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Abstract – Absolute gravity measurements are based on the 
reconstruction of the free-falling motion of a test body in vacuum. In 
this paper, two large disturbing effects are studied, namely, the non-
gravitational accelerations originated by rotation and translation of 
the flying body. Their contribution to the uncertainty of the free-fall 
acceleration is evaluated using the method proposed in Supplement 
1 to the GUM. The analysis is specifically applied to the IMGC-02 
absolute gravimeter, but can be easily extended to other 
instruments. 
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I. INTRODUCTION 

In a modern absolute ballistic gravimeter, the dominating 
contribution to data scattering is due to floor vibrations. This 
contribution, depending on the gravimeter and on the 
measurement site, amounts typically to some tens of microgal 
(1 μGal = 1×10-8 ms-2). For this reason, the estimate of the 
measurand (the free-fall acceleration) is obtained by 
averaging some hundreds of individual measurement results. 
The present accuracy limit, due to reproducibility of the 
results, is believed to lie at the microgal level, corresponding 
to about 1 part in 109 of the Earth’s gravitational acceleration. 
An absolute measurement of a physical quantity requires a 
detailed understanding of the influence factors affecting its 
realization. Special attention should be given to those effects 
that remain almost constant during the experimental activity 
and therefore are difficult, or impossible, to identify and 
correct. A correct uncertainty evaluation should therefore 
include all the effects, also those that do not contribute to data 
scattering. In ballistic gravimetry, the two dominating effects 
beside floor vibrations are the centripetal acceleration and the 
Coriolis acceleration [1]. 

This paper discusses these effects in a practical case, 
concerning the ballistic gravimeter IMGC-02 developed and 
tested at the Istituto nazionale di ricerca metrologica (INRIM) 
[2]. The corresponding uncertainty contributions are 
evaluated and propagated by using a Monte Carlo method 
(MCM), according to the GUM, Supplement 1 [3]. With this 
method, a probability density function (pdf) is assigned to 
each of the relevant input quantities to the model, and 
propagated through the model itself to yield a corresponding 
pdf for the measurand. 

The instrument and its measurement principle are 
described in Section II. The centripetal and Coriolis 

accelerations, as well as the assignment of their pdfs, are 
discussed in Section III-A and III-B, respectively. The 
contribution of these effects to the estimate uncertainty is 
given in Section IV. 

II. THE MEASUREMENT PRINCIPLE 

Absolute ballistic gravimeters are based on the 
reconstruction of the vertical trajectory followed by a test 
body in vacuum. In particular, the IMGC-02 adopts the 
symmetrical rise-and-fall method, where the test body is 
thrown vertically upwards. 

Laser interferometry is used to determine the trajectory. 
The flying body acts as the moving reflector M in a vertically 
oriented arm of a Michelson interferometer, whereas the 
reference reflector R is fixed to an inertial system [4] (fig. 1). 
The optical fringes arising from the interferometer are 
converted to a sinusoidal electrical signal by a photodetector. 
Time values corresponding to equally spaced positions of the 
test body during its flight are taken by timing a recurring 
phase of the sinusoidal signal [5]. 

From the law of motion of the test body, a measurement 
model is obtained, relating the space-time coordinates (the 
indications) to a number of parameters. Among the model 
parameters there is the measurand, i.e., the acceleration g 
experienced by the moving reflector during its free falling 
under the influence of gravity. Since the model is non-linear 
in the parameters, estimates are obtained by means of a 
recursive least-squares algorithm [6]. Formally, the 
measurement model should take into account also the 
centripetal and Coriolis acceleration. In practice, they can be 
evaluated separately from the adjustment, since, as it will be 
shown, they contribute only to the estimate uncertainty, the 
corrections they involve being equal to zero.  

III. THE EFFECTS 

Ideally, the motion of the moving reflector should be a 
perfect vertical translation. In practice, this is impossible to 
obtain due to vertical misalignment and bending moments of 
the launch pad. As a result, the real motion is a superposition 
of a non-vertical translation and a rotation around the centre 
of mass of the reflector. The former effect can be 
characterized by a horizontal velocity component v. The 
latter, by an angular velocity ω. Both 0=v  and 0=ω , since, 
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apart from air friction, the motion after launch is unperturbed. 
These velocity components give rise to the two disturbing 
effects, which will be discussed in the remainder of this 
Section. 

A. Centripetal acceleration 

The free-fall acceleration is referred to the centre of mass 
CM of the flying body, whereas the tracked trajectory relates 
to the optical centre OC of the reflector, i.e., the apparent 
point at which the optical path is reversed. During the 
launching phase, the bending moment of the launch pad 
makes the reflector rotate around CM. We will (realistically) 
neglect twisting components, so that, during the flying phase, 
the rotation axis lies in a horizontal plane. Since in practice 
the optical centre does not coincide with the centre of mass, 
OC is subjected to a centripetal acceleration towards CM. 
The vertical component of this acceleration, acent, superposes 
to the free-fall acceleration g (fig. 1). 

 

 
Fig. 1. The centripetal acceleration. 

By denoting with d the vertical position of OC with 
respect to CM, one has 

 
  da 2

cent ω= , (1) 
 
where ω is the angular velocity. Strictly speaking, acent 

varies along the circular path of OC. However, the path 
during the flight corresponds to a so short rotation angle that 
the variation is negligible. We estimate to be able to balance 
the reflector in such a way that -0.05 mm ≤ d ≤ +0.05 mm. 
Therefore, the degree of knowledge concerning d is 
represented by a uniform probability density function (pdf), 
on the interval -0.05 mm and +0.05 mm. 

The rotation of the moving reflector is evaluated by 
illuminating its entering face with a high-power laser beam 
and marking on a piece of white paper the final position of 
the spot traced during the flight by the weakly reflected 
beam, as shown in fig. 2. 

 
Fig. 2. Optical system used to detect the test body rotation. 

The rotation angle γ is thus calculated as: 
 

h
r

2
≈γ , (2) 

 
where r is the distance of the spot from the optical axis                     

and h = 300 mm is the distance between the white paper and 
the reflector at the end of its flight. 

By repeating the launch, one can have a visual 
representation of the scatter of the spots, from which a pdf for 
r, and eventually for γ, can be inferred. For the IMGC-02 
setup the typical scatter, as shown in fig. 2, is roughly 
represented by a bivariate uniform density over a circle of 
radius r1= 8 mm. 

The joint pdf for the Cartesian coordinates x and y of the 
spot is 
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By passing to polar coordinates r and θ, and integrating 

over θ, the marginal pdf for r is 
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The angular velocity ω is related to r by 
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where t = 0.4 s is the flying time. The pdf for ω is easily 
obtained from eqs. (4) and (5). 

The pdf for the rotation angle γ is derived from eqs. (2) 
and (4) (fig. 3). The expectation of γ is about 0.015 rad, i.e., 
0.9°. 
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Fig. 3. Distribution of the rotation angle γ. 

To this value would correspond in the worst case 
(|d| = 0.05 mm) a value of centa  equal to 7 μGal. 

B. Coriolis acceleration 

The East-West component EWv of the parasitic horizontal 
velocity v of the test body induces on it a vertical component 

Cora of the Coriolis acceleration, according to: 
 

)2sin(2 EWECor ϕπω −= va , (6) 
 
where ωE = 7.29⋅10-5 rad⋅s-1 is the Earth’s angular velocity 

and ϕ  is the (known) latitude of the measurement site [7]. 
This acceleration component superposes to the free-fall 
acceleration. To evaluate the magnitude of the Coriolis effect, 
it is necessary to evaluate EWv . By establishing a suitable 
reference frame, we write βsinEW vv = , where β is the 
angle between the North and the direction of v (fig. 4). 

Fig. 4. Direction of the horizontal motion of the test body. 

As concerns the angle β, at present the IMGC-02 does not 
adopt a system to detect this direction, therefore our 
knowledge on β  is represented by a uniform distribution on 
the interval -π and +π. 

The term v can be evaluated experimentally. To this 
purpose, we remark that any horizontal displacement of the 
moving reflector determines a misalignment of the optical 

system. This results in a decrease of the initial amplitude A0 
of the interference signal. 

We intentionally misaligned one of the reflectors by 
displacing it horizontally by known distances δi, and recorded 
the resulting amplitudes 

i
Aδ of the interference signal. 

Fig. 5 shows the curve obtained by fitting a second-order 
polynomial to the relative amplitudes 0AA

iδ  thus observed 
with the IMGC-02 setup. 

 

 
Fig. 5. Left: relative fringe amplitude vs horizontal displacement of the 

test body (shaded areas correspond to rejected launches). Right: 
interference signals from aligned (top) and misaligned (bottom) 

conditions. 

The displacement δ of the test body at the end of the 
trajectory during routine measurements is calculated by 
inverting the fitting polynomial and turns out to be 

 
( )

343.1
1 0AAδδ −

= . (7) 

 
The corresponding velocity v is computed by dividing this 

displacement by the observation time (for experimental 
reasons, this time is typically equal to about 0.3 s, thus 
smaller than the total flying time [6]): 

 

obst
v δ= . (8) 

 
We made about 2000 launches and constructed the 

empirical frequency distribution of the variation of the 
relative amplitude ( ) ξδ =− 01 AA  (fig. 6). 

 
Fig. 6. Frequency distribution of the variation of the fringe amplitude 

(shaded area corresponds to rejected launches). 



This empirical frequency distribution is representative of 
that obtained from real experimental data during routine 
measurement sessions. The corresponding pdf is obtained by 
smoothing the empirical frequency distribution with a straight 
line: 
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The upper limit of the pdf is due to the limited ability of 

the acquisition system to process noisy interference signals. 
The corresponding distribution of the displacement δ is 

derived from eqs. (7) and (9) using the Monte Carlo method, 
and is given in fig 7. 

The expectation is about 0.4 mm. To this value would 
correspond in the worst case (|β| = π/2 and φ = 0) a value of 

Cora  equal to 19 μGal. Although this is a worst-case value, 
estimates would be anyway affected by a significant, 
unknown bias (being β unknown) that could not be reduced 
by repeating the measurements. 

 
Fig. 7. Distribution of the displacement δ of the test body (shaded 

area corresponds to rejected launches). 

To keep this bias within acceptable limits, in routine 
measurements, those launches for which δ > 0.3 mm are 
rejected. This amounts to reject most of the launches, as 
shown in fig. 6. The distribution of δ is therefore truncated 
(the rejected part is represented by the shaded area in fig. 7). 
The remaining distribution has an expectation equal to about 
0.2 mm, corresponding in the worst-case to a bias of about 9 
μGal. 

IV. MEASUREMENT UNCERTAINTY 

The measurand in gravimetry is the free-fall acceleration 
g. The quantity measured in the ith launch with IMGC-02 is 
the difference ia  between the accelerations of the optical 
centres of the moving and reference reflectors during the 
flight of the former. 

 
RM iii aaa −= . (10) 

 
In an ideal setup, the acceleration aiR should be equal to 

zero. In practice, the filtering of parasitic vibrations from the 
ground floor is imperfect and some disturbances reach the 

reference reflector, despite the care taken to isolate it. 
Although the spectrum of these disturbances is far from being 
simple, and still subject to investigation, for the purposes of 
this study it is sufficient to consider them as normally 
distributed, with zero mean and standard deviation equal to 
some tens of microgal, the value depending on the specific 
measurement site. For the IMGC-02 instrument working at 
the INRIM gravity laboratory, the typical value, well 
confirmed by experimental evidence, is about 30 μGal. 

As concerns aiM, it is the sum of the free-fall acceleration g 
and of the two parasitic accelerations we are studying, that is, 
acent and aCor. g is traditionally intended as the resultant of the 
Newtonian and centrifugal components only. In addition, in 
aiM are embedded a number of other contributions, arising 
from tides and many other effects. These contributions are 
not relevant here, since they can be taken into account with 
negligible uncertainty. Therefore we write 

 
CorcentM aagai ++= . (11) 

 
By combining eqs. (10) and (11), and writing explicitly the 

various contributions from eqs. (1) and (6), one has 
 

( ) RE
2 2sinsin2 iiii avdga −−++= ϕπβωω . (12) 

 
Incidentally, this equation, concerning an individual 

launch, shows which quantities vary and which remain 
constant among repeated launches. 

As already mentioned, the free-fall acceleration measured 
value is taken as the average of N launches, (typically  
N = 200), one tenth of the overall number of trials, as 
explained in Sec. III-B. The purpose of this Section is the 
evaluation of the uncertainty associated with the measured 
value, in order to form the measurement result [8, 2.9], 
therefore we will consider the equation 

 

( ) RE
2 2sinsin2 avdga −−+=−= ϕπβωωε , (13) 

 
which expresses the estimate error as a function of the 

contributing components. This expression is site-dependent 
through the second and third terms in the right-hand side of 
eq. (13). Our analysis will refer to the site of the INRIM 
gravity laboratory. 

To study the pdf of this error, following [3], the pdfs of the 
input quantities are propagated through model (13) to form 
the pdf of the output quantity. The recommended 
“propagation tool” is the Monte Carlo method (MCM). This 
method is well suited to the present application, whereas the 
GUM uncertainty framework would lead to dubious results 
or, in the least, would be difficult to apply. Actually, the first-
order approximation of model (13) would miss some of the 
contributions to the uncertainty, as both the expectations of d 
and sinβ are zero. The necessary second-order terms would 
be cumbersome to evaluate for Gaussian pdfs [9]. Finally, no 
expression is known for them if the pdfs of the concerned 
quantities are not Gaussian, as in this case. 



The expectation and standard deviation of 2ω are obtained 
from eqs. (4) and (5) by a first Monte Carlo simulation. They 
are equal to 1.67·10-3 rad2·s-2 and to 1.16·10-3 rad2·s-2, 
respectively. The corresponding values for v are obtained in 
the same way from eqs. (7), (8) and (9), and are equal to 
5.98·10-4 m·s-1 and 2.16·10-4 m·s-1, respectively. As concerns 
aR, as already mentioned, its pdf is Gaussian with zero mean 
and standard deviation equal to 30 μGal. Thanks to the 

Central Limit Theorem, the pdfs of 2ω , v  and Ra are 
approximately Gaussian, with the same expectation and 
variance reduced by the square root of N (typically N = 200). 

The pdf assigned to d in Sec. III-A is a uniform with zero 
mean and standard deviation equal to 0.05/√3. The pdf for 
sinβ is an arcsine (U-shaped) distribution with expectation 
zero and variance 1/√2 [3]. By further using MCM, the pdfs 
of the individual contributions and of the overall error are 
numerically simulated (fig. 8). 

 
Fig. 8. Pdfs of the individual contributions and of the overall 

measurement error. 

Beside the inverse transform method, recommended in 
Supplement 1 (and implemented in Labview), also the 
acceptance-rejection method (see, e.g., [10]) (implemented in 
R) was applied for validation purposes, obtaining the same 
results. All the pdfs have expectation vanishingly low. 
Therefore, as anticipated, the centripetal and Coriolis 
accelerations, as modelled in this study, do not affect the 
measured value and only contribute to its uncertainty. The 
standard deviations are 4.8 μGal and 4.4 μGal, respectively. 

That of aR is, as expected, 2.1 μGal. The resulting standard 
deviation of typical measured free-fall acceleration is 
6.8 μGal. The pdf is highly symmetric, so that the shortest 
and the probabilistically symmetric coverage intervals 
virtually coincide. The endpoints of the 95% coverage 
interval are -12.9 μGal and +12.9 μGal. 

V. CONCLUSIONS 

We analyzed two disturbing effects in absolute ballistic 
gravimetry. These effects are not detected in routine 
measurements, and their evaluation requires dedicated tests as 
well as the application of advanced techniques in uncertainty 
evaluation. We showed that the contribution of these effects 
to the uncertainty associated with free-fall acceleration is 
dominating. On-line detection of these effects and their 
correction is a challenge for future improvements in ballistic 
gravimetry and, as such, deserves further investigations. 

REFERENCES 

[1] T. M. Niebauer, G. S. Sasagawa, J. E. Faller, R. Hilt and F. Klopping, 
“A new generation of absolute gravimeters”. Metrologia, Vol. 32, 
pp. 159-180, 1995. 

[2] G. D’Agostino, “Development and metrological characterization of a 
new transportable absolute gravimeter”. PhD thesis, Polytechnic of 
Turin, Italy, 2005. 

[3] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML. Evaluation 
of measurement data, Supplement 1 to the “Guide to the expression of 
uncertainty in measurement" - Propagation of distributions using a 
Monte Carlo method, JCGM 101, International Organization for 
Standardization, Geneva, 2008. 

[4] A. Germak, S. Desogus and C. Origlia, “Interferometer for the IMGC 
rise-and-fall absolute gravimeter”. Metrologia, Vol. 39, pp. 471-475, 
2002. 

[5] G. D’Agostino, A. Germak, S. Desogus and G. Barbato, “A method to 
estimate the time-position coordinates of a free-falling test-mass in 
absolute gravimetry”. Metrologia, Vol. 42, pp. 222-228, 2005. 

[6] W. Bich, G. D’Agostino, A. Germak and F. Pennecchi, “Uncertainty 
Propagation in a Non-linear Regression Analysis: Application to a 
Ballistic Absolute Gravimeter (IMGC-02)”. Proc. Workshop 
AMUEM07 ed. IEEE I&M (cd rom), 2007. 

[7] M.Alonso and E.J.Finn, “Physics”. Addison-Wesley, 1992. 
[8] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML. 

International Vocabulary of Metrology---Basic and General Concepts 
and Associated Terms, VIM, 3rd Edition. International Organization 
for Standardization, Geneva, 2007. 

[9] G. Mana, F. Pennecchi, “Uncertainty propagation in non-linear 
measurement equations”, Metrologia, Vol. 44, pp. 246-251, 2007. 

[10] G. S. Fishman, “Monte Carlo: concepts, algorithms and applications”, 
Springer Series in Operations Research, 1996. 


