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Abstract—In this paper we describe a tessellation of the
unit sphere in the 3-dimensional space realized using a spiral
joining the north and the south poles. This tiling yields to a
one dimensional labeling of the tiles covering the whole sphere
and to a 1-dimensional natural ordering on the set of tiles of
the tessellation. The correspondence between a point on the
sphere and the tile containing it is derived as an analytical
function, allowing the direct computation of the tile. This
tessellation exhibits some intrinsic features useful for general
applications: absence of singular points and efficient tiles
computation. Moreover, this tessellation can be parametrized
to obtain additional features especially useful for spherical
coordinate indexing: tiles with equal area and good shape
uniformity of tiles. An application to spherical indexing of a
database is presented, it shows an assessment of our spiral tiling
for practical uses.

Index Terms—computational geometry, surface tessellations,
spherical geometry, spherical covering.

I. I NTRODUCTION

T ILING theory is a broad subject that develops through
geometry, topology, group theory, number theory and

other branches of mathematics. This theory has a number of
applications that inspired several approaches and solutions in
various fields such as astronomy, meteorology, physics and
database modeling.

The most widely considered spherical tessellations belong
to the homohedral tiling, that is a tiling in which all tiles are
congruent. In particular, triangular homohedral tessellations
have been considered by Sommerville [1] and Davies [2].
Recently d’Azevedo [3] dealt with triangulations of the
sphere with certain additional conditions.

A widely applied method for the tiling of the sphere, as
well as other surfaces of the3-dimensional space, is the
Voronoi tessellation, inspired by the Thompson problem,
that focus on the construction of set of points uniformly
distributed on the sphere (see [4], [5]) and that is used to
model global atmosphere dynamics [6].

Another class of tessellations of the sphere has tiles formed
by regular or semiregular (spherical) polygons, obtained by
projecting a polyhedron onto a circumscribed sphere from
its center.
Important applications are the mosaic grids introduced in the
field of meteorology, in order to overcome the difficulties
associated with numerical singularities at the poles, arising
when dealing with longitude-latitude based grids (see [7],
[8]); the cubed-sphere grid is an example of a mosaic grid
comprising of six structured grids that are assembled to form
a nearly regular tiling of the sphere.

Sphere tessellations are widely employed for astronomical
applications, spacecraft attitude determination and naviga-
tion, space surveillance, etc. Spatial application are generally
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performed via the so-called star tracking algorithms of star
sensor systems (see [9]). The principle of star sensor opera-
tion is to image stars and match the observed constellation
to a star catalogue. A number of algorithms have been
developed, even recently, to improve the performance of
the process of star pattern recognition [10]–[13], in terms
of both accuracy and speed. For star identification by star
trackers, the position of the stars and the brightness are
necessary. Moreover, mostly often used astrometric reference
catalogues include data from about hundred of thousand up
to hundred of millions stars; performance and quality of
star trackers depend on execution time and success rate of
matching algorithm [14], [15]. Due to this, it comes out the
need to speed up star searching in huge stellar catalogues
[16], [17]. An example is the cone search, where a generally
small cone of view is given and the list of all stars in
the catalogue seen through the cone is the expected result.
Such an application requires to have indexed tables of star
coordinates. A variety of sky tessellation have been proposed
for the scope with various mapping functions, such as HTM
and HEALPix schema, igloo pixelizations and others (see
[18]–[21] for details).

In terms of database indexing, mapping a sphere with a
tiling scheme leads to an efficient indexing of data [22] and,
furthermore, means transforming a 2-dimensional into a 1-
dimensional space. Consequently a standard B-tree index can
be created on the column with the pixel IDs. On a large
astronomical catalogue, this could lead to a gain of orders of
magnitude in search efficiency. Being able to quickly retrieve
the list of objects in a given region of the sky is crucial in
several projects.
Most of tessellations in the considered applications are edge-
to-edge tiling, that are tessellations where corners and sides
of the polygonal tiles form all the vertices and edges of the
tiling and vice versa.

If the restriction to edge-to-edge tilings is removed, a
number of new tilings may be found (see Dawson and Doyle
[23]–[25] for triangular case).
Following this way, this article presents a spiral tessellation
which aims to create a 1-dimensional natural sort order on
the tiles, without the constraint of edge-to-edge tessellation.
This tessellation exhibits, as an intrinsic feature, efficiency in
tiles computation, which is very useful for general applica-
tions. Moreover, it can be parametrized to obtain additional
features especially useful for spherical coordinate indexing:

1) good shape uniformity of tiles,
2) tiles with equal area,
3) an efficient database building for coordinate indexing,
4) efficient search.

II. T HE SPIRAL TESSELLATION

The spiral tessellation on the unit sphere is obtained by
a spiral curve with constant slope starting from the zenith
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point of the sphere (north pole), winding on the sphere and
ending to the opposite point (south pole). This spiral bounds
a stripe that covers the whole sphere surface. The tessellation
is created by stripe segmentation with two constraints applied
to all tiles, except for the first and the last tiles: equal area
tiles and good shaped tiles that is tile height approximately
equal to mean tile width. The basic idea is to renounce to
the edge-to-edge constraint in order to get a1-dimensional
natural ordering descending from the labeling of the tiles.
In this section the mathematical description of the spiral
tessellation is given.
The spherical coordinate system on the unit sphere was
chosen havingθ as longitude angle andφ as latitude angle.
The latitude angle is preferred against the zenith angle (colat-
itude) for the presence of its direct equivalent in applications
in the field of coordinate indexing.
Given a numbern of turns that wrap around the surfaceS2

of unit sphere, consider the spiralγ given by the following
parametric representation:

γ(t) =











x = cos (t) cos (nπ + 2nt)

y = cos (t) sin (nπ + 2nt)

z = − sin (t)

t ∈
[

−
π

2
,
π

2

]

.

(1)
Such a spiral has the north and the south poles as the starting
and the ending points respectively, and the distance between
two points at the same longitude is a multiple ofπ/n.

A point P on the spiral having spherical coordinates
(θP , φP ) is identified by the corresponding parametertP
through the following transformations (see fig. 1):

θP ≡ nπ + 2ntP (mod 2π), φP = −tP . (2)

Fig. 1. The spiral and its spherical coordinates.

Definition 1. The spiral tessellation of the sphereS2 is the
set of tiles consisting of portions ofS2 delimited by two
consecutive turns of the spiral given by equation (1) (upper
and lower edges) and two fixed sections of meridians (left
and right edges).

The ordering on the parameter interval[−π/2, π/2] induces
a natural order on the set of tiles coveringS2: supposeM ∈
N is the number of tiles in the spiral tessellation and let
γ(t) be the closest vertex to the north pole of the tileT .
This point is unique by equation (2), so that the ordered
setT = {t1, · · · , tM−1} can be constructed to identify the

tessellation. Therefore we can denote byTi the tile having
γ(ti) as higher vertex.
As a convention assume that for0 < i < M − 1, tile Ti
contains the portion of the spiralγ([ti, ti+1[), the points
having the same longitude ofγ(ti), the points lying between
γ(ti) and γ (ti + π/n) (exceptγ (ti + π/n)). In common
words, the upper and left edges belong to the tile, while
the lower and right edges do not. Observe that every tile
but T0 and TM−1 have four edges, whileT0 and TM−1

have two edges (see figure 2). This allows for a tessellation
without gaps and overlaps. It is to be noted that the first
segmentation of the spiral stripe is at the left edge ofT1,
that is att1 = −π/2, while the last one is at the right edge
of TM−1, and this happens att = (n− 2)π/2n.

(a) (b)

Fig. 2. The spiral tessellation withn = 20 andm = 510 (side view (a)
and top view (b)).

In Definition 1 nothing is said about the distribution of values
ti. In applications, tiles are often asked to be uniformly
distributed on the sphere. Nevertheless, the length of spirals
on spheres is described by elliptic integrals (see [26], [27]),
so that a tiling based on equally spaced verticesγ(ti) could
be difficult to work with.

We start analyzing the properties of the spiral tiling by
the area calculation of a generic tile of the grid. Denoting
by A(Ti) the area of thei− th tile, we have

A(Ti) =

∫

Ti

dTi =

∫ θi+1

θi

∫ φ(θ)

φ(θ+2π)

cosφdφdθ =

=

∫ nπ+2nti+1

nπ+2nti

∫ π

2
−

θ

2n

π

2
−

θ+2π

2n

cosφdφdθ =

= 2 sin
( π

2n

)

∫ nπ+2nti+1

nπ+2nti

sin

(

θ + π

2n

)

dθ =

= 4n sin
( π

2n

)

cos

(

ti +
(n+ 1)π

2n

)

−

4n sin
( π

2n

)

cos

(

ti+1 +
(n+ 1)π

2n

)

.

Let Σ be the portion ofS2 covered by the four-edged tiles,
and letm =M − 2 be the number of tiles coveringΣ.
By previous calculation, the area of the portion ofΣ up to
the (i − 1)− th tile is

i−1
∑

k=1

A(Tk) =

∫ nπ+2nti

nπ+2nt1

∫ π

2
−

θ

2n

π

2
−

θ+2π

2n

cosφdφdθ =

= 4n sin
( π

2n

)

cos

(

(n+ 1)π

2n

)

−

4n sin
( π

2n

)

cos

(

ti +
(n+ 1)π

2n

)

,
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hence the area ofΣ is

A(Σ) =

∫ 2(n−1)π

0

∫ π

2
−

θ

2n

π

2
−

θ+2π

2n

cosφdφdθ = 4n sin
(π

n

)

.

For our purpose, let us consider a tessellation where all the
tiles coveringΣ have the same areaA = A(Ti): it follows
that

A =
4n

m
sin

(π

n

)

, (3)

so that
i−1
∑

k=1

A(Tk) =
4n(i− 1)

m
sin

(π

n

)

.

By direct calculation, we can derive the equation for the
parameters which identify the vertices for the tiling:

ti = arccos

(

cos
( π

2n

)

(

1−
2(i− 1)

m

))

−
(n+ 1)π

2n
. (4)

If the numbern of turns and the numberm of tiles are chosen
to tessellate the spheric portionΣ, equation (4) determines
the setT = {t1, · · · , tm+1} identifying the tessellation.
The sphere surfaceS2 is then tiled bym + 2 tiles: m of

them coverΣ and have all the same area
4n

m
sin

(π

n

)

, and
the remaining tiles are the two-edged tiles, namelyT0 and
Tm+1. T0 is above the first turn ofγ: it does not contain any
point of the border because such points belong to the tiles
that are right below (in particular the north pole belongs to
T1). Tm+1 is below the last turn ofγ: this set contains all
the point on its boundary (as well as the south pole).
SinceA(S2) = 4π, bothT0 andTm+1 have area

A(T0) = A(Tm+1) = 2π − 2n sin
(π

n

)

. (5)

A. A nearly uniform distributed spiral tiling

In order to build a nearly uniform distributed tiling, the
equal surface constraint has been introduced on four-edges
cells.
Going further on the nearly uniformity goal, good shaped
tiles are desired, so the requirement forA to be close to
the square of the slope of the spherical spiral is added. We
want to evaluaten andm fixing the desired value forA,
namelyÂ. The number of spiral windings on the sphere can
be computed by dividing the parametrization set oft by the
square root ofÂ, that is

n =
π

Â1/2
. (6)

It should be noted that, to obtain a symmetric tiling, it can
be useful to consider an even number of spiral windings.
However, no constraints on the numbern is needed for the
realization of the tiling, so thatn can be any real number
greater than 1.

Substituting (6) in equation (3) we have that fori =
1, ...,m

A(Ti) = A =
4n

m
sin

(π

n

)

=
4π

mÂ1/2
sin

(

Â1/2
)

and an expression form is given by

m =
4π

A Â1/2
sin

(

Â1/2
)

.

Setting

m =

⌈

4π

Â3/2
sin

(

Â1/2
)

⌉

. (7)

it follows

4π

Â3/2
sin

(

Â1/2
)

≤ m <
4π

Â3/2
sin

(

Â1/2
)

+ 1.

and the actual value ofA is such that

Â ·
4π sin(Â1/2)

4π sin(Â1/2) + Â3/2
< A ≤ Â.

This implies that the difference between̂A andA is bounded
by

0 ≤ Â−A <
Â5/2

4π sin(Â1/2) + Â3/2
=
Â2

4π
+ o(Â2). (8)

By equation (8) we get the following approximation forA:

Â−
Â2

4π
+ o(Â2) < A ≤ Â. (9)

The area of the four-edged tiles can be compared with
A(T0) andA(Tm+1) assuming thatn andm are calculated
by equations (6) and (7).
By equation (5) we have

A(T0) = 2π − 2
π

Â1/2
sin

(

Â1/2
)

=

=
2π

Â1/2

(

Â1/2 − sin
(

Â1/2
))

,

so that the ratio betweenA(T0) andA, settingA = Â +
o(Â3/2) according to equation (9), is given by

A(T0)

A
=

2π

AÂ1/2

(

Â1/2 − sin
(

Â1/2
))

=

=
2π

Â3/2 + o(Â2)
·
Â3/2 + o(Â2)

6
=
π

3
+ o(Â).

From this result, it comes out that both the polar tiles have
a surface that is very close to the four-edges tiles surface: it
is less than 5% bigger.

III. C ORRESPONDENCE POINT-TILE

For query execution acceleration purpose, we intend to
induce a raster structure on the database based on the sphere
tessellation introduced in section II. This process can be
allowed by calculating the belonging tile of data stored. The
result is a new database where data are aggregated by tile.
In the next theorem we describe the correspondence between
the set of points on the sphere, represented by his canonical
latitude-longitude coordinates, and the set of the tiles labels.
This relation yields to a direct and fast localization of a point
in the grid.

Theorem 1. Let P = P (θ, φ) be a point on the unit sphere.
The indexi of the tileTi of P is given by

i =









m
(

cos
(

π
2n

)

− cos
(

t̃+ (n+1)π
2n

))

2 cos
(

π
2n

)







+ 1

where t̃ =
θ

2n
+
π

n

⌊

nπ − θ − 2nφ

2π

⌋

−
π

2
.
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Proof: In order to determinate the tile the point belongs
to, we find the point on the spiral having the same longitude
θ sited in the upper edge of the tile ofP . Such a point is
given by the parametrization of the spiral fort = t̃, that is
γ(t̃) = P̃ (θ̃, φ̃).
The point γ(t̃) is the intersection between the meridian
troughP and the portion of spiral fort ∈ [ti, ti+1[. If k ∈ N

is the number of windings of the spiral aboveP ,

φ̃ =
π

2
−

θ

2n
− k

π

n
.

A direct computation yields to the next equation:

k
π

n
+ φ̃− φ =

π

2
−

θ

2n
− φ.

Since 0 ≤
n

π

(

φ̃− φ
)

< 1 it follows that

k =

⌊

nπ − θ − 2nφ

2π

⌋

. (10)

If 0 ≤ k ≤ n we finally have

φ̃ =
π

2
−

θ

2n
−
π

n

⌊

nπ − θ − 2nφ

2π

⌋

and, by equation (2),

t̃ =
θ

2n
+
π

n

⌊

nπ − θ − 2nφ

2π

⌋

−
π

2
. (11)

If k given by equation (10) is negative we have

P ∈ T0,

while for k ≥ n− 1

P ∈ Tm+1.

The tile index can be computed analytically by the value
of t̃ obtained in (11) by observing that ifP ∈ Ti then
ti ≤ t̃ < ti+1, that is to say that, using equation (4),

cos

(

t̃+
(n+ 1)π

2n

)

lies betweencos
( π

2n

)

(

1−
2i

m

)

and

cos
( π

2n

)

(

1−
2(i− 1)

m

)

.

It follows that

1−
2(i− 1)

m
≥

cos
(

t̃+ (n+1)π
2n

)

cos
(

π
2n

) > 1−
2i

m

i− 1 ≤
m

(

cos
(

π
2n

)

− cos
(

t̃+ (n+1)π
2n

))

2 cos
(

π
2n

) < i

or

i =









m
(

cos
(

π
2n

)

− cos
(

t̃+ (n+1)π
2n

))

2 cos
(

π
2n

)







+ 1.

IV. T HE NEIGHBORHOOD OF A TILE

Ordering on the tiling can be very helpful in applications,
even though the lack of the edge-to-edge property leaves
the problem to manage the edges and the neighborhood of
a tile. Theorem 1 can be applied to identify the tiles in a
neighborhood of a given tileTi, for 0 < i ≤ m: sinceTi has
four verticesγ(ti), γ(ti+1), γ

(

ti+1 +
π

n

)

and γ
(

ti +
π

n

)

,

one has that forti ≥ −
π

2
+
π

n
the pointsγ

(

ti −
π

n

)

and

γ
(

ti+1 −
π

n

)

are in the tiles above toTi, namelyTd1 and
Td2 , which can be found operating as described above. By
the same way it can be possible to findTd3 andTd4 where

γ
(

ti+1 +
π

n

)

and γ
(

ti +
π

n

)

are in the caseti <
π

2
−

2π

n
,

which are immediately belowTi. Hence the neighborhood
of Ti is described by the set of tiles

Tj, wherej = i+1, j = i− 1, d1 ≤ j ≤ d2, d3 ≤ j ≤ d4.

Some attention have to be made ifti < −
π

2
+
π

n
or ti+1 ≥

π

2
−

2π

n
: in the first case the neighborhood ofTi will contain

T0, in the second oneTm+1. We can summarize all the cases
in the following:

1) if ti+1 < −
π

2
+
π

n
the neighborhood tiles are given

by:
N(Ti) = {T0, Tj},

with j = i+ 1, j = i− 1, d3 ≤ j ≤ d4;

2) if ti < −
π

2
+
π

n
and ti+1 ≥ −

π

2
+
π

n
the neighbor-

hood tiles are:

N(Ti) = {T0, Tj},

with j = i+ 1, j = i− 1, 0 ≤ j ≤ d2, d3 ≤ j ≤ d4;

3) if ti >
π

2
−

2π

n
we have:

N(Ti) = {Tj, Tm+1},

with j = i+ 1, j = i− 1, d1 ≤ j ≤ d2;

4) if ti <
π

2
−
π

n
and ti+1 ≥

π

2
−

2π

n
then:

N(Ti) = {Tj, Tm+1},

with j = i+ 1, j = i− 1, d1 ≤ j ≤ d2, d3 ≤ j < m.

V. SPHERICAL DISC COVERING

In many applications to physic or to astronomical problems
spherical discs are used. In this section we focus our attention
on describing the requirement of a point on the sphere to
belong to a given spherical disc that can be used to determine
the set of tiles needed to cover such a disc.

Let C = C(θC , φC) be a point on the sphere and letδ
be an angle.C and δ can be used to describe a spherical
disc centered inC with radiusδ as the set of points on the
surface inside the cone having vertex at the sphere center,
opening angle2δ and whose height passes troughC.

We describe a pointP = P (θ, φ) on the circumference
obtained as the intersection between the sphere and the cone
using some well-known facts about spherical geometry. Let
us consider the spherical triangle havingC,P and the north
pole, namelyN , as vertices. The sides fromC to P and from
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Fig. 3. An example of a cone disc centered atC and all tiles involved,
each one with its own index. Tiles number 12158, spiral turns 100, cone
semiangle 0.05 radians.

C to N areδ and
π

2
− φC respectively. Ifψ is the angle in

C, we can use the spherical law of cosines to compute its
opposite side:

cos
(π

2
− φ

)

= cos(δ) cos
(π

2
− φC

)

+

sin(δ) sin
(π

2
− φC

)

cos(ψ),

that is

sin (φ) = cos(δ) sin (φC) + sin(δ) cos (φC) cos(ψ). (12)

Moreover, using the spherical law of sines, we have

sin(θ − θC) =
sin(δ) sin(ψ)

cos(φ)
,

so that

θ = θC + arcsin

(

sin(δ) sin(ψ)

cos(φ)

)

. (13)

By equations (12) and (13) we get the following formulas
for the computation of the points on the circumference
centered inC with spherical radiusδ:
{

φ = arcsin (cos(δ) sin (φC) + sin(δ) cos (φC) cos(ψ))

θ = θC + arcsin
(

sin(δ) sin(ψ)
cos(φ)

)

(mod 2π),

whereψ ∈ [0, 2π].
The same argument can be used to test whether a point

of the sphere belongs to the spherical disc centered inC.
By the law of cosines again we have that the arcd joining
Q = (θ, φ) to C = (θC , φC) satisfies the following equation:

cos (d) = sin (φC) sin (φ) + cos (φC) cos (φ) cos(θ − θC).

Hence we derive the condition for a point to be in the disc:

sin (φC) sin (φ) + cos (φC) cos (φ) cos(θ − θC) ≥ cos(δ).
(14)

Equation (14), together with Theorem 1, provides to the set
of indexes of the tiles that have to be used to cover the disc.

VI. PERFORMANCE EVALUATION

In this section we describe an implementation of a search
algorithm based on the spiral tessellation described above,
in order to perform tests of performance. We report the ex-
perimental results on the performance of the search algorithm
with a comparison versus a straightforward method based on
a direct database search. The experiment consists of a set of
cone searches performed on a star catalogue, in order to find
the list of stars closer to a given pointing direction within a
given radius. The Tycho-2 [28] star catalog was chosen for
its relatively small size, about 2.5 million stars, to keep the
tests easily performed on a normal personal computer.

Since the main parameter governing the spherical tessel-
lation is the number of tiles, all tests were repeated for three
different tile sizes havingm, the total number of tiles, equal
to 84 662, 101 595 and 126 994. Such choices form have
been made in order to have about30, 25 or 20 objects per
tile.
As a preliminary step, the star catalog is loaded into a
sqlite database engine. The former step in the implemented
algorithm is to modify the database containing all the star
data by adding a new column, where the tile number of any
star is stored. This manipulation of the database is crucial
because it represents the pre-aggregation process for the
database and leads to a 1-dimensional search space. When
a cone search is submitted to the database, the set of tiles
covering the disc is computed, according with section V,
distinguishing between tiles completely contained in the disc
and those covering the circumference of the disc. The stars
sited in the inner tiles are selected at once by submitting
a query to the database using the tile number as an index.
For the border tiles, stars are selected when their coordinates
satisfy the condition of equation (14).
Experiments were conducted on a personal computer with a
Debian GNU/Linux environment, exhibiting a computational
power of about 5300 bogomips. All required programs are
coded in Python. We performed a set of 7 cone searches:
cones are all centered at the same point and have radius
0.05, 0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 decimal degrees respec-
tively. The queries are submitted in both database index
methods, spherical tessellation and direct, and execution
times are compared.
Figure 4 shows query execution times, expressed in CPU
seconds, for cone search performed with a straightforward
method and with our algorithm, implemented using three
different spiral tessellations.

Our experiments show that the spiral indexing induced by
our tessellation on the sphere leads to a search algorithm that
is, in term of search efficiency, about 30 times faster than a
straightforward search method. Moreover, the comparison is
held out between a standard database query that is highly
optimized and programs coded in Python that is an inter-
preted language 4-5 time slower than traditional lower level
programming languages like C. This leads one to think that
a further improvement of 4-5 times can be achieved with a
further work of recoding and optimization. This result makes
our search algorithm competitive with database management
obtained performing other tessellations. The search speed
improvement can be ascribed to both the addition of the
tile index column to the star table and both accessing the
data with this new combined index, reducing a bidimensional
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Fig. 4. Cone search execution times for a directly accessed database (a)
and for a spiral tiling managed database (b) as a function of the disc radius.

search to a search made along a single dimension. By figure
4, it turns out that times grow in a quasi-linear way with
respect to the disc radius and increase asm increases.

VII. C ONCLUSION

In this paper the tessellation problem on the sphere has
been dealt in a new way introducing the notion of spiral
tessellation. The usual edge-to-edge condition on the tiling
has been dropped out to provide a number of properties of
the tiles such as the good shape uniformity and the equal
surface area.

Inspired by applications to spherical coordinate indexing,
we pointed out formulas to find the tile containing a given
point and the set of tiles covering a given spherical disc.
Such formulas have been implemented to realize a one
dimensional alternative to hierarchical techniques or multiple
depth search algorithm on the sphere, and an application
to cone search in astronomical star catalogues has been
described. The proposed search algorithm exhibits a good
speed acceleration versus a highly optimized conventional
database search, typically 30 times. It is conservative to
suppose to achieve an extra improvement of 4-5 times on the
proposed algorithm with a further work of code optimization.
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