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SUMMARY 

With an increasing number of people, 320,000 per year, suffering from impaired 

upper limb function due to various medical conditions like stroke and blunt trauma, the 

demand for highly functional upper limb prostheses is increasing [1]; however, the rates of 

rejection of prostheses are high due to factors such as lack of functionality, high cost, 

weight, and lack of sensory feedback. Modern robotics has led to the development of more 

affordable and dexterous upper limb prostheses with mostly anthropomorphic designs. 

However, due to the highly sophisticated ergonomics of anthropomorphic hands, most are 

economically prohibitive and suffer from control complexity due to increased cognitive 

load on the user. 

Thus, this thesis work aims to design a prosthesis that relies on the emulation of the 

kinematics and contact forces involved in grasping tasks with healthy human hands rather 

than on biomimicry for reduction of mechanical complexity and utilization of 

technologically advanced engineering components. This is accomplished by 1) 

experimentally characterizing human grasp kinematics and kinetics as a basis for 

data-driven prosthesis design. Using the grasp data, steps are taken to 2) develop a data-

driven design and control method of an upper limb prosthesis that shares the 

kinematics and kinetics required for healthy human grasps without taking the 

anthropomorphic design.  

This thesis demonstrates an approach to decrease the gap between the functionality 

of the human hand and robotic upper limb prostheses by introducing a method to optimize 

the design and control method of an upper limb prosthesis. This is accomplished by first, 



xx 

collecting grasp data from human subjects with a motion and force capture glove. The 

collected data are used to minimize control complexity by reducing the dimensionality of 

the device while fulfilling the kinematic and kinetic requirements of daily grasping tasks. 

Using these techniques, a task-oriented upper limb prosthesis is prototyped and tested in 

simulation and physical environment. 
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CHAPTER 1 

INTRODUCTION 

 The development of robotic upper limb prostheses has always faced a dilemma of 

balancing between functionality, the ability to replicate the grasp performances of the human hand, 

and complexity, in terms of the number of the required control inputs and actuation methods. The 

functionality of a widely adopted single degree of freedom gripper and a more complex and 

expensive myoelectric controlled prosthetic hand differs vastly in terms of variety in grip patterns, 

the number of objects that could be grasped, and dexterity in grasp manipulation [2]. However, the 

preferences of prosthetic users towards single degree of freedom grippers outweigh myoelectric 

prostheses by far due to factors like simplistic control and low cost [3]. Thus, for the adaptation of 

prostheses with better functionality, the complexity of control and cost of fabrication needs to be 

addressed. Additionally, traditional upper-limb prostheses follow the ergonomics of 

anthropomorphism, while some others have explored the translation of the functions of the human 

hand to prosthetic devices [4]. However, only a few have explored the simultaneous translation of 

the kinematics and contact kinetics of anthropomorphic grasps to prosthetic grasps. 

 This thesis work aims to address the need for an economic and dexterous prosthetic hand 

by first devising a method to investigate the functionality of the human hand in terms of grasp 

kinematics and contact kinetics, outlined in detail in Chapter 2. Conventional methods of 

characterizing grasps have focused primarily on the kinematics and pose configurations of human 

grasps. However, only a few studies have investigated the contact forces involved in grasping tasks 

associated with activities of daily living, and none to our knowledge have investigated the use of 

a combined kinematic and contact force grasp dataset in the development of the design and control 
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method of a robotic upper-limb prosthesis. Thus, a three-fold approach is taken to develop a grasp 

database to serve as a basis for the development of a functional upper-limb prosthesis:  

1. Aim 1: Perform a set of human subject experiments where the subjects wear a 

customized sensorized characterization glove that captures the kinematics and contact 

kinetics of grasps to perform grasping tasks with objects typically involved in activities 

of daily living (ADL).  

2. Aim 2: Extract the core components of grasp kinematics and contact kinetics with 

machine learning methods (principal component analysis and linear discriminant 

analysis) to develop a grasp synergy matrix, a concept first proposed by Ciocarlie et. 

al. where features of grasps, such as joint configurations or fingertip positions, are 

reduced to a smaller set of components for the automation of grasp synthesis [5]. 

3. Aim 3: Establish the kinematic and contact kinetic translation from the 

anthropomorphic grasps to robotic grasps by mapping the contact coordinates attained 

Figure 1: A frame of the grasping animation showing the human subject using a spray bottle. 

Colored circles represent fingertip and palm sensor locations, and arrows show the relative normal 

contact force vector. 
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from the product of the eigengrasps—a vector of coordinates in the grasp latent 

space—and the synergy matrix using a set of virtual spheres. 

The benefits of integrating the kinematic components of grasps with the contact kinetics are 

analyzed using evaluation methods such as Calinski-Harabasz indices, F1-scores, and 

classification tests with confusion matrices. Figure 1 shows one of the examples of robotic grasps 

generated virtually with the eigengrasps tuned through MATLAB; grasps generated virtually are 

compared to those formed by human subjects. 

Chapter 3 demonstrates the design and control method of a three-fingered design of a 

robotic upper-limb prosthesis motivated by the kinematics and correlation between the contact 

points on the human hand and from literature studies on the functionality of the human hand. First, 

the control method of an arbitrary robotic prosthesis using the combined kinematic and contact 

kinetic dataset is developed using the grasp synergy matrix mentioned in Aim 3. The method to 

develop a synergy matrix, attain the eigengrasps, and translate grasps using virtual spheres is 

further established in Chapter 3. After developing methods for forming synergistic poses and 

contact forces, a series of rudimentary prototype designs are considered (e.g. split-hook device, 

three-fingered gripper-type device) before developing the final prototype inspired by the grasp 

dataset attained from Chapter 2. The reduction from a fully anthropomorphic prosthetic hand to a 

three-fingered device simplifies control complexity and actuation requirements and reduces the 
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cost of fabrication and the overall weight of the system. The design methodologies and procedures 

to improve the repeatability and accuracy of the system are discussed in detail. The mathematical 

model of the system is optimized using a stereo camera-based calibration system. 

Using the computer-aided design model of the prosthetic hand developed in Chapter 3, 

validation of the synergy-based control of the upper-limb prosthesis using the robot simulator, 

CoppeliaSim is explored in Chapter 4. The robotic structure is established such that the theoretical 

motions match those visually in simulation, and the inverse kinematics, contact kinetics, and world 

dynamics were configured to match the conditions of the prosthetic device and the real world. The 

world physics provided in CoppeliaSim are tested with a simple grasping task of a cylindrical 

Figure 2: Core concepts and contributions of this thesis. The arrows show the correlations between 

each contribution. A data-driven design of upper-limb prosthesis is developed from a grasp study 

and is validated with experiments. 
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object, and the relationship between the contact dynamics and world dynamics is tested with 

varying masses of the cylinder. After validation, the synergy-based grasp pose configurations and 

contact force modulations are performed in CoppeliaSim using MATLAB as the source for 

computing the required joint displacements and torques for a given set of eigengrasps associated 

with the object to be grasped. Finally, a virtual experiment is designed and executed as shown in 

Figure 3 to test the grasp stability and robustness with the synergy-based method of grasp pose 

and torque modulation, compared to that without synergy-based torque modulation. The prosthetic 

hand is attached to the serial manipulator, KUKA IIWA 14, and is exposed to perturbations while 

maintaining grasps with multiple daily objects using synergy-based pose and contact force 

modulation.  

Figure 3: Simulation of grasps using the prosthetic hand imported to CoppeliaSim. The prosthetic 

device is attached to a virtual serial manipulator that induces perturbations to the grasps formed 

with the hand. 
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Chapter 5 demonstrates experimentation with the physical setup of the prosthetic device 

with the KUKA manipulator as performed in simulation via CoppeliaSim. First, the synergy-based 

pose and torque modulation are realized using a custom-made graphical interface to interact with 

the microcontrollers that regulate input signals to the actuators. The sensing components (e.g. 

accelerometer) are also characterized for evaluation of grasp stability and robustness. Finally, as 

demonstrated in Figure 4, the prosthetic device is mounted to the physical KUKA manipulator, 

and perturbation trials are performed with the same objects test in simulation. The results are 

analyzed in detail for each of the objects tested in the experiment. 

Finally, Chapter 6 summarizes the discoveries made in this thesis work and explores the 

potential applications of the grasp data-inspired design and control of a robotic prosthesis. The 

main findings of this thesis work are highlighted as well as future improvements that can be made 

further down the research paths.   

Figure 4: Setup of the physical experimentation with the prosthetic device mounted to the KUKA 

manipulator. The KUKA guides the hand to the target object, and the perturbation trial starts after 

the hand accomplishes its grasp. 
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CHAPTER 2 

CHARACTERIZATION OF GRASPS WITH HUMAN SUBJECT EXPERIMENTATION 

ON GRASPING TASKS OF DAILY OBJECTS 

2.1 Background 

Previous efforts to study the dynamics and kinematics of grasping tasks performed with 

healthy human hands include visual inspection [6], the use of sensorized objects [7][8][9], visual 

tracking of objects and the hand using markers [10][11][12], and the use of a sensorized glove 

[13][14]. While all the listed studies produce valid and useful observations, the limitations of the 

studies are also apparent. The use of sensorized objects is advantageous in that it avoids issues 

with the variability of measurements between subjects fairly well, and the pressure distribution 

across the objects’ surface geometries is simpler to track. However, this provides little information 

about the configuration of the hand grasping the object as well as the locations of the contact points 

on the hand, which are critical for the development of a prosthesis design. Marker tracking of the 

hand and the object is also a frequently adopted method due to ease of implementation and little 

limitation on the number of markers that could be placed on the objects. However, this introduces 

a problem of occlusion, which is expected to happen frequently in grasping tasks, and even with 

multiple recording devices, the exact configuration of each finger while in contact with the object 

may be difficult. 

2.2 Introduction 

This study utilizes a sensorized glove (TactilGlove) manufactured by Pressure Profile 

Systems to attain the contact pressure distributions across the palmer surface of the fingers and the 
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palm. In addition to the provided system, the positional information of the configuration of the 

hand is attained using a set of electromagnetic position trackers (TrakStar) manufactured by 

Northern Digital Incorporation. While there have been several studies that utilize sensorized gloves 

for the characterization of grasps [13][14][15], this system can attain data sets like no other. 

Previous studies using a sensorized glove have focused on the grasp dynamics at static equilibrium 

at specific grasp configurations. While these studies are informative, they miss the dynamics and 

the kinematics during the process of reaching stable grasps. Then again, these measurements are 

not possible without simultaneous collection of time-synced data of the pressure distribution and 

configurations of the hand and the object at grasp. By using the combination of the sensorized 

glove and the EM trackers—integrated system shown in Figure 5—it is possible to attain time-

relevant information of the grasp dynamics and the kinematics of healthy human grasps. 

  

EM Tracker 
Sensor

Thermoplastic 
Mount

Figure 5: Photo of the TactileGlove with electromagnetic (EM) motion trackers attached. The 

inset zoomed-in image of the middle finger shows the tracker sensor mounted on a thermoplastic 

elastomer mount, fastened with a nylon screw to prevent EM interference. 
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2.3 Methods 

2.3.1 Grasp Characterization Glove 

We utilize an electromagnetic tracking system, (TrakStar 3D Guidance System, Ascension 

Technology Corporation) to track fingertip and wrist locations during grasping. A total of eight 

trackers are used: five for fingertips, one for the thumb base, one for the wrist, and one for the 

object location and orientation. The system measures the Cartesian coordinates of the trackers with 

respect to the electromagnetic transmitter as well as the internal Euler angles at a rate of 80 Hz—

which seems sufficient given that similar studies that analyzes handshapes and hand kinematics 

using the Cyberglove uses joint angle data sampled at 50-70 Hz [16][17]. The Euler angles are 

used to attain the normal directions of the contact forces with respect to the force sensors.   

 The TrakStar system is susceptible to magnetic distortion from nearby conductive metals; 

precautions have been made to ensure that no metallic components are placed within 1m range and 

that objects used for grasping tasks are either non-metallic or are replaced with 3D printed PLA 

replicas. The 3D printed components are the door lever and key; others like knife, fork, and 

hammer are ready-to-use tools made of nonmetallic materials like ceramic, plastic, and rubber 

(mallet). The weight of the door lever does not play a big role in grasp as the lever is screwed to 

the door piece, and the subjects’ tasks involve grasping and twisting the lever that’s being held by 

the mount on the door piece. The key has a very small profile and weight, and grip force is more 

proportional to how hard the subject pinches and twists the key rather than the forces that 

counteract the forces of gravity. With the average weight of a house key being approximately 15 

g (0.049 N in weight) and the variance of the pinch force being in the range of 14-20 N, weight 

only comprises 0.245-0.35% of the error. The system’s performance specifications suggest a static 

accuracy, in optimal conditions, of 1.4 mm RMS error in position and 0.5 degree RMS error in 
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orientation (experimental validation shows 1.001 mm RMS error in position and 0.03 degree RMS 

error in orientation) whereas previous studies done by Santina et. al. employs marker-based joint 

angle measurement for study on postural hand synergy with error ranging from 2.2 – 3.1 mm [18]. 

Provided that the motion spectrum of the grasp study lies between an average of 20 mm to 74 mm 

(computed from the standard deviation of position data of each tracker from the database), 1.4 mm 

can be regarded as an acceptable measurement error. 

 The force distribution across the palmar surface of the hand is measured using the 

TactileGlove developed by Pressure Profile Systems. It consists of 52 capacitive pressure sensors 

embedded in a nylon fabric glove. The TactileGlove measures the normal forces of contact as there 

are no commercially available sensors that measure tangential contact forces to our knowledge, 

and the study is limited to the resources available to us. Pressure distribution data is communicated 

via a Bluetooth dongle at a rate of 40 Hz. For synchronization with the 3D guidance system, the 

80Hz kinematic data is downsampled to 40Hz. The performance specifications of the capacitive 

sensors provided by Pressure Profile Systems are: a full-scale range of up to 80 psi, a maximum 

force measurement of 28 N at the little finger, and 70 N at the remaining fingertips (with maximum 

force measurements from the database being 3 N at the little finger, 31.8 N from the remaining 

fingertips), maximum gain non-repeatability of 3%, and the minimum sensitivity of 0.04 N. The 

system integrity is tested with the Instron Force Testing System, where the contact dynamics 

within grasping tasks are modeled using a silicon molded hand (Dragon SkinTM 10, Smooth-On), 

inserted inside the TactileGlove, shown in Figure 6. At each of the contact point locations where 

force data are utilized, 10 cyclic tests are executed by the Instron to verify if the TactileGlove 
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system yields a roughly linear correlation between the measured and actual force values. The 

resulting force mapping plot of Instron data to TactileGlove data shows a linearized force loading 

trend and a cubic unloading trend as shown in Figure 6.  Discrepancies in force measurements and 

hysteresis greater than that suggested by the manufacturer appear to arise from the nonlinearity of 

the silicone hand more than from the non-linearity of the capacitive sensors themselves. To ensure 

that measured data matches actual force values during contact, the cubic regression equation 

derived from Figure 6 is used to map the measured data to the predicted actual forces. Validation 

of the cubic model using a new cyclic test is shown in Figure 6 where measured and actual force 

values show a linear loading trend with the first and second terms in the cubic equations being 

Figure 6: (Top) Testing measurements of the TactileGlove using a silicon-molded hand. Data are 

displayed in colormap using acquisition software Chameleon provided by the manufacturer. 

(Bottom) Cubic correlation between the Instron load cell and the sensors before calibration is 

shown on the left. Correlation post-calibration is shown on the right. 
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significantly less than the third and fourth terms. The unloading trend has relatively high first and 

second-order terms, but its discrepancy is concentrated at 18N or higher. As such, a cubic model 

is used to predict force values when pressure values are above 18N and the pressure differential is 

negative. 

2.3.2 Data collection from human subjects 

To develop a database of the grasp kinematics and kinetics of daily grasps, human subjects 

were invited to perform various grasping tasks while timestamped position and pressure data are 

collected. Subjects were provided with the characterization glove and 10 random objects from a 

pool of 36—chosen from a combination of objects used in previous works in grasping—listed in 

Table 1, and were asked to perform tasks typically associated with each object like tossing the 

tennis ball or swiping the credit card on a reader [19][20][21][22]. Refer to Appendix A for the 

mass and volume of each object used in the experiments. The experimental protocol for the study 

included the following steps: 

• Briefing: Subjects are briefed about the protocols and process of the study as well as the 

precautions to take for safety and proper measurement (lasting ~10 min.),  

• Subject Training: Subjects are asked to wear the provided motion/force tracking glove 

and are given a training period for using the glove to manipulate the objects without 

tampering with the sensor readings (~15 min.),  
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• Grasping Trials: For each object, subjects perform the tasks specific to the given object 

for approximately 30 seconds for 10 total objects (~15 min.),  

• Object Change: Data are recorded and saved to archive after each grasping task; the EM 

tracker is removed and placed on a new object after each run (~10 min.),  

• Post-Trial Survey: The subjects are asked survey questions relating to their experience 

during the study and are asked for feedback (~10 min.). 

The experiments lasted approximately one hour, in total, per subject. All experimental procedures 

have been approved by the Georgia Institute of Technology Institutional Review Board. 

Nine subjects participated in the study over a period of two weeks. While some previous works 

had each subject grasp the entire set in the object list, our work focuses more on the in-depth 

dynamics of grasp rather than mere postural analysis, requiring more time from the subjects to 

participate in each grasping task [23][24]. Requiring subjects to perform dynamic tasks in all 36 

objects would be too taxing, and bias due to mental or physical fatigue may occur (considering 

that mental fatigue was reported in the post-study survey). Thus, we had to limit the study so that 

at least 2 or 3 grasps were attained for each object, where a similar number of grasps was used per 

object in some other previous works [19][21]. 

Door lever Peeler Key Toothbrush Milk carton Book 

Kitchen spoon Cubic prism Comb Knife Spray Espresso cup 

Wine glass Pen Lid of a jar Tennis ball Glass bottle Tape roll 

Screwdriver Coffee mug Dust brush Hammer Game controller Credit card 

Squeeze bottle Bowl Measuring cup CD Cereal box Spoon 

Tumbler Notebook Whiskey glass Fork Dish Mouse 

 

Table 1: List of all objects used in human subject experiment. A total of 36 objects are chosen 

from a combination of items used in related works. 
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 For all objects, the subjects started from a pre-grasp pose where all the digits are extended 

and free from contact. The subjects then reached for the object and closed in their digits with as 

much contact as they needed to form a firm, stable grasp with no slippage. Then, subjects 

performed tasks that are typically associated with each object (for example: lift and toss a tennis 

ball, rotate the door lever and pull the door-piece about its hinge, and slide the computer mouse 

across the table surface). Refer to Appendix B for the grasp pose used (from grasp taxonomy by 

Feix et. al.) in each object and the mass and volume of each object [25]. Finally, the subjects 

returned the objects to their original positions and moved their hands away from the object with 

all the fingers flexed. 

Figure 7: Frames of graphical representation of grasping tasks by human subjects. A skeletal 

representation of the hand allows easy visualization of different hand configurations. The color 

infills at critical locations of the hand illustrate the contact dynamics of the hand during task 

performance. 
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 The subjects were required to be: right-hand dominant, able to grasp daily living objects 

without hindrance, able to speak English fluently, able to give written consent, and be 18 years old 

or higher. 

For the post-trial survey, some reported mental fatigue and/or hand fatigue at the end of 

the study, and some reported that their grasps differed from natural grasps due to slipperiness 

induced by the surface properties of the glove system. 

Ten trials were performed by each subject, and the resulting grasp database consists of 90 

video files of 36 objects, totaling 45 minutes’ worth of data. The execution time to generate 

animated models for nine subjects was approximately 15 minutes, (1.67 minutes per subject), and 

the entire file size including raw data, CAD models, and video files totaled 2.91 GB (324 MB per 

subject). The system can generate a simplistic and informative graphical representation of the 

grasping tasks with 324 MB worth of data within 62 minutes (60 minutes of data collection and 

two minutes of graphics generation) per subject. The frame rate for the animated models is high 

enough to illustrate, in detail, the low-bandwidth interactions associated with normal usage models 

for objects of daily living, but not high enough to register events such as object slip and vibration, 

which have frequency components in the 100’s to 1000’s of Hz. 

2.3.3 Identifying core components of grasps 

We hypothesize that just as the principal component analysis of the joint orientations 

of the hand has led us to better understand and make predictions grasps and perform 

optimization of grasps, analysis of the force distribution across the palmar side of the hand 

may aid our understanding of optimal grasps and grasp predictions [20]. Kinematic features 

of grasp used for position data are the Euclidean distance between each of the fingertips and the 

wrist and the rotational displacement: yaw and pitch, between the wrist and fingertips. We assume 
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that these features would sufficiently describe the grasp kinematics as similar features have been 

used by Romero et. al. where they have been successfully able to extract postural synergies by 

using fingertip positions for grasp features [26]. In addition to using kinematic data for analysis, 

we have performed a principal component analysis of force distributions of the hand at the 

fingertips and three evenly spaced positions on the palm. Analyses have been performed separately 

for the pre-grasp phases and full contact phases for comparison with previous works, where the 

gradual evolution of grasps occurs during the pre-grasp phase and where grasps are most fully 

distinguished in the full contact phase [27]. 

Principal component analysis (PCA) has been performed on each set of subject trials with 

a different pool of 10 objects as the inter-subject variability was too great to perform meaningful 

representation on the 2D plane via PCA analysis. Within each trial, two separate sets are 

considered: the entire kinematic and kinetic dataset in the pre-grasp phase and the entire dataset in 

the full-contact phase for comparison with previous works, where the gradual evolution of grasps 

occurs during the pre-grasp phase and where grasps are most fully distinguished in the full contact 

phase as suggested in Figure 8 [27]. For each set, each variable is normalized with respect to its 

mean and standard deviation (e.g., force values at the thumb normalized by mean force and 

standard deviation at the thumb). MATLAB’s pca function that takes the m-by-n kinematic and 

contact force data (m: number of observations within each trial; n: number of variables like 

Cartesian coordinates of the thumb, pressure at the palm) as input is utilized to generate n-by-n (n: 

number of variables) principal component coefficients with columns sorted in descending 

component variance. The product of the m-by-n dataset and the principal component coefficient 
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matrix gives the m-by-n score matrix. The first two columns of the score matrix are the two 

principal components. To account for the difference in variable units, one in millimeters and the 

other in Newtons, each variable is normalized by its mean value and standard deviation of that 

variable using the equation:  

 
𝑧𝑖𝑗 =

𝑥𝑖𝑗 − 𝑥̅𝑗

𝑠𝑗
 (2.1) 

By utilizing PCA to represent data in the 2D plane, we aim to demonstrate 1) this study’s 

credibility with statistical validation by showing that different grasp poses lead to its mapping at 

different spaces in the latent space (Starke), and 2) demonstrate that adding force components to 

the grasp dataset yield better isolation of different grasp poses, which we plan to argue by using 

Figure 8: Principal component analysis of grasp data for Subject 6. Principal components are 

plotted for two different phases of grasp, where (left) show PCA performed with position data 

only, (middle) performed with force data only, and (right) performed with combined position and 

force data. Each axis in the PCA plot represent variance from the means for each dataset, and more 

separation from the means indicate better separability between each group (object). 
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the Calinski-Harabasz (CH) Index, as it is known to be an effective method for estimating clusters 

with principal component analysis [28][29][30]. One such analysis is shown in Figure 8, where 

the principal components are plotted in 2D for different phases of grasp. Evaluation of the percent 

variance of the principal components has shown that the first two components comprise 56.5% of 

the total variance in a full force enclosure stage. PC analysis with only kinematic data showed that 

the first two components comprise 67.2%, and analysis with force data only showed a composition 

of 70.7%, where literature suggest that the rule of thumb for choosing the number of components 

should be such that the cumulative percentage of variance should be 70 – 95% [31]. This leads us 

to believe that two-dimensional representation of grasps may suffice for isolated grasp data 

(kinematic or dynamic), but higher-order principal components are not negligible for the combined 

data. This result is comparable to previous works as principal components analysis of joint 

positions reveals that the first two principal components comprise 84% of total variance [20]. 

Greater dominance of the first two components from previous works is observed as joint angle 

features within a digit are more closely linked to each other than are features from Cartesian 

coordinates as used in this study. Lesser dominance of the first two components using the 

combination of position and force features is predictable as two different qualities (kinematic and 

kinetic properties) are being analyzed simultaneously.  

Representations of multiple grasp configurations are shown in two-dimensional plots using 

the first two principal components in Figure 8 for the two grasp phases. Clusters formed by grasp 

components for each object type are visibly less separated in the pre-grasp phase than during the 

full-contact phase, which concurs with previous works. Use of position data only shows better 

isolation of grasps in the pre-grasp phase understandably as most contact between the hand and 

the object occurs only within the last few seconds of the pre-grasp phase. Grasps for different 
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objects are better isolated in the full contact phase, with some objects like the mug and the peeler 

being much more isolated than other objects as grasp poses and pressure distributions are less 

uniform with specific digits being more utilized than the other (i.e. index and thumb apply higher 

pressure with the hand grasping the handle of the mug). The limitations of the PCA analysis are 

that it is a non-supervised learning method and that it does not take into consideration the 

separability of data points between clusters.  

To compare the informativeness of data between combined and isolated grasp data, the 

level of compactness and separation of clusters formed by the latent representation of data was 

evaluated using the Calinski-Harabasz (CH) Index, which evaluates clusters by the ratio of 

between-cluster sums of squares (SSB) and within-cluster sums of squares (SSW), 

 
𝐶𝐻𝑘 = 

𝑆𝑆𝐵

𝑆𝑆𝑊
×

𝑁 − 𝑘

𝑘 − 1
 

(2.2) 

given the number of observations N and number of clusters k. In other words, a high-value CH 

index argues that different grasps are well-isolated with respect to each other, and the data points 

are densely populated in each grasp type. The CH indices for all subject trials for each stage of 

grasp (pre-grasp vs full contact) as well as for the utilization of data types (combined vs. isolated) 

are shown in Table 2. CH indices at the full contact phase seem to be on average 13 to 30 times 

Table 2: Calinski-Harabasz (CH) Indices for all Subjects. Higher values indicate better isolation 

between different types of grasps formed 
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greater than those at the pre-grasp phases, as we have observed visually with the 2D representation. 

We are also able to observe that the combination of position and force data yields CH indices on 

average 1.5 times greater than that from position data and 2 times greater than that from force data 

in the full contact phases, supporting our hypothesis that the addition of kinetic information to 

grasp analysis allows better distinction between different poses. However, during the pre-grasp 

stage, CH indices from position data were 1.4 times higher on average than that of the combined 

data. This can also be expected as the pre-grasp phase provides little information about the contact 

forces being involved, and only a fraction of the grasp phase exists between the start of contact 

and the full force closure. High variability of the CH indices from subject-to-subject results from 

the randomness of the object sets for different subjects; for one subject, the set of objects may 

require similar grasp poses and contact forces, resulting in a lower CH index. For a different subject, 

one may be provided with a set of objects that require a wider range of grasp poses and forces, 

resulting in a higher CH index. For example, subject 4 in Table 2 had five objects in the same 

column (power grasp with opposing palm, column 2-5) in Feix et. al.’s grasp taxonomy chart 

whereas subject 7 had no more than two objects that require grasps in the same column (Refer to 

Appendix A & B) [25]. 
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2.3.4 Grasp classification 

In addition to representing data with PCA on a 2D plane, we have also utilized linear 

discriminant analysis (LDA), which is also a dimensionality reduction technique like PCA, but 

instead classifies data with given labels whereas PCA is an unsupervised learning technique [32]. 

We use linear analysis rather than quadratic analysis under the assumption that covariance between 

each object class is roughly the same. We have designated 50 random observation values from 

each object set for test data, and the remaining observations were used to train the classifiers. 

Classifiers are trained using labels for each observation and by finding the means (𝝁)  and 

covariance matrix (𝚺) for each class using the equations:  

 
𝜇𝑘 = 

∑ 𝑀𝑛𝑘𝑥𝑛
𝑁
𝑛=1

∑ 𝑀𝑛𝑘
𝑁
𝑛=1

 (2.3) 

 
Σ =  

∑ ∑ 𝑀𝑛𝑘(𝑥𝑛 − 𝜇̂𝑘)
𝐾
𝑘=1 (𝑥𝑛 − 𝜇̂𝑘)

𝑇𝑁
𝑛=1

𝑁 − 𝐾
 (2.4) 

where M is the class membership matrix with 𝑀𝑛𝑘 = 1 for the nth observation belonging to class 

k, given N observations and K number of classes. Classifiers in the pre-grasp phase were trained 

separately from those in the full contact phase. Using the pre-trained classifiers, objects were 

identified from the test samples using prediction classification that minimizes cost: 

 

𝑦̂ = arg min
𝑦=1,…,𝐾

∑ 𝑃̂(𝑘|𝑥)𝐶(𝑦|𝑘)

𝐾

𝑘=1

 (2.5) 

For 𝑦̂ the predicted class, 𝐶(𝑦|𝑘) the cost of placing observation as y for its true class k, and 

𝑃̂(𝑘|𝑥) the probability that observation x is in class k, where P is a function of the mean and the 
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covariance matrix. Using the means and covariance matrices from the trained classifiers, we have 

generated confusion matrices of object identification using combined or isolated grasp data and 

compared the performances of each. 

To further compare the informativeness of the combined kinematic and dynamic grasp data, 

three discriminant analysis classifiers have been trained to fit all subject trials with 36 total object 

labels: one with only position data, one with force, and the last with the combination of both. We 

Figure 9: Confusion matrix of object identification using LDA. Object categories are sorted such 

that similar classes are clustered together (minimizing distances of the off-diagonal elements). In 

general, the diagonals of the matrix with the combined data have thicker colors (high true 

positives), and the off-diagonals have thinner colors (low false positives). 
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have generated confusion matrices for all three for the pre-grasp phase and the full contact phase 

as shown in Figure 9. The orders of the objects in the confusion matrix have been sorted such that 

similar classes are clustered together by minimizing the off-diagonal elements of the matrix. 

Assuming that our hypothesis is valid, the addition of force features to grasp analysis should 

improve the classifications made by the combined dataset. As demonstrated in Figure 9, confusion 

matrices generated with different datasets in the full grasp phase further affirm the benefits of 

using combined kinetic and kinematic analysis of grasp poses for the characterization of daily 

grasping tasks. Data also show that the addition of force features to grasp analysis in the pre-grasp 

phase, however, does not benefit grasp characterization, if not degrade the classifier’s 

performances. The accuracy of the classifier is evaluated using the F1 score: 

 
𝐹1 =

𝑡𝑝

𝑡𝑝 +
1
2
(𝑓𝑝 + 𝑓𝑛)

 (2.6) 

where tp is true positive, fp is false positive, and fn is false negative.  

1) Analysis of confusion matrices in the pre-grasp phase: Comparison of the confusion 

matrices on the top row (data in the pre-grasp phase) to the ones on the bottom row (full grasp 

phase) demonstrates that predictions made by the LDA classifier have shown to be much more 

inaccurate in the pre-grasp phase than in the full contact phase as grasps are premature in their 

development, making it harder for the classifiers to predict each grasp type. The dataset with only 

kinematic data is able to categorize the objects with an accuracy of 58.16% based on the F1 score. 

Unlike the other objects, the pen, CD, game controller, and spray bottle appear to require pre-grasp 

poses that are somewhat characteristic in nature (like stretching all digits widely to grasp a CD, 

making a wide tripod shape before grabbing the spray bottle), making it easier for the classifier to 
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place its predictions correctly. Data from the combined dataset predict the objects with an accuracy 

of 64.86%. Confusion may have arisen from the brevity of contact in the pre-grasp phase before 

the formation of full contact with the spray bottle. The cube, roughly the size of one’s fist, has the 

highest number of false positives from both position-only data and the combined data, presumably 

due to frequencies of objects requiring the same sphere finger-type grasp taxonomy, involving 

similar grasp pose and contact forces. Overall, however, the combined dataset improves 

classification with a 6.7% increase in accuracy. 

2) Analysis of confusion matrix in the full contact phase: Confusion matrices generated 

with dataset in full contact also provide evidence that kinetic information is additive to grasp 

characterization and classification of grasp types. Again, the cube seems to create the most 

confusion among groups, and the fork yields the second-most false positives for all data types. 

With the position-only data, 82.66% accuracy is attained based on the F1 score. The confusion 

matrix with the combined force and position data shows an improvement in classification with 

87.50% accuracy, an improvement of 4.84%. It can also be observed that adjacent objects have 

somewhat similar grasp pose and contact dynamics in ADL, such as fork and spoon, tennis ball 

and cube, or hammer and lint roll. It can also be seen that higher false positives and negatives 

occur between two more similar objects than others. The frequencies of case matches between 

combined data (force and position data) and position-only data are compared in detail as shown in 

Figure 10. The LDA classifier using the combined data has significantly more case matches 

throughout most object categories, and the classifier trained with position data has better case 

matches for only 5 objects out of 36. Overall, the combined data are able to achieve 4 more case 

matches on average for each object than the kinematic data. Objects with higher case matches with 
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the position-only data have a commonality, with the exception of the key, that there is a somewhat 

equal distribution of forces across the fingertips, possibly adding confusion between these objects. 

3) Comparison of results to previous works: LDA classified with position data only is 

comparable with previous works performed by Santello et. al., as using the combination of LDA 

and fuzzy clustering technique has yielded 40 to 50% prediction probability, and the classifier 

using position data collected from this experiment, although a direct comparison is difficult due to 

difference in the experimental setup and apparatus, yields a mean of 82.66% accuracy. On the 

other hand, the combined force and position data show a mean case match probability of 87.5%. 

Comparing this result to a more recent study performed by Sundaram et. al. [13], where a 

scalable tactile glove was fabricated, and instead of taking a kinematic and kinetic analysis 

approach, they have chosen to utilize a convolution neural network from tactile sensor inputs for 

object classification. The accuracy of posture-based classification without applying neural 

networks is lower than the study performed by Sundaram et. al., with a mean accuracy of 83.5%. 

Figure 10: Comparison of case matches between combined force and position data and position 

only data in the full contact phase. The y-axis corresponds to the difference between case matches 

with combined data and matches with position data. There are 50 cases for each object. 
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With the augmentation of force data, however, our classifier is able to achieve higher accuracy 

results. Liu et. al. have attained 94% accuracy from grasp posture with 3 large profile objects; 

however, their results had 43% accuracy on thinner objects (book, disk, cylinder) [33]. Li et al. 

used a 3D convolutional neural network to classify gestures with 65.35% [34]. Finally, Zhang et. 

al. obtained 91.96% accuracy with CNN and data augmentation and 72% without [35]. With 

rigorous machine learning, classification results greater than 87.5%, as observed from our results, 

are shown to be obtainable without the contact force information. However, a hopeful prediction 

can be made that the combination of simultaneous kinetic and kinematic grasp analysis with the 

convolution neural network learning techniques may yield greater object classification results than 

any other methods. 
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CHAPTER 3 

DESIGN OF UPPER-LIMB PROSTHESIS WITH REDUCED DIMENSIONALITY 

3.1 Background 

3.1.1 Demand for upper-limb prosthesis and adoption rates 

6 million people in the U.S. suffer from impaired upper-limb function due to a variety of 

medical conditions including congenital defects stroke-induced neurological injury, blunt physical 

trauma, and various diseases that require surgical modification of the hand anatomy [36]. The 

disruption or loss of upper-limb function can, depending upon the severity, prevent a person from 

performing everyday grasping and manipulation tasks, and can significantly impair development 

and diminish the quality of life. Conventional physical rehabilitation is very often an effective 

means of restoring function to the upper limbs of patients suffering from moderate neurological 

injury [37]. However, for patients suffering from severe neurological injury or disfiguration by 

disease or physical trauma, body-powered or electrically powered assist devices and robotic 

prostheses are often the only means of recovering the functionality required for activities of daily 

living (ADL) [38][39].  

3.1.2 Factors leading to rejection of prosthetic devices 

Consequently, an increase in demand for upper limb prostheses is observed as they are often the 

only means of recovering functions of activities of daily living (ADL) [40][41]. However, rates of 

prosthesis adoption are low due to lack of functionality, high cost, weight, and lack of sensory 

feedback [2][42][43]. Most common forms of prostheses include body-powered split hook devices 

and electrically-powered anthropomorphic arms as shown in Figure 11 [44][45], where many share 

the problem of diminished dexterity and functionality [2][47][48]. Examples of non-
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anthropomorphic designs of upper-limb prosthesis include body-powered split hook devices, 

where most share the problem of diminished dexterity and functionality. One of the most common 

forms of body-powered prostheses is split-hook prosthetic devices like the Vari-Pinch prehensor, 

powered by motion from the shoulder joint [44]. While it poses benefits of being lightweight and 

inexpensive for its capability of generating 5 pinch patterns and high pinch force, its functionality 

is still limited to grasping a narrow range of objects, and an even narrower range of utilizing the 

grasped objects.  

Some have explored the use of myoelectric prostheses with anthropomorphic designs 

[49][50][51][52]; these, however, are economically prohibitive and also suffer from control 

complexity due to increased cognitive load on the user, resulting from a dimensional reduction of 

a 27 degrees of freedom system of the hand to an eigenspace of grasps from a combination of 

inputs of 8 or less from the myoelectric sensors [46][50]. Most of the listed solutions share 

problems that may arise from the tendency to use anthropomorphic hand models to design devices. 

Thus, deriving a design from the functions of the human hand, not its anatomical configurations, 

may alleviate some of the aforementioned problems. 

Figure 11: Examples of prosthetic devices readily available in market. (left) The Vari-Pinch 

PrehensorTM split hook-type prosthesis is developed by Toughware Prosthetics. (right) The 

Bebionic myoelectric prosthesis is developed by Ottobock. 
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The efficacy of upper-limb prostheses is predicated upon several factors including (1) the 

functional improvement availed by the assistive device prescribed for treatment and (2) the 

patient’s level of engagement in rehabilitation and treatment [53][54]. Device functionality can be 

described as a function of its manipulation capabilities (e.g. dexterity, strength, response time), 

while patient engagement can be seen as a product of human-device interface quality and device 

adaptability [55]. Thus, this thesis work aims to develop a utility-oriented design of a robotic 

upper-limb prosthesis that enables easy of control with high dexterity while maintaining a user-

friendly form factor.  

3.1.3 Motivation to explore alternative designs 

While the anthropomorphic prosthetic designs pose the advantage of taking the most natural form 

in terms of appearance and increase the likelihood of adoption for aesthetic reasons, there are 

logical reasons to explore other non-anthropomorphic designs for upper-limb prostheses. First, the 

human hand is designed to accommodate various biological conditions that constitute the 

manipulation of the hand, which should not be a limiting factor for designing a synthetic upper-

limb prosthetic device. Also, imitating the anatomical configuration of the hand poses challenging 

and expensive problems in terms of control as the human hand has 24 degrees of freedom, and 

reduced-complexity design often results in reduced functionality and mechanically trivial 

components. Finally, with the technological advancements that the scientific community has 

accomplished within the past decades, it is logical to take advantage of the mechanical power and 

the computational strength of human-synthesized products for the design of prosthetic devices. 

Thus, this study proposes to develop a data-driven prosthetic design framework that aims to 

replicate the dexterity and force output capabilities of the human hand while performing activities 

of daily living (ADL), without requiring the prosthesis to take the anthropomorphic design. Using 
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grasp datasets from human subject studies, an optimal design of upper-limb prosthesis will be 

explored, and the design with optimal force distributions and joint configurations for various 

activities of daily living will be selected for human subject tests. 

3.2 Introduction 

The grasp data sets attained from human subject experiments were utilized for the 

development of a grasp function-oriented robotic upper-limb prosthesis. By studying the essential 

mechanics of healthy grasps such as the joint and torque limits and the grasps quality measures, it 

is possible to explore other design methods of upper-limb prostheses by focusing on its functional 

performance before considering the structural component of the design. Current designs of upper-

limb prostheses are either motivated by the anatomy of the human hand (anthropomorphic designs) 

or by simplistic functions of daily tasks like grasping and holding objects at steady-state. For 

example, the Bebionic Hand by Ottobuck and i-Limb by TouchBionics are representative designs 

of myoelectric prostheses motivated by the anatomy of the human hand [56][57]. While these 

designs enable 20-30 different grip patterns with fast digit speed and high actuation torques, the 

efficiency of their performance of dynamic tasks is yet unexplored as these device designs are 

optimized for stable, steady-state grasps. However, studies show that a large portion of the 

activities of daily living involves relative motion of digits during the tasks, such as writing with a 

pen or turning a doorknob [58][59][60].  

To design a prosthesis motivated by the dynamics and kinematics of daily tasks involving 

grasp and tool use, two fundamental questions need to be addressed: 1) “how does one map 

healthy human grasps to a robotic prosthesis?” and 2) “how does one implement dimensional 

reduction for actuation of the components of a prosthesis?” The first question is addressed by 
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first extracting the core kinematic/contact elements of grasps from the human grasp database and 

finding a rigid body tree structure that encapsulates those elements. For example, from the grasp 

characterization study, we have found that the kinematic and contact dynamic correlations of the 

thumb and index fingers are relatively low, inferring both fingers’ functional independence in daily 

grasps. Such analyses are to be performed for efficient and reliable mapping of human grasps to 

robotic prostheses. The second fundamental question will be addressed by utilizing synergistic 

actuation of the individual joints—in terms of joint displacements and torques—to minimize the 

number of degrees of control. Combinations of the robotic digits’ displacements are determined 

using the linear combinations of eigenvectors obtained from the dimensional reduction methods 

mentioned previously such as principal component analysis and linear discriminant analysis. The 

validity of the synthesized grasps formed from combinations of eigenvectors is verified using grasp 

classification of the synthesized grasps and comparison of the grasps’ ergonomics and contact 

dynamics to the actual grasps. 

3.3 Methods 

 Grasp data attained from human subject experiments in Chapter 2 have revealed the range 

of grasp and contact forces, grip aperture, and position and orientation of contact points required 

in daily grasping tasks. Roboticists have made efforts to quantify the quality of grasps by finding 

a correlation between stable grasps and the location of contact points on the object and the 

configuration of the hand [61][62][63]. Since the position and orientation of the contact points and 

the objects’ center of mass can be determined from the electromagnetic trackers, the grasp matrix 

G can be easily determined for the evaluation of the hand-object Jacobian 𝐽ℎ, hence enabling some 

of the grasp quality measures minimum singular value of G, the volume of the grasp ellipsoid in 

wrench space, and the grasp isotropy index [61][64]. Other methods of determining the quality of 
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grasps that require the geometric properties of the contact polygon may also be easily determined 

from the positions of the contact points from the EM trackers. Also, since the grasp quality takes 

a quasi-static approach, which works for some of the daily tasks, but not for others (like writing 

with a pen or throwing a ball), the forces and torques involved in dynamic tasks will be used as 

references to determine the power and torque requirements for developing prototypes of robotics 

prostheses. 

3.3.1 Synthesis of reduced dimension grasps 

Determining the control scheme of the robotic prosthesis, however, is a much more complicated 

task as there is a limited number of control signals an amputee can generate (via methods like 

electromyography or electroencephalogram) without inherence to the opposing healthy hand. Thus, 

a reduced dimensional dataset of combined kinetic and kinematic grasps is formed by extracting 

the principal eigenvectors generated by the LDA classifiers. By solving the eigenvalue problem 

from between-class covariance matrix Σ𝐵and within-class covariance matrix Σ𝑊 obtained from the 

linear discriminant analysis, one can attain an m-by-m matrix V formed by columns of eigenvectors 

where m is the number of features used in LDA (in our case, m = 26 with 18 position features and 

7 force features). The equation to this eigenvalue problem is given by: 

 Σ𝐵𝑉 = Σ𝑤𝑉𝐷 (3.1) 
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 with D diagonal matrix of corresponding eigenvalues and V sorted in order of decreasing 

eigenvalues. The linear combination of the eigenvectors spans the spectrum of grasp poses that 

could be synthesized with data from 36 objects, where the grasp pose is computed from: 

 
𝑃 = ∑𝑎𝑖𝑣𝑖

𝑛

𝑖=1

 
(3.2) 

where P is the n-by-1 grasp pose with 26 position and force features and 𝑎𝑖 is the scalar multiplier 

for the i-th eigenvector adjusted by the sliders (varied between -20 to 20). 𝑣𝑖  is the i-th grasp 

eigenvector, termed the eigengrasp, and was first ideated by Ciocarlie et. al. for developing a low-

dimensional method for modulating high-dimensional grasps [5]. To demonstrate this, a graphical 

interface was developed that uses the first four eigenvectors that account for 56% of total variance 

to generate daily grasps analogous to those formed by human subjects. By adjusting the sliders 

that act as multipliers to the principal eigenvectors, one could form a variety of grasp poses that 

Figure 12: Grasp generation using the first four eigenvectors from LDA in descending scales of 

corresponding eigenvalues. The figure on the left shows a grasp of a fork synthesized from the 

principal eigenvectors, and the image on the right is the grasp pose formed by one of the subjects 

grasping a fork. 
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emulate the poses and contact forces of anthropomorphic grasps. Just like we have generated 

animations of grasp replicating tasks performed by human subjects, a skeletal representation of the 

hand would represent the grasp poses and color infills at the contact locations represent the contact 

force magnitudes as shown in Figures 12 and 13. The position and force features were also utilized 

Figure 13: Examples of synthesized grasps from the graphical interface. Plots on the left show 

grasp poses formed by human subjects; plots on the right are synthesized grasp poses based on 

linear combinations of eigenvectors. 
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to make a prediction for the closest type of grasp that the simulated grasp is trying to achieve. For 

example, the resemblance of the finger poses and the contact forces generated by the simulated 

grasp to the actual grasp of the fork can be seen in Figure 12. The thumb, index, and middle fingers 

are clustered more closely together than the other two fingers, and pressure output is significantly 

higher at the thumb; its resemblance can be seen in one of the subject studies where the subject 

also has the three fingers closely together, and the fork is in full contact with the thumb. More 

examples of the simulated grasps are shown in Figure 13.  

Multiple synergy mapping strategies from the human hand to the robotic hand have been proposed; 

using the kinematic hand pose synergies proposed by Santello et. al. [20], three major mapping 

techniques have been used: 

1. Joint-to-joint mapping: a one-to-one direct mapping of human joints to robot joints has 

been employed by Asada et. al. and Xu et. al. [65][66]. It is the simplest correspondence 

mapping method; however, this type of mapping only works for an anthropomorphic 

robotic hand. 

2. Cartesian mapping: a mapping of human hand fingertips to robot fingertips has been 

employed by Ficuciello et. al. [67]. This type of mapping enables the mapping of synergies 

with dissimilar robot and human hand joints and configurations. However, the 

discrepancies in the contact dynamics are not negligible, and anthropomorphism is still 

required in terms of the number of digits. 

3. Object-based Mapping: Gioioso et. al. have suggested the use of a virtual sphere placed 

on the human and robot hand where the kinematic and kinetic transformations and 

deformations of the sphere are transferred [4]. 
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For our purposes, the object-based mapping is optimal for our combined kinematic/kinetic grasp 

study as: 1) we collected the position data at different positions at the hand, 2) we are interested in 

the contact dynamics of grasps, and 3) we want to develop prosthetic hand with dissimilar 

kinematic structures. Thus, we investigate the mapping of kinematic synergies of the human hand 

to the robotic hand as proposed and motivated by Gioioso et. al. Then, we will expand the analysis 

to incorporate dynamic synergies as discovered in our previous human subject study. 

The kinematic mapping strategy as suggested by Gioioso et. al. can be summarized as the 

following: 

1. Choose the initial configurations of human and robot hands. 

2. Place reference points on the human hand to generate a virtual sphere. 

 𝑝̇𝑖ℎ = 𝑜̇ℎ + 𝑤ℎ × (𝑝𝑖ℎ − 𝑜ℎ) + 𝑟̇ℎ(𝑝𝑖ℎ − 𝑜ℎ) (3.3) 

where the sphere is parameterized with center 𝑜ℎ and radius 𝑟ℎ, with referent points at 𝑝𝑖ℎ. By 

rearranging the equation above, we could attain: 

 

[
𝑜̇ℎ

𝑤ℎ

𝑟̇ℎ

] = 𝐴ℎ
#𝑝̇ℎ 

(3.4) 

where 𝐴# is the pseudo-inverse of A, derived from the motion equation above. Combining with 

the synergy equation, we get: 

 

[
𝑜̇ℎ

𝑤ℎ

𝑟̇ℎ

] = 𝐴ℎ
#𝑆ℎ𝑧̇ 

(3.5) 

3. Use the virtual sphere to describe the kinematics and dynamics of the human hand. 
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With the robot and the hand having different aperture sizes, the differences are scaled by a scaling 

factor  

 𝑘𝑠𝑐 =
𝑟𝑟
𝑟ℎ

 (3.6) 

Thus, a mapping of the spheres can be obtained: 

 

[
𝑜̇𝑟

𝑤𝑟

𝑟̇𝑟

] = 𝐾𝑐 [
𝑜̇ℎ

𝑤ℎ

𝑟̇ℎ

]  with 𝐾𝑐 = [

𝑘𝑠𝑐𝐼3,3 𝑂3,3 𝑂3,1

𝑂3,3 𝐼3,3 𝑂3,1

𝑂3,3 𝑂3,3 1
] 

(3.7) 

where the virtual sphere changes orientation & size independently of that of the human hand. 

 

 

   

   

   

  

   

   

   

   

   

   

  

   

   

   

   

Figure 14: Visualization of the mapping method from (left) anthropomorphic grasps to (right) 

robotic grasps, inspired by the works of Gioioso et. al. The virtual sphere (blue circle) is estimated 

by computing the minimum bounding sphere of the reference points p. The normal contact forces 

𝝀 are mapped with the synergy matrix 𝑺𝒇𝒉. 
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4. Set a new virtual sphere on the robot hand with its own reference points. 

 

𝑝̇𝑟 = 𝐴𝑟 [
𝑜̇𝑟

𝑤𝑟

𝑟̇𝑟

] 
(3.8) 

5. Compute and apply the joint velocities of the robot using steps 1 to 4. 

 𝑞̇𝑟 = 𝐽𝑟
#𝐴𝑟𝐾𝑐𝐴ℎ

#𝑆ℎ𝑧̇ (3.9) 

By referring to the works by Gioioso et. al., we were able to develop a mapping method from the 

grasp data obtained from the human subject study to a robotic prosthesis with dissimilar form 

factors. We generated animations of three-fingered robotic grasping by transferring grasp data 

from all nine subjects.  

Our next step to the three-fingered grasp generation is to apply the force synergies as attained from 

the human subject study. We can apply our combined synergy matrix 

 
𝑆𝑐ℎ =  [

𝑆𝑝ℎ

𝑆𝑓ℎ
] 

(3.10) 

where 𝑆𝑝ℎ is the kinematic/pose synergy and 𝑆𝑓ℎis dynamic/contact force synergy and compute 

the contact forces of the hand once the grasp reaches full contact with the object: 

 
[
𝑝𝑟𝑒𝑓

𝜆ℎ
] = 𝑆𝑐ℎ𝑧 

(3.11) 

where z is the hand synergy and 𝜆ℎ is the set of normal contact forces on the virtual sphere. From 

our knowledge of dynamic analysis of a multi-fingered hand, we can compute the required joint 

torques to generate the external wrench applied to the virtual sphere, given by the set of equations: 
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 𝑊 = −𝐺ℎ𝜆ℎ = −𝐺𝑟𝜆𝑟  

 𝜏 = 𝐽𝑟
𝑇𝜆𝑟 (3.12) 

 𝜏 = 𝐽𝑟
𝑇𝐺𝑟

#𝐺ℎ𝑆𝑓ℎz  

where 𝐺ℎ is the hand grasp matrix, 𝐺𝑟 is the robot grasp matrix, and 𝐽𝑟 is the robot Jacobian. 
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3.3.2 Computer-Aided Design of a Prosthetic Device 

Our preliminary efforts to design and fabricate upper-limb prosthetic devices are arbitrary and 

rudimentary as our initial aims were to apply a reduced degree of freedom control on any generic 

robotic grippers. As such, we started with the most simplistic robotic gripper as shown in Figure 

15, where two degrees of freedom control on the gripper aperture and digit flexion are employed. 

We have familiarized ourselves with the generic actuation methods and control schemes of typical 

robotic grippers at this stage; however, two degrees of freedom actuation is nowhere near sufficient 

for acquiring dexterous grasps required in activities of daily living as are the split hook devices in 

the market [37]. 

Subsequently, a modified design of the prosthetic device was proposed, employing a more 

anthropomorphic design gripper using three digits: thumb, index, and middle finger, that are 

controlled using 5 actuators (one each for the finger flexions, one for the index/middle adduction, 

and one for the thumb adduction) as shown in Figure 15. Again, we had not considered optimizing 

Figure 15: Preliminary designs of upper-limb prostheses/grippers. (left) two degrees of freedom 

gripper with two servo motors at the base controlling the gripper aperture and digit flexion inspired 

by the split hook prostheses in market. (right) Five degrees of freedom gripper with three servo 

motors at the base controlling the index and middle finger flexions and adduction, one at the palm 

joint controlling thumb adduction, and one at the base of the thumb controlling thumb flexion. 
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the design of the prosthetic device for the reduced dimension control scheme, making the design 

unfounded. 

However, these designs are still not practical in terms of dexterity and modulation of 

contact forces. Thus, a similar design approach is taken, where seven actuators control the fingertip 

positions and orientations using routed Kevlar fiber threads to apply flexion motions. 

Modifications of the prosthesis design are primarily focused on: 

1. Enabling multi-joint fingers to allow broader workspaces. 

2. Routing threads internally within fingers. 

3. Applying torque control to align fingertip forces within the span of the eigenvectors 

for a reduced degree of freedom control. 

In addition to these modification goals, our new design of an upper-limb prosthesis is based on 

literature studies on physiological and psychological limitations on the use of prosthesis as well as 

our findings on grasp behaviors of subjects during ADL tasks. According to a study performed by 

Cordella et. al., the natural appearance of a prosthetic hand is a top priority for both passive and 

active prosthesis users, suggesting that a complete abandonment of anthropomorphism may not be 

desirable [2]. However, a reduced-anthropomorphic model may be desired to reduce the 

complexity of both design and control. We base our dimensional reduction method on our grasp 

study and studies performed by Santello et. al. and Starke et. al [20][28]. We have analyzed the 

correlation of fingertip poses and contact forces at different locations on the palm as shown in 

Figure 16, where Sample Pearson correlation coefficient matrices for the mean position of the 

fingertips and the mean forces at different locations of the hand for all subjects are computed and 



42 

shown in heat colormaps. The correlation coefficient for a pair of features (i.e. thumb and index 

finger) equates to: 

 
𝜌𝑥,𝑦 = 

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁
𝑖=1

√∑ (𝑁
𝑖=1 𝑥𝑖 − 𝑥̅)2 ∑ (𝑁

𝑖=1 𝑦𝑖 − 𝑦̅)2

 
(3.12) 

given N data points for each feature and two distinct features, x and y are being compared for their 

correlation. Brighter colors on a grid of the heatmap of the matrix indicate higher correlations 

between the corresponding axes. It is notable that there are high correlations between the middle, 

ring, and little fingers compared to those between the thumb/index fingers and the other fingers, 

suggesting greater independence of motion of the thumb and the index finger. 

The resulting correlation trend agrees with the aforementioned works with the following details: 

1. The middle, ring, and little fingers have high position correlations with respect to each 

other. 

Figure 16: Correlation coefficient relationship between fingertips and positions on the palm. The 

figure on the left shows correlation pattern of the positions of the fingertips; the figure in the middle 

shows correlation patterns of forces between the fingertips and the palm, where the locations of 

palm 1, 2, and 3 are shown on the image on the right. 
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2. The middle and ring finger have high force correlations vs. a relatively low correlation 

from the little finger. 

3. The thumb and index fingers have low correlations throughout both pose and force 

correlations. 

The first and second observations suggest that there may be low functional contributions from the 

little finger. In fact, a study performed by Puhaindran et. al. on the absence of flexor tendon in the 

little finger revealed no difference in the grip strength measurement [68]. A graph theory-based 

description of grasps have associated the little finger to be synchronous with the other fingers for 

all types of grasps [69]. The third observation suggests that the thumb and index fingers have high 

functional independence. Thus, a reduced digit model of the upper-limb prosthesis can be designed 

with the following criteria: 

1. Includes the thumb with a functional resemblance to those of the anthropomorphic hand  

Figure 17: Semi-anthropomorphic three fingered robotic hand. Each finger has four degrees of 

motion, and each MCP and DIP joints are individually controlled using a servo motors. 



44 

2. Includes two fingers representing the index and middle/ring finger, with a high functional 

resemblance to that of the index, middle, and ring fingers 

3. Full control of all joints can be accomplished, where they all move simultaneously along 

the span of each synergy eigenvector 

Thus, we are able to develop a design of a semi-anthropomorphic upper-limb prosthesis as shown 

in Figure 17. The design has four degrees of motion for each finger including abduction and 

adduction of the metacarpophalangeal (MCP) joints, radial abduction and abduction of the thumb 

MCP joint, and flexion and extension of the interphalangeal (PIP and DIP) joints. Each finger 

geometry is designed based on the size and proportion of the average adult hand geometry as 

provided by the works of Buryanov and Kotiuk [70]. The design is first developed in a virtual 

Figure 18: Actuation of PIP and DIP joints with the SG90 servo motors. Joints are flexed as the 

servo motors pull the linked Kevlar threads, extended passively by the spring forces from the music 

wire steel springs. Servo displacements and the joint displacements are related by 𝜽𝒎𝒆𝒅𝒊𝒂𝒍 =
𝟎. 𝟒𝟖𝟐𝜽𝒔𝒑 and 𝜽𝒅𝒊𝒔𝒕𝒂𝒍 = 𝟎. 𝟒𝟒𝟖𝜽𝒔𝒑, determined from the arc lengths formed by the phalanxes 

with radii 𝒓𝒎 = 8.82 mm and 𝒓𝒅 = 10.09 mm respectively. 



45 

setting so that we could generate realistic simulations of robotic grasping of daily objects using 

synergy-based motions. 
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3.3.3 System specification 

The prosthetic hand’s mechanical specification is primarily based on the kinematic and dynamic 

dataset that we have obtained from the human subject study. It has been observed that the average 

contact force between the trials was 3.15 N, and the maximum fingertip force applied was 40.63 

N compared to the average maximum pinch force of 58-81 N based on literature [71]. Also, the 

average fingertip velocity was 39.62 mm/s, and the maximum fingertip velocity was 104.18 mm/s. 

The specifications require our motors to have the following specifications: nominal torque of 5.25 

mN·m, maximum torque of 15.7 mN·m, nominal speed of 57 rpm, and a maximum speed of 150 

rpm. For this reason, the Pololu 78:1 6V Metal Gearmotor was chosen as our main mode of 

actuation as it has a nominal torque of 74.53 mN·m and a stall torque of 432.49 mN·m. Its speed 

Figure 19: Power transmission at multiple joints of the prosthetic hand. (a,b) The abduction and 

adduction motions at the base of the index and ring finger as well as the flexion and extension of 

the pip joint of the thumb require miter gear pairs. (c) For greater grip strength, power is 

transmitted by a worm-spur gear pair. (d) Timing belt and pulley combination is used for the 

adduction and abduction of the thumb’s base joint. 
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at maximum efficiency is 150 rpm, and its no-load speed is 180 rpm. Additionally, to minimize 

modes of control and power consumption, we actuate the PIP and DIP joints with the lower 

capacity SG90 servo motors as in Figure 18.  

 The power specifications of the prosthetic hand system require the ability to power seven 

total 6V DC motors with a nominal current pull of 0.63 A, which require power of at least 3.78 

watts each. A total of five 5V SG90 servo motors actuate the interphalangeal joints, requiring a 

current draw of 250 mA each. Thus, the system requires a power supply that could provide 5.66 A 

and 10 watts. Thus, we have elected the SHNITPWR adjustable power supply that could provide 

a maximum of 10A and 120W. Also, four motor drivers are required to control seven total motors 

simultaneously, where two are stackable on top of one microcontroller. Each driver requires 8 

digital pins and 2 analog pins, and the motors require 2 pins for the encoders and 1 pin for the 

pulse-width modulus (pwm) signal. A total of 51 digital pins and 8 analog pins are required for the 

entire system; thus, we use two Arduino Mega 2560 microcontroller boards that provide 54 digital 

pins and 16 analog pins each, having enough pins to power both motors controllers at the same 

time. 

3.3.4 Fabrication of the semi-anthropomorphic prosthetic hand 

The majority of materials used to fabricate and assemble the prosthetic hand are 3D printed using 

PLA filaments, aiding in the reduction of the total weight and cost of fabrication, from typical 

weight of prostheses in market of 800 to 900 grams to under 700 grams as are previously developed 

3D printed prosthesis [72]. The phalanges are flexed using Kevlar threads as tendons wired to the 

spools mounted to the motors. Each phalanx is passively flexed with music wire steel extension 

springs with a load of 15.7 N and spring rate of 2.27 N/mm, sufficient enough to recover each 

phalanx to its passive position, but not as tense as to hinder the flexion motions. Miter gears are 
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used in the adduction and abduction motions of the base of the index and ring fingers as optimal 

motor placement forces changes in the transmission direction as can be seen in Figure 19. The 

same applies to the extension and flexion at the base of the thumb, but worm-to-spur gear 

transmission is used as torque requirements are much greater at the base of the thumb.  For the 

adduction and abduction of the thumb’s base, a timing belt with two pulleys having different gear 

ratios is used to increase the output torque and resolution of the joint displacements. The total 

weight of the system is approximately 655.96 grams compared to 610 grams for the average hand 

weight of male adults, and the cost of fabrication is approximately $500 [73]. Considering that the 

average cost of myoelectric prostheses is $100,000, a low fabrication cost is a definite advantage 

of the proposed system [74]. 

3.3.5 Control and characterization of the semi-anthropomorphic prosthetic hand 

As the grasp mapping method requires accurate positing of the Cartesian coordinates of the 

fingertips, building a robotic model that closely resembles the actual device is essential to the 

synergistic control of the prosthetic hand. As such, we have first characterized the Denavit–

Hartenberg parameters, a.k.a. DH parameters, of the device by observing the geometric 

relationships between each joint in Solidworks. For ease of implementation of the inverse 

kinematics necessary for fingertip placement, MATLAB’s rigid body tree model from the Robotics 

toolbox was used to build the robotic structure. The robot was modeled as a multi-body system 

with three sets of serial manipulators—the three fingers—branching off from the main body—the 

wrist. The DH parameters computed for each finger were used in the robotics model for the rigid 

body tree using a set fixed transform from the base of the device to each location of the joint using 

MATLAB’s setFixedTransfrom function that takes each column (corresponding to the i-joint) 

of the DH parameters as input. The limits of each joint were chosen such that collisions are avoided, 
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and motions lie within a reasonable range without causing damage to the structure. Inverse 

kinematics is also computed using MATLAB using the inverseKinematics function that takes in 

the rigid body tree model and the desired homogeneous transformation matrix (HTM) as inputs. 

The solver algorithm used was the Levenberg-Marquardt algorithm, which uses the damped-least 

squares method to approximate the joint configuration solutions. This algorithm is used as 

synergistic control requires real-time communication with the slave device, and fast computation 

is critical for our control method. The weights of the pose tolerances are 0’s for the orientations 

and 1’s for the XYZ coordinates as the orientations of the contact points are not critical in obtaining 

the desired grasp pose based on the virtual sphere method. 

Figure 20: Stereo camera calibration system for parameter optimization of the prosthetic hand. 

Images on the top row (a,b) show locations of the camera on the left and the right respectively. (c) 

A black and white checkerboard image is used the calibrate the camera and the rail. (d) Red 

fiducials are placed on the points of interest on the prosthetic hand. 



50 

The accuracy of the model is improved using parameter calibration with a stereo camera 

system. Figure 20 shows the setup of the calibration system that is composed of a rail that moves 

the camera to two different positions for a stereo image, a black and white checkerboard to 

calibrate the camera, and red fiducial markers placed at multiple points of interest on the prosthetic 

hand. The stereo camera system was calibrated with MATLAB’s Stereo Camera Calibration app, 

which requires 10 to 20 training images of the checkerboard to determine the camera parameters 

such as the fundamental matrix, rotation and translation of the second camera location, and radial 

and tangential distortions. To ensure the accuracy of the camera-based calibration system, the 

camera was calibrated such that the reprojection errors are less than 1 pixel. The 3D coordinates 

of the fiducials were determined using triangulation that uses the camera coordinates of the fiducial 

in the two stereo images and the translation and rotation matrices of the second location of the 

camera from the optical center of the first. To automate the process, the camera coordinates of the 

fiducials were found using red Gaussian filters and circular Hough transform to find the centers of 

the circular blobs. Transformation between the world coordinates of the fiducial points with 

respect to camera 1 to the hand coordinates with respect to the location of origin of the prosthetic 

hand (the wrist) is performed by attaching a 4-by-4 cm checkerboard piece parallel to the y-axis 

of the coordinate system of the prosthetic hand and computing the coordinate transformation using 

the following relation: 

 
[
𝑋
𝑌
𝑍
]

ℎ𝑎𝑛𝑑

= [
𝑋
𝑌
𝑍
]

𝑤𝑜𝑟𝑙𝑑

× 𝑅𝐻𝑊 = ([
𝑋
𝑌
𝑍
]

𝑐𝑎𝑚

− 𝑇𝑊𝐶)𝑅𝑊𝐶
−1𝑅𝐻𝑊 

(3.14) 
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 where 𝑅𝑊𝐶  and 𝑇𝑊𝐶  is the rotation and translation from the camera coordinates to the world 

coordinates, and 𝑅𝐻𝑊  is the rotation from the world coordinates to the hand coordinates. The 

rotation and translation matrices can be found using MATLAB’s extrinsics function that takes in 

the camera coordinates of the checkerboard and their corresponding 3D coordinates.  

The first parameter to optimize was errors in the joint displacements between those 

commanded in the rigid body tree versus the actual joint angles formed by the device. 

Measurements of the abduction/adduction joints of the fingers were relatively simple to obtain as 

the base of angle measurement is stationary. For the PIP, MIP, and DIP joints, 3 or 4 fiducials (3 

for the thumb, 4 for the index and ring finger) were placed at each joint and fingertip as shown in 

Figure 21: Four fiducial markers placed on the fingertip and dip, mip, and pip joints. A 4x4 cm 

checkerboard is placed at the base of the finger to reduce the analysis to 2D. The orange arrow 

denotes the vectors between the fiducial markers used to compute the joint angles. 
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Figure 21, and the relative angles were measured by computing atan2 values between the vectors 

forms between the fiducial markers using the following equations: 

 𝜃𝑑 = 𝑎𝑡𝑎𝑛2(𝑣𝑑,𝑦 − 𝑣𝑑,𝑥) − (𝑣𝑚,𝑦 − 𝑣𝑚,𝑥)  

 𝜃𝑚 = 𝑎𝑡𝑎𝑛2(𝑣𝑚,𝑦 − 𝑣𝑚,𝑥) − (𝑣𝑝,𝑦 − 𝑣𝑝,𝑥) (3.15) 

 𝜃𝑝 = 𝑎𝑡𝑎𝑛2(𝑣𝑝,𝑦 − 𝑣𝑝,𝑥) − (𝑣𝑜,𝑦 − 𝑣𝑜,𝑥)  

Figure 22: Comparison of the joint angle mapping between the input and the measured. (a) Before 

the correction, the highly variant slopes and offset values suggest that the relations are not one-to-

one. (b) After parameter adjustments, the offsets are much smaller and the 𝑹𝟐 values are greater 

than 0.98. Frames taken during calibration of the MIP joint are shown on the right. 
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where the subscripts d, m, p, and o denote the location of the fiducial markers of joints with o being 

the base of the finger, and v represents the vectors formed. As expected, we did not observe a one-

to-one mapping between the input and the measured joint angles; thus, parameter adjustments were 

made to ensure a one-to-one mapping. The joint angle calibration steps were repeated four more 

times until a reliable, linear mapping was observed as in Figure 22.  

 After correcting the joint angle scaling, the only remaining source of error that can be 

minimized is the modeling parameter or the DH parameter. As such, an optimization problem was 

designed such that the error between the commanded and the measured Cartesian coordinates of 

the fingertips is minimized while using the DH parameters as adjustable inputs to the cost function. 

The optimization problem statement is as follows: 

Objective function: 𝐸 =  ∑ (|𝑋𝑗 − 𝑋𝑗
′(𝐷𝐻′)|)𝑘

𝑗=1𝐷𝐻′
𝑚𝑖𝑛  

Figure 23: Comparison of the position mapping between the input and the measured. (left) 

Position mapping at the first iterations yields a root mean square error of 15.52 mm. (right) 

Position mapping at the first iterations yields a root mean square error of 7.38 mm a reduction of 

52.4%. 
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Constraint: |𝐷𝐻′ − 𝐷𝐻| ≤ 𝑒𝑑 

where 𝑋𝑗  is the measured coordinates of the fingertip, 𝑋𝑗
′  is the computed coordinates of the 

fingertip, DH is the 4-by-4 set (four joints per finger and four parameters) of previous parameters, 

DH’ is the modified DH parameter, and 𝑒𝑑  is the matrix of allowed deviations. MATLAB’s 

fmincon function was used to compute the local minimum—where it uses the finite differences to 

approximate the Hessian—and it takes in the objective function and the constraints as inputs. The 

optimization strategy was implemented by capturing images of the prosthetic hand at 50 different 

points scattered within the workspace for each finger. Prior to optimization, a root mean square of 

the errors was greater than 18 mm. After repeating the trials for six total iterations, a root mean 

square error of 7.38 mm was achieved—a reduction of 52.4% from the first iteration at 15.52 mm 

as shown in Figure 23. Further iterations did not yield a meaningful reduction in the positional 

errors. 
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CHAPTER 4 

SIMULATED EVALUATION OF TASK PERFORMANCE OF DATA-DRIVEN 

PROSTHESIS 

4.1 Introduction 

 The design performance of the data-driven upper-limb prosthesis for accomplishing 

synergy-based grasps is first evaluated with a physics-based robotic simulation platform—

CoppeliaSim. Before the dedication of extensive resources into developing the actual prototype, a 

validation that the reduced-dimension robotic hand can attain daily grasps with functionality close 

to that of the human hand was attained with relative ease with a virtual testing platform. By 

applying the combined grasp synergy to control the joint configurations of the hand and fingertip 

forces, we demonstrate the establishment of stable grasps with the proposed design of the 

prosthetic hand in a virtual setting.  

 After validating the formation of stable grasps with the simulation, we have built and 

assembled the prototype of our design and applied the forward/inverse kinematics to control the 

joint positions as well as a strategy to vary the fingertip forces of each digit with synergistic torque 

modulation. Then, similar synergy-based grasps were formed with the combination of eigengrasps 

as we’ve established in previous studies and have analyzed the stability of robotic grasps. The 

performances of grasps were measured with the grasp quality metrics and were compared to grasps 

in simulation and those from actual grasps from human subject studies.  
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4.2 Methods 

4.2.1 Implementation of prosthetic hand model in CoppeliaSim 

We chose to utilize the CoppeliaSim robotics simulation software developed by Coppelia Robotics, 

as it is reputed for having a fully integrated robotics API, allowing for fast prototyping and 

hardware control and allows users to choose between four physics engines: Bullet Physics, ODE, 

Newton, and Vortex Dynamics, where we utilize Newton Dynamics for a realistic simulation of 

rigid body motion and contact modeling [75]. While CoppeliaSim is a powerful simulator for 

robotic applications, it does provide adequate tools for algebraic computations, thus we utilize its 

remote API for broadcasting variables between MATLAB and itself. The first task in utilizing 

CoppeliaSim was to build a robotic architecture from the prototype design models (STL) that we 

have developed with a 3D CAD software, Solidworks. This involved placing robotic objects in 

Figure 24: Importation of robotic structure from prototype design into CoppeliaSim. Left shows 

the robot hierchery with each parent/child pair connected with a joint. Right shows the simplified 

geometric representation of the robot parts to improve accuracy of dynamic simulation 
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hierarchical structure from base to tip, orienting virtual joints and setting the correct joint limits, 

creating dynamic boundaries of objects for contact modeling, and creating kinematic loops for 

each kinematic chain for inverse kinematics. Successful importation of the robotic structure to 

CoppeliaSim can be found in Figure 24. Once this is established, we have access to fully kinematic 

control of the fingertips within the boundaries of its workspace.  

4.2.2 Control loop between CoppeliaSim and MATLAB 

Although CoppeliaSim is a tool for physics-based simulation, it does not have a well-established 

data storage and processing platform, thus, data such as eigengrasp combination, joint position, 

and Jacobian matrices were broadcasted from CoppeliaSim to Matlab as shown in Figure 25. Then, 

as established in Equation 3.9, the product of the synergy matrix and the eigengrasp combination 

Figure 25: Block diagram of variable input from CoppeliaSim to pose generator in Matlab. The 

robot pose and virtual hand pose are updated in real-time to compute the virtual spheres form by 

the two to compute the new desired pose. 
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yields the hypothetical configuration of the human hand, which then is used to compute the 

corresponding robot fingertip configuration. Then, the desired robot configuration is broadcasted 

back to CoppeliaSim, completing the loop of Matlab/CoppeliaSim. Communication. 

 The closed-loop system allows us to generate myriads of robotic grasps as we vary the 

scales of each eigengrasp element using sliders as shown in Figure 26. As the robotic hand changes 

its pose that corresponds to the eigengrasp set with the sliders, our classifier previously built-in 

Matlab predicts the type of object being held by the robotic hand for a given set of eigengrasps. 

This allows us to explore multiple combinations of eigengrasps with the knowledge as to the types 

of grasps the hand is trying to achieve. This is especially powerful when we compare the grasps 

being achieved by the robot to the grasps formed by the human subjects during the experiments. 

Figure 26: Robotic hand forms a grasp that corresponds to the eigengrasp combination for 

grasping a spray bottle. The formulated grasp is maintained while holding the spray bottle above 

ground. 

Combination of 

eigengrasps 

controlled with 

sliders 

Prediction of object with classifier 
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4.2.3 Contact force modulation with joint torque control of prosthetic hand  

To implement the contact force synergies of grasps, we utilized CoppeliaSim’s contact modeling 

API to attain the positions of all points of contact that are of interest. To validate the force 

measurements taken by CoppeliaSim, we designed a virtual experiment where the robotic hand 

grasps and lifts a uniform cylinder with varying masses. In theory, the magnitude of the weight of 

the cylinder should be equivalent to the sum of all contact forces exerted by the hand in the vertical 

direction. As such, the virtual experiment involved varying the surface friction quality from 0 to 2 

(arbitrary values where 0 is completely slippery and 2 has no slippage) and the weight of the 

cylinder from 100g to 1kg in the range where grasp failure due to slippage did not occur. 

Measurements of the contact forces for each trial were taken for 60 seconds. The results comparing 

the sum of contact forces to the weight of the cylinder are plotted in a 3D surface plot in Figure 

27. The plot suggests that the CoppeliaSim has high fidelity estimates of the contact forces as the 

root mean square error of the sum of contact forces is 1.343 × 10−3 N (0.000575% error on 

average) for both sums of contact points on the cylinder and that on the robotic hand. 

 For the application of the grasp pose synergy, we have implemented Jacobian-based 

velocity control of joints to attain the desired joint configurations. This involved the simple 

computation of the pseudo-inverse of the robot Jacobian using the least-damped squares method 

to compute the desired joint velocity for a given robot tip pose error: 

 𝜃̇ = 𝐽𝑟
#(𝑝𝑟,𝑑𝑒𝑠 − 𝑝𝑟) (4.1) 

where 𝑝𝑟,𝑑𝑒𝑠 = 𝐴𝑟𝐾𝑐𝐴ℎ
#𝑆ℎ𝑧̇, attained in Equation 3.11. The desired tip poses are computed with 

the set of equations 3.3 to 3.9 in the workflow shown in Figure 25. As the robot hand comes into 

contact with the object of interest, the contact forces are measured as verified with the cylinder 
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experiment after the desired pose is determined. We reference the desired contact forces from our 

grasp database for a given eigengrasp combination. From Coppeliasim’s contact force modeling, 

we can determine the normal forces applied to each point of interest (𝑓𝑛,𝑖) of the robotic hand. To 

attain the desired contact force, we apply torque control of the robot fingers with the following 

equations: 

 𝑒𝑃,𝑖 = 𝑓𝑑𝑒𝑠,𝑖 − 𝑓𝑛,𝑖  

 

𝑒𝐼,𝑖 = ∑𝑒𝑡−𝑖

𝑁

𝑖=0

 

 

 𝑒𝐷,𝑖 = 𝑒𝑡 − 𝑒𝑡−𝑖 (4.2) 

 𝑈𝑖 = 𝐾𝑃𝑒𝑃,𝑖 + 𝐾𝐷𝑒𝐷,𝑖 + 𝐾𝐷𝑒𝐷,𝑖  

 Δ𝜏 =  𝐽𝑟
𝑇𝐺𝑟

#𝐺ℎ𝑈𝑖  

Figure 27: Validation of contact force estimates on the prosthetic hand by Coppeliasim. (left) The 

net contact forces in the vertical axis exerted on the cylinder is compared to the gravitational force 

due to weight, and a resulting 𝟏. 𝟑𝟒 × 𝟏𝟎−𝟑 N RMSE is observed. (right) Similar analysis is 

performed on the net reaction forces acting on the prosthetic hand, and a resulting 𝟏. 𝟑𝟒 × 𝟏𝟎−𝟑 

N RMSE is observed. 
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where 𝑓𝑑𝑒𝑠,𝑖 = 𝑆𝑓ℎz  is attained in Equation 3.12. These equations allow us to determine the 

modifications to the joint configurations to maintain the force output from the robotic hand at the 

desired levels.  

4.3 Experimental Setup 

4.3.1 Problem statement 

We aim to test the previously mentioned hypothesis on improving stability and robustness of 

grasps with the augmentation of synergistic contact force modulation to the synergic grasp poses. 

Thus, as a proof of concept, a set of experimental tasks was designed within the 

Figure 28: Semi-anthropomorphic prosthetic hand mounted at the tip of KUKA IIWA 14 end-

effector.  Trajectories starting from the center of the sphere and to the points on the outer surface 

of the sphere are generated. 
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CoppeliaSim/MATLAB environment. We compare the proposed method to previous works by 

varying the strategy for modulating output joint torques. In previous works, for example, the 

synergy-based three-fingered robotic hands developed by Grioli et. al. or Chen et. al., are very 

effective in forming a stable grasp given a design grasp configuration; however, there are none to 

our knowledge that explores the stability/robustness of synergistic grasps with consistent 

perturbations to the grasps [76][77]. Thus, the experiment explores two hypothetic situations 

where both apply synergistic grasp poses to grasp various objects, one applies non-strategic 

uniform torques over the joints responsible for maintaining the grasp forces, and the other applies 

a contact force synergy-based torque distribution over the control joints. We only control the 

flexion and extension of the proximal interphalangeal (pip) joints of the index and ring fingers and 

the first two joints of the thumb for torque modulation for simplification for contact force modeling 

as with the previous works with underactuated robotic hands [78][79][80]. In these experiments, 

the prosthetic hand grasps a subset of daily objects characterized by the human subject experiments 

in Chapter 2, and the prosthetic hand and the held object undergo a set of linear perturbations. In 

theory, superior grasps have better grasp robustness when the object is less prone to failure from 

different combinations of external forces, which is also experimentally measurable by applying a 

set of perturbation sequences to robotic grasp and measuring the duration of grasps sustained 

within a trial [81][82][83][84]. Grasps have higher stability when the magnitudes of relative 

acceleration of the held object with respect to the hand are lower [85][86][87]. Grasp duration for 

a single trial is computed by taking the ratio between the duration that a successful grasp is 

maintained and the duration of an entire trial. To measure the grasp stability, we attach a pair of 

virtual accelerometers, one on the wrist of the prosthetic and the other on the held object. 
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4.3.2 Experimental method 

The following summarize the logistics of the experimental setup: 

Objective: To experimentally verify that the addition of a synergy-base force control of 

the prosthetic hand enhances grasp stability and robustness 

Method: Two methods of modulating joint torques are compared: 1) non-methodical, 

uniform distribution of joint torques, and 2) contact force synergy-based modulation of 

joint torques. For a fair comparison, the net torques applied by the two methods are equal 

with the following relation: 

 
∑𝜏

𝑛

𝑖

= 𝑛𝜏𝑗 
(4.3) 

Where 𝜏𝑖: synergy − based torques (𝜏 = 𝐽𝑟
𝑇𝐺𝑟

#𝐺ℎ𝑆𝑓ℎz) 

𝜏𝑗: uniformly applied torques (𝜏𝑗,1 = 𝜏𝑗,2 = 𝜏𝑗,3 = ⋯) 

Procedure: The prosthetic hand is attached to the KUKA IIWA 14, a serial manipulator 

available in the Adaptive Robotic Manipulation Laboratory, and is exposed to motion 

between the starting position and 32 different points that surround it in a sphere. The 

KUKA arm starts from the center of the sphere, moves to one of the points on the surface 

of the sphere, returns back to the center, and repeats the process until all the points have 

been reached. The hand grasps each object with the eigengrasp set of grasp poses associated 

with each object. Once the grasp pose is applied and is in contact with the object, the fingers 

close in on the objects with one of the two following methods: 1) synergy-based force 
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control and 2) non-methodical, uniform closure. For comparison for grasps with a spectrum 

of net torques, the joint torques are distributed from a net torque of  

 
𝑐 ∑𝜏

𝑛

𝑖

= 𝑐𝑛𝜏𝑗 
(4.4) 

where c is a torque multiplier from 0.1 to 1 in 0.1 increments. The joint torques from the 

synergistic method are determined by the results from equation 3.12 multiplied by the 

torque multiplier c. The expected change for varying c is an increase in grasp 

stability/robustness.  

4.3.3 Grasp perturbation trajectory 

The points along the perturbation trajectories were generated using spherical coordinates about a 

designated sphere’s center. A radius of 100 mm was chosen to follow similar protocols to previous 

works involving experiments using perturbations to robotic grippers, ranging from 50 to 100 mm 

[88][89]. For each spherical axis, an increment of 45° within an interval from 0 to 90° was chosen 

to generate the objective points, resulting in 32 different points total. This results in an average of 

40 mm/s per path from the center of the sphere to the surface. The joint trajectory profile for 

Figure 29: Joint trajectory profile of the KUKA serial manipulator for generating the perturbation 

motions for the simulated experiment as shown in Figure 28. The maximum joint velocity for any 

joint does not exceed ±0.505 rad/s, resulting in an average end-effector velocity of 40 mm/s.  
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generating the planned paths can be seen in Figure 29, where the maximum joint velocities do not 

exceed 0.51 rad/s. Such trajectory was chosen based on previous works that have performed 

experiments on grasp stability and adjustability using induced perturbations. A study on slip and 

grip force on prosthetic grasp by Damian et. al. chose velocity profiles of objects ranging between 

10 mm/s to 50 mm/s [90]. Naceri et. al. have investigated the responses of human participants’ 

grasps to object force and torques perturbations, and the position-time response of held object 

provided in the study shows velocity profiles of approximately 15 to 30 mm/s [91]. A study on the 

control of prosthetic hand grasp and slip prevention uses velocity profiles of range 20-40 mm/s 

[92]. As such, the values chosen for the trajectory profiles are acceptable as they lie in the 

proximity of the values adopted in previous works. 
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4.3.4 Grasp modulation protocols 

The following were observed for each perturbation trial to ensure repeatability and consistency: 

1. The prosthetic hand starts at a default pose configuration 𝑝0 using the mean of the class means 

𝜇𝑘 to ensure as much span as possible along the synergy matrix [93][94][95]. The pose formed by 

the mean of class means is classified as the cubic prism using the LDA learner identified in Chapter 

2. The initial joint configuration 𝑞0 is computed using CoppeliaSim’s inverse kinematics module, 

and the corresponding eigengrasp 𝑧0 is computed with Equation 3.11. They are used as base values 

before applying changes Δ𝑧 for the different types of objects. 

3. The object class name (e.g. spray bottle) is prompted to MATLAB, which then computes 

 Δ𝑧𝑖 = 𝑆−1𝜇𝑖 − 𝑧0 (4.5) 

where 𝜇𝑖  is the mean pose configuration of object i and Δ𝑧𝑖  corresponds to the change in 

eigengrasp to be applied to the prosthetic hand for object i. Simultaneously, the corresponding 

object is placed within the hand’s grasp in CoppeliaSim, where its coordinates and orientations are 

chosen from the grasp dataset. 

4.  The joint configurations and the fingertip coordinates of the prosthetic hand are broadcasted 

from CoppeliaSim to MATLAB for computing 𝐴𝑟, where the radius and center of the sphere are 

computed by approximating the minimum bounding sphere with the three coordinates of the 

fingertips and the two fixed contact points at the palm. Details on the computation method for 

finding the minimum bounding sphere can be found by the works of J. Ritter [96]. The virtual 

sphere for the hand kinematics 𝐴ℎ is computed using the mean fingertip coordinates 𝜇𝑖 for object 

i from the grasp database. 
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5. The updated pose is computed using a modified version of Equation 3.11; for implementation 

on a discrete system, we use: 

 Δ𝑞𝑟 = 𝐽𝑟
#𝐴𝑟𝐾𝑐𝐴ℎ

#𝑆ℎΔ𝑧 (4.6) 

where 𝐴ℎ
# is computed with Moore-Penrose pseudoinverse 

 𝐴ℎ
# = (𝐴ℎ

𝑇𝐴ℎ)
−1𝐴ℎ

𝑇  (4.7) 

and where 𝐽𝑟
#  is computed with the damped least square method to avoid singularities and 

smoothing trajectories 

 𝐽𝑟
# = (𝐽𝑟

𝑇𝐽𝑟 + 𝜆2𝐼)−1𝐽𝑟
𝑇 (4.8) 

with the damping factor 𝜆 = 0.1 computed empirically. The desired joint configuration is updated 

to 𝑞𝑟 = 𝑞0 + Δ𝑞  and is broadcasted back to CoppeliaSim. This results in the prosthetic hand 

closing its grip on the object; however, the world dynamics are not enabled at this point, and the 

pose is maintained for 20 seconds for motion stabilization. 

6. After motion stabilization, torque control is enabled by applying the method as discussed in 

Chapter 2 and Equation 3.12. Individual joint torques are distributed with two different methods 

as articulated in the previously mentioned procedure and equation 4.4. The grasp matrices 𝐺ℎ and 

𝐺𝑟 are computed with the fingertip coordinates from the grasp database and those of the prosthetic 

hand, and both share the coordinates of the object center from the grasp dataset. Orientations of 
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the contact points are all set to be orthogonal to the surfaces of the fingertips as our dataset is 

confined to the normal forces only. The procedures for computing the grasp matrices are relatively 

straightforward with these inputs using the computation method first introduced by Prattichizzo et. 

al. [97]. After the target joint torques 𝜏𝑖 are set, the motions that accompany the desired torque are 

designated such that the contact points reach towards the centroid of all contact points. Torque 

levels are maintained using a manually tuned PID controller. After all the joints are set to motion, 

world dynamics are enabled, and grasp is maintained for 20 seconds before the last phase. 

7. The perturbation trajectory is enabled for the rest of the trial. Processes from 1 to 6 are repeated 

for each torque multiplier from 0.1 to 1 for each method of torque modulation. The acceleration 

Figure 30: An experimental trial of grasping a glass bottle. (a) For one trial with the force synergy-

enabled grasp (t = 86 s), grasp is maintained relatively well. (b) For one trial without the synergistic 

torque control, the glass bottle starts to slip out of grasp at the same grasp duration (t = 86 s) 
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magnitudes from each accelerometer are archived to separate Excel files for each multiplier. All 

the processes are automated including object selection, object placement, variation of torque 

multipliers, and choice of torque modulation method to eliminate trial-to-trial variation and 

intervention from the observer. 
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4.4 Results 

4.4.1 Summary of results 

A total of five objects have been grasped for the experimental trials: a glass bottle, ketchup 

dispenser, spray bottle, cereal box, and cubic prism. Simulation for each trial lasted 160 seconds, 

and 5 trials were performed for each torque multiplier for each object. The entire length of the 

simulation for one object summed to 416.67 minutes, totaling 2083.33 minutes (34.72 hours, 500 

grasp trials) worth of data. For each trial, the magnitudes of accelerations were computed at the 

Figure 31: A sample plot of the showing the magnitudes of accelerations at the wrist (green) and 

the object (blue). (a) For the case when grasp is maintained 100% of the trail, (b) the root mean 

square value of the differences between the wrist and the object is computed. (c) In the case when 

grasp fails, the grasp duration is computed by visually inspecting the instance of grasp failure, and 

the ratio of time when grasp is maintained is archived. 
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wrist and the object and were plotted with respect to time for analysis as can be seen in Figure 31. 

Grasp duration was measured by visually inspecting the perturbation plots and marking the 

instances where an irregularly high spike in the acceleration magnitude is observed and no 

response from the accelerometer attached to the object can be observed, which response indicates 

that the object was dropped. The relative acceleration magnitudes were computed by measuring 

the differences between the values obtained from the two accelerometers and the root mean square 

error within the timeframe that the grasp was maintained was computed. Literature suggests that 

it is desirable for the grasped objects to follow the same trajectory led by the grasping device [85]. 

The study also demonstrates that grasps with lower differences in the acceleration magnitudes 

result in higher quality grasps. Thus, we evaluate the stability of grasps based on the criteria of the 

differences in the magnitudes of relative acceleration. Grasp robustness was measured with the 

percentage of grasp maintained throughout the trials. 

A simplified summary of the results from the experiments is summarized in Table 3, and 

the resulting root mean square differences in accelerations of objects are plotted in Figure 32-36. 

Results from Table 3 suggest that the synergistic torque modulation may lead to a more stable 

grasp compared to that of the non-methodical uniform torque modulation. It is interesting to note 

that the differences are most drastic with the spray bottle. This may be accountable to the fact that 

Table 3: The average of the root mean square values of the differences in acceleration magnitudes 

throughout the experiment. The values are measured in m/s2. The magnitudes of acceleration is 

less for all objects, indicating more stable grasps with the synergy-based torque control enabled. 
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the spray bottle has the most complex shape of all five objects, and slight changes in the forces at 

the contact points may lead to larger motions than others.  

As the sample size for comparing the two methods are small (n = 6 < 30), paired t-tests 

were performed for each torque multiplier throughout the trials at a 5% significance level to 

evaluate statistically significant differences between the two methods as they are known to be 

reliable even for extremely small sample sizes (2 ≤  n ≤  5) [98][99]. Works that compare 

performances of robotic grasps with two or more different methods have also chosen small sample 

sizes from 6 to 10 based on the premise of the usefulness of t-tests with small sample sizes 

[100][101][102]. Thus, the statistical significance of the differences between the two control 

methods was investigated; resulting p-values were computed as well. T-tests were designed such 

that negative values indicate lower RMS results with the synergy-based control method and vice 

versa for positive values: 

𝑡(6) =
𝑥̅𝑠𝑦𝑛 − 𝑥̅𝑢𝑛𝑖

√𝑠2 (
1

𝑛𝑠𝑦𝑛
+

1
𝑛𝑢𝑛𝑖

)

 

where 𝑥𝑠𝑦𝑛 are RMS values from synergy-based grasps and 𝑥𝑢𝑛𝑖 are RMS values from synergy-

based grasps. T-tests were designed such that a negative t-value correspond to a lower RMS 

difference with the synergy-based control method and a positive t-value corresponds to a higher 

RMS difference measure. The effect sizes of the t-tests were computed using the Cohen’s d 

measure for the student t-test as we are comparing two different methods of torque modulation 

[103]. An effect size less than 0.2 would indicate that the difference between the two methods is 

trivial whereas an effect size greater than 0.8 indicates that the difference is large. 
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4.4.2 T-test analysis of perturbation trials 

Figure 32 shows the mean and standard deviation throughout all trials for each torque multiplier 

for the glass bottle. For the glass bottle, except at the torque multiplier of 0.1, the average root 

mean square errors were increasingly lower with increasing torque multiplier values. With the 

glass bottle, increasing the net torque improved the stability of grasps with the synergy-based 

torque control overall. In the case of uniform torque distribution, increasing the net torque did not 

improve the stability of grasps with the glass bottle. An explanation for this result could be that 

increasing the magnitudes in a non-optimal span of contact forces does not aid in improving the 

Table 4: T-tests performed for all torque multipliers for grasping the glass bottle. Null hypotheses 

are rejected with 5% significance level, and effect sizes are greater than 0.8 for multipliers 0.3 to 

1.0. 

Figure 32: Experimental results for trials with the glass bottle. (left) The average root mean square 

differences for each torque multiplier are plotted with the corresponding standard deviation. 

(right) The average percentage of grasp maintained for each multiplier is plotted with the 

corresponding standard deviation 
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stability of grasps. Increases in the grasp durations were observed for both methods with increasing 

torque multipliers. Table 4 shows statistically significant differences between the two methods at 

torque multipliers 0.3 to 1.0 with p < 0.05, rejecting the null hypothesis with 95% confidence. Also, 

the effect sizes are greater than 0.8 for multipliers greater than 0.3. Thus, an argument can be made 

that the stability of grasps improved with the synergy-based torque control definitively for most 

torque multipliers; for torque multipliers 0.2 and 0.3, no definitive conclusions can be drawn 

statistically, but lower RMS values were observed, nonetheless. Overall, the grasp duration was 

higher with the synergy-based torque control; however, the relation reversed with the higher net 

Figure 33: Experimental results for trials with the ketchup dispenser. (left) The average root mean 

square differences and (right) the average percentage of grasp maintained for each multiplier is 

plotted. 

Table 5: T-tests performed for all torque multipliers for grasping the ketchup dispenser. Null 

hypotheses are rejected with 5% significance level, and effect sizes are greater than 0.8 for 

multipliers 0.4 to 1.0. 
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torques at c = 0.8 to 1. Although the differences are not significant, it may be argued that increasing 

the magnitudes of contact forces along a non-uniform span increases the risk of grasp failure with 

slippery objects like a glass bottle. 

For the case of the ketchup dispenser, the root mean square differences are also lower in 

general with the synergistic torque control as can be seen in Figure 33. A generally decreasing 

trend in the magnitudes with increasing torque multipliers was observed with the synergistic 

method, although an outlying spike is observed with a torque multiplier 0.3. A decreasing trend is 

not observed with the non-synergistic method except at higher torque multiplier values (c > 0.8). 

Like the case with the glass bottle, increasing the magnitudes in a non-optimal span of contact 

forces does not aid in improving the stability of grasps. Table 5 shows statistically non-trivial 

differences between the two methods at torque multipliers 0.4 to 1.0 with p < 0.05, rejecting the 

null hypothesis with 95% confidence. Also, the effect sizes are greater than 0.8 for multipliers 

greater than 0.4. Thus, an argument can be made that the stability of grasps improved with the 

synergy-based torque control definitively for most torque multipliers. For torque multipliers 0.1 

and 0.2, lower RMS values were observed; however, RMS is greater on average with the 

synergistic method at multiplier 0.3, possibly due to irregular behavior from certain trials, 

explained by the high variance at c = 0.3. An increasing trend in the grasp duration was observed 

with increasing torque multipliers, and grasps were maintained longer for all cases using the 

synergy-based torque control.  

For the case with the spray bottle, the root mean square differences are lower with the 

synergistic torque control with low torque multipliers as can be seen in Figure 34. Decreasing 

trends in the magnitudes with increasing torque multipliers were observed for both methods. Table 



76 

6 shows statistically non-trivial differences between the two methods at torque multipliers 0.4, 0.7, 

0.8, and 1.0 with p < 0.05, rejecting the null hypothesis with 95% confidence. Marginally 

significant differences are observed with torque multipliers at 0.2, 0.5, and 0.6 with 10% 

significance. With the effect sizes greater than 0.8 for all regions except at multiplier 0.1 and 0.9, 

improved grasp stability with the synergy-based torque modulation is observed in general. An 

increasing trend in grasp duration was observed with increasing torque multipliers, and grasps 

were maintained longer for most cases using the synergy-based torque control except at c = 1.0.  

Figure 34: Experimental results for trials with the spray bottle. (left) The average root mean square 

differences and (right) the average percentage of grasp maintained for each multiplier is plotted.  

Table 6: T-tests performed for all torque multipliers for grasping the spray bottle. Null hypotheses 

are rejected with multipliers 0.4, 0.7, 0.8, and 1.0 at 5% significance level, and marginally 

significant results are observed at 0.2, 0.5, and 0.6 torque multipliers with 10% significance. Effect 

sizes are greater than 0.8 except at multiplier 0.1 and 0.9. 
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For the case with the cereal box, the root mean square differences are lower in general with 

the synergistic torque control as can be seen in Figure 35. However, a decrease in the magnitudes 

with increasing torque multipliers was not observed. Table 7 shows that the null hypotheses cannot 

be rejected with 95% confidence for any torque multipliers with p < 0.05 throughout. However, 

marginally significant results are observed at 0.1, 0.3, and 0.8 torque multipliers with 10% 

significance with negative t-values and effect sizes greater than 0.8. Unlike the case with other 

objects, the cereal box is held with a lateral grasp, thus relying entirely on the frictional forces; 

thus, grasp stability may not improve with increasing net torques from the lack of contact points 

Figure 35: Experimental results for trials with the cereal box. (left) The average root mean square 

differences and (right) the average percentage of grasp maintained for each multiplier is plotted. 

Table 7: T-tests performed for all torque multipliers for grasping the cereal box. Null hypotheses 

are not rejected for any multipliers at 5% significance level, and marginally significant results are 

observed at 0.1, 0.3, and 0.8 torque multipliers with 10% significance. 
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that constrain the object’s perpendicular motion. On the other hand, an increase in the grasp 

duration was observed with increasing torque multipliers, and grasps were maintained longer for 

all cases using the synergy-based torque control. There was high variability in grasp duration with 

the cereal box, however, which may have also been caused by the lack of contact points 

constraining perpendicular motion. 

For the case with the cubic prism, lower root mean square differences are not observed 

with the synergistic torque control as can be seen in Figure 36. A decreasing trend in the 

magnitudes with increasing torque multipliers was also not observed. Table 8 shows that the null 

hypotheses cannot be rejected with 95% confidence for any torque multipliers with p < 0.05 

Figure 36: Experimental results for trials with the cubic prism. (left) The average root mean square 

differences and (right) the average percentage of grasp maintained for each multiplier is plotted. 

Table 8: T-tests performed for all torque multipliers for grasping the cubic prism. Null hypotheses 

are not rejected for any multipliers at 5% significance level. 
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throughout. For the case of the cubic prism, the effects of using synergy-based torque modulation 

may not be apparent with its shape being the most geometrically uniform, thus differences between 

the two methods may be the most difficult to differentiate. Additionally, more frequent failures in 

grasps are observed at low torque multipliers with the synergistic method. 

Overall, the root mean square values are visibly lower using the synergy-enabled torque 

control compared to the uniform control method, except for the case with the cubic prism. 

Statistical validation shows a strong improvement in the grasp stability with the glass bottle, 

ketchup dispenser, and spray bottle. This suggests that a synergistic control of torques for a 

uniformly shaped object like a cubic prism may not be optimal. On the contrary, the more complex 

the shape becomes, such as the spray bottle and the glass bottle, the differences in the root mean 

square error tends to become larger. 
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CHAPTER 5 

EVALUATION OF TASK PERFORMANCE OF DATA-DRIVEN ROBOTIC 

PROSTHESIS 

5.1 Introduction 

The results from the virtual experiment via CoppeliaSim give a good validation that a synergy-

based approach to grasp force modulation could generate more stable and robust grasps compared 

to those generated with non-methodical uniform torque modulation. As such, the last step in this 

thesis work is to evaluate the performance of the data-driven upper-limb prosthesis by designing 

and testing a physical experiment similar to the one performed via simulation using CoppeliaSim. 

Thus, we need the semi-anthropomorphic robotic hand developed in Chapter 3 to be able to 1) 

generate synergy-enabled pose and 2) generate motions with joint torque control. Also, the KUKA 

IIWA 14 should generate repeatable perturbation trajectories with the prosthetic hand attached to 

the end-effector. Finally, the prosthetic should be able to perform reach-to-grasp sequences to the 

object location and maintain the grasp reliably without human intervention.  

5.2 Methods 

5.2.1 Graphical user interface for control of prosthetic hand 

To enable synergistic pose modulation of the prosthetic hand, first, a graphical user interface (GUI) 

to interact with the device from a computing device was created. Figure 37 shows the GUI for 

controlling the prosthetic hand, developed using MATLAB apps, where it allows front-end 

interfacing such as adding buttons, sliders, spinners, and interactive figures and back-end 
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programming that creates system blocks for each component element automatically. We want two 

modes of interfacing with the prosthetic hand for ease of switching from diagnostic mode to 

experimentation mode. The upper area as shown in Figure 37 is used to vary the positions of the 

individual fingers and joints to verify the validity of interfacing and actuation of the prosthetic 

hand. This was extremely useful in diagnosing issues with either the robotic device or 

communication in case of mechanical, electrical, or software issues. The lower area is used for the 

actual experimentation with the perturbation trial; it allows the user to input the object name and 

trial number, select different grasp actuation modes during the grasp sequences, select the torque 

multipliers, and choose between the two torque modulation modes.  

 

Figure 37: GUI for interfacing with the prosthetic hand from the computing device via MATLAB 

app. The boxed area with the green borders is used for diagnosing with the device. The area 

bordered in red is used for the actual experimentation. 
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5.2.2 Synergistic control of prosthetic hand with MATLAB  

Control input to the prosthetic hand from MATLAB was executed using two Arduino Mega 2560 

microcontrollers: one for the ring and index fingers and the other for the thumb. MATLAB acts as 

the master device with the main clock, and the two microcontrollers function as slaves, thus 

synchronization of the microcontroller clock was not a concern. The system diagram showing 

communication between each microcontroller and MATLAB is shown in Figure 38. MATLAB 

initiates serial communication with the microcontroller upon the startup of the GUI. The 

microcontroller loops indefinitely while executing PID control of the joint poses with or without 

Figure 38: System diagram of communication with MATLAB app and each Arduino Mega 2560 

microcontroller. 
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input from MATLAB. The user chooses the control mode using the GUI interface and applies the 

desired joint configurations by pressing the “Apply Changes” button as shown in Figure 37. Once 

input is prompted from MATLAB, the microcontroller updates the desired joint position 𝜃𝑑𝑒𝑠, and 

PID control is applied accordingly. The case for torque control is detailed in the section below. 

For each iteration, the updated joint position 𝜃𝑖  is written into EEPROM memory on the 

Figure 39: Comparison of the actual prosthetic hand configuration vs. skeletal model generated 

by MATLAB Robotics Toolbox. The skeletal model reflects the actual joint-to-link motions 

characterized with the DH parameter optimization, resulting in medial and distal linkages being 

seemingly skewed. 
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microcontroller. The updated joint positions and timestamp—used in data collection mode only—

are communicated back to MATLAB and are stored when the data storage option is selected in 

GUI. 

 Steps for applying synergistic grasp poses to the prosthetic hand are straightforward after 

the setup. The robustness of the generated grasps was validated visually using a skeletal 

representation of the prosthetic hand using MATLAB’s Robotics Toolbox. A separate GUI that 

allows the user to vary to the first four principal components and show the skeletal representation 

was created. Figure 39 shows the prosthetic hand mounted on a wooden block, and the joint 

configurations were recorded with the desired positions computed with MATLAB. Although there 

may be errors between the actual coordinates of the fingertips and the desired coordinates as 

demonstrated in Chapter 3, the joint values computed from the encoders matched those prompted 

by MATLAB. 
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5.2.3 Joint torque modulation with modeling 

For accurate torque modulation, as we apply a quasi-static approach in the joint torque/end-effector 

force control, the static modeling of the prosthetic hand needed to be established. As such, each 

joint that was to be utilized for torque modulation was modeled accordingly. For example, the PIP 

joints on the index and the ring finger are flexed and extended with a force/torque balance between 

the Kevlar tendon thread and the linear spring as demonstrated in Figure 40.  As a linear spring is 

being used for the extension, the relationship between the spring extension and the joint 

displacement is somewhat tricky. First, the torque equilibrium about the center of rotation of the 

PIP joint can be written as  

Figure 40: Geometric analysis for computing motor to PIP joint torque transmission. (top) The 

regions for analysis of PIP joint torque modulation are circled in red. (bottom) Simplified sketch 

of the PIP joint of the index/ring finger. Geometric properties necessary to compute the 

force/torque equilibrium are labeled. 
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∑𝜏𝑃𝐼𝑃 = 𝑅⃑ × 𝐹𝑠𝑝⃑⃑ ⃑⃑  ⃑ − 𝑟 × (

𝜏 𝑚𝑜𝑡𝑜𝑟

𝑟𝑠
) 

(5.1) 

 𝐹𝑠𝑝 = 𝑘(𝑥′ − 𝑥0)  

with 𝑥0 = 13.2 𝑚𝑚 being the equilibrium length of the music wire steel spring and 𝑘 = 4.54
𝑁

𝑚𝑚
 

with the two springs placed in parallel. 𝑥1 = 14.67 𝑚𝑚 is the pre-extended length between the 

two pins for holding the spring with joint displacement Δ𝜃 = 0 with 𝑑 = 1.47 𝑚𝑚. Changes in 

the spring length as a function of Δ𝜃 can be determined using motion equations like piston-crank 

mechanisms. The distance between one end of the spring pin attached to the base of the prosthetic 

hand and the center of rotation of the peripheral phalanx L is constant regardless of the joint 

displacement as well as R, distance from the center to the other pin. For all Δ𝜃, the length of the 

spring is merely the opposite side of the triangle formed by L, R, and angle 𝜃0 + Δ𝜃, with 𝜃0 the 

base angle formed by the spring and the pins at Δ𝜃 = 0. Thus, the new length 𝑥′ can be formulated 

with the law of cosine 

 𝑥′ = √𝑟2 + 𝑅2 + 2𝑟𝑅𝑐𝑜𝑠(𝜃0 + Δ𝜃) (5.2) 

where 𝜃0 is computed with 

 𝑥1 = √𝑟2 + 𝑅2 + 2𝑟𝑅𝑐𝑜𝑠(𝜃0) = 14.67 𝑚𝑚  
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Also, the cross-product terms in Equation 5.1 become 

 ∑𝜏𝑃𝐼𝑃 = 𝑅 ∙ 𝐹𝑠𝑝,⊥ − 𝑟 ∙ (
𝜏𝑚𝑜𝑡𝑜𝑟

𝑟𝑠
) (5.3) 

 𝐹𝑠𝑝,⊥ = 𝐹𝑠𝑝cos (𝜃𝑠 − Δ𝜃)  

Figure 41: Continued geometric analysis for computing motor to PIP joint torque transmission 

with joint displacement 𝜟𝜽. (top) The regions for analysis of PIP joint torque modulation are 

circled in red. (bottom) Sketch of the PIP joint under displacement 𝜟𝜽. The effects of varying 𝜟𝜽 

on the spring lengths and resulting torque equilibrium is demonstrated. 
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where 𝜃𝑠 is the base angle formed by the spring and body of the phalanx at Δ𝜃 = 0. The tension 

from the Kevlar thread will always act perpendicular to the axis of rotation due to enclosure from 

the thread guide. Thus, the net torque at the PIP joint as a function of the joint displacement Δ𝜃 

and input motor torque becomes: 

 𝜏𝑝𝑖𝑝 = 𝑅 ∙ 𝑘(√𝑟2 + 𝑅2 + 2𝑟𝑅𝑐𝑜𝑠(𝜃0 + Δ𝜃) − 𝑥0) ∙ cos (𝜃𝑠 − Δ𝜃) − 𝑟 ∙ (
𝜏𝑚𝑜𝑡𝑜𝑟

𝑟𝑠
) (5.4) 

For the other joints that rely on spur gears, worm gears, and timing belts for flexion and extension, 

the resulting static torques have a linear, independent correlation with the motor torques and can 

be easily characterized by the gear ratios associated with each transmission mode. 

 Modulation of the motor torques was performed with PID control of the supply current to 

the motors; current monitor capabilities offered by the Pololu Dual TB9051FTG Motor Driver 

Figure 42: The force profile applied on the force sensitive resistor yields varying conductance 

measurements. The results show a highly linear correlation with  𝑹𝟐 = 0.9983. 
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Shield for Arduino were utilized as inputs to the PID controller. There are two current monitor 

outlets for each motor driver for the two motor channels. Each outlet provides a monitor output 

with a resolution of 500 mV/A, and according to the manufacturer, the torque to current correlation 

for the 78:1 Gearmotor at 6V is: 

 𝐼(𝜏) = 0.12 + 0.061𝜏 (5.5) 

with I in amperes and 𝜏 in kg-f·mm. The limitations of current monitoring are that it cannot detect 

current less than 0.14 A—corresponding motor torque at 0.328 kg-f·mm (3.22 mN·m)—and 

measurements of current greater than 1.6 A—torque at 23.93 kg-f·mm (234.71 mN·m)—become 

noisy.  

Figure 43: A comparison of the input force levels and the measured results. A highly linear 

correlation is observed with 𝑹𝟐 = 0.9825, but the relationship is not one-to-one due to systematic 

error. 
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 Contact force modulation using current control of motor torques was validated by 

mounting a calibrated force-sensitive resistor on the index fingertip of the prosthetic hand and 

commanding it to apply pressure on an elevated mount. The force-sensitive resistor (FSR 402, 

Interlink Elec.) has a sensitivity range of 0.2 - 20 N with continuous, analog resolution with a 14.68 

mm diameter active area and was calibrated using the Instron Force Testing System, where the 

results from calibrations are shown in Figure 42. The conductance vs. output force correlation is 

highly linear with 𝑅2 = 0.9983. The prosthetic hand was held on a wooden mount, and the output 

forces as measured by the force-sensitive resistor were compared to the desired force values. The 

input forces varied from 0.025 kg·f to 0.2 kg·f, and the resulting plot comparing input-output 

Figure 44: Current monitor outputs after applying a moving average low pass filter with 50 

samples are plotted. Dead zones and saturation limits of motor torque controls due to either noise 

(top left) or failure to reach desired torque output (bottom left). 
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mapping is shown in Figure 43. Although the mapping is highly linear with 𝑅2 = 0.9829, the 

mapping is not one-to-one due to systematic error. Candidates for statistical error include internal 

friction, unaccounted spring deformations, and uncertainty in geometric measurements. Scaling 

and shifting corrections were made to the command input forces to match the desired force levels. 

 The dead zone and saturation limits of motor torque control with the current monitor inputs 

were tested by sequential ramping the output torque from 10% to 100% of maximum torques (3.17 

to 31.68 mN·m) of grasping tasks with the five objects chosen from Chapter 4, determined from 

the grasp dataset. Outputs from the current monitor was smoothed with a moving average low pass 

filter using 50 samples, resulting in a sampling rate of 100 Hz for the Arduino Mega 2560, an 

adequate number considering that MATLAB serial communication is executed at 45 Hz. Time 

responses from the torque monitor for given input torque are plotted in Figure 44. Analysis of the 

output current levels revealed that the signal noise is greater than 20% for all torque outputs less 

than 12.67 mN·m, 40% of maximum torque, and the signal reached saturation at output greater 

than 28.52 mN·m, 90% of maximum torque. Thus, torque output was defined by the relation 

 

𝜏𝑜𝑢𝑡 = {

0,              𝜏𝑖𝑛 < 12.67 𝑚𝑁 ∙ 𝑚
𝜏𝑖𝑛          12.67 ≤ 𝜏𝑖𝑛 ≤ 28.52
28.52                      𝜏𝑖𝑛 ≥ 28.52

 (5.6) 

However, the experiment is limited to the range where 𝜏𝑜𝑢𝑡 ≤ 28.52 𝑚𝑁 ∙ 𝑚 as it will be detailed 

in section 5.3. 
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5.2.4 Trajectory generation with KUKA IIWA 14 

For generating the perturbation sequences, the KUKA IIWA 14 serial manipulator was 

programmed to follow the trajectories containing the perturbation waypoints. The Robot Operating 

System (ROS) and its package for KUKA were utilized to communicate with a Linux Ubuntu 

device, used as a master to communicate with KUKA. Cubic B-spline trajectories were generated 

to allow smooth, non-abrupt motions between waypoints. To test the repeatability of the 

perturbation sequences, the prosthetic hand was mounted to the end-effector of the KUKA IIWA 

14 serial manipulator, and the end-effector coordinates were recorded for validation. Figure 45 

Figure 45: Trajectory means and the 95% confidence intervals of the KUKA IIWA 14 end-

effector coordinates for X, Y, and Z axes. Each peaked curves (𝒑𝟏, 𝒑𝟐, 𝒑𝟑) corresponds to a pair 

of motion to and from the center and surface of the sphere illustrated in Figure 28.  
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show sections of the perturbation sequence, where the trajectory means in each X, Y, and Z 

coordinate and their corresponding 95% confidence intervals are plotted. The deviations were 

greatest at the Z-axis with the mean deviation of 0.765 cm and were the least along the Y-axis at 

0.49 cm. The propagated uncertainty of the absolute distance of the end-effector with respect to 

the sphere center can be modeled by: 

𝑓 =  √𝑋2 + 𝑌2 + 𝑍2 

𝜎𝑓 = √(
𝜕𝑓

𝜕𝑋
)
2

𝜎𝑋
2 + (

𝜕𝑓

𝜕𝑌
)
2

𝜎𝑌
2 + (

𝜕𝑓

𝜕𝑍
)
2

𝜎𝑍
2 

 

∴ 𝜎𝑓 = √(
𝑋

√𝑋2 + 𝑌2 + 𝑍2
)
2

𝜎𝑋
2 + (

𝑌

√𝑋2 + 𝑌2 + 𝑍2
)
2

𝜎𝑌
2 + (

𝑍

√𝑋2 + 𝑌2 + 𝑍2
)
2

𝜎𝑍
2 (5.6) 

 Computing for the average standard deviation 𝜎𝑓 yielded 0.800 cm. The margin of error is less 1 

cm compared to 10 cm perturbation distance—8% error with 95% confidence interval—thus the 

perturbations can be assumed repeatable. 

5.2.5 Sensor characterization 

Previous studies support the use of a set of accelerometers to characterize the stability of grasps 

using the difference in magnitudes of accelerations between the object and the hand/grasping 

device [104][105][106]. Thus, characterization of the relative accelerations between the prosthetic 

hand and the object was achieved with a pair of ADXL 335 3-axis accelerometers. As we have 

observed a maximum acceleration magnitude of 4.246 m/s2 throughout the simulation with an 

average standard deviation of 0.2806 m/s2, the specifications of ADXL 335 seemed suitable for 

our experimental setup with an operating range of -3 to 3 g (-29.43 to 29.43 m/s2). The sensitivity 
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of the device is 300 mV/g, whereas the Arduino Mega 2560 analog input has a 4.9 mV resolution, 

resulting in the measurement resolution of 0.16 m/s2. Offset in the differences between the two 

accelerometers have been characterized and calibrated in each axis, resulting in an average root-

mean square error of 0.22 m/s2 regardless of the relative orientation between the two sensors. 
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5.3 Experimentation 

5.3.1 Experimental method 

The protocols for conducting the experiments are almost identical to those followed in the 

simulated experiments detailed in Chapter 4; however, some differences are made to include 

changes in the perturbation patterns and choice of domain for the torque multiplier inputs. For 

comparison with prior grasp perturbation studies, a set of rotational perturbations about the wrist 

was included in series with the linear perturbation from the sphere center to the outer surface points 

[107][108][109][110]. The rotation sequence begins at 0° and rotates back and forth from 5°, -5°, 

10°, -10°, and up to 45° and -45°, increasing orientation by ±5° increments. The order of linear 

perturbations and rotational perturbations are switched from trial to trial for randomization. Also, 

Figure 46: Prosthetic device mounted to the end-effector of the KUKA IIWA 14 serial 

manipulator. The microcontrollers and the PCB are covered with fabric to attain better view of 

grasps formed. 
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as we determined in section 5.2, the range of torque multiplier c is confined between 0.4 to 0.9 in 

0.1 increments to maximize the use of intervals that allow efficient torque modulation, avoiding 

dead zones as much as possible and saturation of torque efforts. The remaining experimental 

protocols remain the same as those followed in simulation; perturbation trials were performed on 

the same five objects: glass bottle, cubic prism, cereal box, spray bottle, and ketchup dispenser. 

Prior to conducting the perturbation experiments, the prosthetic hand was mounted to the 

KUKA arm using a custom fabricated mount as shown in Figure 46. The mount encloses all 

internal wirings, microcontrollers, and custom printed circuit boards, and it is locked to the 

prosthetic hand and KUKA arm with 21 M6 screws. Power and communication connections were 

minimized to four lines, three for serial communications from the three microcontrollers to the 

laptop device and one 6V power source connected to a wall plug, so that all the necessary electrical 

and signal connections are secured to withstand hours of perturbations. Furthermore, we rely on 

Figure 47: Grasps formed for each of the five objects: (Top left) glass bottle, (Top middle) 

ketchup dispenser, (Top right) cubic prism, (Bottom left) spray bottle, (Bottom right) cereal box. 
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MATLAB for all kinematic and dynamic computations as well as storing data and communication 

with the microcontrollers.  

Unlike the case with the simulated experiments, the reach-to-grasp sequence of the 

prosthetic hand to form a synergistic grasp on an object is unavoidable, especially when human 

intervention is not desirable throughout the entire perturbation trial. Thus, we used a custom-made 

table, made with PVC pipes and foam board, to place the objects during the pre-grasp phase, so 

that the prosthetic hand/KUKA system could perform a reach-to-grasp sequence without 

intervention from the observer. For each object shown in Figure 47, a customized stand fabricated 

with PLA is placed at an optimal position to hold the object above the surface of the table. 

Positionings of the stands are chosen such that the prosthetic hand does not collide with the object, 

the table, and the stand itself during the reach to grasp phase. The base of the table was placed 40 

cm from the center of the perturbation sequences to avoid collision with the prosthetic hand 

throughout the trial. The trajectories for the reach-to-grasp phases were customized for each object 

to maximize grasp successes. Factors that were considered in the formation of the trajectories 

include object geometry, pre-grasp pose geometry, directions of motions formed by the fingers of 

the prosthetic hand, and locations of the PLA stands with respect to the object and the prosthetic 

hand. As the main focus of this thesis work is the stability and robustness of held grasps, 

optimization of trajectories is not performed extensively. However, choices for trajectory selection 

were limited to avoid any undesired collisions or motions; thus, the effects of systematic errors 

should be minimized. The different stages in hand transportation from pre-grasp before contact 

with the object to stable grasp after picking up the object are shown in Figure 48. 
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5.3.2 Grasp modulation protocols 

The following steps were observed for each perturbation trial: 

1. The base of the prosthetic hand starts at a default position away from the target object before 

the reach-to-grasp phase. The prosthetic hand joints are all configured to their inertial positions in 

the pre-grasp phase. With the GUI for interfacing with the prosthetic hand (Figure 37), the trial 

number, torque multiplier c, and object name are inputted before proceeding with the trial. The 

MATLAB  app configures the robotics model to the synergistic pose associated with the inputted 

object, but changes are not applied to the prosthetic hand until Apply Changes button is pressed 

via GUI. The prosthetic hand approaches the object placed on a table as the Ubuntu device initiates 

the reach-to-grasp trajectory associated with the object for the trial. 

2. When the trajectory for the approach is complete, the synergistic pose associated with the 

selected object is partially initiated. This allows the thumb to reach its goal configuration while 

the index and ring fingers do not make contact with this object. This step is necessary to avoid 

Figure 48: The stages of hand transportation from pre-grasp before contact with the object to 

stable grasp after picking up the object.  
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premature contact with some fingers (typically the index and the ring fingers) while the others 

(usually the thumb) are reaching toward the goal positions. After the thumb’s motion is stabilized, 

the fingers close in on the object by fully enabling the synergistic pose (Apply Full Pose on Figure 

37). When the synergistic pose is formed, one of the two methods of torque modulation—

synergistic or uniform—is selected and applied to the prosthetic hand (Apply Force Control or 

Apply Uniform Control). After approximately 20 seconds, the KUKA arm returns to the initial 

position of the perturbation phase. This step lasts for approximately 60 seconds; Figure 48 shows 

the motions involved in steps 1 and 2. 

3.  After the KUKA arm reaches the initial state of the perturbation sequences, data collection of 

the KUKA joint states, prosthetic hand joint displacements and torques, and measurements from 

the accelerometers is initiated. The perturbation trajectories are initiated with the ROS terminal, 

and the order of the perturbation sequences (rotational vs linear) are interchanged for different 

trials. Figure 49 shows images of the directions of motion for the two different perturbation 

sequences. The combined perturbation sequences last 310 seconds—160 seconds for the linear 

perturbation and 150 seconds for the rotational perturbation. While the object is held within grasp, 

Figure 49: The perturbation sequences while grasping a glass bottle. The left image shows the 

rotational perturbation sequence, and the right image shows the linear perturbation sequence. 
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any changes in joint displacements affect the grasp as the Jacobian matrices and the virtual spheres 

of the robotics model in MATLAB are updated, thus are the desired output torques. Instances of 

failed grasps are recorded for analysis on grasp robustness—refer to Appendix C. 

4. At the end of the perturbation sequences, data measurements are halted, and the prosthetic 

hand’s joint configurations return to its initial position. Preceding the next trial, two minutes are 

used to cool the temperature of the DC motors as the accumulation of heat due to prolonged trials 

causes damage to the motors and the structure of the prosthetic hand. 
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5.4 Results 

5.4.1 Summary of results 

The differences in the acceleration magnitudes and the percentage of grasps retained within the 

trials are investigated with the perturbation experiment with the prosthetic hand and KUKA arm 

system. Again, a total of five objects have been grasped for the experimental trials, and six trials 

were executed for each torque multiplier, resulting in 360 total grasp trials (2 methods × 5 objects 

× 6 torque multipliers × 6 trials). Simulation for each trial lasted 310 seconds, resulting in 1860 

minutes (31 hours) worth of data. Like the case with the simulated results, the magnitudes of 

accelerations were measured with the accelerometers at the wrist and the object and were plotted 

with respect to time as can be seen in Figure 50. Unlike with the simulation, however, the 

beginning of the perturbation sequence was also determined with the spike in the accelerometer 

measurements; the time of grasp failure was determined likewise. 

Figure 50: (left) A sample plot of the showing the magnitudes of accelerations at the wrist (red) 

and the object (blue). The time region corresponding to the perturbation sequences are detected 

starting from an initial spike in the acceleration magnitude. (right) Root mean square of the 

differences is computed for each trial. 



102 

A simple summary of the average root mean square differences in acceleration magnitudes 

from the perturbation experiments are shown in Table 9. Results from Table 9 somewhat agree 

with the results attained from the simulation; however, the average RMS value for the ketchup 

dispenser is higher with the synergy-enable control. Again, the differences are most drastic with 

the spray bottle. Grasps were retained for all torque multipliers for the ketchup dispenser, spray 

bottle, and the cereal box; failures in grasps were observed with low torque multipliers (and for 

some high torque multipliers using the uniform control method) for the glass bottle and the cubic 

prism. As with the simulation, t-tests were performed, and the corresponding p-values were 

computed. 

Table 9: The average of the root mean square values of the differences in acceleration magnitudes 

and the standard deviation (𝝁𝒂𝒄𝒄 ± 𝝈𝒂𝒄𝒄) throughout the experiment. The values are measured in 

m/s2. The magnitudes of acceleration are less for all objects except for the ketchup dispenser, 

indicating more stable grasps with the synergy-based torque control enabled. 
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5.4.2 T-test based analysis of perturbation trials 

Figure 51 shows the mean and standard deviation throughout all trials for each torque multiplier 

for the glass bottle. For the glass bottle, except at the torque multiplier of 0.4, the average root 

mean square errors were lower with synergy-based torque control for all other torque multipliers. 

A generally decreasing trend of the RMSE with increasing torque multipliers is observed except 

for a slight increase (< 5%) at c = 0.8. Table 10 show statistically non-trivial differences between 

the two methods at torque multipliers 0.6 to 0.9 with p < 0.05, rejecting the Null hypothesis with 

95% confidence. Also, the effect sizes are greater than 0.8 for multipliers greater than 0.6. Thus, 

Figure 51: Results from the perturbation trials with the glass bottle. (left) Plot of the average root 

mean square of differences in acceleration magnitudes with error bars. (right) Percentage of grasp 

retained throughout the trials plotted also as failure of grasps did occur with the glass bottle. 

Table 10: T-tests performed for all torque multipliers for grasping the glass bottle. Null hypotheses 

are rejected with 5% significance level, and effect sizes are greater than 0.8 for multipliers 0.6 to 

0.9. 
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an argument can be made that increasing the net torque improved stability of grasps with the 

synergy-based torque control overall. In the case of uniform torque distribution, increasing the net 

torque did not improve the stability of grasps with the glass bottle; in fact, an increasing trend is 

observed with the torque multipliers. This agrees with the observations that were made with the 

simulated results that a non-optimal span of contact forces does not aid in improving the stability 

of grasps. As observed in the simulation, a generally increasing trend in the grasp durations was 

observed for both methods with increasing torque multipliers. Overall, the grasp duration with 

synergy-based control was greater than or equal to those without synergy-enabled control.  

Figure 52: Results from the perturbation trials with the cubic prism. (left) Plot of the average root 

mean square of differences in acceleration magnitudes with error bars. (right) Percentage of grasp 

retained throughout the trials plotted also as failure of grasps did occur with the glass bottle. 

Table 11: T-tests performed for all torque multipliers for grasping the cubic prism. Null 

hypotheses are rejected with 5% significance level, and effect sizes are greater than 0.8 for 

multipliers 0.4, 0.6, 0.7, and 0.8. 
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Figure 52 shows the mean and standard deviation throughout all trials for each torque 

multiplier for the cubic prism. For the cubic prism, the average root mean square errors were lower 

with synergy-based torque control at all torque multipliers. However, a decreasing trend of the 

average root mean square errors were not observed with increasing torque multiplier values with 

the synergy-based method. The lightness of the mass of the cubic prism may account for the fact 

that increasing the magnitudes of the net contact forces does not affect the quality of grasps as 

much as with heavier objects. Increasing the net torque with the uniform torque distribution 

slightly improved the stability of grasps within 0.4 to 0.6 torque multiplier values. Table 11 shows 

statistically non-trivial differences between the two methods for torque multipliers 0.4, 0.6, 0.7, 

and 0.8 with p < 0.05, rejecting the Null hypothesis with 95% confidence. Also, the effect sizes 

are greater than 0.8 for multipliers greater than 0.4. Thus, an argument can be made that the 

stability of grasps improved with the synergy-based torque control definitively for certain torque 

multipliers; for others, no definitive conclusions can be drawn statistically, but lower RMS values 

were observed, nonetheless. Increases in the grasp durations were observed for both methods with 

increasing torque multipliers, but a few cases of grasp failures were observed with the non-

synergistic method at torque multiplier 0.9. Overall, the grasp duration was higher with the 

synergy-based torque control.  
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 Figure 53 shows the mean and standard deviation throughout all trials for each torque 

multiplier for the cereal box. For the cereal box, the average root mean square errors were slightly 

lower with synergy-based torque control at all torque multipliers. Decreasing trends of the average 

root mean square errors were not observed with increasing torque multiplier values with both the 

synergy-based method and the uniform torque modulation method. In the case of the cereal box, 

Table 12 suggests that statistically non-trivial differences between the two methods at torque 

multipliers are not observed for all multipliers with p > 0.05, failing to reject the Null hypothesis 

with 95% confidence. The inconclusiveness of the results complies with those observed in the 

simulated experiments; the lack of contact points that constrain the object’s perpendicular motion 

Figure 53: Results from the perturbation trials with the cereal box. Plot of the average root mean 

square of differences in acceleration magnitudes with error bars. 

Table 12: T-tests performed for all torque multipliers for grasping the cereal box. Null hypotheses 

are not rejected for all multipliers at 5% significance level. 
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does not help with observing improved grasp stability with the synergy-based torque modulation 

method. Grasps were maintained 100% for all the trials, thus no comparison could be made in 

terms of the grasp robustness. 

 Figure 54 shows the mean and standard deviation throughout all trials for each torque 

multiplier for the ketchup dispenser. For the ketchup dispenser, the average root mean square 

errors were lower with synergy-based torque control only at torque multipliers 0.4 and 0.5. Also, 

a decreasing trend of the average root mean square errors were observed with increasing torque 

multiplier values for both synergy-based and uniform torque modulation method. Table 13 shows 

Figure 54: Results from the perturbation trials with the ketchup dispenser. Plot of the average root 

mean square of differences in acceleration magnitudes with error bars. 

Table 13: T-tests performed for all torque multipliers for grasping the ketchup dispenser. Null 

hypothesis rejected only at torque multiplier 0.5 at 5% significance level; however, the effect size 

is 0.4433, a less than moderate difference in RMSE. 
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statistically non-trivial differences between the two methods only for torque multipliers 0.5 with 

p < 0.05, rejecting the Null hypothesis with 95% confidence; however, the differences are not 

significant as the effect size is less than 0.5, and less than moderate difference between the two 

methods is observed. This result somewhat complies with the observations from the simulated 

experiment as differences in the RMSE in regions 0.4 to 1.0 torque multipliers are small (< 0.05 

𝑚

𝑠2), and measurement error with the accelerometers are much higher (0.22 
𝑚

𝑠2). Again, for the 

ketchup dispenser, grasps were maintained 100% for all the trials, thus no comparison could be 

made in terms of the grasp robustness. 

Figure 55: Results from the perturbation trials with the spray bottle. Plot of the average root mean 

square of differences in acceleration magnitudes with error bars. 

Table 14: T-tests performed for all torque multipliers for grasping the spray bottle. Null 

hypotheses are rejected at all torque multipliers at 5% significance level. Also, the effect sizes are 

greater than 0.8 for all multipliers. 
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Figure 55 shows the mean and standard deviation throughout all trials for each torque 

multiplier for the spray bottle. For the spray bottle, the average root mean square errors were lower 

with synergy-based torque control at all torque multipliers. Also, a decreasing trend of the average 

root mean square errors were observed with increasing torque multiplier values for both methods. 

Table 14 shows statistically non-trivial differences between the two methods for all torque 

multipliers with p < 0.05, rejecting the Null hypothesis with 95% confidence. Also, the effect sizes 

are greater than 0.8 for all multipliers. Thus, an argument can be made that the stability of grasps 

improved with the synergy-based torque control definitively for all torque multipliers with the 

spray bottle. Grasps were maintained 100% for all the trials, thus no comparison could be made in 

terms of the grasp robustness. 

Overall, the root mean square values are lower using the synergy-enabled torque control 

compared to the uniform control method for the glass bottle, cubic prism, and spray bottle. 

Statistical validation agrees with some of the results attained from simulation with strong 

improvements in the grasp stability with the glass bottle and spray bottle. Unlike simulated results 

using the ketchup dispenser, improved grasp stability is not observed in physical experimentation. 

This is expected as improved grasps were observed at lower torque multipliers with the simulation 

(c = 0.1 to 0.3), where the lowest tested torque multiplier for the physical experiment was 0.4. The 

performances of grasps with the cubic prism were unexpectedly good compared to those in 

simulation. This discrepancy may arise from the differences in the contact characteristics specific 

to the stereolithography design (STL) used in simulation compared to the actual contact 

characteristics of the cubic prism. Also, while the fidelity of the simulation was tested with a set 

of virtual experiments, the contact dynamics in terms of restitution and friction may be different 

from those in the real world; thus, real-world results may be more reliable than those in simulation. 
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CHAPTER 6 

CONCLUSION 

6.1 Research contributions 

The data-driven design and control method of a semi-anthropomorphic prosthetic hand is proposed 

in this thesis. Through this work, progress is made in the development of reduced-degrees of 

freedom grasps from human subject experiments, and a data-driven design and control method of 

an upper-limb prosthesis is explored. Additionally, this thesis introduces the utilization of 

synergistic contact forces to stabilize grasps while applying postural synergies in forming grasp 

poses to maximize the functionalities of a prosthetic hand. These are all accomplished while 

keeping the cost of fabrication and the overall weight below those for some of the more 

sophisticated robotic upper-limb prostheses on market. Two main methods are developed in this 

thesis to develop a data-based design and control of a semi-anthropomorphic hand: 

1. Grasp characterization with kinematics and contact dynamics of daily grasps: A 

database of grasps is attained from human subject experimentation with daily objects to 

extract the core kinematic and contact kinetic components of grasps. Machine learning 

methods such as PCA and LDA are adopted to develop a grasp synergy matrix and grasp 

classifiers that allow mapping between the grasp feature space and the latent space 

represented by the principal components from the database. Using these mapping methods, 

anthropomorphic grasps are translated to robotic grasps by using virtual spheres that are 

generated by a set of contact points at the fingertips and the palm. The performances of 

the classifiers and the synergy matrix are evaluated using classification metrics such as 

Calinski-Harabasz indices, F1-scores, and confusion matrices. 
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2. Data-driven design and control of a semi-anthropomorphic prosthetic hand: The 

results from the grasp database and literature study on the correlation of the hand digits in 

daily grasp motivate the design and control method of a semi-anthropomorphic hand. The 

number of digits is reduced to three to reduce control complexity and power requirements. 

The prosthetic hand is controlled using synergistic mapping of the pose and contact forces 

of the human hand to the robotic hand model. The functionality of the semi-

anthropomorphic hand and improved grasp stability using the proposed grasp dataset are 

first validated with simulation using CoppeliaSim. After statistical validation of the 

benefits of synergy-based modulation of joint pose and torques using t-tests, the physical 

system is also tested by mounting the semi-anthropomorphic hand system to the KUKA 

serial manipulator. Grasp stability is evaluated again with t-tests and improved stability 

with synergy-based joint pose and torque modulation is observed. 

6.2 Applications and future works 

The dataset of grasp kinematics and contact kinetics have numerous potential applications and 

expansion to future research not only in robotic grasps but also in non-robotics related fields such 

as sports therapy, grasp rehabilitation of stroke patients, and grasp synthetic in virtual 

environments.  

In the field of robotic upper-limb prostheses, future designs may allow modification of 

grasp choices not by the individual digits of the hand, but by the object to be grasped using control 

variables in the latent space of the grasp dataset as demonstrated in this thesis work. For example, 

combined pose and contact force inputs can be used in the EMG control of a soft synergy-inspired 

robotic hand by Fani. et. al., where in addition to their EMG-based generation of robotic hand 
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poses, piezoresistive pressure sensors can be added to the fingertips such that contact forces can 

be modulated simultaneously so that the generated grasps are similar to natural human grasps [111]. 

Furthermore, this thesis work demonstrates the improvement in grasp stability and robustness by 

utilizing the combined synergy matrix of grasp kinematics and contact kinetics; thus, strategic 

methods in joint torque modulation of synergistic robotics hands (e.g. the four-finger tendon-

driven hand by Yen et. al. or the synergy-inspired three-fingered hand by Chen et. al.) may be 

adopted for improved grasp stability and dexterity [77][78][80]. 

Another example for application of this work include rehabilitation for patients with 

impaired grasps. Currently, the most adopted rehabilitation method for recovering healthy grasps 

of stroke patients is the Graded Repetitive Arm Supplementary Program (GRASP), where the 

clinicians monitor the kinematics and kinetics of grasps while providing psychological support for 

the patient to perform the rehabilitation tasks [112]. However, automation of the GRASP program 

may be accomplished with a therapeutic gaming system, where the grasp database established in 

this thesis work is used as a baseline for the patients to obtain healthy grasps of daily objects, while 

also getting psychological support by providing a metric in the improvement of grasps as many 

video games do with scoring systems. 

6.3 Summary 

This thesis work demonstrates a data-driven approach to designing and controlling a semi-

anthropomorphic hand. While the span of objects test is limited to a subset of daily objects and 

statistical validation is even more limited to a smaller subset, significant differences between the 

synergy-enabled grasp methods and the previous methods are observed from classification tests, 

simulated experiments, and experiments with the physical system. It is hoped that this thesis work 
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makes meaningful contributions to the progress in closing the gap between the functionality of the 

human hand and robotic upper limb prostheses.  
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APPENDIX A 

MASS OF VOLUME OF OBJECTS USED IN HUMAN SUBJECT TRIALS 

Objects Grasp Taxonomy Volume (cm3) Mass (g) 

Tennis ball power sphere 157.5 57.2 

Glass bottle medium wrap 102.51 194.4 

Kitchen spoon light tool 41.53 48.5 

Book parallel extension 1172.86 908 

Bowl palmar 77.03 332.8 

Credit card lateral 2.42 2.1 

CD precision disk 11.14 14.6 

Cereal box parallel extension 1682.69 219.1 

Comb adducted thumb 22.05 19.8 

Game controller lateral 69.15 111.4 

Cubic prism sphere finger 129.8 30.6 

Dish parallel extension 180.43 816.5 

Dispenser medium wrap 386.47 37.3 

Door lever small diameter 92.84 323.4 

Dust brush medium wrap 293.99 94.9 

Fork prismatic finger 5.59 5.7 

Hammer small diameter 415.08 913.1 

Lid of a jar precision disk 17.02 13.1 

Key tip pinch 0.6 1.1 

Knife index finger extension 27.58 17.8 

Measuring cup adducted thumb 28.1 24.8 

Milk carton large diameter 1890.56 604.7 

Mouse precision sphere 14.16 64.1 

Mug lateral 164.2 377.1 

Notebook parallel extension 621.4 249.5 

Peeler adducted thumb 26.99 16.8 

Pen writing tripod 9.97 12.1 

Tape roll small diameter 357.69 140 

Screwdriver prismatic finger 5.75 5.4 

Spoon prismatic finger 4.98 4.5 

Spray sphere finger 495.11 486.7842 

Espresso cup tip pinch 49.88 114.8 

Toothbrush stick 29.78 17.7 

Tumbler large diameter 314.97 195 

Whiskey glass large diameter 72.91 304.3 
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APPENDIX B 

GRASP TAXONOMY [25] 
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APPENDIX C 

CASES OF GRASP SUCCESSES AND FAILURES 

 

GLASS BOTTLE: 

 

 

CUBIC PRISM: 

 

 

CEREAL BOX: 

 

 

Trial # w w/o w w/o w w/o w w/o w w/o w w/o

1 (rotation) X X X X O X O O O O O O

2 (linear) O X X X O X O O O O O O

3 X O O O O O O O O O O O

4 X X O X O O O O O X O O

5 X X O X O O O O O O O O

6 O X X X O X O O O O O O

O = SUCCESS

X = FAILURE

Multiplier

0.90.4 0.5 0.60                          0.7 0.8

Trial # w w/o w w/o w w/o w w/o w w/o w w/o

1(rotation) O X O X O O O O O O O O

2 (linear) X X O O O O O O O O O O

3 O O O O O O O O O O O X

4 O O O O O O O O O O O O

5 O X O O O O O O O O O O

6 X O O O O O O O O O O O

O = SUCCESS

X = FAILURE

Multiplier

0.90.4 0.5 0.60                          0.7 0.8

Trial # w w/o w w/o w w/o w w/o w w/o w w/o

1(rotation) O O O O O O O O O O O O

2 (linear) O O O O O O O O O O O O

3 O O O O O O O O O O O O

4 O O O O O O O O O O O O

5 O O O O O O O O O O O O

6 O O O O O O O O O O O O

O = SUCCESS

X = FAILURE

Multiplier

0.90.4 0.5 0.60                          0.7 0.8
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KETCHUP DISPENSER 

 

 

SPRAY BOTTLE: 

  

Trial # w w/o w w/o w w/o w w/o w w/o w w/o

1(rotation) O O O O O O O O O O O O

2 (linear) O O O O O O O O O O O O

3 O O O O O O O O O O O O

4 O O O O O O O O O O O O

5 O O O O O O O O O O O O

6 O O O O O O O O O O O O

O = SUCCESS

X = FAILURE

Multiplier

0.90.4 0.5 0.60                          0.7 0.8

Trial # w w/o w w/o w w/o w w/o w w/o w w/o

1(rotation) O O O O O O O O O O O O

2 (linear) O O O O O O O O O O O O

3 O O O O O O O O O O O O

4 O O O O O O O O O O O O

5 O O O O O O O O O O O O

6 O O O O O O O O O O O O

O = SUCCESS

X = FAILURE

Multiplier

0.90.4 0.5 0.60                          0.7 0.8
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