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Abstract: DNA methylation is an epigenetic modification of the genome involved in the regulation of
gene expression and modulation of chromatin structure. Plant genomes are widely methylated, and
the methylation generally occurs on the cytosine bases through the activity of specific enzymes called
DNA methyltransferases. On the other hand, methylated DNA can also undergo demethylation
through the action of demethylases. The methylation landscape is finely tuned and assumes a pivotal
role in plant development and evolution. This review illustrates different molecular aspects of DNA
methylation and some plant physiological processes influenced by this epigenetic modification in
model species, crops, and ornamental plants such as orchids. In addition, this review aims to describe
the relationship between the changes in plant DNA methylation levels and the response to biotic
and abiotic stress. Finally, we discuss the possible evolutionary implications and biotechnological
applications of DNA methylation.

Keywords: DNA methylation; plant epigenetics; gene expression; plant genomic imprinting;

environmental adaptations

1. Introduction

Epigenetic modifications are heritable chemical changes that do not alter the DNA
nucleotide sequence but can influence the phenotype [1,2]. Epigenetics is a fascinating topic
in plant biology because epigenome dynamism and plasticity affect plant development and
evolution in response to the environment.

The epigenetic marks include chemical modifications of the DNA (i.e., methylation)
and numerous post-translational modifications of histone proteins, such as acetylation,
methylation, ubiquitination, sumoylation, and phosphorylation. These changes generally
occur at the histone N-terminal tails [3,4]. In addition to covalent modifications of DNA and
histones, epigenetic mechanisms include the activity of non-coding RNA molecules [5-7]
and chromatin remodeling factors that control the nucleosome position, assembly, and
disassembly [8,9]. These modifications can alter the accessibility of the genomic regions
and regulate gene expression, resulting in phenotypic plasticity. The consequent ability to
rapidly modulate the responses to environmental changes is crucial for all living organisms,
especially for sessile such as plants [10].

DNA methylation is one of the most studied epigenetic mechanisms [10]. Plant DNA
methylation occurs through the link of a methyl group (-CH3) at cytosine in symmetric, CG
and CHG; and asymmetric, CHH, contexts (where H is any nucleotide except G), carried
out by a family of enzymes called DNA methyltransferases [3,11,12] (Figure 1).
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Figure 1. Specific DNA methyltransferases and demethylases mediate cytosine methylation (red
circle) in different sequence contexts. CG, CHG, and CHH methylation are carried out by MET1,
CMT3, and CMT?2, respectively. DRM2, involved in the RADM pathway, regulates all sequence
context methylation. ROS1, DME, DML2, and DMLS3 act as demethylases.

In the thale cress (Arabidopsis thaliana), a model species for plant genetics, the CG
DNA methylation is maintained by the METHYLTRANSFERASE 1 (MET1) during DNA
replication [9], while the CHROMOMETHYLASE 2 and 3 (CMT2 and CMT3) generally
methylate the CHG and CHH contexts. In particular, CMT2 acts mainly in the CHH context
and CMT3 acts in the CHG context [11,13,14]. In contrast, the DNA methyltransferase
DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) is involved in maintain-
ing the existing methylation landscape in both symmetric and asymmetric contexts, and
it is also responsible for de novo DNA methylations. DRM2 is guided to the target se-
quence by small RNA molecules in a plant-specific pathway known as RNA-directed DNA
methylation (RdDM) [3,11,15,16].

In Arabidopsis, RADM can occur in two different ways: canonical and non-canonical.
The canonical pathway is mainly involved in maintaining methylation in heterochromatic
regions. During canonical RADM, the RNA Polymerase IV (Pol IV) interacts with the
chromatin remodeler CLASSY 1 (CLSY1) and its interactor SAWADEE HOMEODOMAIN
HOMOLOG 1 (SHH1). This complex binds to heterochromatin, and RNA Pol IV transcribes
short single-strand RNAs (ssRNAs), approximately 3045 nucleotides in length. The RNA-
directed RNA polymerase RDR2 and RNA Pol IV convert these ssRNAs into double-
strand RN As (dsRNAs). Then, the endoribonuclease DICER-LIKE 3 (DCL3) cleaves the
dsRNAs into 24 nucleotides SRNAs. The ARGONAUTE proteins (AGO4, AGO6) convey
single strands of the SRNAs toward the complementary RNA transcribed by the plant-
specific RNA Polymerase V, recruiting the methyltransferase DRM2 that methylates the
neighboring DNA.

The non-canonical pathway is less frequent and includes many variations of the canon-
ical pathway, generally resulting in de novo DNA methylation (for example, methylation
of newly transposed mobile elements). In the non-canonical pathway, the biogenesis of
sRNAs is not only mediated by Pol IV—RDR2—DCL3, but they can be originated by many
other mechanisms such as RNA Polymerase II transcription [17-22].

Methylation levels are finely controlled, and the dynamic of DNA methylation/demethylation
is a rigorously orchestrated process. In plants, demethylation can be a passive mechanism
with the loss of the methylation signal during DNA replication, or an active mechanism
mediated by specific enzymes [23] through the DNA base excision repair (BER) [24,25].
Specific plant DNA glycosylases recognize methylated cytosine in any sequence context
and break the bond with the deoxyribose sugar, originating an abasic site that will be
repaired by DNA polymerase and ligase.
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The four DNA demethylases identified in Arabidopsis are the REPRESSOR OF SI-
LENCING 1 (ROS1), DEMETER (DME), and DEMETER-LIKE PROTEIN 2 and 3 (DML2,
DML3) [26-31] (Figure 1). In mammals, the Ten-Eleven Translocation methylcytosine dioxy-
genase (TET) enzymes play an important role in demethylation, catalyzing the oxidation of
the methylated cytosine [32]. However, plant TET-like enzymes are not yet characterized,
even if the existence of the oxidative product during active demethylation suggests the
possible involvement of TET-like proteins in this process [33]. Moreover, the overexpression
of a human TET protein in Arabidopsis induces significant genome demethylation, further
supporting the existence of TET-like proteins in plants [34].

In addition to cytosine methylation, generally associated with transcriptional repres-
sion, the plant genome can be dynamically methylated on N°-adenine. The 6-methyl-
adenosine (6mA) is associated with expressed genes and seems to be very receptive to
environmental stimuli [35,36].

This review will focus on the molecular and cellular functions of DNA methylation
in plants, highlighting its role in the plant’s life cycle, response to environmental changes,
and evolution.

2. Role of DNA Methylation in Plant Cells

The level of DNA methylation deeply influences the plant genome structure and
activity. Numerous and different molecular mechanisms are affected by the action of DNA
methylation, underlining the importance of this epigenetic mechanism in the plant cell.

2.1. Gene Expression

A critical molecular consequence of DNA methylation is the regulation of gene expres-
sion (Figure 2A) [17].
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Figure 2. Different roles of DNA methylation in plant cells. (A) The promoter DNA methylation
(red circle) represses transcription activity and gene expression; (B) methylation of the coding
regions generates an inaccessible chromatin structure suppressing the aberrant transcription start
site; (C) DNA methylation affects genome stability by silencing transposons and other DNA repeated
sequences; (D) chromosome interactions through pericentromeric regions or heterochromatin islands
depend on the methylation of these regions; (E) DNA methylation could be involved in the biogenesis
of circRNAs; (F) mRNA methylation controls stability, splicing, and processing of the transcript
itself. TSS, transcription start site; CTSS, cryptic transcription start site; AT, aberrant transcript; TE,
transposable elements.

Usually, due to the promoter region methylation, the binding of transcription activators
is prevented, and that of transcription repressors is improved, leading to the inactivation
or reduction of transcription. Moreover, gene expression regulation results from the
cooperation of different epigenetic mechanisms that influence each other, for example,
DNA methylation and histone modifications. The N-terminal tails of histones can undergo
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numerous modifications promoted by specific enzymes. Some of these modifications, such
as histone acetylation or H3 lysine 4 monomethylation (H3K4me1l), relax the chromatin,
thus facilitating the transcription. Generally, regions with a low methylation level also
present other modifications that promote transcription, e.g., histone acetylation. However,
in some cases, poorly methylated and actively transcribed regions can show histone hypo-
acetylation, suggesting that sometimes the loss of the DNA methylation is a mechanism
that, alone, can promote the activation of transcription [17,37,38].

Less frequently, DNA methylation can also activate gene transcription, even if the
molecular mechanism involved is not yet understood [17].

In addition to the promoter, methylation can also occur within the full-length cod-
ing region, generally in the central exons rather than in the transcription start and end
regions [17,39]. Unlike promoter methylation, which suppresses or decreases the tran-
scription of the downstream gene, methylation in the coding region inhibits transcript
elongation. In this way, the transcription occurs from the transcription start site to the
methylation site, with the production of a smaller, possibly inactive transcript [40].

Intragenic methylation plays a relevant regulatory and biological role, preventing the
activation of cryptic transcription start sites [36]. In the plant meristem cells, aberrant tran-
scription produces double-stranded RNAs that trigger a feedback methylation mechanism
via RADM and repress the cryptic promoters from which they originated. The methy-
lation of these cryptic transcription start sites is maintained in the differentiated tissues
where the chromatin preserves its inaccessible structure, and the aberrant transcription is
suppressed [40,41] (Figure 2B).

2.2. Transposon Mobility

DNA methylation is involved in maintaining plant genome stability by regulating trans-
poson mobility. The methylation of the transposable elements occurs in all sequence contexts
and in the genome of all plant species, from mosses to angiosperms (Figure 3) [42—47]. In
particular, the RADM pathway maintains the CHH sequence methylation in short and large
transposon ends, whereas CMT2 methylates the internal regions of large transposons [14,48].
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Figure 3. DNA methylation during plant evolution. The diameter of the colored circles represents
the genome size of selected species; the dark slice represents the percentage of repeated sequences,
and the intensity of the gray represents the level of global DNA methylation. Across plant evolution,
DNA methylation assumes new roles represented by colored rectangles. The TE silencing constitutes
the most conserved function of methylation. More recently, novel regulation pathways have emerged.
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The transposon activity within the genome can disrupt the structure of a gene or
a regulatory region. Therefore, methylation acts as a cellular defense mechanism by
reducing the transposition rate of the mobile elements [17,42] (Figure 2C). Transposon
silencing can also cause the spread of methylation to the flanking areas, thus generating
differentially methylated regions [49,50]. In the plant genomes, such as maize (Zea mays),
the hypermethylated CHH islands maintained by the RADM mechanism are fundamental
to separating the transcriptionally active regions and inactive transposons. In this way, the
eventual activation of a silenced transposable element by the positional effect of nearby
active euchromatin is unlikely [17,51].

Although its critical function in genome stability, sometimes DNA methylation alone
is not sufficient to ensure the silencing of the transposable elements. As mentioned above,
additional marks, like histone modifications, are necessary to regulate transposon mobility.
For example, dimethylation of H3K9 (H3K9m?2) is a significant mark in heterochromatin
formation. In particular, in the Arabidopsis genome, there is a correlation between H3K9m2
levels and transposons present in euchromatic chromosome arms, suggesting this modifi-
cation has a role in the silencing of transposons [52-54].

2.3. Chromosome Interactions

Another function of DNA methylation is the regulation of chromosome interactions.
The hypermethylation of pericentromeric regions and some interactive heterochromatin is-
lands (IHI) of euchromatic chromosome arms generate an interaction network (Figure 2D).
In Arabidopsis, this nuclear complex is called KNOT and is present in all five chromo-
somes [55,56]. The KNOT complex has a relevant role in maintaining genome integrity,
which is threatened by the jumping of transposons [48].

Genomic analyses of Arabidopsis have demonstrated the effect of DNA methylation on
chromosome interactions, showing that the genomic regions with a high methylation level
are less engaged in long-range chromatin contacts than the low methylated regions [57].

The control of chromosome interactions by DNA methylation is an important mech-
anism affecting gene expression. Promoters control gene expression in addition to some
regulatory regions that can be very distant from the transcription start site (TSS). Although
distant enhancers in the plant genomes are still unknown, this type of regulation cannot be
excluded. Some speculative models describe how the control of chromatin landscape by
methylation level could influence long-range chromosomal interactions and gene expres-
sion. In particular, inhibiting the formation of 3D spatial interactions between chromosomes
prevents the regulation of gene expression through distant regulatory elements, such as
enhancers. These models suggest that RADM can prevent the binding of the architectural
proteins blocking the formation of chromosomal interactions [57].

2.4. Biogenesis of circRNAs

Circular RNAs (circRNAs) are non-coding RNA molecules that have recently been
characterized, and much is still unknown about their formation and role. They have been
described in different angiosperm genomes such as Arabidopsis [58], rice (Oryza sativa) [59],
and maize [60]. The linear mRNA molecules are generated from the canonical splicing
mechanism where the upstream (5') splicing donor site has linked to the downstream (3')
splicing acceptor site. In contrast, circRNAs are produced at the post-transcriptional level
by a pre-mRNA back-splicing. The downstream splicing donor site is ligated with an
upstream splicing acceptor site, and the 3’ and 5 ends are covalently closed. circRNAs
do not possess a polyadenylated tail and are more stable and resistant to exonuclease
degradation than linear RNAs [61-63].

Interestingly, recent findings suggest that DNA methylation could also be involved
in the biogenesis of circRNAs. For example, circRNA-seq data in the moso bamboo
(Phyllostachys edulis) show a high methylation level in flanking intron regions of circRNAs
(Figure 2E) [64]. Although the biological role of circRNAs is still unclear, they could be
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involved in miRNA binding and regulation of gene expression [65,66], generating a new
level of epigenetic regulation through DNA methylation.

2.5. RNA Methylation

Methylation is a chemical modification that does not act only on DNA; in fact, it
also plays a central role in mRNA stability and splicing, affects mRNA processing by
generating alternative polyadenylation sites that cause the production of incomplete and
unproductive transcripts, and influences the mRNA migration in the cytoplasm and its
translation (Figure 2F) [67-77].

An analysis of plant epitranscriptome reveals that the most common post-transcriptional
RNA modifications occur at N6-methyladenosine (m6A) and 5-methylcytidine (m5C) [78].
These two modifications are located in different regions of the transcripts. Near the stop
codons and at 3’ untranslated regions (3’ UTR), m6A is abundant, while m5C is more
frequent in coding sequences (CDS) [78].

The methylation level of the transcripts is dynamic and changes between tissues
and different stages of plant development. This variation is due to the action of specific
writer, eraser, and reader enzymes that catalyze epigenetic modifications. The writers
generate the chemical modifications, the readers recognize and identify them, and the
erasers remove them. The variation of these enzyme levels reflects the complexity of the
epigenetic landscape and its dynamism [78-84].

In Arabidopsis, the m6A modifications on RNA depend on the specific complex that
includes the methyltransferase A (MTA) that interacts with the methyltransferase B (MTB)
and other factors such as FKBP12 interacting protein 37 (FIP37) [85,86]. The writers TRM4A
and TRM4B perform the RNA methylation of m5C: the first is involved in the m5C methy-
lation of tRNAs, and the second acts on mRNAs [87]. Among the erasers, thirteen enzymes
have been identified in Arabidopsis. They belong to the ALKBH family and catalyze the
removal of the m6A modifications [88]. Three YTHD proteins represent the m6A readers of
Arabidopsis so far [89]. The expression of all these enzymes varies under abiotic stress con-
ditions, showing the importance of the regulation of RNA chemical modifications. These
enzymes can control the RNA molecule stability and fate by modifying specific nucleotides,
thus affecting plant response to environmental conditions [84].

3. DNA Methylation during Plant Development

Variation of DNA methylation in different tissues and during the phases of plant
development considerably affects plant physiology [17].

3.1. Genomic Imprinting

DNA methylation has a critical role in fertilization, the first step of the plant life
cycle. During this stage, genomic imprinting can occur at specific loci through differential
methylation of the two alleles dependent on their parental origin.

In angiosperms, female gametogenesis occurs in the ovary, where the meiosis of
the megasporocyte produces four haploid megaspores. After the degeneration of three
megaspores, the only surviving undergoes three sequential mitoses, generating a cell with
eight nuclei. Two polar nuclei migrate at the cell center and form the central cell. Three
nuclei move upwards, arising antipodal cells, and three migrate at the bottom, generating
the two lateral synergid cells and the central egg cell. The pollinic granule is constituted
by two spermatic cells and a vegetative cell. The latter forms the pollen tube that directs
sperm cells in the ovary during fertilization. One of the two spermatic cells fuses with
the egg cell forming the diploid zygote. The other sperm cell combines with the central
cell, thus producing the triploid endosperm that nourishes the growing embryo [90]. This
kind of megagametophyte is named Polygonum-type and characterizes more than 70% of
angiosperm species, including Arabidopsis [91].

Genomic imprinting is a regulatory phenomenon involved principally in the embryo’s
growth. It was first described in mammals, where the parental conflict theory explains the
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functional meaning of genomic imprinting [92]. Applying this theory to plants highlights
the different parental contributions to the seed size [93,94]. The growth of the seed depends
principally on the maternal food reserves, resulting in higher metabolic costs for maternal
tissues than for paternal ones. For this reason, the maternal genes that control the seed size
have to ensure a balance between an optimal size, the energy expense of the mother, and
the energetic resources that other seeds already in the developing stage need for growth.

In contrast, the paternal tissues do not directly experience the metabolic expense for
developing the seed. The only effect of the larger seed suffered by paternal tissue is indirect
because there is a lower chance of reproduction due to the presence of fewer ovules to
fertilize [92]. Consequently, the genes that repress endosperm growth and reduce the
nutrient flow to the embryo are expressed by maternal alleles. On the contrary, the genes
that increase endosperm development and stimulate the nutrient flow to the embryo are
expressed by paternal alleles [95].

In the maternal central cell, an effective demethylation activity occurs before fertil-
ization. Consequently, in the endosperm, maternal alleles are less methylated and more
expressed than paternal ones [96-98]. Many imprinted genes, including transcription
factors and protein involved in chromatin remodeling, have a significant regulative role
in seed development and endosperm proliferation. For example, in the central cell of
Arabidopsis, DME demethylates the genes FLOWERING WAGENINGEN (FWA), MEDEA
(MEA), and FERTILIZATION-INDEPENDENT SEED 2 (FIS2), while in the spermatic cell,
these loci are methylated and silenced. In this way;, after fertilization, only the MEA, FIS2,
and FWA maternal alleles are expressed in the endosperm [99-101].

MEA is a Polycomb group protein (PcG) and is the homolog of Enhancer of zeste of
Drosophila [100]. The PcG proteins of Drosophila have a role in maintaining the silenced
state of the target genes through chromatin remodeling. The MEA protein of Arabidopsis
suppresses central cell proliferation and endosperm development, regulating gene tran-
scription by controlling chromatin accessibility. For this reason, the MEA maternal allele is
expressed, as opposed to the paternal one [102]. As MEA, FIS2 is also a PcG protein, the
homolog of the Drosophila Suppressor of zestel2 SU(Z)12. In Arabidopsis, FIS2 and MEA
function in similar protein complexes playing a role in the transcriptional regulation of
target genes [100,103].

In contrast to MEA and FIS2, involved in seed development, the imprinting of the
FWA gene is fundamental for flowering. The ectopic expression of FWA and the alteration
of the imprinting in fwva mutants are responsible for the plant’s late flowering [99].

In the central and vegetative cells of Arabidopsis [97], rice [104], and maize [105], DME
can also demethylate mobile elements. This activates the transcription of small RNA
molecules delivered to the egg and sperm cells, reinforcing transposon silencing in the
gametes [97,106-109].

To date, genomic imprinting is described only in species with the Polygonum-type
embryo sac, the most common type among angiosperms [110]. Future studies on genomic
imprinting in taxa with other types of embryo sacs (e.g., Allium-, Oenothera-, Adoxa-type, etc.)
will enhance our knowledge of the epigenetic mechanisms involved in angiosperm fertility.

3.2. Floral Pigmentation, Floral Scent, and Photosynthesis

Besides fertilization, epigenetic modifications are powerful regulators of many other
biological processes in plants. For example, DNA methylation can influence the floral
pigmentation in the Oncidium orchid.

The labellum of the Oncidium Gower Ramsey (GR) flower has an intense yellow
coloration due to the accumulation of carotenoid pigments. The genetic pathway under-
pinning this pigmentation is known [111], and its variation is responsible for the white
flower color in Oncidium White Jade (W]). The different color patterns of these orchid
cultivars depend on the differential expression of carotenoid-related genes in response to
their methylation levels. In particular, in Oncidium GR, the OgCCD1 gene is methylated
and silenced. On the contrary, in WJ cultivar tissues, the lack of promoter methylation and
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the consequent active expression of the OgCCD1 gene promotes carotenoid degradation
resulting in a white flower [112].

Another characteristic of the pigmentation pattern of the Oncidium GR flower is the
presence of a red streak in the perianth, absent in the cultivar Oncidium Honey Dollp (HD).
In this case, the different coloration of the orchid floral organs depends on the methylation
levels of the genes involved in the anthocyanin-biosynthetic pathway. The methylation of
the OgCHS gene promoter in the HD cultivar is responsible for the absence of anthocyanin
accumulation. In contrast, the unmethylated gene is effectively expressed in GR [113].

DNA methylation plays an active role in the flower color formation in many other
ornamental plants. In the hall crabapple (Malus halliana), petal coloration changes from red
to pale pink during development, and this variation is associated with the downregulation
of many genes. In particular, the promoter of MhMYB10, a gene of the anthocyanin
biosynthesis pathway;, is highly methylated, resulting in a reduction of the MhMYB10 gene
expression and a decrease in anthocyanin accumulation [114].

The methylation of gene promoters predominantly causes gene expression variation
during plant development and growth. The alteration of these marks in genes belonging
to the same network indicates the DNA methylation involvement in a specific regulation
pathway. For instance, in the Chinese/Japanese plum (Prunus mume), many genes belong-
ing to eight floral scent biosynthesis pathways show different methylation levels during
the development of the flower [115]. These genes encode enzymes that are key regulators
of floral scent production, such as the Coniferyl Alcohol Acetyltransferase (PmCFAT1a/1c)
and the Benzyl Alcohol Acetyltransferase (PmBEAT36/3). The CFAT proteins belong to
the acyltransferase family and are fundamental for eugenol synthesis, catalyzing the trans-
formation of the substrate coniferyl alcohol to coniferyl acetate [116]. The BEAT proteins
catalyze the transfer of the acetyl group of acetyl-CoA to the carbonyl group of benzyl
alcohol, generating the benzyl acetate [117]. Whole-genome bisulfite sequencing in P. mume
revealed that most of the differentially methylated genes are involved in different steps of
the phenylpropane biosynthesis pathway through which over 90% of the floral volatiles
are produced [115].

The dynamic of DNA methylation can vary in space and time, e.g., among different
tissues or stages of development. The pineapple (Ananas comosus) leaves are an excellent
example of the variation of DNA methylation during the diel (24 h). In the pineapple, the
white leaf base is non-photosynthetic tissue. Here, the number of methylated genomic
sequences is appreciably reduced across diel time course compared to the photosynthetic
tissues, constituted by the green leaf tip. This alteration is particularly evident in the CHH
sequences rather than in the CG and CGH context, where significant global differences are
absent and occur in both gene and transposon regions. Temporal methylation data reveal
that DNA methylation levels are low in green and white leaf tissue in the early morning and
then increase during the afternoon (starting at 4 pm). In particular, a differentially methy-
lated profile between green and white leaf tissues during the diel periods is characteristic
of the CAM pathway genes, e.g., beta carbonic anhydrase (beta-CA), phosphoenolpyru-
vate carboxylase (PEPC), phosphoenolpyruvate carboxylase kinase (PPCK), and malate
dehydrogenase (MDH). Therefore, DNA methylation can affect CAM photosynthesis in
pineapple [118].

4. Methylation, Environment, and Evolution

Plants can respond to environmental stimuli by changing their epigenetic landscape.
As proved by methylome analysis of different plant species, biotic or abiotic stress can
affect DNA methylation, modifying the expression and regulation of stress-responsive
genes [17].

4.1. Abiotic and Biotic Stimuli

In the orchid Dendrobium officinale, the cold and drought stress can influence the ex-
pression of the methylase DoC5-MTase and demethylase DodMTase genes. The promoter of
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these genes contains hormone-, light-, and stress-responsive cis-acting elements, confirming
the relationship between the methylase/demethylase expression and the environmental
conditions. In particular, the expression of most DoC5MTuses is reduced under cold stress
while the expression of DodM1Tases increases. Moreover, the DodMTase and DoC5-MTase
gene transcription levels are correlated with the biosynthesis of water-soluble polysac-
charides (WSPs). In fact, during the transition from protocorm-like bodies to plantlets in
Dendrobium, the WSP content increases, and there is an up-regulation of both the DodMTase
genes and the genes involved in WSP biosynthesis. At the same time, the expression of
DoC5-M1Iase decreases. Environmental stresses, such as the cold, can affect the activity of
methylase/demethylase transcription. This alteration reflects in a variation of the WSP
synthesis and accumulation through regulating the genes involved in this pathway [119]
(Table 1).

Table 1. Summary of the genes that change the methylation levels in response to abiotic stress.

Species Genes Protein Phenotype Stress Methylation State
D. officinale DoC5-MTase methylase biosynthesis of WSPs cold methylated
D. officinale DodMTase demethylase biosynthesis of WSPs cold demethylated
C. sinensis C5-MTase methylase cold/drought methylated
C. sinensis CsdMTase demethylase cold/drought demethylated
B. napus Exagone LCR cytochrome P450 monooxygenase cutin synthesis salt methylated
B. napus Toccata LCR cytochrome P450 monooxygenase cutin synthesis salt unaltered
B. napus Exagone TPS4 trehalose phosphatase/synthase 4  biosynthetic pathway of trehalose salt demethylated
B. napus Toccata TPS4 trehalose phosphatase/synthase 4  biosynthetic pathway of trehalose salt methylated
S. lycopersicum Asr2 putative transcription factor response to water-stress drought demethylated

Similarly, in the tea plant (Camellia sinensis), the expression of the cytosine-5 DNA
methyltransferase (C5-MTase) and DNA demethylase (dMTuse) genes is dependent on envi-
ronmental stimuli. As in Dendrobium, the promoters of CsC5-MTase and CsdMTase have
multiple cis-acting elements responsive to light, phytohormones, and stress, suggesting
that the relationship between environmental stimuli and DNA methylation is conserved
among plants. The expression of the Camellia methylases and demethylases depends on
abiotic stress, such as cold and drought. In particular, due to abiotic stress, the transcription
of most CsC5-MTuses is repressed, and that of all four CsdMTase genes increases [120],
showing that the DNA methylation/demethylation activity can be a quick and effective
response to environmental changes (Table 1).

There are many other examples where abiotic stress is a critical factor contributing
to the modulation of DNA methylation. Cold is a stress factor that controls methylome
flexibility in many plant species. Arabidopsis plants grown at two different temperatures
that affect flowering, 10 °C and 16 °C, have a significant difference in the methylation in
the CHH context. On the contrary, there are no considerable alterations in CG and CHG
contexts. The differentially methylated regions (DMR) of the Arabidopsis plants subjected
to the two different temperatures are located in transposable elements, according to their
association with CHH methylation [121]. Active demethylation is due to low temperature
in Z. mays, especially in root tissue [122,123] and in the snapdragon (Antirrhinum majus),
where it causes the activation of the Tam3 transposons [123-125].

In addition to temperature, other abiotic factors can affect DNA methylation. For example,
salt stress induces demethylation in rape (Brassica napus) and O. sativa [123,126-128]. In
B. napus, two different cultivars have distinct DNA methylation levels under salt stress,
resulting in the variation of the expression of two stress-related genes: Lacerata (LCR) and
Trehalose Phosphatase/Synthase 4 (TPS4).

The LCR gene encodes a cytochrome P450 monooxygenase involved in the cutin
synthesis that controls the water loss. The LCR expression decreases in the salinity-tolerant
Exagone cultivar due to increased methylation under high salt conditions. On the contrary,
the LCR expression remains unaltered in the salinity-sensitive Toccata cultivar. The TPS4
gene belongs to the biosynthetic pathway of trehalose, a disaccharide involved in response
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to dehydration. Under salinity stress, the expression of TPS4 increases in Exagone and
decreases in Toccata, reflecting its methylation pattern [126] (Table 1).

A diversity of rice varieties respond to salt stress in different ways through DNA
methylation changes. For example, under salt stress, the salt-tolerant Pokkali variety
promptly removes its DNA methylation marks in comparison to the salt-sensitive variety
IR29 [128].

As mentioned before, water deficit is an abiotic stress that affects DNA methylation,
for example increasing the demethylation levels in tomato (Solanum Iycopersicum) where the
drought-responsive gene Asr2 is hypomethylated in roots under drought conditions [123,129]
(Table 1).

Salinity and drought stress also affect Z. mays plants, altering cell cycle regulation and
chromatin remodeling. In particular, due to the exposure to this abiotic stress, DNA methy-
lation levels are reduced together with different changes in histone modifications [130].

Arsenic toxicity is another abiotic stress affecting DNA methylation, as in the fern
Pteris cretica, where arsenic stress reduces DNA methylation in old fronds. Changes in the
methylation landscape directed by arsenic exposure alter several physiological parameters
of this fern species and reduce the metabolite and water transport between roots and
fronds [131].

The heavy metal stress also induces specific DNA methylation changes in the green
alga Scenedesmus acutus. Chromium is one of the environment’s most diffused and toxic
metals. The methylation pattern of two S. acutus strains with different chromium sensitivity
is very different, suggesting that DNA methylation is involved in chromium tolerance in
algae [132].

A further interesting example of the abiotic stress effect on methylation is the effective
hypermethylation in the Pinus silvestris genome as a protective mechanism and adaptation
strategy under the mutagenic ionizing radiations in the Chernobyl area [123,133].

In addition to abiotic factors, biotic stimuli such as the colonization of microorganisms
or pathogens can influence DNA methylation levels. For example, infection of nematode
cysts stimulates hypomethylation in soybean (Glycine max) and A. thaliana roots [134,135].
Many findings display that the DME mutants of Arabidopsis have an increased susceptibility
to infection by pathogenic bacteria and fungi [136], suggesting that the regulation of DNA
methylation is related to defense mechanisms against different biotic external agents.

4.2. Environmental Adaptations and Evolution

When environmental stimuli influence the reprogramming of DNA methylation in the
germline, these modifications can be transmitted to the next generation [42]. In contrast to
animals, where the germline is determined early during development, plants establish the
germline later due to environmental signaling and cellular context.

The lack of an early separation between somatic and germline tissues in plants makes
transgenerational transmission of epigenetic modifications more probable and straightfor-
ward [137,138]. The transgenerational epigenetic inheritance (TEI) in plants is frequently
determined by environmental stimuli inducing epimutations that can be inherited across
generations [139]. For example, some plants, such as Arabidopsis, acquire a specific methy-
lation profile in response to drought stress. This methylation pattern can be transmitted to
the next generations of stressed and unstressed plants. However, a prolonged irrigation
period can cause the loss of the epialleles and related phenotype [140]. This suggests low
stability of the epimutations, which tends to disappear over time and in the absence of the
environmental stimulus.

Despite their instability, variations in DNA methylation and the consequent modifi-
cation of gene expression can induce phenotypic changes that are evolutionarily advanta-
geous. Natural selection can act on these epimutations, spreading or fixing epialleles that
could become adaptive. According to this view, the external environment could contribute
to plant evolution [141,142].
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An exciting example of the species-specific methylation patterns resulting from the
divergent selection driven by eco-environmental variables, such as water availability
and temperature, is represented by three closely related allotetraploid orchid species:
Dactylorhiza majalis, D. traunsteineri, and D. ebudensis. These orchid species originated from
the same diploid parental lineages, D. fuchsii and D. incarnata; however, they appeared
at different times during the late Quaternary. Their epigenetic variation, triggered by
the doubling of the genome, reflects their evolutionary history, geographical distribution,
and ecological niche. In particular, D. majalis shows high resistance to the humidity of
the meadows in Western and Central Europe, the Baltic region, and northwestern Russia.
D. traunsteineri, widespread in northwestern and central Europe, developed the capability
to grow in the marshes. D. ebudensis is distributed principally in northwest Scotland and
has poor moisture tolerance. Analyzing the epigenome of the three species, different epiloci
related to vapor pressure and temperature show a species-specific methylation profile
related to their ecology and evolution [143].

Different methylation patterns can also occur in ecotypes of the same species showing
phenotypic divergence due to different environmental conditions. For example, tropical
and temperate lotus (Nelumbo nucifera) are adapted to low and high latitudes, respectively,
and present different methylation profiles. The rhizome methylome of the temperate
lotus is hypermethylated compared to that of the tropical lotus, resulting in the differ-
ential expression of many genes related to the differentiation of the root tissue, such as
starch-biosynthesis, gibberellin, and brassinosteroid-signaling genes. Due to this different
methylation landscape and differential gene expression, the rhizome morphology shows
evident differences between the two ecotypes, better adapted to the distinct ecological
conditions: the tropical ecotype has thin rhizomes compared to the temperate, characterized
by swollen roots [144].

Therefore, epimutations could be considered a significant evolutionary force for plants,
and the mutant phenotypes obtained by methylation changes are rapidly exposed to the
action of natural selection. In addition, methylated DNA regions have a high mutation rate,
and they could represent the first step towards a more stable sequence mutation [138].

The partial reversibility of epimutations generates a phenotypic effect more dynamic
than DNA sequence changes. One well-known example of gene silencing affecting plant
morphology is the methylation of the CYCLOIDEA gene (CYC) in the common toadflax
(Linaria vulgaris). In many angiosperms, the CYC gene has a conserved role in establish-
ing bilateral symmetry, promoting the development of the dorsal identity of the flower
organs [145]. During the angiosperm evolution, many flower symmetry transitions have
occurred [146]. These reversions depend on the modifications of expression profile or
mutations in the genes involved in determining flower symmetry. The loss or the reduced
expression of the CYC gene in many angiosperms, such as Conandron ramondioides [147]
or Plantago lanceolata [148], is associated with the ventralization of the flower [145]. In
L. vulgaris, the CYC methylation, and the consequent reduction of its expression, causes
the loss of bilateral symmetry, and the flower assumes a peloric mutant phenotype with
radial symmetry [149]. The genetic knock-down by hypermethylation can function as the
first step of adaptation before the complete loss of the gene function. It guarantees the
possibility of implementing a co-adaptation process of other genes that can compensate for
the gene loss by generating a functional balance [42,138].

Methylation levels vary among plant species, and this also depends on the genome
content of repetitive and mobile DNA, which has high methylation levels [40]. Therefore,
DNA methylation is an evolutionary trait related to plant genome size and complexity.
However, the relationship between global cytosine methylation and genome size is not
linear and is more complex than a simple cause-effect relation [150].

5. Conclusions

DNA methylation has acquired many functions during plant evolution (Figure 3).
The ubiquitous presence in all plant species of the methylation of transposable elements
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demonstrates its very ancient role. The regulation of gene expression is another central
function of DNA methylation. This regulatory process is present in all land plants, as well
as the methylation of the coding regions. In angiosperms, there is an expansion of the
role of methylation. The intervention of PolV in the RdADM pathway could have played
a role in reducing genome size and enhancing the diploidization after whole genome
duplications [42,151]. Likewise, the maintenance of methylation of non-CG sequences by
CMT3 is another angiosperm-specific regulatory mechanism. Finally, genomic imprinting
represents a fundamental evolutionary novelty in flowering plants [42].

DNA methylation is one of the best-known epigenetic mechanisms and plays a central
role in plant development and evolution. During the plant life cycle, gene expression,
transposon mobility, and chromosome interactions depend on the balance between DNA
methylation and demethylation. In addition, the environmental stimuli can affect the
methylation landscape, resulting in specific adaptation and evolution of traits. However,
fully understanding all the functions and mechanisms of mRNA and DNA methylation
and its repercussions on the evolution of plant species is still a fascinating challenge.

Up to now, crop improvement has been based on the analysis of genetic variation and
the selection of advantageous alleles. In addition to this “classical” approach, the knowl-
edge of epigenetic mechanisms can be applied to develop “epimutagenesis” techniques to
modify and improve characters of agronomic interest [34].

In human cells, the application of synthetic epigenetic regulation to control gene
expression is already used [79,152]. To date, technologies are being developed to enhance
agriculture, manage diseases, and improve crops. One of the most recent strategies is
using exogenous dsRNA to induce gene silencing and epigenetic alterations through RNA
interference (RNA1) in plants [153].

Currently, advances are being made for locus-specific manipulation of DNA methyla-
tion. One of the most exciting approaches is the use of proteins that bind DNA (e.g., zinc
finger proteins, dCas9 proteins) fused with RADM components and TET-like catalytic
domains to direct locus-specific DNA demethylation in plant genomes and modify eco-
nomically and agriculturally significant plant traits [154].

In conclusion, new knowledge of different epigenetic mechanisms will help develop
genetic engineering strategies to obtain a synthetic epigenetic regulation that can be an
essential tool for plant breeding [79].
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