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ABSTRACT: We perform a detailed analysis of the non stationary solutions of the evolution

(Fokker-Planck) equations associated to either stationary or non stationary quantum states by the

stochastic mechanics. For the excited stationary states of quantum systems with singular velocity

fields we explicitely discuss the exact solutions for the HO case. Moreover the possibility of modi-

fying the original potentials in order to implement arbitrary evolutions ruled by these equations is

discussed with respect to both possible models for quantum measurements and applications to the

control of particle beams in accelerators.

1. Introduction

In a few papers [1] the analogy between diffusive classical systems and quantum systems has been

reconsidered from the standpoint of the stochastic mechanics (SM) [2], [3], and particular attention

was devoted there to the evolution of the classical systems associated to a quantum wave function

when the conditions imposed by the stochastic variational principle are not satisfied (non extremal

processes). The hypothesis that the evolving distribution converges in time toward the quantum

distribution, constituted several years ago an important point in the answer by Bohm and Vigier

to some criticisms to the assumptions of the Causal Interpretation of the Quantum Mechanics

Paper presented at the 7th UK Conference on Mathematical and Conceptual Foundations of
Modern Physics; Nottingham (UK) 7-11 September, 1998.
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(CIQM) [4]. In the quoted papers [1] it was pointed out that, while the right convergence was in

fact achieved for a few quantum examples, these results could not be considered general as shown

in some counterexamples: in fact not only for particular non stationary wave functions (as for a

minimal uncertainty packet), but also for stationary states with nodes (namely with zeros) we do

not seem to get the right asymptotic behaviour. For stationary states with nodes the problem is

that the corresponding velocity field to consider in the Fokker-Planck equation shows singularities

in the locations of the nodes of the wave function. These singularities effectively separate the

available interval of the space variables into (probabilistically) non communicating sections which

trap any amount of probability initially attributed and make the system non ergodic.

In a more recent paper [5] it has been shown first of all that for transitive systems with

stationary velocity fields (as, for example, a stationary state without nodes) we always have an

exponential convergence to the right quantum probability distribution associated to the extremal

process, even if we initially start from an arbitrary non extremal process. These results can also be

extended to an arbitrary stationary state if we separately consider the process as confined in every

configuration space region between two subsequent nodes. Moreover it has been remarked there

that while the non extremal processes should be considered virtual, as trajectories in the classical

Lagrangian mechanics, they can also be turned real if we modify the potential in a suitable way.

The interest of this remark lies not only in the fact that non extremal processes are exactly what

is lacking in quantum mechanics in order to interpret it as a totally classical stochastic process

theory (for example in order to have a classical picture of a double slit experiment [6]), but also in

the possibility of engineering some new controlled real evolutions of quantum states. In fact this

could be useful to study (a) transitions between stationary states (b) possible models for measure

theory [3] and (c) control of the particle beam dynamics in accelerators [7]. In a sense the SM is

also a theory, independent from quantum mechanics, with applications in several physical fields,

in particular for systems not perfectly described by the quantum formalism, but whose evolution

is correctly controlled by quantum fluctuation: the so called mesoscopic or quantum-like systems.

This behaviour characterizes, for example, the beam dynamics in particle accelerators and there

is evidence that it could be described by the stochastic formalism of Nelson diffusions [1], [7].

Of course in this model trajectories and transition probabilities always are perfectly meaningful

and, to study in detail the evolution of the probability distributions, and in particular to try to

understand if and how it is possible to realize controlled evolutions, it is necessary to determine

the fundamental solutions (transition probability densities) associated by SM to every quantum

state in consideration: a problem dealt with in the following sections.

2. Fokker-Planck equations for stochastic mechanics

SM is a generalization of classical mechanics based on the theory of classical stochastic processes

[2]. The variational principles of Lagrangian type provide a foundation for it, as for the classical
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mechanics or the field theory [3]. In this scheme the deterministic trajectories of classical me-

chanics are replaced by the random trajectories of diffusion processes in the configuration space.

The surprisig feature is that programming equations derived from the stochastic version of the

lagrangian principle are formally identical to the equations of a Madelung fluid [8], the hydrody-

namical equivalent of the Schrödinger equation in the Stochastic Interpretation of the Quantum

Mechanics (SIQM) [9]. On this basis, it is possible to develop an interpretative scheme where the

phenomenological predictions of SM coincide with that of quantum mechanics for all the experimen-

tally measurable quantities. Within this interpretative code the SM is nothing but a quantization

procedure, different from the ordinary ones only formally, but completely equivalent from the point

of view of the physical consequences. Hence we consider here the SM as a probabilistic simulation

of quantum mechanics, providing a bridge between this fundamental section of physics and the

stochastic differential calculus. However it is well known that the most peculiar features of the in-

volved stochastic processes, namely the transition probability densities, seem not always enter into

this code scheme: in fact, if we want to check experimentally if the transition probabilities are the

right ones for a given quantum state, we are obliged to perform repeated position measurements

on the quantum system; but, according to quantum theory, the quantum state changes at every

measurement (wave packet reduction), and since our transition probabilities are associated to a

well defined wave function it will be in general practically impossible to experimentally observe

a well defined transition probability. Several ways out of these difficulties have been explored:

for example stochastic mechanic scheme could be modified by means of non constant diffusion

coefficients [1]; or alternatively it would be possible to modify the stochastic evolution during

the measurement [10]. Here we will rather assume that the processes which do not satisfy the

stochastic variational principle still keep a physical meaning and that tey will rapidly converge (in

time) toward the processes associated to quantum states. Indeed on the one hand any departure

from the distributions of quantum mechanics will quickly be reabsorbed in the time evolution, at

least in many meaningful cases; and on the other hand the non standard evolving distributions

could be realized by suitable quantum systems for modified, time dependent potentials which may

asymptotically in time rejoin the usual potentials.

SM is a model intended to achieve a connection between quantum mechanics and classical

random phenomena: here we will recall a few notions in order to fix the notation. The position of

a classical particle is promoted to a vector Markov process ξ(t) defined on some probabilistic space

(Ω,F ,P) and taking values in R3. We suppose that this process is characterized by a pdf f(r, t)

and a transition pdf p(r, t| r′, t′) and satisfies an Itô stochastic differential equation of the form

dξj(t) = vj

(

ξ(t), t
)

dt+ dηj(t) (2.1)

where vj are the components of the forward velocity field. However here vj are not given a

priori, but play the role of dynamical variables and are subsequently determined on the basis of a

variational principle, namely on the basis of a dynamics. On the other hand η(t) is a Brownian
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process independent of ξ(t) and such that

Et

(

dηj(t)
)

= 0 , Et

(

dηj(t) dηk(t)
)

= 2Dδjk dt 2.2

where dη(t) = η(t+ dt) − η(t) (for dt > 0), D is a diffusion coefficient, and Et are the conditional

expectations with respect to ξ(t). In what follows we will limit ourselves to the case of the one

dimensional trajectories, so that the Markov processes ξ(t) considered will always take values in R.

Moreover we will suppose for the time being that the forces acting on the particle will be defined

by means of a time-independent potential V (x). A suitable definition of the Lagrangian and of the

stochastic action functional for the system described by the dynamical variables f and v allows

us to select, by means of the principle of stationarity of the action, the processes which reproduce

the quantum mechanics [2], [3]. In fact, while the pdf f(x, t) of the process satisfies, as usual, the

Forward Fokker-Planck (FP) equation associated to (2.1)

∂tf = D∂2
xf − ∂x(vf) = ∂x(D∂xf − vf) , (2.3)

the following choice for the Lagrangian field

L(x, t) =
m

2
v2(x, t) +mD∂xv(x, t) − V (x) (2.4)

enables us to define a stochastic action funcional

A =

∫ t1

t0

EL
(

ξ(t), t
)

dt (2.5)

which leads, through the stationarity condition δA = 0, to the equation

∂tS +
(∂xS)2

2m
+ V − 2mD2 ∂

2
x

√
f√
f

= 0 (2.6)

involving a field S(x, t) defined as

S(x, t) = −
∫ t1

t

E
(

L
(

ξ(s), s
)
∣

∣ ξ(t) = x
)

ds+ E
(

S1

(

ξ(t1)
)
∣

∣ ξ(t) = x
)

(2.7)

where S1( · ) = S( · , t1) is an arbitrary final condition. Now the relevant remark is that if R(x, t) =
√

f(x, t), and if we define

ψ(x, t) = R(x, t) eiS(x,t)/h̄ (2.8)

the equation (2.6) takes the form

∂tS +
(∂xS)2

2m
+ V − h̄2

2m

∂2
xR

R
= 0 , (2.9)

and the complex wave function ψ will satisfy the Schrödinger equation

ih̄∂tψ = Ĥψ = − h̄2

2m
∂2

xψ + V ψ , (2.10)
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provided that the diffusione coefficient be connected to the Planck constant by the relation

D =
h̄

2m
. (2.11)

This trail leading from classical stochastic processes (plus a dynamics) to quantum mechanics

can also be trod in the reverse way following the line of reasoning of the SIQM which, as it is well

known, is formally ruled by the same differential equations as the SM. If we start from the (one

dimensional) Schrödinger equation (2.10) with the Ansatz (2.8), and if we separate the real and

the imaginary parts as usual in SIQM [8], the function f = R2 = |ψ|2 comes out to be a particular

solution of a FP equation of the form (2.3) with constant diffusion coefficient (2.11) and forward

velocity field

v(x, t) =
1

m
∂xS +

h̄

2m
∂x(lnR2) . (2.12)

On the other hand the explicit dependence of v on the form of R clearly indicates that to have a

solution of (2.3) which makes quantum sense we must pick-up just one, suitable, particular solution.

In fact the system is ruled not only by the FP equation (2.3), but also by the second, dynamical

equation (2.9), the so-called Hamilton-Jacobi-Madelung (HJM) equation, deduced by separating

the real and imaginary parts of (2.10) (see [8]). The analogy between (2.3) and a FP equation,

which looks rather accidental in a purely SIQM context, is more than formal since, as we have

briefly recalled, the SM shows how to recover both the equations (2.3) and (2.9) (and hence the

Schrödinger equation (2.10)) in a purely classical, dynamical stochastic context.

3. The eigenvalue problem for the FP equation

Let us recall here (see for example [11]) a few generalities about the pdf’s (probability density

functions) f(x, t) solutions of a one-dimensional FP equation of the form

∂tf = ∂2
x(Df) − ∂x(vf) = ∂x

[

∂x(Df) − vf
]

(3.1)

defined for x ∈ [a, b] and t ≥ t0, when D(x) and v(x) are two time independent functions such that

D(x) > 0, v(x) has no singularities in (a, b), and both are continuous and differentiable functions.

The conditions imposed on the probabilistic solutions are of course

f(x, t) ≥ 0 , a < x < b , t0 ≤ t ,
∫ b

a

f(x, t) dx = 1 , t0 ≤ t ,
(3.2)

and from the form of (3.1) the second condition also takes the form

[

∂x(Df) − vf
]

a,b
= 0 , t0 ≤ t . (3.3)

Suitable initial conditions will be added to produce the required evolution: for example the tran-

sition pdf p(x, t|x0, t0) will be selected by the initial condition

lim
t→t+

0

f(x, t) = f(x, t+0 ) = δ(x− x0) . (3.4)
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It is also possible to show by direct calculation that

h(x) = N−1 e−
∫

[D′(x)−v(x)]/D(x)dx , N =

∫ b

a

e−
∫

[D′(x)−v(x)]/D(x)dx dx (3.5)

is an invariant (time independent) solution of (3.1) satisfying the conditions (3.2). Remark however

that (3.1) is not in the standard self-adjoint form [12]; but if we define the function g(x, t) by means

of

f(x, t) =
√

h(x) g(x, t) (3.6)

it would be easy to show that g(x, t) obeys now an equation of the form

∂tg = Lg (3.7)

where the operator L defined by

Lϕ =
d

dx

[

p(x)
dϕ(x)

dx

]

− q(x)ϕ(x) , (3.8)

with
p(x) = D(x) > 0 ,

q(x) =

[

D′(x) − v(x)
]2

4D(x)
−

[

D′(x) − v(x)
]

′

2
,

(3.9)

is now self-adjoint. Then, by separating the variables by means of g(x, t) = γ(t)G(x) we have

γ(t) = e−λt while G must be solution of a typical Sturm-Liouville problem associated to the

equation

LG(x) + λG(x) = 0 (3.10)

with the boundary conditions
[

D′(a) − v(a)
]

G(a) + 2D(a)G′(a) = 0 ,
[

D′(b) − v(b)
]

G(b) + 2D(b)G′(b) = 0 .
(3.11)

It easy to see that λ = 0 is always an eigenvalue for the problem (3.10) with (3.11), and that the

corresponding eigenfunction is
√

h(x) as defined from (3.5).

For the differential problem (3.10) with (3.11) we have that [12] the simple eigenvalues λn

will constitute an infinite, increasing sequence and the corresponding eigenfunction Gn(x) will

have n simple zeros in (a, b). For us this means that λ0 = 0, corresponding to the eigenfunction

G0(x) =
√

h(x) which never vanishes in (a, b), is the lowest eigenvalue and that all other eigenvalues

are strictly positive. Moreover the eigenfunctions will constitute a complete orthonormal set of

functions in L2
(

[a, b]
)

[13]. As a consequence the general solution of (3.1) with (3.2) will have the

form

f(x, t) =

∞
∑

n=0

cne−λnt
√

h(x)Gn(x) (3.12)

with c0 = 1 for normalization (remember that λ0 = 0). The coefficients cn for a particular solution

are selected by an initial condition

f(x, t+0 ) = f0(x) (3.13)
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and are then calculated from the orthonormality relations as

cn =

∫ b

a

f0(x)
Gn(x)
√

h(x)
dx . (3.14)

In particular for the transition pdf we have from (3.4) that

cn =
Gn(x0)
√

h(x0)
. (3.15)

Since λ0 = 0 and λn > 0 for n ≥ 1, the general solution (3.12) of (3.1) has a precise time evolution:

all the exponential factors in (3.12) vanish with t→ +∞ with the only exception of the term n = 0

which is constant, so that exponentially fast we will always have

lim
t→+∞

f(x, t) = c0
√

h(x)G0(x) = h(x) , (3.16)

namely the general solution will always relax in time toward the invariant solution h(x).

4. Stationary quantum states

Let us consider now a Schrödinger equation (2.10) with a time-independent potential V (x) which

gives rise to a purely discrete spectrum and bound, normalizable states, and let us use the following

notations for stationary states, eigenvalues and eigenfunctions:

ψn(x, t) = φn(x) e−iEnt/h̄

Ĥφn = − h̄2

2m
φ′′n + V φn = Enφn .

(4.1)

Taking into account the relation (2.11) the previous eigenvalue equation can also be recast in the

following form

Dφ′′n =
V − En

h̄
φn . (4.2)

For these stationary states the pdf is the time independent, real function

fn(x) = |ψn(x, t)|2 = φ2
n(x) , (4.3)

and

S(x, t) = −Ent , R(x, t) = φn(x) , (4.4)

so that for our state the velocity field is

vn(x) = 2D
φ′n(x)

φn(x)
. (4.5)

This means that now vn is time-independent and it presents singularities in the zeros (nodes) of the

eigenfunction. Since the n-th eigenfunction of a quantum system with bound states has exactly n

simple nodes [12] that we will indicate with x1, . . . , xn, the coefficients of the FP equation (2.3) are
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not defined in these n points and we will be obliged to solve it in separate intervals by imposing the

right boundary conditions connecting the different sections. In fact these singularities effectively

separate the real axis in n + 1 sub-intervals with walls impenetrable to the probability current.

Hence the process will not have an unique invariant measure and will never cross the boundaries

fixed by the singularities of v(x): if we start in one of the intervals in which the axis is so divided

we will always remain there [14].

As a consequence we must think the normalization integral (3.2) (with a = −∞ and b = +∞)

as the sum of n + 1 integrals over the sub-intervals [xk, xk+1] with k = 0, 1, . . . , n (where we

understand, to unificate the notation, that x0 = −∞ and xn+1 = +∞). Hence for n ≥ 1 we will

be obliged to solve the equation (2.3) in every interval [xk, xk+1] by requiring that the integrals

∫ xk+1

xk

f(x, t) dx (4.6)

be kept at a constant value for t ≥ t0: this value is not, in general, equal to one (only the sum of

these n+1 integrals amounts to one) and, since the separate intervals can not communicate, it will

be fixed by the choice of the initial conditions. Hence the boundary conditions associated to (2.3)

require the conservation of the probability in [xk, xk+1], namely the vanishing of the probability

current at the end points of the interval:

[

D∂xf − vf
]

xk,xk+1
= 0 , t ≥ t0 . (4.7)

To have a particular solution we must moreover specify the initial conditions: in particular we will

be interested in the transition pdf p(x, t|x0, t0), which is singled out by the initial condition (3.4),

since [1] the asymptotic approximation in L1 among solutions of (2.3) is ruled by the asymptotic

behavior of p(x, t|x0, t0) through the Chapman-Kolmogorov equation

f(x, t) =

∫ +∞

−∞

p(x, t|y, t0)f(y, t+0 ) dy . (4.8)

It is clear at this point that in every interval [xk, xk+1] (both finite or infinite) we can solve the

equation (2.3) along the guidelines sketched in the section 3 by keeping in mind that in [xk, xk+1]

we already know the invariant, time-independent solution φ2
n(x) (or, more precisely, its restriction

to the said interval) which is never zero in this interval with the exception of the extremes xk and

xk+1. Hence, as we have seen in the general case, with the position

f(x, t) = φn(x)g(x, t) (4.9)

we can reduce (2.3) to the form

∂tg = Lng (4.10)

where Ln is now the self-adjoint operator defined on [xk, xk+1] by

Lnϕ(x) =
d

dx

[

p(x)
dϕ(x)

dx

]

− qn(x)ϕ(x) (4.11)
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where we have now

p(x) = D > 0 ; qn(x) =
v2

n(x)

4D
+
v′n(x)

2
. (4.12)

To solve (4.10) it is in general advisable to separate the variables, so that we immediately have

γ(t) = e−λt while G must be solution of the Sturm-Liouville problem associated to the equation

LnG(x) + λG(x) = 0 (4.13)

with the boundary conditions

[

2DG′(x) − vn(x)G(x)
]

xk,xk+1
= 0 . (4.14)

The general behaviour of the solutions obtained as expansions in the system of the eigenfunctions

of (4.13) has already been discussed in section 3. In particular we deduce from (3.12) that for the

stationary quantum states (more precisely, in every subinterval defined by two subsequent nodes)

all the solutions of (2.3) always converge in time toward the right quantum solution |φn|2: a general

result not contained in the previous papers [1]. As a further consequence a quantum solution φ2
n

defined on the entire interval (−∞,+∞) will be stable under deviations from its initial condition.

5. Harmonic oscillator

To see in an explicit way how the pdf’s of SM evolve, let us consider now in detail the particular

example of a quantum harmonic oscillator (HO) characterized by the potential

V (x) =
m

2
ω2x2 . (5.1)

It is well-known that its eigenvalues are

En = h̄ω

(

n+
1

2

)

; n = 0, 1, 2 . . . (5.2)

while, with the notation

σ2
0 =

h̄

2mω
, (5.3)

the eigenfuncions are

φn(x) =
1

√

σ0

√
2π2nn!

e−x2/4σ2
0 Hn

(

x

σ0

√
2

)

(5.4)

where Hn are the Hermite polynomials. The corresponding velocity fields are easily calculated and

are for example
v0(x) = −ωx ,

v1(x) = 2
ωσ2

0

x
− ωx ,

v2(x) = 4ωσ2
0

x

x2 − σ2
0

− ωx ,

(5.6)
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with singularities in the zeros xk of the Hermite polynomials. If we now keep the form of the

velocity fields fixed we can consider (2.3) as an ordinary FP equation for a diffusion process and

solve it to see the approach to the equilibrium of the general solutions. When n = 0 the equation

(2.3) takes the form

∂tf = ωσ2
0∂

2
xf + ωx∂xf + ωf (5.7)

and the fundamental solution comes out to be the Ornstein-Uhlenbeck transition pdf

p(x, t|x0, t0) =
1

σ(t)
√

2π
e−[x−α(t)]2/2σ2(t) , (t ≥ t0) (5.8)

where we used the notation

α(t) = x0e
−ω(t−t0) , σ2(t) = σ2

0

[

1 − e−2ω(t−t0)
]

, (t ≥ t0) . (5.9)

The stationary Markov process associated to the transition pdf (5.8) is selected by the initial,

invariant pdf

f(x) =
1

σ0

√
2π

e−x2/2σ2
0 (5.10)

which is also the asymptotic pdf for every other initial condition when the evolution is ruled by

(5.7) (see [1]) so that the invariant distribution plays also the role of the limit distribution. Since

this invariant pdf also coincides with the quantum stationary pdf φ2
0 = |ψ0|2 the process associated

by the SM to the ground state of a quantum HO is nothing but the stationary Ornstein-Uhlenbeck

process.

For n ≥ 1 the solutions of (2.3) are no more so easy to find and, as discussed in the previus

section, we will have to solve the eigenvalue problem (4.13) which, with ǫ = h̄λ, can be written as

− h̄2

2m
G′′(x) +

(

m

2
ω2x2 − h̄ω

2n+ 1

2

)

G(x) = ǫG(x) , (5.11)

in every interval [xk, xk+1], with k = 0, 1, . . . , n, between two subsequent singularities of the vn

field. The boundary conditions at the endpoints of these intervals, deduced from (4.7) through

(4.9), are

[φnG
′ − φ′nG]xk,xk+1

= 0 (5.12)

and since φn (but not φ′n) vanishes in xk, xk+1, the conditions to impose are

G(xk) = G(xk+1) = 0 (5.13)

where it is understood that for x0 and xn+1 we respectively mean

lim
x→−∞

G(x) = 0 , lim
x→+∞

G(x) = 0 . (5.14)

It is also useful at this point to give the eigenvalue problem in an adimensional form by using the

new adimensional variable x/σ0 (which will still be called x) and the eigenvalue µ = λ/ω = ǫ/h̄ω.

In this way the equation (5.11) with the conditions (5.13) becomes

y′′(x) −
(

x2

4
− 2n+ 1

2
− µ

)

y(x) = 0

y(xk) = y(xk+1) = 0

(5.15)
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where x, xk, xk+1 are now adimensional variables. If µm and ym(x) are the eigenvalues and eigen-

functions of (5.15), the general solution of the corresponding FP equation (2.3) will be

f(x, t) =

∞
∑

m=0

cme−µmωtφn(x)ym

(

x

σ0

)

. (5.16)

Of course the values of the coefficients cm will be fixed by the initial conditions and by the obvious

requirements that f(x, t) must be non negative and normalized (on the whole x axis) along all its

evolution. Two linearly independent solutions of (5.15) are

y(1) = e−x2/4M

(

− µ+ n

2
,
1

2
;
x2

2

)

, y(2) = xe−x2/4M

(

− µ+ n− 1

2
,
3

2
;
x2

2

)

, (5.17)

where M(a, b; z) are the confluent hypergeometric functions.

We consider first the case n = 1 (x0 = −∞, x1 = 0 and x2 = +∞) so that (5.15) will have to

be solved separately for x ≤ 0 and for x ≥ 0 with the boundary conditions y(0) = 0 and

lim
x→−∞

y(x) = lim
x→+∞

y(x) = 0 . (5.18)

A long calculation [5] shows that the transition pdf is now

p(x, t|x0, t0) =
x

α(t)

e−[x−α(t)]2/2σ2(t) − e−[x+α(t)]2/2σ2(t)

σ(t)
√

2π
(5.19)

where α(t) and σ2(t) are defined in (5.9). It must be remarked however that (5.19) must be

considered as restricted to x ≥ 0 when x0 > 0 and to x ≤ 0 when x0 < 0, and that only on these

intervals it is suitably normalized. In order to take into account at once both these possibilities

we can also introduce the Heavyside function Θ(x) so that for every x0 6= 0 we will have

p(x, t|x0, t0) = Θ(xx0)
x

α(t)

e−[x−α(t)]2/2σ2(t) − e−[x+α(t)]2/2σ2(t)

σ(t)
√

2π
. (5.20)

This completely solves the problem for n = 1 since from (4.8) we can now deduce also the evolution

of every other initial pdf. In particular it can be shown that

lim
t→+∞

p(x, t|x0, t0) = 2Θ(xx0)
x2e−x2/2σ2

0

σ3
0

√
2π

= 2Θ(xx0)φ
2
1(x) , (5.21)

and hence, if f(x, t+0 ) = f0(x) is the initial pdf, we have for t > t0

lim
t→+∞

f(x, t) = lim
t→+∞

∫ +∞

−∞

p(x, t|y, t0)f0(y) dy

= 2φ2
1(x)

∫ +∞

−∞

Θ(xy)f0(y) dy = Γ(q;x)φ2
1(x) ,

(5.22)

where we have defined the function

Γ(q;x) = qΘ(x) + (2 − q)Θ(−x) ; q = 2

∫ +∞

0

f0(y) dy . (5.23)
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Remark that when q = 1 (namely when the initial probability is equally shared on the two real

semi-axis) we have Γ(1;x) = 1 and the asymptotical pdf coincides with the quantum stationary

pdf φ2
1(x); if on the other hand q 6= 1 the asymptotical pdf has the same shape of φ2

1(x) but with

different weights on the two semi-axis.

If then n = 2 we have x0 = −∞, x1 = −1, x2 = 1 and x3 = +∞, and the equation (5.15)

must be solved in the three intervals (−∞,−1], [−1, 1] and [1,+∞), but the eigenvalues and

eigenfunctions are now not easy to find so that a complete analysis of this case (and of every other

case with n > 2) has still to be elaborated. At present only a few indications can be obtained

numerically [5]: for example it can be shown that, beyond µ0 = 0, the first eigenvalues in the

interval [−1, 1] can be calculated as the first values such that

M

(

− µ+ 1

2
,
3

2
;
1

2

)

= 0 (5.24)

and are µ1 ∼ 7.44, µ2 ∼ 37.06, µ3 ∼ 86.41. Also for the unbounded interval [1,+∞) (the analysis

is similar for (−∞,−1]) the eigenvalues are derivable only numerically.

6. Controlled evolutions

It is important to remark now that solutions of the type (5.8) and (5.20), and any other solution

different from |φn|2, are not associated to quantum mechanical states solutions of (2.10); in other

words, they define processes that satisfy neither the stochastic variational principle [3] nor the

Nelson dynamical equation [2]. That notwithstanding these processes still keep an interesting

relation with the quantum mechanics. In fact to every solution f(x, t) of a FP equation (3.1),

with a given v(x, t) and the constant diffusion coefficient (2.11), we can always associate the wave

function of a quantum system if we take a suitable time-dependent potential. This means in

practice that even the virtual (non optimal) processes discussed in this paper can be associated to

proper quantum states, namely can be made optimal provided that the potential V (x) of (2.10)

be modified in a new V (x, t) in order to control the evolution.

Let us take a solution f(x, t) of the FP equation (3.1), with a given v(x, t) and a constant

diffusion coefficient (3.3): if we define the functions R(x, t) and W (x, t) from

f(x, t) = R2(x, t) , v(x, t) = ∂xW (x, t) , (6.1)

if we remember from (2.12) that the following relation must hold

mv = ∂xS + h̄
∂xR

R
= ∂xS +

h̄

2

∂xf

f
= ∂x

(

S +
h̄

2
ln f̃

)

(6.2)

where f̃ is an adimensional pdf (it is the argument of a logarithm) obtained by means of a suitable

and arbitrary multiplicative constant, and if S(x, t) is supposed to be the phase of a wave function

as in (2.8), we immediately get the equation

S(x, t) = mW (x, t) − h̄

2
ln f̃(x, t) − θ(t) (6.3)
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which allows us to determine S from f and v (namely W ) up to an additive arbitrary function of

the time θ(t). However, in order that the wave function (2.8) with the said R and S be a solution

of a Schrödinger equation, we must also be sure that the HJM equation (2.9) is satisfied. Since

S and R are now fixed, the equation (2.9) must be considered as a relation defining a potential

which, after a short calculation, becomes

V (x, t) =
h̄2

4m
∂2

x ln f̃ +
h̄

2

(

∂t ln f̃ + v∂x ln f̃
)

− mv2

2
−m∂tW + θ̇ . (6.4)

Of course if we start with a quantum wave function for a given potential and if we pick up as a

solution of (2.3) exactly f = R2, the formula (6.4) will correctly give back the initial potential, as

can be seen for both the ground state and the first excited state of the HO which (by choosing

respectively θ(t) = h̄ωt/2 and θ(t) = 3h̄ωt/2, which amounts to suitably fix the zero of the potential

energy) give as result the usual harmonic potential (5.1).

If on the other hand we consider for example the (non stationary) fundamental solution (5.8)

associated to the velocity field v0(x) of (5.6) for the case n = 0 of the HO (we put t0 = 0 to simplify

the notation) we have already remarked that it does not correspond to a quantum wave function

whatsoever. However a short calculation shows that, by choosing

θ̇(t) =
h̄ω

2

(

2σ2
0

σ2(t)
− 1

)

=
h̄ω

2

1

tanhωt
→ h̄ω

2
, (t → +∞) , (6.5)

and the time-dependent controlling potential

V (x, t) =
h̄ω

2

[

x− α(t)

σ(t)

]2
σ2

0

σ2(t)
− mω2x2

2
→ mω2x2

2
, (t→ +∞) (6.6)

we can define a quantum state (a wave function solution of a Schrödinger equation) which realizes

the required evolution (5.8). Of course the fact that for t→ +∞ we recover the harmonic potential

is associated to the fact, aleady remarked, that the usual quantum pdf φ2
0(x) is also the limit

distribution for every initial condition and in particular also for the pdf (5.8). In the case n = 1,

with v1(x) from (5.6) and the transition probability (5.20) as given non-stationary solution, the

calculations are lenghtier. However if we define

F (x, t) =
e−[x−α(t)]2/2σ2(t)

σ(t)
√

2π
, G(x, t) =

e−[x+α(t)]2/2σ2(t)

σ(t)
√

2π
, (6.7)

T

[

xα(t)

σ2(t)

]

=
xα(t)

σ2(t)

F (x, t) +G(x, t)

F (x, t) −G(x, t)
, T (x) =

x

tanhx
, (6.8)

and if we choose

θ̇(t) =
h̄ω

2

(

4σ2
0

σ2(t)
− 2σ2

0α
2(t)

σ4(t)
− 1

)

→ 3

2
h̄ω , (t→ +∞) (6.9)

we have as time dependent potential for every x 6= 0

V (x, t) =
mω2x2

2

(

2σ4
0

σ4
− 1

)

+ h̄ω

[

1 − σ2
0

σ2
T

(xα

σ2

)

]

− h̄2

4mx2

[

1 − T
(xα

σ2

)]

→ mω2x2

2
, (t→ +∞) .

(6.10)
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In this case the asymptotic potential is the usual harmonic potential, but we must consider it

separately on the positive and negative x semi-axis since in the point x = 0 a singular behaviour

would show up when t→ 0. This means that, also if asymptotically we recover the right potential,

this will be associated with new boundary conditions in x = 0 since we will be obliged to keep the

system bounded on the positive (for example) semi-axis.

7. Modelling transitions

The explicit knowledge of the transition pdf of the type (5.8) and (5.20), And the possibility of

turning optimal any suitable (f, v) state by a right choice of V (x, t) enable us also to explore the

possibility of modelling evolutions leading, for example, from the pdf of a given stationary state to

another (decays and excitations). In fact a spontaneuous generalization of this idea hints to the

possibility of modelling evolutions ffrom a given, arbitrary pdf and the pdf of an eigenfuncition of

some observable: something which could become an element for very simple models of quantum

measurements where we try to dynamically describe the wave packet collapse. As a first example

let us consider the transition between the invariant pdf’s

f0(x) = φ2
0(x) =

1

σ0

√
2π

e−x2/2σ2
0 ,

f1(x) = φ2
1(x) =

x2

σ3
0

√
2π

e−x2/2σ2
0 .

(7.1)

If for instance we choose to describe the decay 1 → 0 we should just use the Chapman-Kolmogorov

equation (4.8) with (5.8) as transition pdf and f1(x) as initial pdf (t0 = 0). An elementary

integration will show in this case that the resulting evolution takes the form

f1→0(x, t) = β2(t)f0(x) + γ2(t)f1(x) (7.2)

where we used the notation

β2(t) = 1 − e−2ωt , γ(t) = e−ωt . (7.3)

Taking now v0(x) from (5.6) and the evolving pdf from (7.2) and putting them in (6.4) (remark

that, since v0 is stationary, ∂tW = 0) we get the following form of the controlling potential:

V (x, t) =
mω2x2

2
− 2h̄ωU(x/σ0;β/γ) (7.4)

where

U(x; b) =
x4 + b2x2 − b2

(b2 + x2)2
. (7.5)

In our example the parameter

b2(t) =
β2(t)

γ2(t)
= e2ωt − 1 (7.6)
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is such that b2(0+) = 0 and b2(+∞) = +∞ and hence U goes everywhere to zero for t → +∞,

but is everywhere 1 with a negative singularity in x = 0 for t → 0+. As a consequence, while for

t→ +∞ the controlling potential (7.4) behaves like the HO potential (5.1), for t→ 0+ it presents

an unessential shift of −2h̄ω in the zero level, but shows also a deep negative singularity in x = 0.

Apart from this singular behaviour of the controlling potential, a problem arises from the form

of the phase funcion S. In fact from (6.3) we easily have for our decay

S(x, t) = − h̄
2

ln

[

β2(x, t) +
x2

σ2
0

γ2(x, t)

]

− h̄ω

2
t (7.7)

so that in particular we have

S(x, 0+) = − h̄
2

ln
x2

σ2
0

, (7.8)

while we would have expected that initially our phase function be independent from x as for every

stationary wave function: this means that in our supposed evolution the phase function presents a

discontinuous behaviour for t→ 0+. The problem arises here from the fact that in our simple model

we initially have a stationary state characterized by a ddp f1(x) and a velocity field v1(x), and then

suddenly, in order to start the decay, we suppose the same f1 embedded in a different velocity field

v0(x) which drags it toward a new stationary f0(x). This discontinuous change from v1 to v0 is of

course responsible for the remarked discontinuous change in the phase of the wave function. Hence

a more realistic model for a controlled transition must take into account a continuous and smooth

(albeit widely arbitrary) modification of the initial velocity field into the final one, a requirement

which compels us to consider a new class of FP equations with time-dependent velocity field v(x, t).

In particular to achieve the proposed controlled decay between two stationary states we should

solve an evolution equation with a velocity field v(x, t) continuously, and possibly smoothingly,

going from v1(x) to v0(x); but this seems at present beyond the reach of our possibilities since

every reasonable such v(x, t) field has proven intractable from the point of view of the solution of

the FP equation (2.3). However we can show the results for another meaningful example which

does not present the same technical difficulties of the decay between two stationary states: namely

the controlled evolution from a coherent oscillating packet in a HO, and the ground state of the

same HO.

To do this we will recall a simple result [1] which indicates how to find the solutions of a

particular class of evolution equations (2.3) which contains the situation of our proposed example.

If the velocity field of the evolution equation (2.3) has the linear form

v(x, t) = A(t) +B(t)x (7.9)

with A(t) and B(t) continuous functions of time, then there are always solutions of the form

N
(

µ(t), ν(t)
)

where µ(t) and ν(t) are calculated from the differential equations

µ′(t) −B(t)µ(t) = A(t) ; ν′(t) − 2B(t)ν(t) = 2D (7.10)
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with suitable initial conditions. On the other hand the (non stationary) wave function of the

oscillating coherent wave packet with initial displacement a is

ψc(x, t) =

(

1

2πσ2
0

)1/4

exp

[

− (x− a cosωt)2

4σ2
0

− i

(

4ax sinωt− a2 sin 2ωt

8σ2
0

+
ωt

2

)]

(7.11)

so that the corresponding forward velocity field will be

vc(x, t) = aω(cosωt− sinωt) − ωx , (7.12)

namely it will have the required form (7.9) with A(t) = aω(cosωt− sinωt) and B(t) = −ω, while

the position pdf will be

fc(x, t) = |ψc(x, t)|2 = f0(x− a cosωt) . (7.13)

Now it is very easy to show that when B(t) = −ω, as in the case of our wave packet, there are

stable, coherent (non dispersive) solutions with ν(t) = σ2
0 of the form N

(

µ(t), σ2
0

)

, namely of the

form

f(x, t) = f0
(

x− µ(t)
)

. (7.14)

Of course the time evolution of such coherent solutions can be determined in one step, without

implementing the two steps procedure of first calculating the transition pdf and then, through the

Chapman-Kolmogorov equation, the evolution of an arbitrary initial pdf. On the other hand if

we compare (5.6) and (7.12) we see that the difference between v0 and vc consists in the first,

time dependent term of the second one; hence it is natural to consider the problem of solving the

evolution equation (2.3) with a velocity field of the type

v(x, t) = A(t) − ωx

A(t) = aω(cosωt− sinωt)F (t)
(7.15)

where F (t) is an arbitrary function varying smoothly between 1 and 0, or vice verssa. In this case

the evolution equation (2.3) still has stable, coherent (non dispersive) solutions of the form (7.14)

with a µ(t) dependent on our choice of F (t) through (7.10).

A completely smooth transition from the coherent, oscillating wave function (7.11) to the

ground state φ0 (5.4) of the HO can now be achieved for example by means of the following choice

of the function F (t):

F (t) = 1 −
(

1 − e−Ωt
)N

=

N
∑

k=1

(−1)k+1

(

N

k

)

e−ωkt (7.16)

where

Ω =
lnN

τ
, ωk = kΩ ; τ > 0 , N ≥ 2 . (7.17)

In fact this F (t) goes monotonically from F (0) = 1 to F (+∞) = 0 with a flex point in τ (which

can be considered as the arbitrary instant of the transition) where its derivative F ′(τ) is negative

and grows, in absolute value, logarithmically with N . The condition N ≥ 2 also guarantees that
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F ′(0) = 0, and hence that the controlling potential V (x, t) of (6.4) will continuously start at t = 0

from the HO potential (5.1), and eventually come back to it for t → +∞. Finally the phase

function S(x, t) too will change continuously from that of ψc to that of the HO ground state. A

long but simple calculation will now show that the explicit form of the controlling potential is

V (x, t) = mω2x
2

2
−mωax

N
∑

k=1

(−1)k+1

(

N

k

)

[

Uk(t)ωke−ωkt −Wkωe−ωt
]

(7.18)

where

Uk(t) = sinωt+
2ω2 sinωt− ω2

k cosωt

(ωk − ω)2 + ω2
,

Wk = 1 +
2ω2 − ω2

k

(ωk − ω)2 + ω2
=

√
2Uk

( π

4ω

)

.

(7.19)

The parameters τ and N , with the limitations (7.17), are free and connected to the particular form

of the transition that we want to implement. We conclude this section by remarking that, in a

HO, the transition between a coherent, oscillating wave packet and the ground state is a transition

between a (Poisson) superposition of all the energy eigenstates to just one energy eigenstate: an

outcome which is similar to that of an energy measurement, but for the important fact that here

the result (the energy eigenstate) is deterministically controlled by a time dependent potential. In

fact our controlled transition does not produce mixtures, but pure states (eigenstates) and in some

way realizes a dynamical model for one of the branches of a measurement leading to an eigenvalue

and an eigenstate.

8. Beam dynamics in particle accelerators

As a model which tries to put in evidence the classical aspects of the quantum physics, the SM

seems especially suitable to the description of systems whose nature in some sense lies between

classical and quantum: the so called mesoscopic or quantum-like systems [15]. We will propose now

a few preliminary remarks about the possibility of making use of this characteristic in a particular

physical domain [7]. The dynamical evolution of beams in particles accelerators is a typical example

of mesoscopic behaviour. Since they are governed by external electromagnetic forces and by the

interaction of the beam particles among themselves and with the environment, charged beams

are higly nonlinear dynamical systems, and most of the studies on colliding beams rely either on

classical phenomena such as nonlinear resonances, or on isolated sources of unstable behaviors

as building blocks of more complicated chaotic instabilities. This line of inquiry has produced

a general qualitative picture of dynamical processes in particle accelerators at the classical level.

However, the coherent oscillations of the beam density and profile require, to be explained, some

mechanism of local correlation and loss of statistical independence. This fundamental observation

points towards the need to take into account all the interactions as a whole. Moreover, the overall

interactions between charged particles and machine elements are really nonclassical in the sense

that of the many sources of noise that are present, almost all are mediated by fundamental quantum
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processes of emission and absorbtion of photons. Therefore the equations describing these processes

must be, in principle, quantum.

Starting from the above considerations, two different approaches to the classical collective

dynamics of charged beams have been developed, one relying on the FP equation [16] for the beam

density, another based on a mathematical coarse graining of Vlasov equation leading to a quantum-

like Schrödinger equation, with a thermal unit of emittance playing the role of Planck constant [17].

The study of statistical effects on the dynamics of electron (positron) colliding beams by the FP

equation has led to several interesting results, and has become an established reference in treating

the sources of noise and dissipation in particle accelerators by standard classical probabilistic

techniques [18]. Concerning the relevance of the quantum-like approach, at this stage we only

want to point out that some recent experiments on confined classical systems subject to particular

phase-space boundary conditions seem to to be well explained by a quantum-like (Schrödinger

equation) formalism [19]. In this approach [20] the (one dimensional) transverse density profile of

the beam is described in terms of a complex function, called beam wave function, whose squared

modulus give the transverse density profile of the beam. This beam wave function satisfies a

Schrödinger-like equation where h̄ is replaced by the transverse beam emittance ǫ:

iǫ
∂ψ(x, z)

∂z
= − ǫ

2

2

∂2ψ(x, z)

∂x2
+ U(x, z)ψ(x, z) . (8.1)

On the other hand a recently proposed model for the description of collective beam dynamics in

the semiclassical regime [21] relies on the idea of simulating semiclassical corrections to classical

dynamics by suitable classical stochastic fluctuations with long range coherent correlations, whose

scale is ruled by Planck constant. This elaborates a hypothesis first proposed by Calogero [22] in his

attempt to prove that quantum mechanics might be interpreted as a tiny chaotic component of the

individual particles’ motion in a gravitationally interacting universe. The virtue of the proposed

semiclassical model is twofold: on the one hand it can be formulated both in a probabilistic FP

fashion and in a quantum-like (Schrödinger) setting, thus bridging the formal gap between the two

approaches. On the other hand it goes further by describing collective effects beyond the classical

regime due to the semiclassical quantum corrections.

Since we are interested in the description of the stability regime, when thermal dissipative

effects are balanced on average by the RF energy pumping, and the overall dynamics is conser-

vative and time-reversal invariant in the mean, the choice to model the random kinematics with

the Nelson diffusions, that are nondissipative and time-reversal invariant, is particularly natural.

The diffusion process describes the effective motion at the mesoscopic level (interplay of thermal

equilibrium, classical mechanical stability, and fundamental quantum noise) and therefore the dif-

fusion coefficient is set to be the semiclassical unit of emittance provided by qualitative dimensional

analysis. In other words, we simulate the quantum corrections to classical deterministic motion

(at leading order in Planck constant) with a suitably defined random kinematics replacing the

classical deterministic trajectories. Therefore, apart from the different objects involved (beam

spatial density versus Born probability density; Planck constant versus emittance), the dynamical
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equations of our model formally reproduce the equations of the Madelung fluid (hydrodynamic)

representation of quantum mechanics. In this sense, the present scheme allows for a quantum-like

formulation equivalent to the probabilistic one.

With a few changes in the notation we can now reproduce, for the beam dynamics, the SM

approach sketched in section 2. Let q(t) be the process representing some collective degree of

freedom of the beam with a pdf ρ(x, t). Then, in suitable units, the basic stochastic kinematical

relation is an Itô stochastic differential equation of the type (2.1) where the emittance ǫ of the

beam plays the role of a diffusion coefficient. Since we are interested in the stability regime of

the bunch oscillations, the bunch itself can be considered in a quasi-stationary state, during which

the energy lost by dissipation is regained in the RF cavities. In such a quasi-stationary regime

the dynamics is, on average, invariant for time-reversal and we can define a classical effective

Lagrangian L(q, q̇) of the system, where the classical deterministic kinematics is replaced by the

random diffusive kinematics (2.1). The equations for the dynamics can then be obtained from the

classical Lagrangian by means of the stochastic variational principles.

Introducing now the time-like coordinate s = ct we get now the analog of the equations (2.3)

and (2.6) in the form of a HJM equation

∂sS +
v2

2
− 2ǫ2

∂2
x
√
ρ

√
ρ

+ V (x, s) = 0 , (8.2)

and of a continuity equation

∂sρ = −∂x(ρv) . (8.3)

Remark that now the symbol v no more represents the forward velocity fields, but rather the drift

velocity connected to the forward and backward velocities by the relation 2v = v(+) + v(−), and to

the phase function by the relation v = ∂xS. The observable structure is now quite clear: Ev is the

average velocity of the bunch center oscillating along the transverse direction; Eq gives the average

coordinate of the bunch center; finally the second moment (∆q)2 = E
(

q − E(q)
)2

determines the

dispersion (spreading) of the bunch. The coupled equations of dynamics may now be used to

achieve a controlled coherence: given a desired state (ρ, v) the equations of motion (8.2) and (8.3)

can be solved to calculate the external controlling potential V (x, s) that realizes this state.

General techniques to obtain localized quantum wavepackets as dynamically controlled systems

in SM have already been introduced [23]. In this way one can construct for general systems either

coherent packets following the classical trajectories with constant dispersion, or coherent packets

following the classical trajectories with time-dependent, but at any time bounded dispersion. These

results can now be extended also to the quantum-like description of the transverse dynamics of a

particle beam and hence it will be possible to select a current velocity, by fixing the characteristics

of the motion of the packet center, to determine the corresponding solutions of the FP (continuity)

equation and finally to use the HJM equation as a constraint giving us the controlling device. The

formal details of this program will be developed in a subsequent paper.
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9. Concluding remarks

It has been observed that the inverse problem of determining a controlling potential for a given

quantum evolution in fact does not need to be formulated in terms of SM. Given two quantum

wave function ψ1 and ψ2 we could indeed design a new wave function ψ(x, t), evolving from ψ1 to

ψ2 plug it, as required evolution, directly in the Schrödinger equation (2.10) and eventually deduce

from that the form of the controlling potential. At first glance this seems to completely circumwent

the need for a model like the SM: given an arbitrary evolving state we can always calculate the

potential producing it. However about that two remarks are in order.

First of all, from a purely technical point of view, the simplification introduced by this proce-

dure shows up to be elusive. In fact we must remember that a quantum wave function has complex

values and hence, if we simply take an arbitrary evolution, the resulting potential calculated from

the Schrödinger equation (2.10) will also be complex. This means that, to have a real valued

potential, we must impose some conditions on the supposed evolution. These conditions of course

depend on the hypothesized form of ψ. For example, if we fix the evolution of its modulus, the

said condition will materialize in a partial differential equation on the phase function S of the wave

function. On the other hand the use of the HJM equation (2.9) as the tool to solve the inverse

problem always give a real valued potential as a result.

However both the two proposed procedures are possible and, to identically posed questions,

they will give identical answers. Given this obvius equivalence, the second remark is that our

choice of the procedure will be operated on the basis of opportunity considerations. In both cases

the result will be influenced by the starting hypothesis on the supposed evolution of the state ψ

modelling the transition from ψ1 to ψ2. But, since the observable part of the wave function is its

square modulus, namely the position pdf, the relevant hypothesis will be on its evolution. The

phase function, or, equivalently, the velocity fields, are not directly observable, and hence are at

first sight of secondary concern. Their importance become apparent only when we require that

the potential be real or that the transitions show a realistic, smooth behaviour. Hence, depending

on the specific problem we are dealing with, it could be more suitable to approach it in terms of a

state given through a wave function ψ, or in terms of a state given through the couple (f, v). The

two approaches are certainly equivalent, but one may prove to be more suggestive. In particular

that based on the SM equations seems to be better for the treatment of systems, like as the

mesoscopic, quantum-like ones, which are well described by classical probabilistic models in terms

of real space-time trajectories.
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