A randomised clinical trial investigating the efficacy of the use of the Brantingham Protocol versus Hallux Abducto Valgus night splint, in the treatment of painful Hallux Abducto Valgus

By

Morne, Pieter du Plessis

A Dissertation submitted to the

Faculty of Health Sciences, University of Johannesburg,
As partial fulfillment for the Masters degree in Technology:
In the programme Chiropractic

Supervisor : _________________ Date : ______________
Dr. Birdsey (M-Tech Chiropractic)

Co-Supervisor : _________________ Date : ______________
Mr. Zipfel (N.H.D. Podiatry ; BSc(Hons))

Johannesburg, 2005
DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of Technology at the University of Johannesburg, Johannesburg. It has not been submitted before for a degree or examination in any other Technikon or University.

Signature of Candidate: _______________________
On this the ___________ of _____________ 2005
DEDICATION

Thank you to my family for their love and support during my studies. Times with you are precious and valuable.

Thank you to my fiancé, Adele, my words are lacking to express all that you have done for me, your love, time, patience and help, which no one will really understand, these principals in our relationship will be steps to greater heights.

To my Heavenly Father, that the world will realize the Truth and who You are, that they will know Your mercy rather than your judgment. You are the Infinite One, All-powerful and yet Your presence dwells with us. Man lacks understanding. Jesus truly the Name above all names.

John 3:16-

For God so loved the world that He sent His only begotten Son, Jesus, that whosoever believes in Him will not perish but have truly everlasting life.
ABSTRACT

Hallux Abducto Valgus (HAV) is a common cause of foot pain causing deformity and often disability. The female population is more frequently affected by HAV than the male population with the two main causative factors being congenital and inappropriate footwear. Surgery is the most prevalent treatment, but it does not take into consideration the biomechanical effects on the biomechanical chain and therefore the deformity frequently reoccurs and complications after surgery are many.

The aim of this study is to compare the efficacy of the Brantingham protocol versus the HAV Night Splint in the treatment of painful HAV.

Thirty participants were selected to participate in the study and certain criteria had to be met. Participants were randomly divided into two groups, Group 1 was treated using a chiropractic protocol. The Brantingham Protocol that consisted of mobilization and specific adjustment of the first metatarsophalangeal joint was used. Group 2 was treated by the use of a HAV Night Splint.

Patients were treated over a 2-week period, twice a week with a 1-week follow up and a 1-month follow up. The lasting effect of the individual treatments was determined by the follow-up periods. Objective and subjective measurements were taken at each visit. Subjective measurements consisted of the McGill pain questionnaire (Melzack, 1975) (Appendix D), visual analogue scale (Masarsky and Todres-Masarsky, 2001) (Appendix B) and the foot function index pain scale (Saag et al., 1996) (Appendix C). Objective measurements consisted of passive Plantar and Dorsiflexion of the First metatarsophalangeal joint.

The results indicated a statistical and numerical significance within and between each group both subjectively and objectively. Group 1 proved to be superior to Group 2 in the treatment of painful HAV.
In conclusion, both the Brantingham Protocol and the HAV Night Splint proved to be effective in the treatment of painful HAV. However, Group 1 proved to be superior to Group 2 in the treatment of painful HAV.
ACKNOWLEDGEMENTS

I would like to thank Dr. Paul Birdsey, for his time and effort in helping me with the dissertation.

Thanks to my co-supervisor, Mr. Bernhard Zipfel, your time, valued opinion and helpfulness added a greater quality to this dissertation.

Thank you to Dr. Adele Vermeulen for your time, hard work and patience in helping me is immensely appreciated.

To caxTon newspapers who advertised this study.

Thanks to Mr. De Villiers for his help in the statistical part of the study.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xii</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xii</td>
</tr>
</tbody>
</table>

Chapter 1 - Introduction

1.1 Introduction 1
1.2 Problem Statement 2
1.3 Research Objectives 2
1.4 Need for solution of the problem 3
1.5 Benefits of the Study 4

Chapter 2 – Literature Review

2.1 Definition of Hallux Abducto Valgus 5
2.2 Anatomy 5
 2.2.1 Anatomy of the First Ray 5
 2.2.2 Osteology of the first metatarsal 5
 2.2.3 The First Metatarsophalangeal Joint 5
 2.2.4 Muscles of the First Metatarsophalangeal Joint 8
 2.2.5 Nerves of the foot 9
 2.2.6 Blood supply of the foot 12
2.11.3 Mobilization and Manipulation as in the Brantingham Protocol

2.11.3.1 Grades of Mobilization

2.12 Radiographic features

Chapter 3 – Materials and Methods

3.1 Study Design

3.2 Recruitment of participants

3.3 Research Process

3.3.1 Inclusion criteria

3.3.2 Exclusion Criteria

3.4 Investigative procedure

3.5 Treatment schedule

3.6 Measurements

3.6.1 Objective measurements

3.6.1.1 Goniometer Readings

3.6.2 Subjective measurements

3.6.2.1 Visual Analogue scale

(Masarsky and Todres-Masarsky, 2001)

3.6.2.2 Foot Function Index Pain Scale

(Saag et al., 1996)

3.6.2.3 McGill Pain Questionnaire

(Melzack, 1975)

3.7 Data analysis

3.8 Statistical Tests

3.8.1 The One way analysis of variants (ANOVA) Test

3.8.2 The Student-Newman-Keuls Multiple Comparisons Test

3.8.3 The Paired T-Test
Chapter 4 – Results

4.1 Introduction

4.2 Statistical Data Analysis

4.2.1 Objective Data

i) Plantarflexion

ii) Dorsiflexion

4.2.2 Subjective Data

i) The McGill Pain Questionnaire Scores

ii) Foot Function Index Pain Scale Scores

iii) Visual Analogue Pain Scale Scores

Chapter 5 – Discussion

5.1 Introduction

5.2 Subjective Results

a) The McGill Pain Questionnaire

i) Intragroup analysis of Group 1

ii) Intragroup analysis of Group 2

iii) Intergroup analysis of Group 1& Group 2

5.3 Objective Results

a) Plantarflexion of the First metatarsophalangeal joint

i) Intragroup analysis of Group 1

ii) Intragroup analysis of Group 2

iii) Intergroup analysis between Group 1 and Group 2

b) Dorsiflexion of the First metatarsophalangeal joint

i) Intragroup analysis of Group 1

ii) Intragroup analysis of Group 2

iii) Intergroup analysis between Group 1 and Group 2
Chapter 6 – Conclusions and Recommendations

6.1 Conclusions

6.2 Recommendations

References

List of Figures

Figure 1: Normal foot versus mis-aligned foot
Figure 2: The first metatarsal
Figure 3: A cross section through the first metatarsal head
Figure 4: Schematic drawing of A, normal and, displacement of the adductor and abductor muscles groups and of the sesamoid bones in HAV
Figure 5: Tibial Nerve
Figure 6: Medial view of the foot
Figure 7: Stages of a normal gait cycle
Figure 8: A plantar view of the left great toe
Figure 9: The HAV night splint
Figure 10: Radiographic representation of the Intermetatarsal and the HAV angle

List of Graphs

Graph 1: Bar Graph Comparing Plantarflexion Range of Motion
Graph 2: Bar Graph Comparing the Dorsiflexion Range of Motion
Graph 3: Bar Graph Comparing the McGill Pain Questionnaire
Graph 4: Bar Graph Comparing the Foot Function Index Pain Scale
Graph 5: Bar Graph Comparing the Visual Analogue Pain Scale

List of Tables

Table 1: Group 1 Plantarflexion Pairwise Multiple Comparison Procedure
Table 2: Group 2 Plantarflexion Pairwise Multiple Comparison Procedure
Table 3: Group 1 Dorsiflexion Pairwise Multiple Comparison Procedure Student-Newman-Keuls Method (Intra-Group) 47
Table 4: Group 1 McGill Pain Questionnaire, Pairwise Multiple Comparison Procedure Student-Newman-Keuls Method (Intra-Group) 50
Table 5: Group 2 McGill Pain Questionnaire, Pairwise Multiple Comparison Procedure Student-Newman-Keuls Method (Intra-Group) 50
Table 6: Group 1 Foot Function Index Pain Scale Pairwise Multiple Comparison Procedure Student-Newman-Keuls Method (Intra-Group) 54
Table 7: Group 2 Foot Function Index Pain Scale Pairwise Multiple Comparison Procedure Student-Newman-Keuls Method (Intra-Group) 54
Table 8: Group 1 Visual Analogue Pain Scale Pairwise Multiple Comparison Procedure Student-Newman-Keuls Method (Intra-Group) 58
Table 9: Group 2 Visual Analogue Pain Scale Pairwise Multiple Comparison Procedure Student-Newman-Keuls Method (Intra-Group) 58

List of Appendices
Appendix A: Information and Consent Form 79
Appendix B: Visual Analogue Pain Scale (Masarsky and Todres-Masarsky, 2001) 81
Appendix C: Foot Function Index Pain Scale (Saag et al., 1996) 82
Appendix D: McGill-Short Form Pain Questionnaire (Melzack, 1975) 83
Appendix E: Ranges of Motion Measurements 84
Appendix F: Questionnaire to rule out acute Rheumatoid Arthritis 85
Appendix G: Advertising Poster 86