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Question 1 [10 marks]

For questions 1.1 - 1.10, choose one correct answer, and make a cross (X) in the correct block.

Question a b c d e

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

1.1 The contrapositive of q → p is:

a) p → q

b) ¬p → ¬q

c) ¬q → ¬p

d) ¬q ∧ ¬p

e) None of these

1.2 If f(x) =
1

x− 3
and g(x) = 2x+ 4, then g ◦ f =

a) 1

2x+1

b) x− 3

c) 2x+4

x−3

d) 2

x−3
+ 4

e) None of these

1.3 If y = 3.24x−1, then
dy

dx
is equal to:

a) (12 ln 2).24x−1

b) 12.24x−1

c) (12x− 3).24x−1

d) 3.24x−1

e) None of these
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1.4 Let

∫ e

c

f(x) dx = 5,

∫ f

e

f(x) dx = −3 and

∫ e

d

f(x) dx = 1. Then

∫ d

c

f(x) dx =

a) 6

b) 4

c) −4

d) 2

e) None of these

1.5 In order to determine

∫

tan4 x sec2 x dx using u-substitution, let u =

a) tan x

b) tan4 x

c) secx

d) sec2 x

e) None of these

1.6 The domain of the function y = arctan x is:

a) x ∈
[

−π
2
, π
2

]

b) x ∈ R

c) x ∈ [0, π]

d) x ∈ [−1, 1]

e) None of these

1.7 If y = ln(secx+ tan x), then
dy

dx
is equal to:

a) y sec2 x

b) 2 sec x

c) tan x+ csc x. sec x

d) secx

e) None of these
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1.8 The Intermediate Value Theorem states that if f is continuous on the closed interval [a, b]
and 0 is between f(a) and f(b), f(a) 6= f(b), then there exist a number c in (a, b) such that:

a) f(a) = f(b)

b) f(c) = 0

c) c = 0

d) f(0) = c

e) None of these

1.9 The point P (−3,−8) is on the graph of y = f(x). Which point will be on the graph of
y = −f(x− 5)?

a) (−8,−8)

b) (−8, 8)

c) (2, 8)

d) (8,−8)

e) None of these

1.10 For what value of k does lim
x→4

(

x2 − x+ k

x− 4

)

exist?

a) −12

b) −4

c) 3

d) 7

e) None of these

Question 2 [1 mark]

Write in sigma notation:
2

1 · 2 +
22

2 · 3 +
23

3 · 4 +
24

4 · 5 +
25

5 · 6 [1]



MAT1A01 EXAM - JUNE 2014 4/13

Question 3 [2 marks]

Solve the following inequality:
2

|x+ 1| ≥ 4 [2]

Question 4 [2 marks]

Prove the identity: tan 2x =
2 tan x

1− tan2 x
[2]
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Question 5 [3 marks]

Given the complex number z =
√
3 + i, find (

√
3 + i)6. Write your answer in the form a+ bi. [3]

Question 6 [2 marks]

Use proof by contraposition to prove that: “For any integer n, if 7n+ 9 is even, then n is odd.”

[2]
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Question 7 [2 marks]

Show, by using the definition, that f(x) =
x− 3

x+ 2
is one-to-one. [2]

Question 8 [2 marks]

Find the inverse function f−1(x) of f(x) = ln(1
2
x+ 7). [2]

Question 9 [2 marks]

Graph the function of y = π
2
+arctan θ and state the domain and the range in interval notation. [2]
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Question 10 [7 marks]

Evaluate each of the following limits, if they exist, otherwise show why they do not exist. Show
all steps.

a) lim
x→∞

√
9x6 − x

x3 + 1
[2]

b) lim
x→∞

2 cosx+ 2

x
[2]

c) lim
x→0

1 + x− ex

x(ex − 1)
[3]
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Question 11 [6 marks]

Let f be a function defined by

f(x) =

{√
x+ 1, if 0 ≤ x ≤ 3

5− x, if 3 < x ≤ 5

Determine:

a) lim
x→3+

f(x) [1]

b) lim
x→3−

f(x) [1]

c) Is f(x) continuous at x = 3? Give a reason for your answer. [2]

d) Is f(x) differentiable at x = 1? Give a reason for your answer. [2]
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Question 12 [7 marks]

a) Prove that lim
θ→0

sin θ

θ
= 1 (Do NOT use L’Hospital’s Rule.) [4]
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b) Hence, use the definition of derivatives and the special limit lim
θ→0

cos θ − 1

θ
= 0, to prove that

d

dx
(sin x) = cos x [3]

Question 13 [7 marks]

Use the differentiation rules to determine:

a)
d2x

dy2
if x =

1

2− πy
[2]

b)
dy

dx
if y = x. sinh (x2) [2]
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c) y′ if y = ln

(

3
√
1 + ex

2

3
√
x. cos x

)

[3]

Question 14 [7 marks]

a) The curve of y =
10

2x+ 1
−2 intersects the x-axis at A. The tangent to the curve at A intersects

the y-axis at C.

(i) Find the coordinates of the points A and C. [2]

(ii) Show that the equation of AC is 5y = −4x+ 8. [2]
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b) Find the slope of the tangent to the curve of x2 + 4xy + y2 = 13 at (2; 1). [3]

Question 15 [4 marks]

Determine
d

dx

∫

2x

0

(cos t− sin t) dt,

a) without integrating, by using the Fundamental Theorem of Calculus (Part 1). [1]

b) by first integrating the function f(t) = cos t− sin t and then differentiating the result. [3]
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Question 16 [6 marks]

a) Evaluate

∫

xe3x
2
−5 dx [2]

b) Evaluate

∫
(

2

x
− 3

√
x− 4

x2

)

dx [2]

c) If f is continuous and

∫

2

0

f(u) du = 6, use u-substitution to find

∫ π/2

0

f(2 sin θ) cos θ dθ. [2]


