcedureTableClass.ConvertString(Var ConvertInput: String);

Var

TempStr : String,

Len : Integer;

I : Integer;

Begin

TempStr := ConvertInput;

Len := Length(TempStr)~

Forl:= 1 to Len Do

Begin

Convertlnput(l] := Upcase(TempStr[I»;

En~

End;

Procedure TableClass.ListALL;

Var

Ptr : ListPtr;

i : byte;

Begin

Writeln:

If ItemList".Next = NILThen

Writeln{' ItemList is Empty ')

Else'

Begin

158

Writeln(' List of Items');

Writeln;

End;

Pte := Iteml.isto.Next;

case ftr/\.ItemRec.Kind of

Name_Cost: begin

While Pte<> NIL Do

Begin

WriteInC Name='.Ptr"JtemRec.Name:10);

WriteInC Cost=',ftr/\.ItemR.ec.Cost:S:2);

Ptr := Ptr".Next;

End;

.end;

StringVal: begin

, While Ptr <> NIL Do

. Begin.

WriteInC StrItem='.Ptr".ItemR.ec.StrItem);

Ptr :=~.Next;

End;

end; •
end; {case}

End;

procedure TableClass.GetNewTempValues(ltemRec: ItemRecTypc);

begin

case ItemRec.Kind of

Name_Cost: begin

ItemTable.NewStr := ItemRec.Name;

ifItemTable.After <> nil then

ItemTable.AftStr := ltemTable.Afterh.ltemRcc.Name

. else

ItemTable.AftStr := ";

if(ItemTable.Bcforc <> nil) and

(ltemTable.BcforcA.Next <> nil) then

ItemTable.BcfStr := ltemTable.Bcforc".Nexr".ltemRcc.Name

159

else

ItemTable.BefStr := ";

end; {Name_Cost}

StringVal: begin

. ItemTable.NewStr := ItemRec.StrItem;

ifItemTable.After <> nil then

ItemTable.A:ftStr := ItemTable.After.ItemRec.StrItem

else

ltemTable.Aftstr := It;

if (IteniTable.Before <> nil) and
.'.

. (ItemTable.Before".Next <> nil) then

ltemTable.BefStr := ItemTable.Before".NextJ\ItemRec.StrItem

(else-

ltemTable.BefStr := ";

end; ,

eDd;{case}

end; {GetNewTempValues}

l,;i _.'.'>. .• ",' •

~~·~a6leC~.AddEntry(ltemRec : I~emRectype);
Var

Duplicates iBoolean;

i : byte;
Begin

{ConvertString(Name);}

New(femp);

ItemTable.After := Iteml.ist;

ItemTable.Before := Iteml.ist;

caseIternRec.Kind of

Name_Cost: begin

Tempo.Itemkec.Name := ItemRec.Name;

Temp".ItemRec.Cost := ItemRec.Cost;

end;

StringVal:begin

Tempo.ltemkec.Strltem := ItcmRec.StrItem;

end;

end; {case}

160

Duplicates := False;

GetNewTempValues(IlemRcc); {give values 10 lemporary variables}

While (llemTable.After <> nil) and (llemTable.NewSlr >= llemTable.AftSlr) and

(llemTable.After".Next <> Nil) And (Not Duplicates) Do

Begin

Ifnol(IlemTable.Before = nil) then

begin

if(llemTable.Before".Next <> nil)and

(llemTable.BefStr <> ltemTable.NewStr) Then

Begin

llemTable.Before := llemTable.After,

IlemTabliAftet := llemTable.~.Next;

GetNewTempValues(llemRec);

End

ElseDuplicates :=True;

end {IlemTable.Before <> nil}

else

break;

End;

IF (ltemTable.After <> nil) and (ItcmTablc.NcwSlr < ItcmTablc.AftSlr) and

(IlemTable.Before".Next <> nil) and (ltem'Fable.BerStr <> ItcmTable.NewSlr) Then

Begin ~

IteinTable.Before".Ne.'1 := Temp;

Tempo.Next := ItemTable.After;

GctNewTempValucs(ItcmRec);

End

Else

Begin {nuwerckordaan cindcvan Iys}

(*

if (ItcmTablc.Bcfore <> nil) then

begin

if(llcmTable.Beforc".NcXl <> nil) and

(llcmTable.Bef'Slr <> ltcmTable.NewSlr) Then

/

161

I

Begin*)

Itemf'able.Aftere.Next := Temp;

Tempe.Next := Nil; .

GetNewTempValues(ltemRec);

(*

End;

end; {ltemTable.Before <> nil}*)

End;

ifnotDuplicatesthen inc(ltemCount)

else beep;

End;

. .
. Procedure TableClasS.Edit(ItemRec : ltemRectype);

Var

Found : Boolean;

Begin

{Cotivertstring(Name);l. .
{VERANoERproc@~omallevelde teveranderl}
Fo~;:~~aise;-.' '?:.:':~" ...-

ltemTable.Before :,;, ItemList;

GetNewTempValu~ItemRec);

While (NOTFound) AND(ltemTable.Before".Next <> Nil) DO

If ltemTable.BefStr =ltemTable.NewStr Then

Begin

Found:=:rrue;

case ItemRec.Kind of

Name_Cost: begin

{Writeln(' Found',ItemRcc.Name);}

ltemTable.Before".Next".ItemRec.Name := ltemRec.Name; ­

end;

StringVal: begin

{Writeln(' Found',ItcmRec.StrIlem)J

ltemTable.Before".Next".ItemRcc.StrItem := Itemkec.Strltem:

end;

end; {case}

End

162

Else

ItemTable.Before:= Item'Iable.Beforeo.Ncxt;

IF NOT FoundThen beep;{Writeln('NOT IN ItemList II!!');}

End;

ProcedureTableClass.DcleteEntIy(ItemRec: ItemRecType);

Var

Found : Boolean;

Begin

{ConvertString(Name);} .

Found := False;

ltemTable.Before := Iteml.ist;

GetNewTempValues(ltemRec);

While (NOTFound)AND (ltemTable.Before".Next <> Nil) DO

IfItemTable.BefStr =ItemTable.NewstrThen

Begin .:",

Found :=True;

Nod.eOut:= ItemTable.BeforC"'.Next;

ItemTable.Before".Next := ItemTable.Before".Next"'.Next;

DisposCcNodeOut);

dec(ltemCount};

End

Else

ItemTable.Before := ItemTable.Before".Next;

IF NOT FoundThen Beep;{Writeln(' NOTIN ItemList I!!!'):}

End;

BEGIN

END. {Unit LListU}

163

Annexure C

List ofAbbreviations

Following is a listofabbreviations usedoften in this dissertation:

AMAC

ASGE

~ASSDM

BDSS .'

CCfA

CRAMM

DAC

Dataflow

Data Store

DBMSs

DFD

DFDSEC

EASGE

ERX

Lower-CASE

MLS

MMI

OM»

00

RAD

RDM

SSADM-CRAMM

Adapted Mandatory Access Control

Automated Software.Generation Environment

Automated Secure System Development Methodology

Bayesian Decision Support System ..

UK Government CentralComputer andTelecommunications

Agency. :

ceTA's RiskAn.alYS~s ~dManagement Methodology
. ~ ..' ,

DiscretionaryAccessControf
' ..

Flowofdata or Information between Objects on a DFD

Logicalfilethat may containdata

Database Management Systems

Data FlowDiagram

DFD Security (prototype discussed in thisdissertation)

Extended Automated SoftwareGeneration Environment

EntityRelationship eXpert

ProgramCodegenerationstage in software engineering

Multi-level Secure (Databases)

Man-Machine Interface

Object Modeler.

Object-Oriented

Rapid Application Development

Relational Data Modeler

CCTA's Structured Systems Analysis and Design Method,

interfacing withCRAMM

164

.',

Silverrun

Sanitiser

Upper-CASE

.'.

Silverrun CASE-tool

Top Secret Objecton DFD, inserted by DFDSEC. Similar to

Pemul's Security Object and Baskerville's Control Process.

Analysis and Design stages ofsotwareengineering

165

.'.

..
Annexure D

Article by Booysen, Kasselman and Eloff

166

Enforcing Information Security

during the development ofApplication Systems

HAS Booysen'

. A Kesselmen'

JHPBofF

Rarid Afrikaans University. PO Box 524.Aucklendpark, 2006. South Africa

Tel: +2711489-2842

EMail: .eloff@rkw.rau.ac.za

. Abstract

,/ '. J. •

Fax: +2711 489-2138

",'.'

This paper presents the research work undertaken to investigate the relevance of using an

automated approach to .include information security activities as part of application system
. . ':

develoPment [1]. The prototype presented (named DFDSEC) • expands user requirements ~y

intr~ducing security and integrity reqinrements to the system under design. DFDSEC
• ,0. •.•.~~_,~.;._:'. _;_._..•:: .. ~ • • "

specifically utilizes data flow diagrams as a mechanism of representing user requirements:

Furthermore. data flow diagrams are used as input in the process of automatically analysing

the secure movement of data within an application system.

Keywords: CASE tools. information flow. information security.

Enforcing Information Security durinq the development ofApplication Systems

1. Introduction

In the 1970s, structured methods for system analysis and design evolvedas a possible

solution to the software crisis. Structured methods employ graphical notations, for .
. .

example Entity relationship and Data flow diagrams, to focus on parts of the system

" development life cycle~ During the mid-1980s Computer Aided Software Engineering

(CASE) tooisemergedfrom structured methods as an integrated support environment

.. for software developers. CASE tools were defined as:

"the use of a tool which brings relief during any stage of the system development life"

cycle [2]". Thi~.definition was u~:d synonymously with support tools (compilers, code

generators)for system analysis ~n£i design. Consequently, CASE tools were defined

as:

"a tool which wJ1l generate code automatically from the design specifications. [3]" This

definition implies that there was .;:trtificial intelligence in a CASE tool. The user could

develop models and the'-CASE "tool would correct mistakes, because "the CASE tool is

intelligent". When it was recognised that all CASE users must have knowledge of

system development methods and methodologies before attempting to work with a

CASE tool, new definitions for CASE tools were formalised, namely:

"CASE technology is the automation of step-by-step methodologies for software and

system development [4]". This definition covers different stages of the software

development life cycle. These phases are integrated through a data dictionary

Booysen, Kasselman, Eloff 1

-.
Enforcing Information Security during the development of Application Systems

(repository) to share common information. As various CASE tools appeared to support

different phases of the system life cycle, the term upperjfront), middle, lower (back) and- - -

· integrated CASE were used to refer to these CASE tools.

_Probable the best way to define a CASE tool is -as a tool that assists its user in 'the. "

. ' .. " '.'"

accomplishment of a given task, by providing support for one or more of the activities

of the system life cycle. Eventually one or more of these activities will be automated.

When the idea of modelling [4] is appliedto system development, functions to be

, performed by the system are abstracted and depicted in a visual way using conventional
- ' '

diagramming techniques. ,Using a process-data approach, three types of di~grams are

used, to depict the functionality 'pf the system, namely a context diagram, entity... . . ~

relationship diagram and various types of data flow diagrams.
-,

Today CASE tools are used as a standard in system development to draw various data

modelfingdiagrams and to depict the movement of data throughout a system. However,

most of the mainstream C~'SE tools have a lack of security definition facilities. The

main reasons for this are [6]:

•

•

*

loss of performance of the final application with the addition of security features,

loss of flexibility because of restrictions and confinements on the target system's

behaviour, and

higher costs in system creation to account for analysis of the security

requirements, design and implementation of the security specifications, and

Booysen, Kasselman, Boff 2

Enforcing Information Security dUring the development ofApplication Systems

maintenance of security in the system.

. As a data flow diagram represents the end user's view of the application system the

best, it can also serve as input mechanism in analysing the logical movement of data

throughout a system. It would also be feasible to add security features to the

application system underdevelopment during "the high level design of the application

"system, i.e., when d~ra~ng and defining the various data flow diagrams.

This paper presents the research work undertaken to investigate the relevance of using
" "

an Automated SC)ftware Generati?l) Environment (ASGE) to include information s.ecurity

as part of application·systems~To avoid confusion, the term ASGE is used In this paper

to denote CASEidOls that SOPP9rt the entire life cycle.

. 2. Security within ASGE

Figure 1 presents an overview of the components of an generalised automated software
.:-. . _.. ",:..' .'..... :..-

generation environment These components form a set of dependent processes with

an external interface, the user, and an internal interface between the processes, the

. repository. The user requirements are taken as input and an application system is

provided as output. The scope of the components covers the phases of an integrated

CASE tool.

An automated software generation environment (ASGE) provides the analyst/designer

with facilities for drawing, describing and defining initial user requirements. After

Booysen, Kasselman, EJoff 3

EAR,DFD

Enforcing Information Security during the development ofApplication Systems

I
~

I, I
L-_~~...

I-y

- I.y

I. Y
-..

.......
ambiguities and platitudes have been removed'from initialuser requirements, the analyst

transforms written user requirements into visual representations. Entity relationship and

data flow diagrams are mainly used to present the end users view of the system in a

visual~. These diagrams are revi_sed~un~ttheuser is satisfied that his requirements

are met. The fmalversions of these diagrams are stored in an integrated form in a

central repository. The system definition as a whole is checked for consistency and

completeness, by using the repository to analyse the content of each diagram. After

consistency checks have been performed, database tables and code are generated,

before the live database is loaded. [4][7][8][9]

Various ASGE tools are available for automated software design, but none of these

Booysen, Kasselman, Eloff 4

Enforcing Information Security during the development ofApplication Systems

make any attempt to consider security and integrity as part of system development. As

a result, a need arises for an Extended Automated Software Generation Environment

(EASGE) which addresses security during the development of Application Systems.

Figure 2 presents an overviewof EASGE.

Rmse +
~~

L EAJt.DFD -..(t

~
•

04~ " ••

y,

t

The yellowpart in figure2 representsthe "traditional" development activities of an ASGE

(see figure 1). As mentioned an ASGE provides the analyst with facilities for drawing,

describing and defining user requirements by means of dataflow diagrams. After the

dataflow diagram has been analysed for completeness and consistency I the EASGE

expands on the standard user requirements, by introducing 5 security requirements,

Booysen, Kasselman, Eloff 5

..
Enforcing Information Security during the development ofApplicetion Systems

namely:

2.1. Detennine infonnation flow types: Objects are connected on a data flow diagram by

means of an arrow symbol. By studying the direction of the arrow symbol, EASGEcan

automatically distinguish whether the actiont>.~~n two Objects is a read or a Write

. . ., action. For example. if lnformation flows from a process to a data store, it can be

automaticallydet~ned that the flow type is a write action. Similarly. information flowing

",'from a data store to a process is a read action- .

.•A shortcoming of these flow actions is
..~ . Read

. that' only ~" '.f1ow· tYpes· are

.. A~d
. considered. namely read.and write. In _ ...

a-cOmmercial application system, one

Should be able to distJnguishbetween

read, write,append, update and delete

- ~ .'" .. . " . :-

Update

Delete'

--1--
--~O-

x·
Figure 3: Information flowtypes

actions. When inspecting the action

involved in an appendupdate and delete.action it is evident that these actions require
. . ,

.
a specific write action. For example, when appending information to a file, a complete

new record is added to the file, without reading any information. When a file is updated,

a read action is required to view the information before changes are made (write) to the

information. Similarly, a delete action requires a "blank" write to a file. Therefore it is

necessaryfor EASGE to prompt the analyst to indicate the specific "write" action that is

involved, i.e., delete, update or append. Figure 3 portrays the various arrow symbols that

can be used in EASGE to indicate the action that an Object performs.

Booysen, Kasselman, Boff 6

Enforcing Information Security during the development ofApplication Systems

pertorms.

2.2. Allocate security classes to o~jects: EASGE will assist the analyst in allocating a

security Class to each objeet(extemal entity, process, data store) on the data flow

diagram, based on "his assessment of the sensitivity level of the information.contained

in the object .The security class allocated to an object indicates the amount of

information contained in the' object that can be regarded sensitive. Opjects, for

example.can be classified as top secret" secret, confidential or unclassified.

2.3. Object Matrix: A data flow diagram portrays the direction of information flow in a

system. The direction of information flow shows actions (read, append etc) of certain

objects 'on otti~r objects. These actions can be usedto construct an Object Matrix. An

object matrix is a rectangular array in which objects from which information flows are

mapped onto objects towhlch information flows. The entry for a particular row and. , ,

column reflects the information f10wtype (read, append, update or delete) between the

corresponding objects. This kind of access where information flows directly between

objects, is referred to as binary access. Binary access only focuses on the operations

that cause information to flow between two neighbouring objects, linked to one another

by means of an arrow symbol. Thus, an object matrix contains both valid and invalid

binary flow actions between objects. For example, if a top secret object reads

information contained in a confidential object, the binary flow between the two objects

would be valid, but if a confidential object reads information from a top secret object, the

binary flow woud be invalid.

Booysen, Kasselman,Eloff 7

Enforcing Information Security during the development ofApplication Systems

Forexample, in figure 4,Objecte is

reading information contained in

ObjectA (indicated by the arrow

symbol pointing from ObjectA to'

:Objec:tA

Confidc::atiaI
ObjcctB

TopSeacl

objectc

i Read,

Objecta>.. This. is indicated by

. inserting Read in the.Object Matrix .

(table 1), at the inters~onof Row
Figure .4: .ExaInple data flowdiagram

Objec:tD

Top8ea'et

1. Column 2. The Append in table 1 (row 2, column 3) indicates that Objects is
~ - .• , .. -. '. -... '

, ;:.~;;o;. -.. '.. ' . ~. ~ .'; -. . ".

. appending informationto Objedo Similarly, the intersection of Row 3, Column 4, (Read)
. .., . ," '. . '. ~ .: ---

indicates that inforTnation:eontained inObjecte is read by Objedo-

Append

Read

T;;lble 1: Object·~atrix

2.4. Revised Object Matrix: As an Object Matrix only contains valid and invalid binary

information flows, it has no intelligence to detect a situation as: Object, 0 Object, 0

Objecfc OObjedo. to condude that there is an indirect information flow between ObjectA

andObjedo Therefore, it is also necessary to consider the flow type that exists between

objects not linked directly to each other, but rather indirectly by means of intermediate

objects. We refer to this kind of information flow as Compound Information

-,

Booysen, Kasselman, Eloff 8

Enforcing Information Security during the development ofApplication Systems

Flow. The objective of a revised object matrix is to summarise all valid as well as invalid

binary and compound information flows. Therefore the revised object matrix in table 2

includes all valid and invalid binary information flow (table 1) as well as valid and invalid

compound information flow, . for ourexample in figure 4.
. -,

The algo~m for determining valid and invalid binary and compound information flow

can be found in Annexure 'A '

',. ...

Table 2;- Revised Object Matnx

,

Colum·rj·;.1~ ':Cofu"mn2:, ts~!'[ffi~~~?41.:14:r::'~f:(i~91~¥~:,~~t~~S~~~~'~:~~;&,w _," ••• =r-: .:"7.:&.:L~ ;,.;.-,-:._~. ;.s;-~ • .'::i'

~~~~:·~f~i~~~
:=;~':"~k~~~:,r-~--:

':~~1f~~~z}~t~'rf~~~:;~.re·, ~~'~;!J{~~:'~.'?~~''::_~7
::a;,._......~~. '._'.':.4~~ _:~~~~~='~·i".;.~~~~.'.l:

I1ciVl~21 ~~ Read
"

. COmpound information flow Compound inform~tion flow
.~~.

"

AppendRow:2,;~;f~~ " Compound,information flow
.r.·-:;-," ~,""",..J!;,p.•• "

-, ia-,·~....-"t;r.l·

~,Rovla~!
.:

Read
'~,.__ ._-ft

R1;~~;O~
.' 'U:: .* •.-.i't . , .

Comparing the content of table 1 and table 2, it is evident that in table 1, the type of

binaryinforrriationflow be~eenobjectsisindicated as either read, append, update or

delete, whereas, in table ?' the compound information flow between objects is indicated

as "Compound information flow", From this it is evident that a problem arises as to

what the indirect flow action should be.

2.4.1. Compound information flow types

In determining the compound information flow type, the rationale of the "grant" right in

Booysen, Kasselman, £Ioff 9



Enforcing Infonnation Security during the development of Application Systems

the Take-Grant [10] model is used. The objective is to determine the "combined" flow

type that could exist between:

?

," .. ~: ApPend I ! _

;()bjedB . : .; ObjedC '

,--_...;J~
.'

ObjectA and Objecte. Object, and

Objecfo, and Obj~cta and Objecto in ': !ObjcctA

theexample presented in figure 5...

.In detemlining,the compound flow,':~

type that exist between ObjectA and

? ~ObjedD

"':

Objecfc it is necessary to substitute the append floW type between Objecte and Objecte

with,write:'This allows one to indicate a sp~,Cffic binary and compound flow type in terms

of the actuaractionthat occurs. As an update flOW requires iniorm~on to be read before.
--' " ..' .;'. . :":"".." .

'.- '.~ ; . ..'-.... -.".

it is written to 'another object, the update floW type can be substituted with read-write.
- '

The delete flow type is not considered, as, when infonnation is deleted, the information

no longer exists, therefore infonnation cannot be transferred to other objects. If only

some of the attributes are deleted, it would indicate that the remaining information can
., - .. ' . . ..

flow to-other objects. The prototype presented in this paper, doesn't consider this fine

granularity, but assume that all information contained in the object is deleted. However

it is recognised in this paper, that the concept of multilevel databases [11] will assist the

developer in enforcing security down to an attribute level.

Possible combinations of compound access between objects are depicted in table 3,

Booysen, Kasselman, Boft 10



Enforcing Infonnation Security during the development ofApplication Systems

IBetwlien6'bjec~''cincfObject;.z~~~~,;''IBetweeri' dbjec4~:and Objec~"-:I

Read . Append (l.e., Write)
.-

Read Update (Le., Read-Write)

Read - '~ .. ,' - - Read.
.--

Append (i.e., Write) Read

, Append (i.e•• Write) .', Append (i.e.,' Write)
,

Append (i.e:,.Write) Update.(i.e., Read-Write)
-:

uPdate (i.e., Read-'!ime):.. Read! '.
. '

. ' ..
,',

Read-Write) .Updat~~(Le:, Read-Write)Update '(i.e., .--.. .-

Update'-(i.e.,.Read-Write) Append (i.e., Write)
.

.. Table 3: Possible compound comblnatlons-'

- . . ..-.. .

..., .From table 3 it should be 'clear that a compound flow type can only exists between at
. "".;-' _. ". ~

le~s~ 3 objects. A 'comp~und'tiow type is determinecfby studying the compound flow

,between three objects. These objects need not to be neighbouring objects, i.e., linked

directly to one another by means of an arrow symbol.

A compound flow type is then determined between the first object and the third object,. . - , .
, .

using the outcome of the combinations as summarized in table 4.

Booyse~.Kasselman, ~off 11



Enforcing Infonnation Security during the development ofApplication Systems

Read

Read

Append (i.e.• Write) Update

Update (i.e;/Read-Write) _. ,"Update

Read

.:;: Append {i.e., Write),

';AppendO.e., Writ~) -:' .'

.: Append O.e., Write) ,

Read

Read

Append O.~:;\~Jrite)

Update,O.e;: Read-Write)

Read '0

" , ". ", "

, Read(i"
O' •• ' ...... ~ .. "

~pend

,Update

Update (l.e., Read-Write)

.:. " • .'r '

Update (i.e.i'Read~Write)"

Update (i.e., Read':'Write)

Read .\ " .Read '."

-Update

Update (i.e~.Read-Write) Append O.e.,Write) Read

Table 4: Compound access rules

The "newlt' formed information flow type is then used '~s 'the ,"first" flow type" jn':

determining the compound flow type between the next 2 objects. For example if the

flow type between Object, andObject, is Read. and the flow type between Object2 and

Object, is Append (write). we obtain a Read-Write flow type. Read-Write indicates an

update action. therefore the compound action between Object, and Object, is Update.
. .~ .

-,. -..
,'i·

The ~ow type between Object, and Object3, now serves as the first information flow

type. to determine the compound flow type between Object, and Object.. If the flow

type between Object, and Object, is Read, then the compound flow between Object,

and Object, would be Read. (The combination of Update - between Object, and Object,

- and Read between Object, and Object~).

Applying the compound flow types (table 4) to our example in figure 5, compound

information flow types (table 2), can now be substituted with information flow types

Booysen, Kasselman, Eloff 12



Enforcing Information Security durinq the development ofApplication Systems

(figure3). Thus, the Revised Object Matrix for our example (figure 5) is presented as

follows (table 5):

Append. Read

Read

2.5.· Security Revised Object ,Matrix

So far, EASGE has determined the information flow types (read, update, append or

delete) between objects on a dataflow diagram. Also, binary and compound information

flows were determined. However, these infonnation flows contain valid as well as

invalid information flows (see paragraph 2.3). From a security viewpoint, the question

arisesas to when the binary and compound information flows would be valid or invalid.

Valid binary andvalid compound information flows are determined by using the security

classes assigned to objects (see paragraph 2.2), and by applying access rules stating

when a flow is valid or invalid. In EASGE a Security Revised Object Matrix is used to

summarise all valid binary and valid compound information flows. Before determining

the valid flows for our example in figure 5, it is necessary to formulate rules (access

rules) stating when a binary or compound information flow would be valid, or invalid.

Booysen, Kasselman, Eloff 13



Enforcing Information Security during the development of Application Systems

2.5.1. Binary access rules

Binary access rules as defined in context of EASGE are as follows:

Read: Object, can only read information contained in Objecte• if the security class of

object, is equal or greater than the security class of Objecte.

Append: Object, can append information, to Objecte, if the security class of object, is

equal or smaller than the security class of Objecte.

Update: Usually when an object updates another object, only a few attributes are

updated. The object updating another object thus needs to have clearance to update

the required attributes of the other object. In other words, Object, can update

information contained in Objecte, if the security class of the object, is equal or greater

than the security class of Objects. Although the updating of information requires one to

consider information in an object on an attribute level, the prototype as proposed in this

paper, will not consider this fine granularity of information. However it is recognised in

this paper, that the concept of multilevel databases [11] will assist the developer in

enforcing security down to an attribute level.

Delete: When an object deletes information contained in another object. either the

entire object or some attributes in the object are deleted. Depending on the type of

deletion. the object deleting information contained in another object, must have

clearance to delete the required information. Therefore, Object, can delete information

Booyse~ Kassehnan, EJoff 14



Enforcing Information Security during the development of Application Systems

contained.in Objects, if the security class of Object, is equal or greater than the security

class of Objects.

The binary access rules for the for security classes, namely unclassified, confidential,

secret and top secret, are summarised in the table 6.

u C 5 TS

U R,U,D,A A A A

C R,U,D R,U,D,A A A

S R,U,D· R,U,D R,U,D,A A

TS R,U,D R,U,D R,U,D R,U,D,A

Note: U - Unclassified

R - Read

C - Classified

A-Append

S - Secret TS- Top secret

U - Update D - Delete

. In our example in figure 4, a confidential security class was assigned to Object., a

secret security class to Objects, a top secret security class to Objecte, and a top secret

security class to Objecte. As Objects is reading information contained in Object., the

security class of Objects must be equal or greater than the security class of Object..

according to the binary access rules (see table 6). As the security class of Objects is

secret and the security class of Object, is confidential, a valid binary flow exists between

Object, and Objects·

Booysen, Kasselman, Eloff 15



Enforcing Information Security during the development ofApplication Systems

As Objects is appending information to Object, the security class of Objectc must be

equal or greater than the security class of Objects. according to the binary access rules.

As the security class of Objecte is secret and the security class of Object, is top secret.

a valid binary flow exists between Objects and Objectee

As Objecte is reading information contained in Objecte. the security class of Objecte

must be equal or greater than the security class of Objecte. according to the binary

access rules. As the security class of Objecte is top secret and the security class of
;

Objedo is top secret, a valid binary flow exists between Objecte and Objectee

2.5.2. Compound access rules

As a single flow type exists between compound flows, the binary access rules can be

applied to check whether the compound flow is valid or not.

A compound information flow type (update) exists between Object" and Objecte (see

figure 5). As Object" is updating Objecte the security class o,fObject" must be equal or

greater than the security class of Objecte. according to the binary access rules (table

6). As the security class of Object" is confidential and the security class of Object, is

top secret, an invalid binary flow exists between Object" and Object; Therefore the

compound information flow between Object" and Object,'must be removed from the

revised object matrix. EASGE would point out this error to the analyst.

Also a compound information flow type (read) exists between Object, and Object; As

Booysen, Kasselman, Eloff 16



Enforcing Information Security during the development of Application Systems

Objecto is reading information contained in Object; the security class of Objecto must

be equal or greater than the security class of Objectj; according to the binary access

rules. As the security class of Object, is confidential and the security class of Object,

is top secret, a valid compound information flow exists between Object, and Object.;

Also a compound information flow type (read) exists between Objectg and Objedo. As

Objecto is reading information contained in Object, the security class of Objecto must

be equal or greater than the security class of Objects, according to the binary access

rules. As the security class of Objectg is secret and the security class of Objedo is top

secret, a valid compound information flow exists between Objectg and Objecto.

A Security Revised Object Matrix is constructed to summarize valid binary and valid

compound information flow types. For our example, the Security Revised Object Matrix

in table 7 can be constructed.

, , .... ,
" ...

CoJu lT1rt-1 Column 2 Colul1Jn'3 'Column 4:, -- .. "

K :-i;;'1t:;.s"j·. 'If f~'
.. .. " <.': '-::.~ :~.. - .-"'. .-- 'c o ~;:;":...,. '.:"

. -- "-< , - ., -

Row 1 A Read Update Read

Row 2 r 8 -, Append Read
, -:-;'.-

Row3 C Read

Row 4
,

- D
.

Table 7: Secunty Revised Object Matnx

2.6. Remainder EASGE activities

Booysen, Kasselman, Eloff 17

~ !



Enforcing Information Security during the development of Application Systems

Having determined all valid binary and valid compound information flow types (see table

7), EASGE compares the Revised Object Matrix (table 5) and the Security Revised

Object Matrix (table 7) with one another, to determine invalid binary and invalid

compound information flows. A flow is invalid if an entry is found in the revised object

matrix and not in the security revised object matrix. EASGE highlights these invalid

flows on the data. flow diagram, by means of connecting the origin and destination

objects responsible for an invalid flow.

EASGE now presents the analyst with suggestions to address invalid flows so as to

improve the security of the application system under development. Suggestions could

include recommendations to change the security classes assigned to objects. For

example, if an invalid binary information flow. occurs, EASGE would recommend that a

change in the security class of the object responsible for the invalid binary information

flow, would allow for a valid binary flow. If the security class of Objedo in our example

. was undassified, the binary information flow between Objecte and Objedo would have

been invalid. EASGE would then have recommended to change the security class of

Objedo to top secret. Another suggestion might be to propose the use of a sanitizer

object.

A sanitizer object will ensure that only valid information received from an object with a

higher security class are filtered through to an object with a lower security class and that

only valid information received from an object with a lower security class are filtered

through to an object with a higher security class. For example, EASGE can suggest

a sanitizer object where an object has read information before appending information.

Booyse~ Kasselman, Eloff 18

I I



Enforcing Information Security during the development of Application Systems

If a sanitizer object is inserted between Objects and Object.; it will only allow secret

information contained In-Object, to be appended to Object., as Objects has read

confidential information from ObjectA•

It should be noted that EASGE models user requirements on a high level. Although

EASGE suggest that information should be filtered form objects with a higher security

classification to objects with a lower security classification, the prototype presented

doesn't implement information filtering in detail.
I

The analyst is now presented with the option to change the design diagrams, based on

the security issues mentioned above, or to proceed to generate database tables. If he

decides to execute the "change d~sign" option, he will have the opportunity to

"redesign" the system diagrams with the added security requirements. When satisfied

with the security level of the application system, database tables and code is generated

before the live database is loaded.

3. Discussion of the prototype (DFDSEC)

A prototype EASGE tool has been developed which addresses the grey part in figure

6. The prototype is named DFDSEC, as it only concentrates on including security

activities as proposed by EASGE to the high level design diagrams (data flow diagrams)

of an application system.

Booysen, Kassetman, Etoff 19

\ 1\ III
, '



Enforcing Information Security during the development of Application Systems

..............................~~_.
No

.ho*"""".......­------

y

'- ./
~DfD•A A A A

y

y

y

FJ8lU'C 6: DFDSEC in <XXItCZl ofEASGE

When OFDSEC is loaded itpresents the designer with a Graphical User Interface (GUI)

as depicted in figure 7. The GUI consists of three parts, namely a DFD window (A), a

toolbar (B), and an options bar (C).

The DFD window is used by the designer to represent user requirements in a visual way,

i.e., by means of a data flow diagram. Drawing tools are contained within the toolbar and

are presented by the process icon, sanitizer process icon, external entity, data store and

data flow objects. The "0" symbol in figure 7 indicates the drawing tools. The "E" symbol

in figure 7 indicates utility tools. The options bar (indicated by "C" in figure 7) allows the

designer to change the line style, width and drawing colours. The "F" symbol in figure 7

indicates tools that can be used to analyze the data flow diagram. Analysing a data flow

Booysen,Kassel~n, EJoff 20

I i



Enforcing Information Security during the development of Application Systems

diagram entitles that the information flow between objects on the DFD are examined ir

terms of security and integrity requirements as described in paragraph 2.1 to 2.6. The

remainder of tools are utility tools, used to save and load a diagram, exit the prototype

and start a new data flow diagram.

The Gane-Sarson modelling technique serves as basis for DFDSEC. A detailec

description of this technique can be found in reference [12].

To illustrate how DFDSEC works, an example will now be presented

3.1 Working of DFDSEC

Consider the following user requirements

Booysen, Kasselman, Eloff ')0
"-,



Enforcing Infonnation Security during the development of Application Systems

An application is needed wfth a process that can calculate salaries for employees

of a large company. There is an existing database containing employee data,

for instance personal data and rate per hour paid. The process appends salary

data to a data file. A salary clerk needs access to the salary data so as to

resolve ad-hoc enquiries, for example average salaries.

I EE-J
!ISaImy c1cd:

A

Write
-( p.J ~

l~jf--~~·EI'"7""
t I
I ~I
IReed II {P-2

d U Reuieve

~~loy=dam l dam

Using the drawing tools of OFDSEC. the designer has transfonned the user requiremems

into a visual representation as depicted in figure 8. Objects on the data flow diagram

(figure 8) are connected by means of arrow symbols, so as to indicate the direction of

information flow within the system.

Booysen, Kasse/man, Eloff 22

i P \!



Enforcing Infonnation Security during the development of Application Systems

After the designer had placed the objects on the drawing board and connected them by

means of arrows, DFDSEC automatically determines the information flow type between

objects on the data flow diagram. DFDSEC then automatically labels the flow type

between "Employee data" and "Calculate salaries" as Read, the flow type between

"Calculatesalaries" and "Salary data" as write etc.

DFDSEC can only determine whether the information flow type between objects are Read

orWrite. Therefore, once a flow type is labelled as write, OFOSEC prompts the designer

to expand the Write action to indicate whether it is an Append, Delete or Update action.

As the user requirements indicates that data is appended from the "Calculate salaries"

object to the "Salary data" object, the designer changes the write action to an Append

action, as portrayed in figure 9.

~
I

Rc.dj
!

I
P-2 1 I

Rtmcve L.-J
I

----~/

~ MSalsry dIIIa

.,.1...

t
IRead

I
ID-li~cbta

Booysen, Kasselman, Eloff



Enforcing Information Security during the development of Application Systems

The designer now selects the analyzer icon. (indicated by "F" in figure 7) to indicate to

DFDSEC that the data flow diagram can now be analyzed in terms of security and

integrity requirements. The analysing process occurs internally, as described in

paragraphs 2.2 to 2.5.2.

The allocation of security classes to objects (described in paragraph 2.2) is depicted in

figure 10. The project leader has indicated that the following security classes should be

assigned to the process, data files and external entity objects:

Calculate salaries (process):

Employee data (data file):

Salary data (data file):

Salary clerk (external entity):

Retrieve data (process):

Booysen, Kasselman, Eloff

Top Secret

Confidential

Secret

Confidential

Secret.

24



Enforcing Information Security during the development of Application Systems

1'$

pol

I
I

!Read
!

s

P-l

Retrieve
dam

EE-l

Read

The matrices presented below will therefore not be presented to the designer. They are

merely shown here for explanation purposes.

Object Matrix:

Calculate Employee Retrieve Salary Salary clerk

salaries data data data
I I

Calculate salaries I Append
,
!

Employee data Read I
I,

Retrieve data I Read

Salary data Read
I

I-

Salary clerk I I !
;

--

Booysen. Kasselman. Eloff :'5

il,l!l



Enforcing Information Security during the development of Application Systems

Revised Object Matrix:

Read

Read

Read

Update

Salary Salary
-.. ~ ...~" ~ ..

data clerk

Append ReadRead"

Read

Read,

~~.::ii-'_ ~~~:.:0~';~,i':':7-__

'd~titi''-_,T,?;~~_, datasalaries

Security Revised Object Matrix:

. "-'';'

;:Caicujat~~~ eiif Ic:te~~~
" ,.,'~"

Sal~!y~ 'Sa1aJ"'~~"H'Retrieve ":::

~,Y!i\}.I" i{~it' ~=i;~;;:',~~E?"~ ':~~~~~§$:
:'\I1.~"';~"Ii:.J"rt.~~~:~
_~ff~~~~~

-salarie ':;:f~': data ;~:. ~ '":~~ aata'~~~? :-clerk'~':':J'

Ilii2~!_: ,

-,

~~!~"pic;ye~'~ata Read Read Update Read

Yietri~v~-'d~ta
.- .. .-

-'.=".- .

:S.t·i~,ydata<;:,'~ .- .' Read- ,..,.-....-
-, "

Salary clerk

DFDSEC now compares the Revised Object Matrix and the Security Revised Object

Matrix to determine invalid information flows. DFDSEC would point out that the binary

flow from "Retrieve data" to "Salary clerk" is invalid, (indicated by the red line from

"Retrieve data" to "Salary clerk" in figure 10) as the Salary clerk can only read

information which has a confidential or unclassified clearance. DFDSEC would suggest

that the security class of the Salary clerk be raised to be at least the same as the

Booysen, Kasselman, Eloff 26

'! I



Enforcing Information Security during the development of Application Systems

security class of "Retrieve data", i.e. Secret.

DFDSEC prompt the designer to indicate whether he would like to change the security

class of the Salary clerk. As the user requirements stated that the salary clerk requires

read access to "Salary data" via the "Retrieve data" object, to resolve ad-hoc enquiries,

"'
the designer has reasoned that he needs to change the security class of the Salary clerk

to Secret. This is indicated in figure 11.

c

EE-l
s

I ~ ~C!.l_dara.~ -z __
, , ,

TS

r;;.p 'j=AppcDd===~L~~~:--
\... J

DFDSEC would also point out that the binary flow from "Calculate salaries" to "Satary

data" is invalid, as infonnation flows from a top secret object ("Calculate salaries") to a

secret object ('Salary dataj. Due to the downflow of infonnation DFDSEC suggests that

a sanitizer object be inserted between the "Calculate salaries" and "Salary data"

Booysen, Kasselman, Eloff 27



Enforcing Information Security during the development of Application Systems

objects. .

DFDSEC prompt the designer to indicate whether he would like to insert a sanitizer

object between the "Calculate salaries" and "Salary data" objects. Examining the user

requirements, the designer concluded that once salaries have been calculated, it is

necessary to append salary data to the Salary data file, so that the Salary clerk can

resolve enquiries. Therefore, the designer has opted to insert the sanitizer object. This

is indicated in figure 12.

The justification for inserting a sanitizer object is due to an information flow between the

"Calculate salaries" object (which is top secret) and the "Salary data" object (which is

secret). The sanitizer object will facilitate the flow of information from a top secret to a

secret object, in order to over right the rule that information cannot be appended from

a object with a higher security class to a object with a lower security class (see append

rule in paragraph 2.5.1). Since DFDSEC is currently implemented as a design tool the

implementation detail of the sanitizer is as yet not been addressed. Possibilities for

implementing a sanitizer object can include multilevel database concepts [11].

Booysen, Kasselman, Eloff 28



Enforcing Information Security during the development of Appticetion Systems

- ~ FIt.<r; 0up;1lIl . . •

s

Read

EC-J

Salerv d~

P-2

Reeneve 5
______~ data

y

1'$

SP-I

s

. __._--------~

c

A

P·l

1"$

Dol : Employee d=

~_MIl.llltliilti.
FigIre U: 1nsatiDg. sauiri=" object

Having changed the security class of the Salary clerk and inserted a sanitizer object

DFOSEC automatically re-analyses the data flow diagram depicted In figure i 1 The

various matrices constructed internally are presented below

Object Matrix:

Calculate Employee Sanitizer Salary Retrieve Salary I
!
:

salaries data object data data clerk :
I

I'
Calculate salaries Flow ,.

j L

I
, Ii

Employee data Read i i I.
I . d

I Ii
Sanitizer object I "I r.;)pen

\ i;,

Salary data I Read I I.
I;, ,

I I \ I
I !Retrieve data i J ~~2:

! ,
--'

I , I I i

Salary clerk I \:,
)~

Booysen, Kasselman. Eloff



Enforcing Information Security during the development of Application Systems

Note: The flow type between "Calculate salaries" and the "Sanitizer object" is indicated

as flow, as information is transferred from the "Calculate salaries" object to the

"Sanitizer object" to prevent information to flow from an object with a higher

security class to an object with a lower security classification. The security "class

of any "Sanitizer object" defaults to Top secret.

Revised Object Matrix:

;?iz. ..._.~._. ",. O:.":,"::J, . .-:;'.: ¥.~

Ccilculatesalaries'
.~'::" -'. _ _~..., -,,-~.:,,'J.:..;..-.-_ ~

Security Revised Object Matrix:....

Flow

Flow

Append Read

Read

Read

Read

Read

Calculate salaries'

... :"-.-.--

Calculate. E~ployee-: Sanitizer Salary

~~ji~i~~~~~:J:;l~~'t~~~"Objec/;'~~ data

Flow

Retrieve Salary

data clerk

Employee data ~,-' Read
·C ."

Sanitizerobject ~

Salary data···~,

Retrieve data .

Salary clerk

Booysen. Kasselman, Eloff

Flow

Append Read

Read

Read

Read

Read

30

',I \',\1\



Enforcing Information Security during the development of Application Systems

Although the Append between the "Sanitizer object" and "Salary. data" are invalid

according to table 6, the sanitizer object would only allow secret information to flow to

the "Salary data" object. Therefore the flow would be valid. The same argument

applies to the flow between the "Sanitizer object" and the "Retrieve data" and "Salary

clerk" objects.

DFDSEC now compares the Revised Object Matrix and the Security Revised Object

Matrix to determine invalid information flows. As no invalid information flows exist, l.e.,

all entries in the Revised Object Matrix is contained in the Security Revised Object

Matrix, the real environment (EASGE) would proceed to generate databases tables and

code.

4. Conclusion

The advantage of using an EASGE tool when developing a system, has several benefits

to the security state of the systemunderdevelcprnent. First, it allows most object

interactions to be determined automatically using the high-level design diagrams (data

flow diagrams) of the system. Secondly, a revised object matrix ensures that all valid

and invalid combinations of information flow are considered during system development.

Thirdly, the security class assigned to an object is considered while developing the

system. This allows security to become an integrated part of application system

development.

Booysen, Kasselrnan, Eloff 31

1\\ \1



Enforcing Information Security during the development of Application Systems

DFDSEC is an example of a possible mechanism which automatically enforces secure

information flow during the high-level development of an application system. The

insertion of a security handling object (Sanitizer object) allows for more realistic design,

in that information is allowed to flow down to objects with a lower security classification,

under the watchful eye of both the designer and the security CASE tool, DFDSEC.

DFDSEC is a prototype which contributes to the enhancement of existing CASE

environments so to automatically (as far as possible) enforce security aspects into

application systems designed with the assistance of CASE tools.

5. References

1. Booysen HAS, Eloff JHP, "A Methodology for secure development of Application

Systems", Proceedings of the 6th Annual Canadian Computer & Security Symposium,

Ottawa, Canada, May 1994.

2. Fisher AS, "CASE using software development tools", John-Wiley & Sons, 1988.

3. Slabber G, "Can CASE deliver the goods ?", Computer Mail, 1993.

4; Chikofsky EJ, Rubestein Bl, "CASE: Reliability Engineering for Information Systems",

IEEE Software, 1988.

5. Lehert S, Moeller E, "Data and Information Modelling", Proceedings of the BERKOM

Workshop in Hochst-AnnelsbachlOdenwald, 9-13 July 1990.

6. Baskerville R, "Designing information systems security", John-Wiley Press, 1983.

7. Oman PW, "CASE Analysis and Design tools", IEEE Software, 1990.

8. Focus report, "The case for CASE tools", IEEE Software 27 (11), 1990.

9. Pfleeger CP, "Security in Computing", Addison Wesley, 1983.

Booysen, Kasselman, Eloff 32

\1 \



Enforcing Information Security during the development of Application Systems

10. Lipton RJ,.Snyder L, "A Linear Time Algoritm for Deciding Subject Security", Journal

of the Association for Computing Machinery, 24(3), 1977.

11. Pemul G. "Database Security",Advances in Computing (38), p 1- 69. Academic Press

Inc, 1994.

12. Gane C, "Computer-aided Software Engineering: The.methodologies, the products and

the future", Prentice-Hall International Editins, 1990.

13. Hsieh- CS, Unger EA, Mata-Toledo RA, "Using Program Dependence Graphs for

Information Flow Control", Journal of Sys~ems Software (17), 1992.

Booyse~ Kasselman, Eloff 33


