Pre-service teacher development: A model to develop critical media literacy through computer game play

Alan Amory, Department of Science and Technology education, University of Johannesburg.

Abstract
The primary objective of this study was to investigate the use of game-mediate learning with pre-service teachers, with the view to evaluating the use of a socially mediated knowledge construction to develop appropriate classroom pedagogical practices. Two instrumental case studies are presented in order to explore how pre-service teachers understand the use of computer games in teaching and learning. These cases are part of a collective case study to advance the theory of the use of video games in learning and teaching. Difference groups of pre-service teachers participated in the study. The first group included third year undergraduate education students who played a computer game on the biology of diseases. The second group of participants, postgraduate students reading for a teaching qualification, played computer games designed to address misconceptions related to genetics. The introduction of game puzzles into a learning activity acted as an explicit mediator of learning and discussions between players implicitly mediated their understanding. Therefore, in a learning context, it is argued that computer games as part of a lesson should never be the object of the activity, but should function as a tool that mediates learning outcomes. This approach can be used with any contemporary media that is part of a classroom lesson to develop critical media literacy.

Key words: Pre-service teachers, computer games, cultural historical activity theory, tool mediation, critical media literacy.
Introduction

This paper investigates the use of contemporary media, computer games in this instance, in teaching and learning by pre-service teachers. The primary objective is to develop an understanding of tool-mediation that integrates pedagogical knowledge and critical media literacy into the design of learning activities. However, in order to explore this first the problems associated with the integration of, and embedded meanings associated with, digital artefacts into classroom practices need to be assessed. Digital artefacts include Information and Communication Technologies (ICT), software, media and computer games.

Many pre-service teachers lacked basic computer, and pedagogical, skills and competencies (Russell & Finger, 2007; Enochsson & Rizza, 2009), access to appropriate tools and resources (Enochsson & Rizza, 2009; Goktas, Yildirim & Yildirim, 2009; Hammond & Ingram, 2011), and motivation (Enochsson & Rizza, 2009). In addition, there was a dearth of appropriate role models to guide pre-service teachers in their integration of technology, and media, into their teaching practices, both, during formal instruction (Reid, Dawson and Forster, 2006) and teaching practice (Larose, Grenon, Morin & Hasni, 2009). In order to develop their own ICT resources, pre-service teachers designed text-based web quests, and added images to PowerPoint presentations that focused on lower-order thinking skills (Reid, Dawson and Forster, 2006), but they failed to understand the ideological dimensions that are inherently part of all media.

All media are created using symbols and signs that reflect a specific ideological view of the world, which is often related to power and/or profit. These signs and symbols are then decoded by individuals in many different ways (Kellner & Share, 2005). Mass media is not politically neutral, objective, or illustrative of a balanced position, and is often used to maintain and reproduce dominant cultural values (Torres & Mercado, 2006). These ideas are supported by Mitchell (2008), who in discussing McLuhan’s ‘the medium is the message’, suggested that contemporary media theory is driven by an obsession with war machines; that technological innovations are concerned with coercion, aggression, surveillance and propaganda; and that we need to ask who is behind the media. But, Gibson (2008) argued that the ways in which we use media determines its meaning or message, and this is an important point that forms one of the core arguments presented in this paper, which asks how teachers can include media artifacts, that might be ideologically suspect, into the teaching practice so that their students develop critical media literacy.

While Torres and Mercado (2006), and Kellner and Share (2005), proposed that critical media literacy needs to be part of teacher education, it would be useful to provide teachers with appropriate thinking and practical tools to support the use of ICT, software, media, and computer video games in the classroom. Therefore, the aim of this paper is to explore how pre-service teachers understand, and use, computer video games in the classroom so as to develop a theoretical framework for learning with video games/media/ICT. Furthermore, this papers supports the position taken by Amory (2010) who argued that the most appropriate theoretical framework to understand the use of educational computer video games in the classroom are constructivist learning theories, as articulated variously by, among others, Vygotsky (1933/1978) and Piaget (1977). More specifically, the contemporary theoretical descendant of Vygotsky’s work, namely; Cultural Historical Activity Theory (CHAT), can be used both as an analytical frame to design learning tasks that include video games, and as a means to understand tool-mediated knowledge construction through gameplay.

Cultural historical activity theory (CHAT)

CHAT originated from the earlier work of Vygotsky, (1933/1978) and his follower Leont’ev (1978), and is described as the first generation activity system by Engeström (2001). Using Leont’ev’s idea of individual and collective activity to overcome the individualistic focus of the first generation activity...
system, Engeström (2001) expanded the system to include components to support social interactions (second generation – Fig. 1). To include cultural diversity Engeström (2001) extended the system through the interlocking of a number of activity systems (third generation).

[Insert Figure 1 here]

In any activity system outcomes result from actors interrogating objects by means of tools (physical – pencils and technological artifacts; psychological – signs and symbols; individuals). Tools mediate interactions through the activity context that includes the associated rules, the community and the division of labor (Engeström, 2000, 2001; Barab, Evans & Baek, 2004; Roth & Lee, 2007). The prime unit of analysis within an activity system are the objects as cultural entities (Engeström, 2001) that embody communal social practices, and which are transformed and further developed during human activity (Stetsenko, 2005). Socially created tools are inseparable from the associated activity, and are part of the purpose, relevance and value appropriated to them by the actor (Robbins, 2005), and may become objects, or outcomes, of an activity (Roth & Lee, 2007). The sub-system includes the social actions of consumption, production, distribution, and exchange that allow the exploration of complex social interactions (the engagement) that are made up multiple strings of actions that are neither linear nor aligned (Engeström, 2008). “The object of the activity” and “social tool-mediation” are explored in the next two sections.

The object of the activity

While the ‘object of activity’ is key to activity theory, Nardi (1996) and Kaptelinin (2005) argued that there are often different meanings associated with the term “object”. First, Kaptelinin (2005) explained that the Russian words *objekt* (“material things existing independently of the mind”, p 6) and *predmet* (“target or content of a thought or an action”, p 6) both translate to “object” in English. Kaptelinin argued that the “object of activity” refers to *predmet* that is more subjective, and, with respect to, the ‘subject-object’ interaction the object refers to the *objekt*, which is more objective. Nardi (2005) stated that the first meaning is related to that “which is to be realized” (p 39), and the second could be seen as the “object of desire” (p 40). Second, for Leont’ev the concept of the “object of activity” is different to that of Engeström. For Leont’ev the object of activity is acted upon predominantly by individuals and activities that are individually or collectively related to motivation, while for Engeström the object of the activity is always production (Kaptelinin, 2005). Lastly, there is often confusion regarding the object and the motive associated with the activity. If the object and motive are separated (Kaptelinin, 2005), then when we instantiate an object we formulate it, and realize an object when we reach an outcome (Nardi, 2005).

Social tool-mediation

Mediation is one of the integral themes of Vygotsky’s concepts of “learning” and “development”. Tool-mediation is grounded within socio-cultural practices (Doehler, 2002), and supports human development (Stetsenko, 2004). Human psychological and cultural tools are mediated learning (Levykh, 2008). Wertsch (2007) categorized Vygotsky’s formulation of mediation as either explicit or implicit. Explicit mediation is when “Vygotsky spoke in the idiom of psychology, especially about what we would today view as a form of behaviorism, or perhaps cognitivism”, and it is when an individual “overtly and intentionally introduces a ‘stimulus means’ into and ongoing stream of activity” (Wertsch, 2007, 180) that is obvious and non-transitory. Implicit mediation, on the other hand, is less obvious and difficult to detect, but “it involves signs, especially naturally language, whose primary function is communication” (p 181), and does “not readily become the object of
consciousness or reflection” (p 185). Whether mediation operates through direct intervention, or through language and signs, individual transformation, by necessity, includes both explicit and implicit modes of mediation. In addition, Edwards (2008) argued that mediation is hierarchical where the tools range from simple and material to the sophisticated (for example, technological systems and ideologies), and that tools support humans to master their world, and, thereby, to transform themselves. However, “mediation not only refers to the nature of what goes on between people ... but also to the process of co-creation between the social world and the internal world of idea, feelings, and personal development” (Edwards, 2008, 174). Therefore, mediation is an integral part of social transformation. For Edwards (2008) mediation includes two aspects; it explains how the “social becomes internalized within the personal”, and “describes how these internalizations are related to the developmental dynamics of human consciousness ... All social mediation is a cultural processes passed on from one generation to another” (p 175). Collective mediation is also part of the zone of proximal development, defined as the “distance between the actual developmental level as determined by independent problem solving and the level of potential development as determined through problem solving under adult guidance, or in collaboration with more capable peers” (Vygotsky, 1933/1978, p. 86).

Therefore, the outcome on the object of an activity is socially constructed through tool-mediated activity that can only be situated within an individual’s culture. Therefore, as Gibson (2008) argued, the meaning made from media is related to how the artifact is used to socially constructed meaning. In the next section, the use of meaning making through computer game play is explored.

Education video game analysis

The use of video games in the classroom could be viewed, either, as a material object that exists independently of the mind (objekt), or as a target of an action or thought (predmet) especially when the game functions as a tool to mediate understanding.

A meta-analysis of existing research of the use of computer games in the classroom showed that such research tends to be anecdotal, descriptive, or judgmental, and provides little support to the idea that playing games leads to learning (Ke, 2008). However, these findings should be analyses in the context of the research studies reviewed in the meta-analysis. 73% of the articles analyzed compared conventional instructional methods with stand-alone pedagogical instruments, or drill-and-practice (i.e. trivial) ‘games’. Another example comes from the work of Akl, Gunukula, Mustafa, Wilson, Symons and Moheet (2010) who found that use of games were ineffective in the teaching of medicine. But, the games used in this study with medical students could be defined as trivial, and were played individually by students. There are a number of problems associated with this research (Akl et al., 2010: Ke, 2008). First, the games were used as a material thing that exists independently of the mind (that is, as the objekt). Second, video games consumption supports the reproduction and maintenance of dominant cultural values, as suggested by Torres and Mercado (2006). Third, these studies made use of empirical testing methodologies (i.e. comparing students who played video games with those that did not), rather than other more appropriate approaches, such as design experiments (see Amiel and Reeves, 2008). It is, therefore, not surprising that when video games function as the objekt of a learning exercise and, primarily, as a delivery mechanism (Jonassen & Reeves, 1996; Schrader & McCreert, 2008) that students develop visual intelligence (Greenfield, 2009) and ludic skills (Oliver & Carr, 2009), rather than developing critical thinking, imagination and reflective skills.

However, there are other examples from the literature where the use of video games in the classroom resulted in meaningful learning. Game play led to learning when students were part of a game development design team (Waraich & Brna, 2008); when the design of the game narratives, competition, and challenge related in some way to the social dynamics of the daily relationships of
the children participants (Rieber, Davis, Matzko & Grant, 2009); or when they created their own games (Robertson & Howells, 2008). In the latter report, participants were enthusiastic, determined to complete the tasks, worked both individually and collectively, and applied what they learnt to other situations. In addition, Verenikina, Herrington, Peterson and Mantei (2008) showed that group play supported imaginative make-believe as an important learning strategy used by young children. Seagram and Amory (2006) reported that groups of players who discussed the puzzles during collective game play develop a deep understanding of the embedded concepts. The longer the participants discussed certain knowledge domains, the richer were their descriptions. Similarly, the use of quests in a virtual cyber-world improved performance and knowledge acquisition (Barab et al, 2005). Kim, Park and Baek (2009) showed that meta-cognitive strategies, such as recording, modeling and thinking aloud, influenced social problem solving abilities and academic performance in a Massively Multiple Online Role Playing Game. In each of these examples the computer games were part of the learning activity, but did not function as the objekt. Rather, the “object of the activities”, viz. the predmet, were to design or make a game (Robertson & Howells, 2008; Waraich & Brna, 2008), which stimulated imagination (Verenikina et al, 2008), mediated problem-solving through discussion (Barab et al. 2005; Seagram & Amory, 2005), and employed heuristic tools in a virtual world (Kim et al, 2009). Therefore, the learning outcomes were mediated through the use of a video game, a game environment, or through puzzles/quests embedded in a game. Shaffer and Clinton (2006) argued that tool-mediation, in their case a computer game acting as the tool, is “the fundamental ontological unit of activity” (p 289). Not only did children learn when the games acted as tools, but when social interaction was part of the learning design; this appeared to be an important part of the educational gaming experience (Rieber, Davis, Matzko & Grant, 2009).

Foko and Amory (2008) support the importance of social collaboration during game-play. Students from disadvantaged educational backgrounds showed improvement only in understanding photosynthesis and respiration when they played an educational game in pairs, and when the game puzzles stimulated social dialogue. Schrader and McCreert (2008), on the other hand, argued that collaboration and mentoring are more likely to support novice game-play, and is of little importance in achieving game objectives by players at the higher levels of game competence.

Video games, and media, as part of a contemporary classroom, are cultural artifacts that support learning when they are not the object (objekt) of a lesson (a learning from position), but when they function as a tool to mediate the learning task or predmet (a learning with position). In addition, social collaboration fosters independent knowledge construction when the technological artifact functions as a heuristic tool. This framework is referred to as an object-tool-social framework in this paper. The primary object of this study is to investigate the use of game-mediated learning with pre-service teachers, so as to evaluate the use of a socially mediated knowledge construction where computer games function as explicit mediators.

Materials and methods

Case studies, depending on the aim of a study, can be divided into three types; intrinsic case studies that investigate the uniqueness of the cases, instrumental case studies that are concerned with advancing theory, and collective case studies that make use of any number of cases as part of an instrumental case (Stake, 1995). This study makes use of a collective case study approach to evaluate the use of the object-tool-social framework in the use of video games in learning and teaching. The unit of analysis for the individual cases is pre-service teachers’ understanding of the use of video games in the classroom. The unit of analysis of the collective case is to build theory on how to use video games in teaching and learning. Two individual cases studies (Creswell, 1998) form part of this study. In the first case, third year undergraduate Bachelor of Education students played an educational adventure game as the final authentic task (Reeves, Herrington & Oliver, 2004) in their third year professional development course. In the second case, postgraduate students reading for
their professional teaching diploma played another educational game as part of the practical component of their course.

In each case study the educational game was used as a part of a collaborative learning process, as suggested by Amiel and Reeves (2008) and not as the artifact (or tutor) for instruction. The unit of analysis is, thus, not the technological artifact itself (the game in this case), but rather the process of students engaging with the technological tool to develop insights into the biology of cancer, malaria, tuberculosis and HIV/AIDS (Seagram, 2005) [case 1], or to address misconceptions related to Mendelian genetics (Baxter, 2008) [case 2]. The study was bounded by time (participants played the game for a minimum of 10 hours), place (a computer laboratory at the University of Johannesburg), and by the participants. The research inquired into the techniques and approaches of the use of games for teaching and learning, in order to improve the design of such learning events (Amiel & Reeves, 2008).

The research methodology in this study makes use of an eclectic-mixed methods-pragmatic approach (Reeves & Hedberg, 2003), and, thus, includes qualitative and quantitative methods. Students’ texts were coded using content analysis, and descriptive statistical analyses were done using PASW Statistics (SPSS) version 18.

With respect to the first case, the third year students (n=184) were introduced to the theories related to authentic learning and the object-tool-social framework. Both of these theoretical frameworks were used in the design of the course. Playing the educational game on diseases was the final authentic task of the course, and students were asked to install the game, play in pairs, and to try and complete the game. They were also told that they needed to solve all the puzzles to obtain four cards and four keys along the way. During game play they were asked to think about the motive for playing the game (in other words, they had to identify the object of the activity), and, using the frameworks they had employed in the course, they were asked to analyze the activity associated with their game play. The final examination assessment was a portfolio of work. One of the components of the portfolio was to select three of the course tasks, and, and using the frameworks, detail what they had learned during the course. Their performances in a number of the authentic tasks, the relationship between their performances in these tasks (ANOVA and associated Levene test and Tamhane post hoc test), and the tasks they selected for their portfolio were counted for this research. Their written submissions on the game play tasks, and their examination portfolio submissions, were also quantitatively analysed deductively against the frameworks to gain insights into what they learned through their game play.

A small group (n=11) of postgraduate students (case 2) played an educational game on genetics (Baxter, 2008) over five weeks, playing two hours per week. During game play two faculty members supported the students by guiding their path through the game, and through facilitating discussions between the group participants. After the students had finished the game a focus group interaction was held. During this session the students were introduced to the object-tool-social framework developed by Vygotsky, and were asked how this framework related to the game play and the design of their learning experience. This case study made use of a pre- and post-test instrument (Baxter, 2008) to measure participants’ misconceptions related to genetics – the quantitative part of this case study – so as to determine if collective game play helped students overcome misconceptions pertaining to genetics. During classroom interactions and the focus group sessions I kept notes that form part of the qualitative analyses of this case study.

Results and discussion

Case one

Third year students performed the best in the mid semester test (72.0 ± 1.7%), followed by the design of a computer local area network for a school (69.2 ± 1.2%), evaluation of the educational
game (65.3 ± 1.2%), the use of an interactive whiteboard in a classroom (64.9 ± 1.2), and the review of a chapter for publication (63.1 ± 1.9%) (see Table 1). Their performances in the authentic learning and classroom design tasks were poor (less than 60%). However, many students selected these tasks (mind map – 14.2%; authentic learning – 13.6%; and classroom design – 10.8%) to illustrate what they had learnt. In addition, 19.2% of the students selected the interactive whiteboard, and 16.4% the design of a computer laboratory, to illustrate their knowledge. Only 8.2% of the group selected the game as one of the tasks that served to the knowledge they gained during the course.

In order to better understand the relationship between student performance and the tasks they selected, their average performance on each task was analyzed using ANOVA. Average performance was found to be significantly different. The significance of the Levene test was less than 0.05, showing that the variances in performance for tasks were significantly different. Consequently, the Tamhane post hoc test was used to determine those tasks that were similar, and those that were statistically different, in terms of performance. Each task was, therefore, compared with all the other tasks and those that were similar are shown in Table 1 (Similarity). Student task performance appears to be grouped into two categories with one task – the chapter review – as part of both categories. The first category included those tasks with above average performance that were cognitively more challenging, and the second category included those where task performance was less satisfactory. Apart from the interactive whiteboard and the design of the computer laboratory tasks, most students selected the tasks in the second category to illustrate what they learnt in the course.

These results suggest that participants could be divided into two general groups based on the assessment of each tasks and their opinions as to what they learnt from the different tasks. Students who understood the two theoretical frameworks were more likely to select the cognitively difficult tasks. This included the game evaluation activity. However, many students selected tasks that were directly related to their professional practices. It is interesting to note that a small percentage of students selected the test as an example of what they learned. This might be due to the nature of the test, where they had to analyse teaching activities described in a first-year textbook with relation to the various theoretical frameworks.

Content analyses of students game assignments and their examination scripts highlighted a number of interesting points. While they were specifically asked to identify the object of the activity, many students also included comments regarding tool mediation, collaborative learning, and authentic tasks.

A number of different positions were taken regarding the object of activity. Many students indentified playing the game, to learn about the diseases, as being the object of the activity. For example, “the object of the game was/is to teach about the cause, effect and symptoms of diseases such as HIV/AIDS, TB and malaria”, and “is om leerders deur middel van ‘praktiese’ metodes meer te leer oor siektes” (is to teach students more about diseases using ‘practical’ methods). Also, solving puzzles was seen as the object of the activity: “Deur die voltooing van die puzzles is die spelers besig om te leer en navorsing te doen, sonder om dit te besef” (Through the completion of the puzzles the players, without being aware, are learning and undertaken research), and “the motive of playing this game, being the object of the activity, is that our minds were stimulated, because when we were playing we came across puzzles where we had to fill in missing answers.” Only one student realized that the primary object of the activity was to “evaluate [the] game for learning”.

Comments like “the game also mediates one’s learning process, as we had to figure how to play it without any instructions”, and “this game is a very good learning tool”, illustrate that some students understood the role of tools in the process of mediating learning extrinsically.

Statements, such as “the game was not easy though because it challenged our mental agility in a lot of instances. But because we did it as a pair the activity was manageable and we got to
learn a lot from each other”, “was an opportunity to interact socially as well as cognitively”, and “social collaboration appears to be an integral part of the development of insights and knowledge development”, show that the students clearly understood the importance of working together to solve complex problems.

Many of the participants identified the game as authentic, since it was set in Africa and was “applicable in any context; because the diseases addressed in the game are the same chronic illnesses that continue to affect our communities”, and “it uses a real life example of an intern treating patients in a village”.

Third year pre-service teachers clearly appreciated the importance of social interactions in solving problems and the use of authentic tasks, but they did not fully understand tool mediation as an ancillary process of learning. However, they saw the value of using the game as a tool to interact with the puzzles that led to knowledge construction.

This case study highlighted student understanding of authentic tasks and object-tool-social frameworks as important components of learning and teaching. Many of the participants clearly understood collaborative puzzle solving and argued that educational games could play important roles in the learning process. However, this case study did not investigate the learning that takes place during collaborative game play, which is the primary focus of the next case study.

Case study two

The multiple choice instruments used in the pre- and post testing in this case study were developed and evaluated by Ivala (1999) to identify misconceptions about genetics held by first year university students. These identified misconceptions were later used by Baxter (2008) to develop a set of learning objectives for the design and development of an adventure video game. Baxter designed the game story, puzzles and environment to specifically address these misconceptions. The testing instrument included eighteen questions to test misconceptions about genetics.

For this case study the pre-testing scores of postgraduate participants (n=11), all biology graduates, were poor (29.8 ± 4.7% correct responses). After 10 hours of game play eight participants remained and they overcame some of their misconceptions related to genetics (44.4 ± 6.5% correct responses). The improvement in their score was statistically significant (t-test = -3.69%, p(T<=t) one-tailed < 0.001). While the participants increased their understanding of many concepts, there was no improvement in some of the instrument items that were testing misconceptions (for example, questions 1 and 2), and in two there was a decrease in understanding (questions 10 and 11) (see Fig. 2).

![Insert Figure 2 here]

During the post-test focus group discussion the design of the learning with the video games was discussed. The puzzles acted as a device or tool that facilitated discussion between pairs of team players, and, thereby, successfully mediated learning. One student noted that the faculty facilitators helped students solve one of the particularly difficult puzzles. But, in analyzing what the facilitators did the participants realized that they were not told the answer, but shown a way in which they could solve to puzzle for themselves. The participants understood the concept of tool-mediated learning, and one said the game design was an “effective establishment and maintenance of Vygotsky’s zone of proximal development”. When asked if it was appropriate to upload PowerPoint lectures onto the University’s on-line learning management system, most of the participants answered that the presentation was not about mediating learning, but about consumption of information and rote learning. This showed that they understood the concept of tool mediation in another situation.
Misconceptions are often deep seated and difficult to overcome. However, game play, in this case study, allowed students to overcome some of their misconceptions pertaining to genetics, and to understand the use of tool-mediation in the learning process. It is argued that for such learning to take place during game play, the game (or game components, such as the puzzles) facilitated learning through the establishment of a zone of proximal development, and that social collaboration supported problem solving. In other words, the game and game puzzle functioned as a tool to mediate knowledge construction.

Conclusion

The two individual intrinsic cases reported here are part of a collective instrumental case study undertaken to advance the theory of the use of video games in learning and teaching. First, pre-service teachers found the object-tool-social and authentic frameworks useful in the development of their professional teaching skills. Second, the use of these frameworks helped students to overcome some of their misconceptions related to genetics. Vygotsky’s concept of social tool-mediated knowledge construction provided an appropriate framework for the use of video games in teaching and learning. The introduction of game puzzles into a learning activity acted as the explicit mediator, while the discussions between players acted as the implicit mediator, thereby, enhancing their understanding and affecting their zone of proximal development. Therefore, while the activity diagram (Fig. 1) provides a usefully heuristic tool for exploring learning, and the design of learning activities, the production subsystem is one of the most important components in relation to learning with technology and media. The use of a core component of Vygotsky’s theories, mediation, provides contemporary educators with a construct that can easily be applied to any teaching situation that intends to include ICT, software, media or computer games. Such artifacts should be used to mediate lesson outcomes (that is, knowledge production), rather than the object of the lesson (consumption). In this way, all the ideological and power issues inherent in any media can be critically explored in the classroom to allow students to transform their understanding of the world, and through it, transform the world itself; one of the basic function of human activity.

References

Table 1. Performance by third year students in course work authentic tasks and examination portfolio tasks. Column 1 lists authentic task, column 2 lists average percentage and standard error obtained by group for the task, and the last column the statistical similarity in performance of the different tasks (ANOVA F=22.61, p<0.001; Levene=13.71, p<0.001; Post hoc test = Tamhane. The bold symbol represents the source item of the comparison).

<table>
<thead>
<tr>
<th>Task</th>
<th>Mean ± SE</th>
<th>%</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>72.0 ± 1.7</td>
<td>4.0</td>
<td>a b c e</td>
</tr>
<tr>
<td>Computer LAN</td>
<td>69.2 ± 1.2</td>
<td>16.4</td>
<td>a b c d e</td>
</tr>
<tr>
<td>Educational game</td>
<td>65.3 ± 1.2</td>
<td>8.2</td>
<td>a b c d</td>
</tr>
<tr>
<td>Interactive Whiteboard</td>
<td>64.9 ± 1.2</td>
<td>19.2</td>
<td>a b c d e</td>
</tr>
<tr>
<td>Chapter review</td>
<td>63.1 ± 1.9</td>
<td>7.8</td>
<td>a b d e f g</td>
</tr>
<tr>
<td>Authentic learning</td>
<td>56.0 ± 1.4</td>
<td>13.6</td>
<td>e f h</td>
</tr>
<tr>
<td>SA classroom design</td>
<td>55.3 ± 1.4</td>
<td>10.8</td>
<td>e f g h</td>
</tr>
<tr>
<td>Course design mindmap</td>
<td>49.0 ± 1.1</td>
<td>14.2</td>
<td>g h</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>6.0</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1.