FACULTY OF SCIENCE

 FAKULTEIT NATUURWETENSKAPPE

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: $1+13$
INSTRUCTIONS: 1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN
2. CALCULATORS ARE ALLOWED
3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT

Find all real numbers k for which the sequence

$$
\left\{(-1)^{n} \frac{1 \cdot 3 \cdots(2 n+1)}{(2 n)!} \pi^{3 n} k^{n}\right\}_{n=1}^{\infty}
$$

converges.

State the Integral Test for series.

By using an appropriate method, determine whether the following series converge or diverge:
(3.1) $\sum_{n=1}^{\infty} \frac{\arctan n}{n^{3 / 2}}$
(3.2) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n-1}}{n}$
(3.3) $\sum_{n=1}^{\infty} \frac{(-5)^{2 n}}{n^{2} 9^{n}}$

Find the radius and interval of convergence of the series:

$$
\sum_{n=0}^{\infty} \frac{2^{n}(x-3)^{n}}{\sqrt{n+3}}
$$

Find the sum of the series:

$$
-\pi+\frac{\pi^{2}}{2}-\frac{\pi^{3}}{3!}+\frac{\pi^{4}}{4!}-\cdots
$$

Use series to approximate

$$
\int_{0}^{1} \cos \left(x^{4}\right) d x
$$

correct to three decimal places.

If v is the speed of a particle along a curve C, \mathbf{T} and \mathbf{N} the unit tangent and unit normal vectors respectively of the particle's position vector \mathbf{r}, and κ is the curvature of C, then show that the acceleration a of the particle is given by

$$
\mathbf{a}=v^{\prime} \mathbf{T}+\kappa v^{2} \mathbf{N}
$$

Calculate the curvature of the curve $f(x)=e^{x}$ in the plane.

Find the velocity, acceleration and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of t.

$$
r(t)=3 \cos t \mathbf{i}+2 \sin t \mathbf{j} ; \quad t=\frac{\pi}{3}
$$

If it is given that

$$
\mathbf{u}(t)=\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right]
$$

then show

$$
\mathbf{u}^{\prime}(t)=\mathbf{r}(t) \cdot\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime \prime}(t)\right]
$$

for \mathbf{r} and \mathbf{u} arbitrary position vectors.

Determine the domain of \mathbf{r} if $\mathbf{r}(t)=\mathbf{F}(t) \times \mathbf{G}(t)$, where

$$
\mathbf{F}(t)=t^{3} \mathbf{i}-t \mathbf{j}+t \mathbf{k} \quad \text { and } \quad \mathbf{G}(t)=\sqrt[3]{t} \mathbf{i}+\left(\frac{1}{t^{2}-1}\right) \mathbf{j}+(t+2) \mathbf{k}
$$

