The Effect of a Chiropractic Adjustment on Sensorineural Hearing Loss

A dissertation submitted to the

Faculty of Health Sciences, University of Johannesburg,
In partial fulfilment of the requirements for the
Master’s degree in Technology
In the programme Chiropractic
by

Cliff Duncan
(Student number: 809904890)

Supervisor: Dr. M. Moodley
M Tech (Chiro) SA

Co-Supervisor: Dr. S.M. Wilcox
BA (Phys)(Ed) UP
BSc (Med)(Hons) Exercise Science-Biokinetics UCT
M Tech (Chiro) SA
DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of Technology in Chiropractic at the University of Johannesburg. It has not been submitted before any degree or examination in any other Tertiary Institute.

(Signature of Candidate)

On this____ day of _____________________
DEDICATION

To my parents, thank you for your continuous love and support throughout the many years of studying, although not often said, it’s greatly appreciated.

To Angie, my wife and best friend, you have supported me through some incredibly difficult times in the past. Without your love, support and friendship, I would not have made it this far.

To my Father, thank you for your guidance and willingness to help me always. You have inspired me to be the best I can be.
ACKNOWLEDGEMENTS

Mr H.F. Mentz, Principal of Frances Vorwerg school, thank you for allowing me the use of the audiometer and the schools sound lab, this dissertation would not have been possible without your kindness.

Thank you Colin Campbell for all your help in arranging participants and the transport for the participants from The Mothwa Haven Retirement Home.

Thank you Bronwyn Bailey for your dedication and time spent in doing the audiological testing.

Dr. Moodley, my supervisor, thanks you for your advice and expert opinion and all the time and effort you spent on correcting my work.

Dr. Wilcox, thank you for the Saturdays you had to sacrifice to be present for the audiological testing as well as your dedication and willingness to help with any aspect of this research. Thank you for your ideas, advice and speedy marking of the various chapters throughout the duration of this dissertation.
ABSTRACT

The first documented case of improved hearing following chiropractic adjustment was by D.D. Palmer in 1895 in which he restored Harvey Lillard’s hearing. Mr Lillard had been deaf for seventeen years. This brought about the birth of a new profession called chiropractic (Terrett 2002).

It has been postulated that dysfunction or spinal joint motion restrictions of the cervical spine may lead to irritation of the sympathetic nervous system which may cause decreased blood flow to the auditory nerve via the labyrinthine artery (also known as the internal acoustic artery or internal auditory artery), which in turn may lead to a decrease in hearing acuity (Hawley 1964).

The purpose of the dissertation was to determine whether cervical spine joint adjustment had an effect on the hearing acuity in individuals with some level of sensorineural hearing loss.

Thirty symptomatic patients of either gender participated in this study. These patients were recruited by the use of advertisements placed in the Chiropractic Day Clinic, University of Johannesburg, Doornfontein Campus and by word of mouth.

The inclusion criteria required the patients to present with some level of sensorineural hearing loss, be over the age of fifty years and have no contra-indications to chiropractic adjustments.

Objective data was obtained by the Interacoustics Diagnostics Audiometer AD 229b, which determined the level of auditory acuity before and after chiropractic treatment was administered. Middle ear function and acoustic reflex was also tested with the GSI 38 Auto Tymp acoustic reflex machine.

The objective results demonstrated that there was no statistically significant increase in auditory acuity following either the chiropractic treatment, or the detuned ultrasound treatment.
In conclusion, it was shown that chiropractic adjustments in some patients presenting with sensorineural hearing loss, in the same subjects, exhibited a clinical improvement in hearing acuity however, not a statistically significant improvement following the treatment protocol discussed in the chapters that follow.

These improvements suggested that the adjustment resulted in a decrease in sympathetic nervous system stimulation and an increase in blood flow through the labyrinthine artery, and therefore an increase in auditory acuity. These improvements were noted to a larger degree in individuals with a greater sensorineural hearing loss and not across the entire sample population.
TABLE OF CONTENTS

Declaration II
Dedication III
Acknowledgements VI
Abstract V
Table of Contents VII
List of Figures X
List of Tables XII
List of Appendices XIII

Chapter One – Introduction 1

1.1 Introduction 1
1.2 Aim of the Study 2
1.3 Hypothesis 2
1.4 Benefits of the Study 3

Chapter Two – Literature Review 4

2.1 Anatomy of the Ear 4
2.2 The Hearing Process 6
2.3 Auditory Sensitivity 9
2.4 Measuring Hearing 10
2.5 Auditory Nerve Pathways to the Brain 15
2.6 Vascular Supply of the Brain, Auditory Nerve and the Ear 17
 2.6.1 The Internal Carotid Artery 17
 2.6.2 The Vertebral Artery 19
 2.6.3 The Basilar Artery 20
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 Anatomy of the Sympathetic Nervous System</td>
</tr>
<tr>
<td>2.7.1 Structure of the Autonomic Nerves</td>
</tr>
<tr>
<td>2.7.2 The Sympathetic Division</td>
</tr>
<tr>
<td>2.7.3 The Branches of the Sympathetic Nervous System</td>
</tr>
<tr>
<td>2.7.4 The Sympathetic Nerve Supply to the Head</td>
</tr>
<tr>
<td>2.7.4.1 The Inferior Cervical Ganglion</td>
</tr>
<tr>
<td>2.7.4.2 The Middle Cervical Ganglion</td>
</tr>
<tr>
<td>2.7.4.3 The Superior Cervical Ganglion</td>
</tr>
<tr>
<td>2.7.4.4 The Otic Ganglion</td>
</tr>
<tr>
<td>2.7.4.5 Other Ganglia</td>
</tr>
<tr>
<td>2.8 Hearing Loss and Deafness</td>
</tr>
<tr>
<td>2.8.1 Factors that Cause Conductive Hearing Loss</td>
</tr>
<tr>
<td>2.8.2 Factors that Cause Sensorineural Hearing Loss</td>
</tr>
<tr>
<td>2.9 The Effect of Chiropractic Adjustment on Vertebrogenic Hearing Disorders</td>
</tr>
<tr>
<td>2.10 The Chiropractic Adjustment</td>
</tr>
<tr>
<td>2.11 Theories of Improved Auditory Acuity with Chiropractic Treatment</td>
</tr>
<tr>
<td>Chapter Three - Methodology</td>
</tr>
<tr>
<td>3.1 Introduction</td>
</tr>
<tr>
<td>3.2 Study Design</td>
</tr>
<tr>
<td>3.2.1 Selection Criteria and Sample Selection</td>
</tr>
<tr>
<td>3.2.2 Randomisation Process</td>
</tr>
<tr>
<td>3.2.3 Treatment Protocol</td>
</tr>
<tr>
<td>3.2.3.1 Audiometric Testing</td>
</tr>
<tr>
<td>3.2.3.2 Audiological Report</td>
</tr>
<tr>
<td>3.2.3.3 Motion Palpation</td>
</tr>
<tr>
<td>3.2.3.4 Chiropractic Manipulative Therapy</td>
</tr>
<tr>
<td>3.3 Statistical Analysis</td>
</tr>
</tbody>
</table>
Chapter Four – Results

4.1 Introduction

4.2 Sample Size

4.3 Demographics of the Population

4.4 Data Analysis

4.4.1 Inter-group Analysis

4.4.1.1 Inter-group Pre-Adjustment Audiometric Analysis of the Control and Experimental Groups

4.4.1.1.1 Pre-Adjustment Analysis of the Control and Experimental Groups Right Ear

4.4.1.1.2 Pre-Adjustment Analysis of the Control and Experimental Groups Left Ear

4.4.1.2 Inter-group Post-Adjustment Audiometric Analysis

4.4.1.2.1 Post-Adjustment Analysis of the Control and Experimental Groups Right Ear

4.4.1.2.2 Post-Adjustment Analysis of the Control and Experimental Groups Left Ear

4.4.1.3 Inter-group Difference in Decibel Levels Pre and Post-Adjustment

4.4.1.3.1 The Difference in Decibel Levels between Control and Experimental Groups Right Ear

4.4.1.3.2 The Difference in Decibel Levels between Control and Experimental Groups Left Ear

4.4.2 Intra-group Analysis

4.4.2.1 Intra-group Pre-Adjustment Audiometric Analysis

4.4.2.1.1 Experimental Group Pre-Adjustment Analysis

4.4.2.1.2 Control Group Pre-Adjustment Analysis

4.4.2.2 Intra-group Post-Adjustment Audiometric Analysis

4.4.2.2.1 Experimental Group Post-Adjustment Analysis
Figure 2.12: Middle Cervical Sympathetic Ganglia

Figure 2.13: The Autonomic Nervous Supply to the Head

Plate 3.1: Photograph taken by Researcher
The Interacoustics Diagnostics Audiometer AD 229b Patient Side

Plate 3.2: Photograph taken by Researcher
The Interacoustics Diagnostics Audiometer AD 229b Operator Side

Plate 3.3: Photograph taken by Researcher
Rotary Cervical Index Contact Technique

Plate 3.4: Photograph taken by Researcher
The Bench Thumb Move Technique

Figure 4.1: Right Ear Pre-Adjustment Analysis of the Control and Experimental Groups

Figure 4.2: Left Ear Pre-Adjustment Analysis of the Control and Experimental Groups

Figure 4.3: Right Ear Post-Adjustment Analysis for the Control and Experimental Groups

Figure 4.4: Left Ear Post-Adjustment Analysis for the Control and Experimental Groups

Figure 4.5: The Right Ear Inter-Group Difference in Decibel Levels versus Frequency

Figure 4.6: The Left Ear Inter-Group Difference in Decibel Levels versus Frequency

Figure 4.7: Experimental Group Pre-Adjustment Analysis of the Audiology Test Results

Figure 4.8: Control Group Pre-Adjustment Analysis of the Audiology Test Results

Figure 4.9: Experimental Group Post-Adjustment Analysis of the Audiology Test Results

Figure 4.10: Control Group Post-Adjustment Analysis of the Audiology Test Results

Figure 5.1: Difference in Decibel Levels for Patient 1

Figure 5.2: Difference in Decibel Levels for Patient 2

Figure 5.3: Difference in Decibel Levels for Patient 3
List of Tables

Table 4.1: The Average Age of the Participants 49
Table 4.2: Group Sex Cross Tabulation 49
Table 4.3: The Difference in Decibel Levels Between Control and Experimental Groups 54
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Advertisement</td>
<td>75</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Patient Information and Consent Form</td>
<td>76</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Patient Case History Form</td>
<td>79</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Pertinent Physical Examination</td>
<td>83</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Cervical Spine Regional Examination</td>
<td>85</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Contra-Indications to Cervical Spine Adjustment</td>
<td>90</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Audiology Test Sheet</td>
<td>91</td>
</tr>
<tr>
<td>Appendix H</td>
<td>SOAP Note</td>
<td>92</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Statisticians Report</td>
<td>93</td>
</tr>
</tbody>
</table>