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Abstract

This paper concerns the connection between Mathematics and Music.
After a description of the nature of sound, the problem of the construc-
tion of the musical scale, from the studies of Pythagoras to the tempered
scale is considered. An algorithm for the construction of a scale is given.
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1 Introduction

Some year ago we participated in a lab entitled “Models for the Community”.
In order to show the strict connection between Mathematics and Physics, we
decided to use a subject that is really interesting for young students: music.
We considered several aspects starting from the nature of sound and its prop-
agation in waves. This one is the part mostly connected to Physics. After we
treated the musical scale from the studies of Pythagoras to the tempered scale
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of nowadays. Due to the age of the students we did not use the Fourier series
but just the properties connected to trigonometric functions, already known
by high school students. Hence, in this paper, firstly we recall our past teach-
ing experiences and finally we give a short algorithm for the construction of
a temperate musical scale. The paper is organized as follows: in Section 2 we
consider sound waves from a physical point of view; in Section 3 we deal with
the problem of a musical scale construction and we present an algorithm for
doing it; finally, in Section 4 we draw conclusions.

2 Riding the sound waves

Sound is a vibratory motion of the air or any other media, it does not travel
in a vacuum. The sound is determined by vibrating bodies and transmitted
to our ears without sensible motions of the air. At this point our ears start to
vibrate, and this vibration is interpreted by the brain as sound. Clearly vibra-
tory phenomena have waveform. We may say that sound waves travel through
air almost in the same way as water waves travel through water. An acoustic
resonator is a device that exhibits resonance or resonant behavior, that is, it
naturally oscillates at some frequencies, called its resonant frequencies, with
greater amplitude than at others. It is used in order to enhance the effect of
the vibrations of the air and make the sound more clear. The oscillations in an
acoustic resonator are mechanical. Resonators are used to either generate waves
of specific frequencies or to select specific frequencies from a signal. Musical in-
struments use acoustic resonators that produce sound waves of specific tones. A
sound wave has the same characteristics as any other type of waveform: wave-
length, frequency, and amplitude. The wavelength is the distance from one crest
to another of a wave. The frequency of sound is the rate at which the waves pass
a given point, i.e. it is the number of oscillations (cycles) that occur each second
of time. The amplitude, is the peak deviation of the function from zero. The
simplest representation of a sound wave at a fixed point of the space is given by
the sine wave, that is a sinusoid. Its most basic form as a function of time t is:

y(t) = A sin(2πνt+ φ) = A sin(ωt+ φ)

where: A is the amplitude of the wave, ν is the fundamental frequency, ω = 2πν
is the angular frequency, that is the rate of change of the function argument
in units of radians per second, φ is the phase, and specifies (in radians) where
in its cycle the oscillation is at t = 0. If we fix our attention on sound waves
generated by strings, the fundamental frequency ν is given by

ν =
1

2L

√
T

µ
,
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where L is the length of the string, T is its tension, and µ is its density. Sine
waves are very important in music, they may be considered the expression of
the vibration with a single frequency. Generally the motion of the source of
sound is more complicated and the produced sound waves are a sum of sev-
eral sine waves with different frequencies, all occurring at the same moment.
These frequencies are all multiples of the fundamental one ν. A more datelined
discussion of these topics is given in [4].

3 Construction of a musical scale

Around 500 B.C. Pythagoras studied the musical scale connecting the sounds
with the length of the string that produces them, by using a simple mechanical
tool called monochord. Pythagoras determined a seven notes scale using just
three ratios between notes: 2:1 called octave (because it is the eighth note in
a seven-note scale), 3:2 called a perfect fifth (because it is the position of the
fifth note in a modern scale), 4:3 called a perfect fourth (because it is the posi-
tion of the fourth note in a modern scale). After he created the second note by
increasing the fifth of another fifth (9:4), and by using the 1/2 rule in order to
remain in the same octave, hence the second note corresponds to 9:8. Similarly:

• the ratio for the third was 9/8× 9/8 = 81/64;
• the ratio for the sixth was 9/8× 3/2 = 27/16;
• the ratio for the seventh was 3/2× 9/8× 9/8 = 243/128.

Some of these ratios were corrected in the so called natural just scale, that
is a scale in which the frequencies of notes are related by ratios of small
whole numbers (just intonation). This tuning system of the later ancient Greek
modes was codified by Claudius Ptolemy (about 85-165 AD) and developed by
Gioseffo Zarlino (Istitutioni Harmoniche 1558). The corrections made on the
Pythagorean scale are the following: 81:64 was corrected in 5:4, 27:16 in 5:3
and 243:128 in 15:8 (see the table below).

note C D E F G A B C

Pythagorean
1

1
1 9/8 81/64 4/3 3/2 27/16 243/128 2/1

natural
1

1
1 9/8 5/4 4/3 3/2 5/3 15/8 2/1

Nowadays the most used musical scale in Western countries is the equal
temperament scale, which divides the octave into 12 parts, all of which are
equal on a logarithmic scale, that we describe in the last part of the paper. It
is usually tuned relative to a standard pich of 440Hz, called A440.
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3.1 The tempered scale

As shown, the vibration of a cord is the result of the overlapping of the fre-
quencies f, 2f, 3f, ..., called harmonics of the fundamental frequency f . Some
experiments, performed with a monochord, highlight that doubling the fre-
quencies of consecutive sounds gives a especially nice effect when they overlap.
To build and tune instruments with fixed sounds (harpsichord, piano, . . . ) the
tempered scale is used. Moreover, this scale offers the possibility of modular
compositions, i.e. has the feature to move from a tonality to another.

In order to construct musical scales, that are nice to hear, it is necessary
to follow certain rules: if a scale has a frequency f then it should have also the
frequency 2f and then the frequency f/2. The main issue is that the sound
sequences give a melody portable on our scale, in other words the melody
should be able to be reproduced by starting from a sound of any frequency.
The melody is characterized by the ratios of the frequencies of consecutive
sounds for psychoacoustic reasons. Since we wish to play a melody from dif-
ferent frequencies, these ratios should be assigned constant. Let

f0
440Hz

< f1 < f2 < · · · < fm = 2f0
880Hz

, (1)

be the frequencies of the sounds in the octave [f, 2f ], which is subdivided into
m intervals. Now, let us shift the melody (1) right an interval, i.e. by starting
from f1 and by ending at fm+1. We obtain the following two melodies:

f0 < f1 < f2 < · · · < fm,

f1 < f2 < f2 < · · · < fm+1.

If the initial melody has not been altered, then it holds that:

f1
f0

=
f2
f1
,

f2
f1

=
f3
f2
, · · · , fm

fm−1

=
fm+1

fm
,

and so
f1
f0

=
f2
f1

=
f3
f2

= · · · = fm+1

fm
= q.

Hence the sequence f0, . . . , fm is a geometric progression of ratio q= m
√

2, i.e.:

fk = qkf0, for k = 0, 1, . . . ,m, fm = qmf0 = 2f0.

The problem is to find an integer number m of intervals that divides the octave.
By considering the sequence of the logarithms to the base 2 of the frequencies:

log2 f0, log2 f1, log2 f2, · · · , log2 fm, (2)
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and observing that

log2 fk = log2(f0 · qk) = log2 f0 +k log2 q = log2 f0 +
k

m
, for k = 0, 1, . . . ,m,

the octave is transported in an unitary interval, and the sequence of the fre-
quencies becomes an arithmetic progression of ratio λ = log2 q = 1

m
. By these

remarks, if the scale contains the frequency f it has also the 3f value and there-
fore the frequency 3/2f , which is contained in the octave [f, 2f ]. By assuming
that such frequency occupies the k-th place in the scale, it results

fk =
3

2
f0 and log2 fk = log2

3

2
+ log2 f0.

Then the problem is to solve the equation

log2

3

2
=

k

m
(3)

where k,m are integer numbers. We notice that log2
3
2

is an irrational number1

then equation (3) admits no integer solutions. Then the problem is reduced
to compute an approximate solution of the equation (3), i.e. two integers k,m
such that the difference

err(k,m) =

∣∣∣∣log2

3

2
− k

m

∣∣∣∣
is small. Moreover, we are interested to the minimal solution, i.e. a solution
with m as small as possible. A more rigorous mathematical formulation of this
problem is the following.

Problem 1. Let be tol a given tolerance. Find a pair of integer numbers (k,m)
such that:

m = min

{
m ∈ N | ∃k ∈ N :

∣∣∣∣ km − log2

3

2

∣∣∣∣ < tol

}
Notice that, once m has been fixed, the value of k that minimizes the difference
err(k,m) is given by

k = round

(
m · log2

3

2

)
,

where the symbol round(x) gives the rounding to a integer number of x. Then,
an algorithm to solve the Problem 1 is the following.

1A proof by contradiction is the following. Suppose that log2
3
2 is a rational number, then

there exist non-negative integers k,m that solve equation (3). Taking the power to the base
2 of both sides yields

3

2
= 2

k
m and so

(
3

2

)m

= 2k ⇔ 3m = 2m+k.

However 3m is odd while 2m+k is even, therefore 3m = 2m+k is impossible. Hence the first
statement must be false and log2

3
2 is irrational.
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Algorithm 1 Musical scale construction

Require: β, tol;

1: m = 0;

2: err = tol + 1;

3: l = log2(β);

4: while err > tol do
5: m = m+ 1;

6: k = round(m ∗ l);
7: err = |k/m− l|;
8: end while
9: return m, k;

For psychoacoustic reasons the sounds with frequency less the 1Hz are
imperceptible to the human ear. Then, according to this remark, the tolerance
tol should be chosen to be equal to2 0.004. By using Algorithm 1, with β = 3/2
and tol = 0.004, we get the pair:

(k,m) = (7, 12),

i.e. the fraction of integers 7
12

is an acceptable approximation in the discussed
sense. Once the value of m has been found, it is necessary to approximate
in a satisfactory manner also the values related to te other frequencies: the
third 5/4, the fourth 4/3, the sixth 5/3, the second 9/8 and the seventh 15/8. By a
mathematical point of view, it means that, given m, the problem is to find an
approximate solution of:

log2 βi =
ki
m

with m = 12, ki ∈ N, (4)

where βi = 5/4, 4/3, 5/3, 9/8, 15/8. This can be obtained taking the values

ki = round(m · log2 βi).

In the following table, we report the computed values of ki and the committed
error approximating log2 βi with ki

m
.

βi 5/4 4/3 5/3 9/8 15/8
1

1

log2 βi 0.3218 0.4150 0.7376 0.1699 0.9069
1

1
ki
m

= round(12 log2 βi)
12

4
12

5
12

9
12

2
12

11
12

1

1

err(ki,m) =
∣∣log2 βi − ki

m

∣∣ 0.0114 0.0016 0.0013 0.0033 0.0098
1

1

2The value 0.004 corresponds to 1Hz in the log scale.
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The constructed scale, subdivided into m = 12 equal intervals, was introduced
by Andreas Werckmeister in 17th century (Musicalische Temperatur, 1691)
and used by J.S. Bach in its opera “The Well-Tempered Clavier”.

Finally, observe that to have a better approximation of the solution of (3),
we can get a smaller value of tol, for instance tol = 0.001. In this case, by using
Algorithm 1 with β = 3/2 and tol = 0.001, we obtain the optimal integer pair

(k,m) = (31, 53).

So the best subdivision has 53 intervals and the frequency of 3
2
f is at the 31-st

place. It would be interesting ask to a composer to write a musical work by
using 53 sounds in each octave. For sake of completeness we report in the fol-
lowing table the values computed with m = 53 for the other main frequencies.

βi 5/4 4/3 5/3 9/8 15/8
1

1

log2 βi 0.3218 0.4150 0.7376 0.1699 0.9069
1

1
ki
m

= round(53 log2 βi)
53

17
53

22
53

39
53

9
53

48
53

1

1

err(ki,m) =
∣∣log2 βi − ki

m

∣∣ 0.0012 0.0001 0.0011 0.0001 0.0012
1

1

4 Conclusions

In this paper we recall our past teaching experiences in several departmental
projects for introducing the high school students to nice mathematical applica-
tions. We worked to this aim also in a project, named Piano Lauree Scientifiche
(PLS), for the Department of Mathematics and Applications (University of
Naples Federico II). For an interdisciplinary laboratory tool we give a short al-
gorithm for the construction of a temperate musical scale. This procedure can
easily written in a programming language to naively explore the connections
between Mathematics and Music.
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