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Abstract: Performing time-dependent reliability analysis is an effective way to 

estimate the failure probability of structural system throughout its lifetime. In the 

engineering practices, uncertain parameters with sufficient sample and limited sample 

may exist simultaneously. The uncertain parameters with limited sample data are 

difficult to construct its precise probabilistic characteristics during estimating the 

accurate time-dependent reliability. To address this issue, this paper first develops a new 

hybrid time-dependent reliability model involving interval processes. Then, to reduce 

the high dimensionality, an extension method based on equivalent stochastic process 

transformation approach is proposed to transform the stochastic processes and the 

interval processes into corresponding equivalent random variables respectively. In 

particular, an instantaneous reliability model is constructed to envelope all potential 

system failures that may occur during the time interval. In order to identify the 

instantaneous failure surface accurately, an active learning method is proposed based 

on the deep neural network model and the weighted sampling method. With the 

constructed deep neural network model, the new hybrid time-dependent reliability can 
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be evaluated by performing the Monte Carlo Sampling. Three numerical examples are 

used to verify the accuracy and efficiency of the proposed method.  

Keywords: Time-dependent reliability analysis, Deep neural network, Active learning, 

Weighted sampling, Hybrid uncertain model 

1. Introduction 

Considering the ubiquitous uncertain factors, the structural reliability analysis is 

used to determine the failure probabilities of structures. In general, uncertainty can be 

classified into two types: aleatory and epistemic [1]. Aleatory uncertainty is caused by 

the inherent variations of an objective physical system and will not be reduced with the 

increase of cognitive level. Many methods can be used to handle the aleatory 

uncertainty [2-5]. However, epistemic uncertainty is caused by the limitation of 

subjective cognitive level and will be reducible by additional empirical information. 

Epistemic uncertainty models include fuzzy sets [6], probability box [7, 8], interval 

model [9] and so forth. In these researches, the time-varying effect is not taken into 

account.  

However, in view of the structural performance degeneration, stochastic operation 

conditions and time-dependent load processes [10, 11], traditional static reliability 

methods may not be feasible any more. In order to tackle the time-varying effect, two 

main types of  time-variant reliability methods have been developed [12]. They are the 

outcrossing rate-based methods and the extreme value-based methods. The core of 

outcrossing rate-based methods is to obtain the time-dependent reliability by 

calculating and then integrating the outcrossing rate. The outcrossing event occurs 

when the response reaches the limit state and the outcrossing rate is defined as the 

change rate of the outcrossing probability with respect to time. To address more general 

time-dependent reliability problem, Andrieu-Renaud et al. proposed the PHI2 method 

to estimate the outcrossing rate by using time-invariant parallel system approach [13]. 

Hu and Du extended the existing joint outcrossing rate method to the general limit-state 

functions with both random variables and stochastic processes [14]. Even though 
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outcrossing rate-based methods have developed greatly over the past decades, they are 

still inaccurate for nonlinear and multimodal problems due to their inherent defects such 

as the embedded first-order reliability method (FORM) and the low resolution of 

discretized time dimension. 

In extreme value-based methods, the failure probability is evaluated based on the 

worst performance of an engineering system within a time interval. A failure occurs if 

the system does not satisfy its requirements when subjected to the extreme values. Xu 

et al. proposed a new method to obtain the extreme value distribution by employing the 

maximum entropy method with fractional moments as constraints, where an adaptive 

cubature formula is utilized for fractional moments assessment [15]. By obtaining the 

extreme value distribution, a time-dependent reliability problem can be transformed 

into a time-independent case, and then conventional reliability analysis methods can be 

applied. However, it is usually intractable to obtain the probabilistic characterization of 

the extreme value analytically in practical problems. Though simulation-based methods 

can be used to estimate the extreme value distribution, the required computational 

resources are still significant due to the inevitable large number of function evaluations. 

To overcome the inefficiency of the simulation-based methods, surrogate models, such 

as polynomial chaos expansion [16, 17], Kriging [18-20], and artificial neural networks 

[21-23] are employed to replace the performance functions for reducing the 

computational burden. The active learning strategy can further improve the efficiency 

of the approaches using surrogate models. Xiang et.al proposed an active learning 

method for structural reliability analyses by combining the deep neural network (DNN) 

model and the weighted sampling method [24], which can be termed as WS-DNN. Shi 

et.al developed an active learning reliability method with multiple kernel functions 

based on radial basis function (CVRBF-MCS) [25]. 

However, all of these methods mentioned above are only capable of performing 

time-dependent analysis when there is sufficient information to construct precise 

probabilistic characteristics of uncertain parameters. They cannot handle the cases that 
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uncertain parameters lack of sample data. Under this circumstance, Wang et al. and 

Jiang et al. proposed the non-probabilistic interval process and the non-probabilistic 

convex process model for analyzing the time-dependent reliability of the mechanisms 

respectively [26, 27]. Chang et al. developed a new non-probabilistic time-dependent 

reliability model for the input interval uncertainties [28]. Wang et al. proposed a novel 

convexity-oriented time-dependent reliability-based topology optimization framework, 

where the nodal dynamic responses are expressed by the convex process model [29]. 

In the engineering practices, uncertain parameters with sufficient sample data and 

limited sample data may exist simultaneously. Although many researchers have 

intensively investigated the hybrid reliability analysis with both random and interval 

uncertainties to handle this situation [30-33], the time-varying effect is not taken into 

account. The difficulty of time-dependent reliability analysis will see a remarkable 

increase when both the random uncertainties and the interval uncertainties are involved. 

So far, the researches on the hybrid time-dependent reliability analysis have been rarely 

performed. Wang et al. proposed a method based on projection outline adaptive Kriging 

(POK) to handle time-dependent reliability analysis with mixed interval uncertainties 

(iTRA) [34]. For analyzing the reliability of the dynamic structure involving both input 

random variables and the interval ones, Shi et al. presented a new dynamic reliability 

analysis model and established a double-loop optimization algorithm based on the 

active learning Kriging method [35]. To the best of our knowledge, the study on 

reliability analysis considering both stochastic processes and interval processes is not 

conducted. Under this circumstance, a new hybrid time-dependent reliability model 

involving interval processes (HTR-ip) is first developed here. Furthermore, it is 

essential and urgent to seek a simple, efficient and practical time-dependent reliability 

analysis method for the developed new time-dependent hybrid reliability model. 

In this paper, an efficient approach for the new hybrid time-dependent reliability 

analysis is proposed by combining equivalent uncertainty transformation and active 

learning. In the proposed method, an extension method based on the equivalent 
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stochastic process transformation approach (eSPT) [36] is introduced firstly to 

transform the stochastic processes and the interval processes into corresponding 

equivalent random variables, which can be used for constructing the instantaneous 

reliability model. Based on the limit state function and exact equivalent uncertainty 

transformation, the instantaneous reliability model possesses the capability of 

identifying all potential instantaneous failure events for predicting time-variant failures. 

Then aiming at the transformed static reliability analysis, an active learning method 

based on the DNN and weighted sampling is proposed to accurately identify the 

instantaneous failure surface. Finally, the time-variant reliability can be obtained 

approximately using the MCS samples and the constructed DNN surrogate model.  

The rest of this paper is organized as follows. Section 2 provides a brief 

introduction about the new hybrid time-dependent reliability model involving interval 

processes. Section 3 introduces the details of the proposed computational method for 

the new hybrid time-dependent reliability model. The computational efficiency and 

accuracy of proposed method is demonstrated with three examples in Section 4. Section 

5 provides some conclusions. 

2. Definition of the new hybrid time-dependent reliability model 

involving interval processes (HTR-ip) 

2.1 Fundamentals of interval process  

In this paper, the interval process is introduced to express the uncertainty of time-

variant process with limited data. Based on the interval variable characteristics and the 

extension of the classic stochastic process theory, several important characteristics 

about interval process will be introduced.  

Definition 1. For an interval process 𝐼𝐼(𝑡𝑡) with the lower bound 𝐼𝐼𝐿𝐿(𝑡𝑡) and the upper 

bound 𝐼𝐼𝑈𝑈(𝑡𝑡) , the middle point function 𝐼𝐼𝑀𝑀(𝑡𝑡)  and the radius function 𝐼𝐼𝑅𝑅(𝑡𝑡)  can be 

defined as: 

 𝐼𝐼𝑀𝑀(𝑡𝑡) = 𝐼𝐼𝑈𝑈(𝑡𝑡)+𝐼𝐼𝐿𝐿(𝑡𝑡)
2

 (1) 
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 𝐼𝐼𝑅𝑅(𝑡𝑡) = 𝐼𝐼𝑈𝑈(𝑡𝑡)−𝐼𝐼𝐿𝐿(𝑡𝑡)
2

 (2) 

Definition 2. For an interval process 𝐼𝐼(𝑡𝑡), the auto-correlation coefficient function of 

interval variables 𝐼𝐼(𝑡𝑡𝑖𝑖) and 𝐼𝐼(𝑡𝑡𝑗𝑗) at any two time instants 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑗𝑗 is defined as: 

 𝜌𝜌𝐼𝐼𝐼𝐼�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼(𝑡𝑡𝑖𝑖,𝑡𝑡𝑗𝑗)

�𝐷𝐷𝐼𝐼(𝑡𝑡𝑖𝑖)�𝐷𝐷𝐼𝐼(𝑡𝑡𝑗𝑗)
 (3) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼(𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗) is the auto-covariance function of interval variables 𝐼𝐼(𝑡𝑡𝑖𝑖) and 𝐼𝐼(𝑡𝑡𝑗𝑗), 

𝐷𝐷𝐼𝐼(𝑡𝑡) is the variance function. In this work, assuming that 𝜌𝜌𝐼𝐼𝐼𝐼�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� is an exponential 

correlation function, Eq. (3) can be rewritten as: 

  𝜌𝜌𝐼𝐼𝐼𝐼�𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗� = exp (−
�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�

𝑙𝑙
) (4) 

where 𝑙𝑙 is called correlation length. More details about interval process theory can refer 

to reference [27]. 

2.2 Implementation of HTR-ip based on Monte Carlo simulation 

method 

In the time-variant reliability problem, uncertain parameters with sufficient sample 

data and limited sample data may exist simultaneously. Here, a new hybrid time-

dependent reliability analysis model involving interval processes (HTR-ip) is 

constructed to provide an alternative path to deal with this kind of problem. Its limit 

state function can be expressed as 

 𝐺𝐺 = 𝑔𝑔(𝑿𝑿,𝒀𝒀,𝑺𝑺(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡) (5) 

where 𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2, …𝑋𝑋𝑚𝑚) indicates the 𝑚𝑚-dimensional vector of the random variables 

and 𝒀𝒀 = (𝑌𝑌1,𝑌𝑌2, …𝑌𝑌𝑛𝑛)  indicates the 𝑛𝑛 -dimensional vector of the interval variables. 

𝑺𝑺(𝑡𝑡) = [𝑆𝑆1(𝑡𝑡),𝑆𝑆2(𝑡𝑡), … 𝑆𝑆𝑝𝑝(𝑡𝑡)]  is a vector of 𝑝𝑝  stochastic processes input and 𝑰𝑰(𝑡𝑡) =

[𝐼𝐼1(𝑡𝑡), 𝐼𝐼2(𝑡𝑡), … 𝐼𝐼𝑙𝑙(𝑡𝑡)]  is a vector of 𝑙𝑙  interval processes input. It is noted that the 

variables in the limit state function are independent of each other. 

Given a specified time period [0,𝑇𝑇𝐿𝐿], for the hybrid time-dependent uncertain limit 

state function 𝑔𝑔(𝑿𝑿,𝒀𝒀,𝑺𝑺(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡)  with mixed stochastic and interval processes, the 

failure probability over a time interval [0,𝑇𝑇](0 ≤ 𝑇𝑇 ≤ 𝑇𝑇𝐿𝐿) can be defined as follows 
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 𝑃𝑃𝑓𝑓(0,𝑇𝑇) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �
𝑔𝑔(𝑿𝑿,𝒀𝒀,𝑺𝑺(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡) ≤ 0,

∃𝑡𝑡 ∈ [0,𝑇𝑇],𝒀𝒀 ∈ [𝒀𝒀𝐿𝐿 ,𝒀𝒀𝑈𝑈], 𝑰𝑰(𝑡𝑡) ∈ [𝑰𝑰𝐿𝐿(𝑡𝑡), 𝑰𝑰𝑈𝑈(𝑡𝑡)]� ,   0 ≤ 𝑇𝑇 ≤ 𝑇𝑇𝐿𝐿(6) 

Owing to the time-dependency of system failures, it is technically intractable to 

derive a closed-form solution for calculating time-variant probability of failure in Eq. 

(6). Therefore, the extreme value-based methods are used to approximate the failure 

probability. Furthermore, considering the existence of interval variables and interval 

processes, the failure probability should be located in an interval [𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚] . Its 

lower and upper bounds can be formulated as 

 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 � min
𝑡𝑡∈[0,𝑇𝑇]

� max
𝒀𝒀∈[𝒀𝒀𝐿𝐿,𝒀𝒀𝑈𝑈],𝑰𝑰(𝑡𝑡)∈[𝑰𝑰𝐿𝐿(𝑡𝑡),𝑰𝑰𝑈𝑈(𝑡𝑡)]

𝑔𝑔(𝑿𝑿,𝒀𝒀,𝑺𝑺(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡)� ≤ 0� (7) 

 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 � min
𝑡𝑡∈[0,𝑇𝑇]

� min
𝒀𝒀∈[𝒀𝒀𝐿𝐿,𝒀𝒀𝑈𝑈],𝑰𝑰(𝑡𝑡)∈[𝑰𝑰𝐿𝐿(𝑡𝑡),𝑰𝑰𝑈𝑈(𝑡𝑡)]

𝑔𝑔(𝑿𝑿,𝒀𝒀,𝑺𝑺(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡)� ≤ 0� (8) 

The MCS method can be used for evaluating the failure probability defined in Eqs. 

(7)-(8). In the MCS method, 𝑁𝑁  random realizations of the input variables 𝑽𝑽𝒐𝒐  are 

generated. The 𝑖𝑖  th random input variables can be denoted as 𝑽𝑽𝒐𝒐𝑖𝑖 =

[𝑿𝑿𝑖𝑖 ,𝒀𝒀,𝑺𝑺𝒊𝒊(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡]. Then the failure probability can be calculated by 

 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 ≈ ∑ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁
𝑖𝑖 (𝑽𝑽𝒐𝒐𝑖𝑖) 𝑁𝑁⁄  (9) 

 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 ≈ ∑ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁
𝑖𝑖 (𝑽𝑽𝒐𝒐𝑖𝑖) 𝑁𝑁⁄  (10) 

where 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑽𝑽𝒐𝒐𝑖𝑖) and 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑽𝑽𝒐𝒐𝑖𝑖) represents the failure indicator functions of 𝑖𝑖th random 

input parameters 𝑽𝑽𝒐𝒐, which can be given as Eqs. (11)-(12). 

 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚�𝑽𝑽𝒐𝒐𝑖𝑖� = �
1   min

𝑡𝑡∈[0,𝑇𝑇]
� max
𝒀𝒀∈[𝒀𝒀𝐿𝐿,𝒀𝒀𝑈𝑈],𝑰𝑰(𝑡𝑡)∈[𝑰𝑰𝐿𝐿(𝑡𝑡),𝑰𝑰𝑈𝑈(𝑡𝑡)]

𝑔𝑔�𝑿𝑿𝑖𝑖 ,𝒀𝒀, 𝑺𝑺𝒊𝒊(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡�� ≤ 0

0   min
𝑡𝑡∈[0,𝑇𝑇]

� max
𝒀𝒀∈[𝒀𝒀𝐿𝐿,𝒀𝒀𝑈𝑈],𝑰𝑰(𝑡𝑡)∈[𝑰𝑰𝐿𝐿(𝑡𝑡),𝑰𝑰𝑈𝑈(𝑡𝑡)]

𝑔𝑔�𝑿𝑿𝑖𝑖 ,𝒀𝒀, 𝑺𝑺𝒊𝒊(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡�� > 0
, 

 ∀𝑖𝑖 = 1,2, … ,𝑁𝑁 (11) 

 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚�𝑽𝑽𝒐𝒐𝑖𝑖� = �
1   min

𝑡𝑡∈[0,𝑇𝑇]
� min
𝒀𝒀∈[𝒀𝒀𝐿𝐿,𝒀𝒀𝑈𝑈],𝑰𝑰(𝑡𝑡)∈[𝑰𝑰𝐿𝐿(𝑡𝑡),𝑰𝑰𝑈𝑈(𝑡𝑡)]

𝑔𝑔�𝑿𝑿𝑖𝑖 ,𝒀𝒀,𝑺𝑺𝒊𝒊(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡�� ≤ 0

0   min
𝑡𝑡∈[0,𝑇𝑇]

� min
𝒀𝒀∈[𝒀𝒀𝐿𝐿,𝒀𝒀𝑈𝑈],𝑰𝑰(𝑡𝑡)∈[𝑰𝑰𝐿𝐿(𝑡𝑡),𝑰𝑰𝑈𝑈(𝑡𝑡)]

𝑔𝑔�𝑿𝑿𝑖𝑖 ,𝒀𝒀,𝑺𝑺𝒊𝒊(𝑡𝑡), 𝑰𝑰(𝑡𝑡), 𝑡𝑡�� > 0
, 

 ∀𝑖𝑖 = 1,2, … ,𝑁𝑁 (12) 

Different from traditional static reliability methods, the most challenging part is to 
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calculate reliability level of an engineered system high efficiently yet accurately during 

its life cycle. To improve computational efficiency, the surrogate model methods can 

be employed to replace the performance function and reduce the computational burden. 

3. The proposed reliability analysis method for HTR-ip 

3.1 Equivalent uncertainty transformation  

The proposed HTR-ip is essentially a time-dependent reliability problem with 

hybrid variables. Common operation such as transforming a time-dependent reliability 

problem into time-independent reliability problems at each time instants tend to fall 

into the dilemma of accuracy and efficiency. Inspired by eSPT, the equivalent 

uncertainty transformation approach (EUT) is proposed here to handle the time-variant 

uncertainty including both stochastic processes and interval processes. In the proposed 

EUT method, the time-dependent uncertainty parameters 𝑷𝑷𝒕𝒕 = [𝑺𝑺(𝑡𝑡), 𝑰𝑰(𝑡𝑡)]  will be 

transformed into corresponding equivalent random variables 𝑷𝑷𝒕𝒕′ = [𝑺𝑺′, 𝑰𝑰′] . 𝑺𝑺′  is 

defined as the random variable transformed from the stochastic process 𝑺𝑺(𝑡𝑡) and 𝑰𝑰′ is 

defined as the random variable transformed from the interval process 𝑰𝑰(𝑡𝑡). Since the 

instantaneous failure events at each time point have equal importance, the probability 

density function (PDF) of transformed random variables can be expressed as 

 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃(𝑷𝑷𝒕𝒕′) ≈
1
𝑁𝑁
∑ 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃(𝑷𝑷𝒕𝒕(𝑡𝑡𝑖𝑖))𝑁𝑁
𝑖𝑖=1  (13) 

 The computational cost of obtaining the probability density function of 𝑷𝑷𝒕𝒕′  is 

much less than that on obtaining performance evaluations of time-dependent uncertain 

engineering systems, especially one can always obtain an accurate approximation of 

the PDF of 𝑷𝑷𝒕𝒕′ by only increasing the number of time nodes 𝑁𝑁. For some specific cases 

such as Gaussian processes or stationary interval processes, analytical expression of the 

probability density information of 𝑷𝑷𝒕𝒕′ can be obtained. For general cases, the random 

realizations of 𝑷𝑷𝒕𝒕(𝑡𝑡)  are generated based on spectral decomposition, and the 

approximate solution of the probability density information of 𝑷𝑷𝒕𝒕′  is obtained 

according to Eq. (13). 
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The transform process of interval process is shown in Fig. 1. Compared with the 

stochastic process, the interval process model at any time is an interval variable, and its 

possible values are enclosed by an upper and a lower bound. To consider the whole 

potential failure events over the given time interval, the interval process can be 

transformed into a bounded random variable. Take a stationary interval process 𝐼𝐼(𝑡𝑡) 

with the middle point function 𝐼𝐼𝑀𝑀(𝑡𝑡) = 0  and the radius function 𝐼𝐼𝑅𝑅(𝑡𝑡) = 1  as an 

example. The uncertainty of interval process 𝐼𝐼(𝑡𝑡)  at the 𝑖𝑖 th time instant can be 

expressed as an interval variable 𝐼𝐼(𝑡𝑡𝑖𝑖) with the lower bound 𝐼𝐼𝐿𝐿(𝑡𝑡𝑖𝑖) and the upper bound 

𝐼𝐼𝑈𝑈(𝑡𝑡𝑖𝑖). According to the equivalent model proposed by Jiang et.al [37], the interval 

variables is equivalent to independent bounded random variables following uniform 

distributions over their respective intervals. Therefore, the PDF of stationary interval 

process 𝐼𝐼(𝑡𝑡) at each time point can be expressed as 

 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃�𝐼𝐼(𝑡𝑡𝑖𝑖)� = �0   , 𝐼𝐼(𝑡𝑡𝑖𝑖) > −1 𝑜𝑜𝑜𝑜 𝐼𝐼(𝑡𝑡𝑖𝑖) < 1
0.5   ,−1 ≤ 𝐼𝐼(𝑡𝑡𝑖𝑖) ≤ 1              𝑖𝑖 ∈ 1,2, …𝑁𝑁 (14) 

Here, regardless of the number of discrete time points 𝑁𝑁, the transformed random 

variables 𝐼𝐼′  is a bounded random variable following uniform distribution at [−1,1] . 

Furthermore, its PDF can be calculated as 

 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃(𝐼𝐼′) = � 0   , 𝐼𝐼′ > −1 𝑜𝑜𝑜𝑜 𝐼𝐼′ < 1
0.5   ,−1 ≤ 𝐼𝐼′ ≤ 1           (15) 

Once the PDF of 𝑷𝑷𝒕𝒕′  is obtained, the time-variant reliability problem within a 

stochastic process and an interval process becomes the time-invariant reliability 

problem with random variables and bounded random variables. In addition, the 

parameter time 𝑡𝑡 is also transformed as 𝑡𝑡′. Considering the life cycle of time-dependent 

engineering systems [0,𝑇𝑇𝐿𝐿] , the 𝑡𝑡′  is transformed as a parameter with uniform 

distribution, where 𝑡𝑡′~𝑈𝑈(0,𝑇𝑇𝐿𝐿) . For a general situation, the limit state function of 

hybrid time-dependent uncertain variables can be transformed as follows. 

 𝑔𝑔(𝑿𝑿,𝒀𝒀,𝑺𝑺′, 𝑰𝑰′, 𝑡𝑡′) (16) 

For simplicity, the transformed input parameters can be rewritten as 𝑽𝑽𝒕𝒕 =

[𝑿𝑿,𝒀𝒀,𝑺𝑺′, 𝑰𝑰′, 𝑡𝑡′]. 𝑽𝑽𝒕𝒕 is an 𝑑𝑑-dimensional vector and 𝑑𝑑 = 𝑚𝑚 + 𝑛𝑛 + 𝑝𝑝 + 𝑙𝑙 + 1. According 
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to Eq. (16), instantaneous reliability model can be constructed, which is expressed as 

 𝑃𝑃𝑓𝑓 = Pr (𝑔𝑔(𝑽𝑽𝒕𝒕) < 0) (17) 

Since the transformed limit state function 𝑔𝑔(𝑽𝑽𝒕𝒕)  incorporates all the failure 

information, the hybrid time-dependent reliability analysis is converted to time-

invariant counterpart. It is noted that once an accurate instantaneous reliability 

surrogate model is obtained, the efficiency of reliability analysis for HTR-ip will be 

improved. Because no matter how much the number of discrete time points adopted in 

MCS is, no additional DNN model is required to be trained. Furthermore, given the 

constructed accurate DNN model, the increased number of discrete time points used by 

MCS will bring additional but negligible computational consumption. 

  

Fig. 1 The transformation process of interval process. 

3.2 The proposed active learning method  

3.2.1 Weighted sampling 

With the constructed instantaneous reliability model as introduced above, an active 

learning method is proposed to calculate the probability of failure in Eq. (17) based on 

DNN model and weighted sampling. Before constructing the DNN surrogate model, a 

Monte Carlo population with 𝑁𝑁𝑚𝑚𝑚𝑚  samples is generated randomly according to the 

corresponding probability density function of the transformed input parameter. Then, a 

small number of initial training sample points are selected from the Monte Carlo 

population by using the weighted sampling method.  
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The utilized weighted sampling is designed to address the problem of uneven 

sampling by introducing a weighting factor that is inversely proportional to the 

probability of sample occurrence. Because the samples obtained by random sampling 

obey the probability distribution, the area with high probability in the sampling domain 

will contain more samples. However, it is noted that the purpose of active learning is to 

find the points near the limit state surface (LSS) and then use it to update the surrogate 

model iteratively. Considering the problem of small failure probability, the points near 

the LSS are always distributed in the sampling domain with a small probability. 

Therefore, the weighted sampling method without replacement is applied [24]. The 

important sample points in the population can be selected with a greater probability by 

giving a larger weight. In the weighted sampling method, 𝑀𝑀 samples out of a population 

of size 𝑀𝑀𝑐𝑐 is selected as follows: 

The first and the most important step of weighted sampling is to calculate the 

characteristic value 𝑐𝑐(𝑖𝑖) = log (𝑢𝑢(𝑖𝑖))
𝑤𝑤(𝑖𝑖)   for each item. where 𝑤𝑤(𝑖𝑖) = 1

𝑓𝑓(𝑽𝑽𝒕𝒕(𝑖𝑖))
  denotes the 

weight of each item, 𝑢𝑢(𝑖𝑖) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)  is a random number for each item. The 

probability density of sample point 𝑽𝑽𝒕𝒕(𝑖𝑖) is written as 𝑓𝑓(𝑽𝑽𝒕𝒕(𝑖𝑖)). On this basis, the sample 

points can be sorted according to the characteristic value from large to small. And the 

top 𝑀𝑀 sample points are selected as the experimental points. In addition, the empirical 

facts suggest the number of initial samples could be small (e.g. 𝑠𝑠 = 10 ), which is 

sufficient. These 𝑠𝑠 initial sample points are denoted as: 

 S𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑽𝑽𝒕𝒕(𝑖𝑖)|𝑖𝑖 = 1, 2, … , 𝑠𝑠� (18) 

3.2.2 DNN surrogate model 

 Both deep neural networks and shallow neural networks can be used to handle the 

reliability analysis problems. But the DNN model usually possesses a better ability to 

learn the complex mapping relationship between inputs and system responses than 

traditional neural networks with single hidden layer [38]. In this work, a reliability 

analysis framework based on the DNN model is proposed to deal with possible high 
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nonlinearity problems, which may not be solved by shallow neural networks.  

For the 𝑖𝑖th sample point in the training set, 𝜂𝜂𝑖𝑖 represents the responses of the time-

dependent limit function corresponding to the transformed inputs, which can be 

calculated as 

 𝜂𝜂𝑖𝑖 = 𝑔𝑔(𝑿𝑿(𝑖𝑖),𝒀𝒀(𝑖𝑖),𝑺𝑺′(𝑖𝑖), 𝑰𝑰′(𝑖𝑖), 𝑡𝑡′(𝑖𝑖)) = 𝑔𝑔(𝑽𝑽𝒕𝒕(𝑖𝑖)) (19) 

Based on Eqs. (18)-(19), the input-output training sample points can be collected. With 

the collected training sample points, the DNN model can be trained. The DNN model 

transforms the feature representation of the sample from the original space to a new 

feature space to make classification or prediction easier. As shown in Fig. 2, the DNN 

model consists of the input layer, output layer, and several hidden layers. In the DNN 

model, the output of the 𝑖𝑖th layer is computed as 

 𝒉𝒉𝑖𝑖 = 𝑓𝑓𝑎𝑎𝑎𝑎(𝑾𝑾𝑖𝑖𝒉𝒉𝑖𝑖−1 + 𝒃𝒃𝑖𝑖),∀𝑖𝑖 ∈ {1, 2, … ,𝑇𝑇} (20) 

where 𝒉𝒉𝑖𝑖 = (ℎ𝑖𝑖1, … ,ℎ𝑖𝑖
𝑑𝑑𝑖𝑖) are the variables in the 𝑖𝑖th layer and 𝑑𝑑𝑖𝑖 is the dimension of the 

𝑖𝑖th layer. To be specific, 𝒉𝒉0 represents the input variables 𝑽𝑽𝒕𝒕 while 𝒉𝒉𝑇𝑇 stands for the 

prediction output 𝜂̂𝜂 . Furthermore, the dimension 𝑑𝑑0 = 𝑑𝑑  and 𝑑𝑑𝑇𝑇 = 1 . 𝑾𝑾𝑖𝑖 ∈ ℝ𝑑𝑑𝑖𝑖×𝑑𝑑𝑖𝑖−1  

and 𝒃𝒃𝑖𝑖 ∈ ℝ𝑑𝑑𝑖𝑖 represent the weight matrix and the vector of bias in the 𝑖𝑖th hidden layer, 

respectively. The options of the activation function 𝑓𝑓𝑎𝑎𝑎𝑎(∙) are usually diverse, which 

includes the sigmoid function, the hyperbolic tangent function and so on. In this work, 

the rectified linear unit (ReLU) activation function, expressed as 𝑓𝑓𝑎𝑎𝑎𝑎(ℎ) = max (0,ℎ), 

is adopted. 

Note the network architecture can be decided by the number of hidden layers and 

the dimension of each hidden layer, i.e., 𝐻𝐻 = {𝑇𝑇 − 1, {𝑑𝑑𝑖𝑖}𝑖𝑖=1𝑇𝑇−1}, which are called as the 

hyperparameters. A concept that is easily confused with hyperparameters is called as 

parameters, which are composed of both the weight matrices and the bias vectors in all 

layers, i.e., 𝜃𝜃 = {𝑾𝑾𝑖𝑖 ,𝒃𝒃𝑖𝑖}𝑖𝑖=1𝑇𝑇 . Apparently, the fully 𝐻𝐻 determines the size of 𝜃𝜃. As we all 

known, optimizing the selection of 𝐻𝐻 to determine the optimal network structure is a 

computationally expensive task. Therefore, generally speaking, the training process of 
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DNN model only involves the optimization of 𝜃𝜃. 𝐻𝐻 is predefined according to empirical 

knowledge and 𝜃𝜃 can be determined by minimizing the loss function during the training 

process. In this work, 𝐻𝐻 is decided by manual tuning and the mean square error (MSE) 

is adopted as the loss function. The optimization algorithm called Adam [39] is utilized 

for updating and determining 𝜃𝜃 of the DNN model. Furthermore, the number of training 

epochs is 500 and the learning rate is 0.01. Once the initial DNN model is available, 

the next concern is to select the most suitable new training sample points based on the 

proposed learning function.  

 
Fig. 2 The construction of the DNN model 

3.2.3 The learning function 

For active learning methods, one of main concerns is to determine the locations of 

new selected training sample points at each iteration by the learning function. In general, 

the most suitable sample points can be selected from two perspectives. First, the 

selected sample points should be as close to the limit state functions as possible, which 

contributes the most to the probability of failure. Second, the selected sample points 

should have higher prediction uncertainty, also called prediction variance. The 

prediction uncertainty has different representations depending on the constructed 

surrogate model. In addition, the learning function should also consider that the most 

suitable new training sample points cannot be too close to the existing training sample 

points to avoid possible redundant information and ill-conditioned problem. 

Similar to the algorithm proposed by Shi et al. [25] for RBF model, we extend the 
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learning function to system reliability problems for DNN model. Different from the 

stopping criterion in the reference [25], the average training effect over multiple 

iterations is considered to ensure that the model gradually converges and stops training 

rather than by accident. The details about the learning function are listed as following: 

Step 1: Rewrite the existing training sample points and then construct DNN model 

based on them. According to the principle of 𝑘𝑘 cross-validation, the existing training 

sample points are divided into 𝑘𝑘  subsets. In this work, 𝑘𝑘 = 5 .The cross-validation 

samples are obtained where one of the subsets is omitted, which can be expressed as 

 Ω𝑐𝑐𝑐𝑐
(−𝑙𝑙) = ((𝑽𝑽𝒕𝒕𝑠𝑠1 ,𝜼𝜼𝑠𝑠1), … , (𝑽𝑽𝒕𝒕𝑠𝑠𝑙𝑙−1 ,𝜼𝜼𝑠𝑠𝑙𝑙−1), (𝑽𝑽𝒕𝒕𝑠𝑠𝑙𝑙+1 ,𝜼𝜼𝑠𝑠𝑙𝑙+1), … (𝑽𝑽𝒕𝒕𝑠𝑠𝑘𝑘 ,𝜼𝜼𝑠𝑠𝑘𝑘)) (21) 

where 𝑙𝑙 = 1,2, … 𝑘𝑘. Based on each Ω𝑐𝑐𝑐𝑐
(−𝑙𝑙), a DNN model 𝑔𝑔�(−𝑙𝑙)(∙) can be established. By 

combining the DNN model 𝑔𝑔�(∙) established by all training samples, a total number of 

𝑘𝑘 + 1 DNN models are constructed. 

Step 2: Estimate the prediction uncertainty of the selected new training sample 

point defined as 𝑢𝑢𝑢𝑢(𝑽𝑽𝒕𝒕𝑖𝑖),which can be calculated as 

 𝑢𝑢𝑢𝑢�𝑽𝑽𝒕𝒕𝑖𝑖� =
�𝑔𝑔�(𝑽𝑽𝒕𝒕𝑖𝑖)�

�∑ (𝑔𝑔�(−𝑙𝑙)�𝑽𝑽𝒕𝒕𝑖𝑖�−𝑔𝑔�(𝑽𝑽𝒕𝒕𝑖𝑖))2𝑘𝑘
𝑙𝑙=1 𝑘𝑘⁄

 (22) 

Step 3: Calculate the Euclidean-distance between the selected new training sample 

point and the existing sample points denoted by 𝑑𝑑(𝑽𝑽𝒕𝒕𝑖𝑖), which can be expressed as 

 𝑑𝑑�𝑽𝑽𝒕𝒕𝑖𝑖� = min
𝑗𝑗∈[1,𝑛𝑛]

�𝑽𝑽𝒕𝒕𝑖𝑖 − 𝑽𝑽𝒕𝒕𝑗𝑗� (23) 

where 𝑽𝑽𝒕𝒕𝑗𝑗 is the coordinate of the existing training samples. 

 Step 4: Calculate the active learning function 𝑆𝑆𝑆𝑆𝑆𝑆(𝑽𝑽𝒕𝒕𝑖𝑖)  and choose the most 

suitable new training sample point. 𝑆𝑆𝑆𝑆𝑆𝑆(𝑽𝑽𝒕𝒕𝑖𝑖) consider a balance between 𝑢𝑢𝑢𝑢(𝑽𝑽𝒕𝒕𝑖𝑖) and 

𝑑𝑑(𝑽𝑽𝒕𝒕𝑖𝑖), which can be written as 

 𝑆𝑆𝑆𝑆𝑆𝑆�𝑽𝑽𝒕𝒕𝑖𝑖� =
(𝑁𝑁�𝑢𝑢𝑢𝑢�𝑽𝑽𝒕𝒕𝑖𝑖��)𝛽𝛽

(𝑁𝑁�𝑑𝑑�𝑽𝑽𝒕𝒕𝑖𝑖��)1−𝛽𝛽
 (24) 

where 𝑁𝑁(∙) means the normalization operation, which is used to eliminate the effects 

of different orders of magnitude. For more details about normalization can refer to [25]. 
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At each iteration, the candidate sample point which minimizes the criterion in Eq. (24) 

is selected as the most suitable new training sample point.  

By incorporating the new observations, a new DNN model can be trained. The 

updating mechanism is performed repeatedly till the predicted failure probability 

satisfies a predefined stopping criterion, which can be defined as 

 𝑒𝑒𝑠𝑠 = 3𝜎𝜎�𝑓𝑓
𝑃𝑃�𝑓𝑓����

≤ 𝜀𝜀𝑡𝑡ℎ (25) 

 𝜎𝜎�𝑓𝑓 = �1
𝑘𝑘
∑ �𝑃𝑃�𝑓𝑓� − 𝑃𝑃�𝑓𝑓𝑓𝑓�

2
𝐾𝐾
𝑖𝑖=𝐾𝐾−(𝑘𝑘−1)  (26) 

 𝑃𝑃�𝑓𝑓� = 1
𝑘𝑘
∑ 𝑃𝑃�𝑓𝑓𝑓𝑓𝐾𝐾
𝑖𝑖=𝐾𝐾−(𝑘𝑘−1)  (27) 

where 𝐾𝐾  represents the 𝐾𝐾 th iteration process, 𝑃𝑃�𝑓𝑓𝑓𝑓  is the predicted failure probability 

based on the trained DNN model after 𝑖𝑖th iteration and 𝜀𝜀𝑡𝑡ℎ is a small positive number 

that can be set by user. In this work, 𝜀𝜀𝑡𝑡ℎ is selected as 0.01. 

3.3 Hybrid time-dependent reliability approximation 

The main steps of employing the proposed reliability analysis method for HTR-ip 

are illustrated in Fig. 3. 

Step1: Generate 𝑁𝑁𝑚𝑚𝑚𝑚 Monte Carlo sample points in the design space based on the 

distribution of the input variables, refer as 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀.  

Step2: Construct instantaneous reliability model using the proposed EUT method. 

Step3: Initialize the number of iterations 𝐾𝐾 = 1  and generate 𝑁𝑁𝑚𝑚𝑚𝑚  samples 

according to transformed uncertain variables, refer as 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 . 

Step4: Find the candidate experimental points 𝑆𝑆𝑐𝑐 from the candidate pool 𝑆𝑆∗ by 

using the trained DNN model in the previous iteration if 𝐾𝐾 > 1, otherwise skip to the 

next step. The procedure of selecting the candidate experimental points is as follow: 

sort the absolute prediction values from small to large by using the DNN trained in the 

(𝐾𝐾 − 1)th iteration and then select first 𝑁𝑁𝑆𝑆𝑐𝑐  items. 𝑁𝑁𝑆𝑆𝑐𝑐  represents the population size 

of the candidate experimental points, which is defined as 𝑁𝑁𝑆𝑆𝑐𝑐 = 0.1 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆∗). 

Step5: Select 𝑀𝑀 experiment points from 𝑆𝑆𝑐𝑐 by weighted sampling, refer as 𝑆𝑆𝑒𝑒. In 

the first iteration, define the training set 𝑆𝑆𝑡𝑡 from 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇  with weighted sampling and the 
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remaining points in 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇  are referred as the candidate pool 𝑆𝑆∗.  

Step6: Update the candidate pool 𝑆𝑆∗ = 𝑆𝑆∗ − 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and the training set 𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡 +

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 if 𝐾𝐾 > 1, otherwise skip to the next step. 

Step7: Construct and update the DNN model by using training set 𝑆𝑆𝑡𝑡. 

Step8: Predict the failure probability of instantaneous reliability model with 

samples 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇   by utilizing DNN model and calculate the stopping criterions. If the 

values of failure probability do not satisfy the stopping criterion, the process goes to 

step 9; otherwise, the process goes to step 10. 

Step9: Identify the new training sample 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with the learning function at set 𝑆𝑆𝑒𝑒 

and 𝐾𝐾 = 𝐾𝐾 + 1. Afterwards, the process goes to step 4. 

Step10: Calculate the failure probability for HTR-ip with samples 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 using the 

well-trained DNN model. 

Step11: Check the coefficient of variation of failure probability 𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚). If the 

value meets the demand, output the probability of failure. Otherwise, the algorithm will 

go back to step 1 and the size of the Monte Carlo population 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 should be increased.  

 
Fig. 3 Flowchart of the proposed reliability analysis method for HTR-ip 

4. Numerical example and analysis 

In this section, three examples are considered to verify the effectiveness of the 

proposed approach. The execution time of three examples are also provided. Moreover, 



17 

 

all methods except the direct MCS method were repeated 20 times to verify the stability 

of performance, and the direct MCS method is repeated 30 times. All the simulation are 

carried out by using MATLAB R2020a on a 2.90GHz Intel(R) Core(TM) CPU i5-10400. 

4.1 Example 1: A math example  

In the first example, a mathematical case is studied. The limit state function is 

formulated as 

 𝑔𝑔(𝑋𝑋,𝑌𝑌, 𝑆𝑆(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑡𝑡) = 𝑋𝑋2𝑌𝑌 − 5𝑋𝑋�1 + 𝑆𝑆(𝑡𝑡)�𝑡𝑡 + (𝑌𝑌 + 1)𝑡𝑡2 + 5𝐼𝐼(𝑡𝑡) − 20 (28) 

where 𝑋𝑋 is a random variable which follows 𝑋𝑋~𝑁𝑁(3.5, 0.252). 𝑌𝑌 is an interval variable, 

and 𝑌𝑌 ∈ [2.5,4.5] . 𝑡𝑡  is the time parameter and varies in interval [0,1] . Additionally, 

𝑆𝑆(𝑡𝑡)  is a stationary Gaussian process with 0 mean and 1 standard deviation, whose 

correlation function is defined as Eq. (29). 𝐼𝐼(𝑡𝑡) is a stationary interval process with 0 

middle point and 1 radius, whose correlation function are expressed as Eq. (30). The 

time interval [0,1]  for this example is discretized into 200 time instants evenly. 

Furthermore, the interval variable 𝑌𝑌 is also discretized into 200 nodes uniformly. 200 

MCS samples of the interval process 𝐼𝐼(𝑡𝑡)  are generated according to the sampling 

approach proposed by Jiang. et al [40]. 106  random realizations of the stochastic 

processes and the random variables are generated for the time-dependent hybrid 

reliability analysis. 

 𝜌𝜌𝑆𝑆(𝑡𝑡1, 𝑡𝑡2) = exp (−(𝑡𝑡2 − 𝑡𝑡1)2) (29) 

 𝜌𝜌𝐼𝐼(𝑡𝑡1, 𝑡𝑡2) = exp (−|𝑡𝑡1 − 𝑡𝑡2| 3⁄ ) (30) 

The first step of employing the proposed approach is to construct an instantaneous 

reliability model 𝑔𝑔(𝑋𝑋,𝑌𝑌, 𝑆𝑆′, 𝐼𝐼′, 𝑡𝑡′) according to the characterization of the time-varying 

parameters. As introduced in Sec. 3.1, 𝑡𝑡  is transformed into a uniformly distributed 

random variable at interval [0,1]. As 𝑆𝑆(𝑡𝑡) is a Gaussian process with zero mean and 

unit variance, 𝑆𝑆′ is a random variable which follows a standard normal distribution. 

Additionally, due to 𝐼𝐼(𝑡𝑡) is a stationary interval process, 𝐼𝐼′ is a uniformly distributed 

random variable at a specific interval. Then, within a space domain defined by the 
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probabilistic attributes of inputs 𝑉𝑉𝑡𝑡 = [𝑋𝑋,𝑌𝑌, 𝑆𝑆′, 𝐼𝐼′, 𝑡𝑡′] , 10 initial points are generated 

using the weighted sampling and then be used for evaluating the function output. Given 

the initial training data sets, an initial low accuracy DNN model can be constructed. In 

the DNN model, the hidden layers number of the DNN is set to two. Each layer has 10 

neurons. Afterwards, the new training sample [𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛,𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛,𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛′ , 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛′ , 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛′ ]  can be 

obtained by the proposed active learning method introduced. By updating the DNN 

model iteratively, the instantaneous failure surface can be accurately obtained for 

further time-dependent hybrid reliability analysis. Eventually, the hybrid time-

dependent responses corresponding to the MCS samples can be calculated based on the 

well trained DNN model. 

For comparison purposes, the WS-DNN and CVRBF-MCS methods combined 

EUT, are also adopted for solving this example in a similar way. As a reference, a direct 

MCS is carried out to calculate the probability of failure based on Eqs.(9) and (10). The 

responses of 106 random points need to be calculated at each 𝑌𝑌 node and 𝐼𝐼(𝑡𝑡) node in 

all time nodes. All the results are given in Tables 1 and 2. As we can see, the proposed 

method can achieve the best result for the lower and upper bounds of failure probability 

over all the time intervals. Compared with other methods, the proposed method has the 

highest accuracy. For efficiency, the number of function evaluations (NOF) of the 

proposed method and EUT-CVRBF-MCS are much less than that of EUT-WS-DNN. 

And the proposed method is more efficient than EUT-CVRBF-MCS. Furthermore, the 

execution time is also provided in Table 1. Influenced by the cross-validation method 

and the large candidate point pool, EUT-CVRBF-MCS is the most time-consuming 

method. EUT-WS-DNN is the fastest method due to its mechanism that multiple sample 

points can be added in one iteration. It can also be seen that the direct MCS cost the 

least time because the original limit state function is simple and explicit. 

The extreme value distribution of the limit state function within the time interval 

[0,1] is illustrated in Fig. 4. As shown in Fig. 4, the extreme value distributions of the 

proposed method, EUT-WS-DNN, and EUT-CVRBF-MCS are not completely accurate 
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compared with MCS in the whole time interval. Nevertheless, the left tails of the 

probability density curves obtained by the proposed method are exactly the same with 

the one obtained by MCS. Because the extreme value distribution is accurately 

approximated in the region corresponding to negative and near to zero values of the 

limit state function, the proposed method can achieve an accurate estimation of time-

variant reliability. The time-dependent failure probability within the time interval [0,1] 

is illustrated in Fig. 5, which gives a more detail and intuitive display of the results. In 

summary, the proposed method shows high accuracy and efficiency in this example. 

Table 1 Result of example 4.1 

Method 𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 NOF 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚(%) 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚(%) Time 

Direct MCS 0.10076 0.64686 200 × 200 × 106 ------ ------ 199.68s 

Proposed method 0.10061 0.64763 59.2 0.15 0.12 8765.77s 

EUT-WS-DNN 0.09639 0.65886 154.5 4.34 1.86 7600.38s 

EUT-CVRBF-MCS 0.07510 0.62569 82.5 25.48 3.27 12810.23s 

Table 2 Time-dependent probability of failure of example 4.1 

Time interval 
Direct MCS 
([min, max]) 

Proposed method 
([min, max]) 

EUT-WS-DNN 
([min, max]) 

EUT-CVRBF-MCS 
([min, max]) 

[0,0.2] [0.00000, 0.10822] [0.00000, 0.10990] [0.00000, 0.10773] [0.00000, 0.12918] 
[0,0.4] [0.00003, 0.34480] [0.00003, 0.34939] [0.00003, 0.34335] [0.00001, 0.34873] 
[0,0.6] [0.00943, 0.49554] [0.00938, 0.49853] [0.00949, 0.49487] [0.00648, 0.50914] 
[0,0.8] [0.04312, 0.58080] [0.04288, 0.58074] [0.04338, 0.58191] [0.03799, 0.58985] 
[0,1.0] [0.10076, 0.64686] [0.10061, 0.64763] [0.09639, 0.65886] [0.07510, 0.625659] 

  
Fig. 4 Extreme value distributions of example 4.1 
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Fig. 5 Time-dependent failure of probability of example 4.1 

4.2 Example 2: A Corroded Beam Problem 

Here a beam corrosion problem is considered, where the geometry of the beam is 

shown in Fig. 6. Due to the corrosion, the size of cross section decreases with time.  

 

Fig. 6 Corroded beam under midspan load 

The beam height ℎ(𝑡𝑡) (m)  and the beam breadth 𝑏𝑏(𝑡𝑡) (m)  are modeled as two 

time-dependent interval process variables. A stochastic load 𝐹𝐹(𝑡𝑡) (kN) is applied onto 

the middle point of the beam, which follows a non-stationary process. Its mean function 

𝜇𝜇𝐹𝐹(𝑡𝑡) , standard deviation function 𝜎𝜎𝐹𝐹(𝑡𝑡) , and autocorrelation function 𝑝𝑝𝐹𝐹(𝑡𝑡)  can be 

expressed as 

 𝜇𝜇𝐹𝐹(𝑡𝑡) = 800 sin(1.3 + 0.01t) + 5000 (31) 

  𝜎𝜎𝐹𝐹(𝑡𝑡) = 100 cos(0.04𝑡𝑡) + 700 (32) 

 𝑝𝑝𝐹𝐹(𝑡𝑡1, 𝑡𝑡2) = exp (−(𝑡𝑡2 − 𝑡𝑡1)2) (33) 

Considering the uncertainty in material properties and manufacturing errors, the 

yield strength of the material 𝜎𝜎 (MPa)  and the length of corroded beam 𝐿𝐿 (m)  are 

treated as random variables that follow normal distributions, where 𝜎𝜎 ~ 𝑁𝑁(200, 202) 

and 𝐿𝐿 ~ 𝑁𝑁(8.5, 0.22). The material mass density 𝜌𝜌 (kN m3⁄ ) is assumed to an interval 
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variable. According to the strict mechanical analysis and mathematical treatment, the 

failure event occurs when the maximum stress exceeds the yielding limit of the beam, 

and the limit state function associated with the failure is expressed as 

 𝐺𝐺�𝜎𝜎, 𝐿𝐿,𝜌𝜌, 𝑏𝑏(𝑡𝑡),ℎ(𝑡𝑡),𝐹𝐹(𝑡𝑡)� =  𝑏𝑏(𝑡𝑡)ℎ(𝑡𝑡)2

4
𝜎𝜎 − (𝐹𝐹(𝑡𝑡)𝐿𝐿

4
+ 𝜌𝜌𝜌𝜌(𝑡𝑡)ℎ(𝑡𝑡)𝐿𝐿2

8
) (34) 

In this case, two random variables, one stochastic process, one interval variable 

and two interval processes are involved in the time-dependent limit state function. The 

distribution parameters of the input interval parameters are summarized in Table 3.  

Table 3 Distribution parameters of the input interval parameters 

Variable Type Midpoint function Radius function 

𝑏𝑏(𝑡𝑡) (m) Non-stationary interval process 0.3 − 5 × 104𝑡𝑡 0.015 

ℎ(𝑡𝑡) (m) Non-stationary interval process 0.05− 4 × 104𝑡𝑡 0.004 

𝜌𝜌 (kN m3⁄ ) Interval variable 78 0.5 

And the autocorrelation function of the interval process is given as 

 𝑝𝑝𝑏𝑏(𝑡𝑡1, 𝑡𝑡2) = 𝑝𝑝ℎ(𝑡𝑡1, 𝑡𝑡2) = exp (−|𝑡𝑡1 − 𝑡𝑡2| 3⁄ ) (35) 

In this example, the considered time period is given as [1, 30] month, which is 

evenly discretized into 59 time nodes. For the MCS samples of this example, 106 

samples are generated according to the probability distribution of random uncertainty 

parameters, and 200 samples are generated according to interval uncertainty parameters.  

The proposed approach is employed to solve the corroded beam problem. By 

performing proposed EUT approach, the stochastic process variables and the interval 

process variables can be represented as a random variable characterized by a specific 

probability distribution. Taking the beam breadth 𝑏𝑏(𝑡𝑡) as an example, the PDF of the 

translated random variable 𝑏𝑏′ is obtained by the average of the PDFs of the interval 

process 𝑏𝑏(𝑡𝑡) over time period [1, 30]. Fig. 7 shows the approximated PDFs of 𝑏𝑏′ and 

the interval process 𝑏𝑏(𝑡𝑡) with 𝑡𝑡 = [1, 10, 20, 30] respectively. Then, an instantaneous 

reliability model formulated as 𝐺𝐺(𝜎𝜎, 𝐿𝐿,𝜌𝜌, 𝑏𝑏′, ℎ′,𝐹𝐹′)  can be constructed, which can 

cover all the potential instantaneous failure events that may occur in hybrid time-
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dependent corroded beam system during a specified period of time. With the proposed 

active learning method, the DNN model is capable of approximating the instantaneous 

reliability model accurately while reducing vast computational resources. In the DNN 

model, the hidden layer number of the DNN is set to two and each layer has 15 neurons. 

Afterwards, the hybrid time-dependent reliability analysis can be obtained based on the 

obtained high-precision DNN model and the MCS samples. 

As a comparison, two existing active learning methods, WS-DNN and CVRBF-

MCS method combined EUT, are also utilized to solve this example in a similar way. 

As a reference, a direct MCS is carried out to calculate the probability of failure by 

evaluating the responses of MCS samples at all times. All the results are given in Tables 

4 and 5. As show in Table 5, the proposed method is more accurate than the other two 

methods. According to the extreme value distribution illustrated in Fig. 8, the left tails 

of the probability density curve obtained by the proposed method are also more accurate 

than the other two methods and exactly the same with the one obtained by MCS. EUT-

WS-DNN method performs the worst over all the time intervals. This phenomenon can 

be more intuitively reflected in Fig. 9. The execution time is provided in Table 4. The 

execution time required by the proposed method is much less than that of other two 

active learning methods. It also can be seen in Table 4 that the NOF of the proposed 

method is much less than that of EUT-WS-DNN and EUT-CVRBF-MCS, and the EUT-

WS-DNN method also performs the worst in terms of efficiency. The fundamental 

reason is that the response range of the corroded beam structure is wide and the 

proportion of sample points near the failure surface is small. So, it is difficult to 

manually set an appropriate threshold method to ensure the accuracy and efficiency of 

the EUT-WS-DNN method. This further illustrates the importance of the proposed 

active learning method for the surrogate model approach in reliability analysis. To sum 

up, all of the results indicate that the proposed method performs well in terms of 

accuracy and efficiency in this beam corrosion problem.  
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Fig. 7 Translation of the interval process 𝑏𝑏(𝑡𝑡) 

Table 4 Result of example 4.2 

Method 𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 NOF 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚(%) 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚(%) Time 

Direct MCS 0.23353 0.91977 59 × 200 × 106 ------ ------ 115.62s 

Proposed method 0.24374 0.91786 36.2 4.37 0.21 1856.66s 

EUT-WS-DNN 0.25781 0.91815 216.0 10.40 0.18 3562.92s 

EUT-CVRBF-MCS 0.20489 0.89079 104.5 12.26 3.15 9573.49s 

Table 5 Time-dependent probability of failure of example 4.2 

Time interval 
Direct MCS 
([min, max]) 

Proposed method 
([min, max]) 

EUT-WS-DNN 
([min, max]) 

EUT-CVRBF-MCS 
([min, max]) 

[1,6] [0.00053, 0.02235] [0.00052, 0.02103] [0.00000, 0.02106] [0.00003, 0.02149] 
[1,12] [0.00301, 0.08958] [0.00298, 0.09084] [0.00003, 0.13564] [0.00137, 0.08432] 
[1,18] [0.01825, 0.31897] [0.01599, 0.32448] [0.00339, 0.37614] [0.01569, 0.30897] 
[1,24] [0.07034, 0.65819] [0.07073, 0.65799] [0.05849, 0.71819] [0.05813, 0.67989] 
[1,30] [0.23353, 0.91977] [0.24374, 0.91786] [0.25781, 0.91815] [0.20489, 0.89079] 

 
Fig. 8 Extreme value distributions of example 4.2 
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Fig. 9 Time-dependent failure of probability of example 4.2 

4.3 Example 3: A phononic crystal problem  

Phononic crystals are periodic composites with the band gap of elastic waves, 

where the structure of the 2-Dimension phononic crystal is shown in Fig. 10. They can 

prevent elastic waves of selected ranges of frequencies from being transmitted through 

the material. Theoretically, the elastic waves whose frequencies located within the band 

gap are prohibited to transmit. Reliable inhibition of a specific frequency needs to be 

achieved during the early design stages of phononic crystals. Therefore, it is of great 

importance to analyze the reliability of the designed phononic crystals. 

 

Fig. 10 The structure of 2-Dimension phononic crystal  

Due to manufacturing error and material aging, the sizes and the material 

parameters of the 2-D phononic crystal have significant effect on the property of the 

phononic crystals. All of the uncertainty parameters about the sizes and the material 

properties are given in Table 6. And 𝑎𝑎(𝑡𝑡)  (m) represents the width of soft matrix, 

E(GPa), 𝜌𝜌(kN m3⁄ ), and 𝜈𝜈 represent the Young’s modulus, the material density, and the 

Poisson's ratio, respectively, and 𝑅𝑅𝑐𝑐(𝑡𝑡) (m) stands for the diameter of stiff core. The 

correlation functions of stochastic processes and interval processes are also defined as 

0 5 10 15 20 25 30

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 o

f F
ai

lu
re

MCS(max)
EUT-WS-DNN(max)
EUT-CVRBF-MCS(max)
Proposed Method(max)
MCS(min)
EUT-WS-DNN(min)
EUT-CVRBF-MCS(min)
Proposed Method(min)



25 

 

Eq. (33) and Eq. (35), respectively. Usually, it is difficult but important for phononic 

crystals to attenuate low-frequency elastic waves. Here, the structure failure occurs if 

the lower bound of the first band gap within the time interval yields a threshold 268 Hz. 

The unit cell of phononic crystals is discretized into triangular elements. The number 

of elements is 179 and the number of nodes is 316. The band gap is obtained by 

performing the eigenfrequency analysis and parametric sweep in the COMSOL acoustic 

module. And the limit state function of the phononic crystal can be formulated as 

 𝐺𝐺(𝑽𝑽𝒐𝒐) = 268 −  𝛿𝛿𝐹𝐹𝐹𝐹𝐹𝐹_𝑙𝑙𝑙𝑙1(𝑽𝑽𝒐𝒐) (36) 

where the function 𝛿𝛿𝐹𝐹𝐹𝐹𝐹𝐹_𝑙𝑙𝑙𝑙1(∙) represents the lower bound of the first band gap 

evaluated by the FEM and 𝑽𝑽𝒐𝒐  denotes the uncertainty input parameters. Due to the 

calculation of this example is highly time-consuming, only 200 samples are generated 

according to the probability distribution of random uncertainty variables, and 10 

samples are generated according to interval uncertainty variables. In this study, the time 

interval [1, 5] is evenly discretized into 5 time nodes. 

The proposed approach is employed for hybrid time-dependent reliability analysis 

of the phononic crystal. The hidden layer number of the DNN and the widths of the 

hidden layers are set to 3 and 12, respectively. To validate the accuracy of the proposed 

method, the predicted failure of probability is compared with direct MCS, EUT-WS-

DNN and EUT-CVRBF-MCS. As shown in Fig. 11, more accurate hybrid time-

dependent reliability analysis can be achieved by utilizing the proposed method than 

the other two methods. The reason is that the failure of probability of instantaneous 

reliability model after conducting equivalent uncertainty transformation is small. The 

proposed method has higher precision due to the weighted sampling method ensure that 

failure points exist as much as possible in candidate experimental points and the 

learning function can find experimental points near LSS more accurately. To investigate 

the efficiency of the proposed method, the NOF and the execution time of all methods 

are given in Tables 7. It is clear that the proposed method is more efficiency compared 

with other two active learning methods. With 112.3 function evaluations, the proposed 
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method provides an accurate reliability estimation with 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 = 0 and 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 = 3.57%, 

while other two methods have lower accuracy. The results demonstrate that the 

proposed method is applicable to hybrid time-dependent reliability analysis of phononic 

crystal. 

Table 6 Distribution parameters of the input uncertainty parameters 

Variable Type 
Mean function  

or Midpoint function 
Standard deviation function  

or Radius function 

𝑎𝑎(𝑡𝑡) (m) 
Non-stationary 

stochastic process 
𝑒𝑒−1000𝑡𝑡 sin(1.3 + 0.01𝑡𝑡) + 0.02 𝑒𝑒−1000𝑡𝑡 cos(0.04𝑡𝑡) + 0.0005 

𝐸𝐸1 (GPa) Random variable 1.175 0.05 

𝐸𝐸2 (GPa) Random variable 4.08 0.2 

𝜌𝜌1 (kN m3⁄ ) Random variable 1300 130 

𝜌𝜌2 (kN m3⁄ ) Random variable 11600 100 

𝜈𝜈1 Interval variable 0.46885 0.0005 

𝜈𝜈2 Interval variable 0.3791 0.01 

𝑅𝑅𝑐𝑐(𝑡𝑡) (m) 
Non-stationary 
interval process 

0.008− 0.0001𝑡𝑡 0.0002sin (0.5𝜋𝜋 + 0.01𝑡𝑡) 

  

Fig. 11 Time-dependent failure of probability of example 4.3 

Table 7 Result of example 4.3 

Method 𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 NOF 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚(%) 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚(%) Time 

Direct MCS 0.0800 0.1400 5 × 10 × 200 ------ ------ >89h 

Proposed method 0.0800 0.1350 112.3 0 3.57 3939.51s 

EUT-WS-DNN 0.0650 0.1800 2232.5 18.75 28.57 73056.25s 

EUT-CVRBF-MCS 0.0800 0.1650 156.7 0 17.86 5592.75s 
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5. Conclusion 

In this paper, a new hybrid time-dependent reliability analysis model involving 

interval processes, termed as HTR-ip, is developed for practical engineered system with 

limited data over the life cycle. For efficiently estimating the developed HTR-ip, an 

equivalent uncertainty transformation approach is presented for considering both 

random process and interval process. By translating the random processes and interval 

processes into equivalent random variables, an instantaneous reliability model is 

constructed to envelope all potential system failures during the time interval. In order 

to further improve the efficiency and accurately identify the instantaneous failure 

surface, an active learning method is proposed by combining the DNN model and the 

weighted sampling method. Instead of the actual physical model, the new hybrid time-

dependent reliability can be obtained by the Monte Carlo simulations based on the well 

trained DNN model.  

Numerical results demonstrate that the proposed method can achieve high 

accuracy and efficiency for the HTR-ip problems. Though the direct MCS is more 

efficient than the proposed method when the limit state function is explicit. However, 

the limit state function is usually implicit in engineering problem, which requires a 

time-consuming numerical calculation of the structural response by mean of finite 

element analysis. As a consequence, the proposed method is more suitable and 

competitive compared with direct MCS.  

This study provides a meaningful supplement for the traditional hybrid static 

reliability analysis. Furthermore, the proposed active learning method also has good 

application potential in other surrogate model methods for reliability analysis problems.  
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