Cellular structures on Hecke algebras of type B
Cédric Bonnafé, Nicolas Jacon

To cite this version:

HAL Id: hal-00200588
https://hal.archives-ouvertes.fr/hal-00200588v3
Submitted on 14 May 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CELLULAR STRUCTURES ON
HECKE ALGEBRAS OF TYPE B

CÉDRIC BONNAFÉ AND NICOLAS JACON

Abstract. The aim of this paper is to gather and (try to) unify several approaches for the modular representation theory of Hecke algebras of type B. We attempt to explain the connections between Geck's cellular structures (coming from Kazhdan-Lusztig theory with unequal parameters) and Ariki's Theorem on the canonical basis of the Fock spaces.

This paper is dedicated to Gus Lehrer, on his sixtieth birthday.

Contents

Introduction 2
1. Notation 5
2. Fock space, canonical basis and Ariki’s Theorem 6
 2.1. The Fock space 6
 2.2. Uglov’s canonical basis 7
 2.3. Ariki’s Theorem 8
3. Domino insertion 8
 3.1. Domino tableaux, bitableaux 8
 3.2. Orders between bipartitions 9
 3.3. Domino insertion algorithm 10
4. Kazhdan-Lusztig theory 11
 4.1. Kazhdan-Lusztig basis 11
 4.2. Bonnafé-Geck-Iancu-Lam conjectures 12
 4.3. Interpretation of Ariki’s Theorem 14
 4.4. Uglov bipartitions 15
 4.5. Jantzen filtration 16
 4.6. An example: the asymptotic case 17
5. Generic Hecke algebra 17
 5.1. Orders on \mathbb{Z}^2 17
 5.2. Crystal isomorphisms 19
References 21

Date: May 14, 2008.

1991 Mathematics Subject Classification. According to the 2000 classification: Primary 20C08; Secondary 20C05, 05E15.
The modular representation theory of Hecke algebras of type B was first studied by Dipper-James-Murphy [10]: one of their essential tools was to construct a family of modules (called Specht modules) playing the same role as Specht modules in type A. Each of these new Specht modules have a canonical quotient which is zero or simple: one of the main problem raised by this construction is to determine which one are non-zero. Later, Graham and Lehrer [20] developed the theory of cellular algebras, which contains, as a particular case, the construction of Dipper-James-Murphy. The problem of parametrizing the simple modules and computing the decomposition matrix of Specht modules were then solved by Ariki [1] using the canonical basis of Fock spaces of higher level. In fact, Ariki’s Theorem provides different parametrizations of the simple modules of the Hecke algebra: only one of them (asymptotic case) has an interpretation in the framework of Dipper-James-Murphy and Graham-Lehrer. Recently, Geck showed that the Kazhdan-Lusztig theory with unequal parameters should provide a cell datum for each choice of a weight function on the Weyl group (if Lusztig’s conjectures (P1)-(P15) hold [30, Conjecture 14.2]).

Our main aim in this paper is to present an overview of all these results, focusing particularly on conjectural connections between Uglov’s point of view on the Fock space theory and Geck cellular structures. This should (if Lusztig’s conjectures (P1)-(P15) hold in type B) lead to a unified approach for a better understanding of the representation theory of Hecke algebras. As a by-product, we should get an interpretation of all Ariki’s parametrizations of simple modules.

More precisely, if Q and q are two indeterminates, if H_n denotes the Hecke A-algebra with parameters Q and q (here, $A = \mathbb{Z}[Q, Q^{-1}, q, q^{-1}]$), if ξ is a positive irrational number (!) and if r denotes the unique natural number such that $r \leq \xi < r + 1$, then Kazhdan-Lusztig theory should provide a cell datum $C^{\xi} = (\text{Bip}(n), \leq_r, SBT, C^{\xi}, *)$ where

- $\text{Bip}(n)$ is the set of bipartitions of n and \leq_r is a partial order on $\text{Bip}(n)$ depending on r (see §3.2);
- If $\lambda \in \text{Bip}(n)$, $SBT(\lambda)$ denotes the set of standard bitableaux of (bi-)shape λ (filled with $1, \ldots, n$);
- If S and T are two standard bitableaux of size n and of the same shape, $C^{\xi}_{S,T}$ is an element of H_n coming from a Kazhdan-Lusztig basis of H_n (it heavily depends on ξ);
- $*: H_n \rightarrow H_n$ is the A-linear anti-involution of H_n sending the element T_w of the standard basis to $T_{w^{-1}}$;
(see [1]. Conjecture C]). If this conjecture holds then, by the general theory of cellular algebras, we can associate to each bipartition λ of n a Specht module S^ξ_λ endowed with a bilinear form ϕ^ξ_λ. If K is the field of fractions of A, then $KS^\xi_\lambda = K \otimes_A S^\xi_\lambda$ is the simple $K\mathcal{H}_n$-module associated to the simple sub-modules $\mathcal{M}[s]$. By the general theory of cellular algebras, it is known that the non-zero D^ξ_λ give a set of representatives of simple $\mathcal{C}\mathcal{H}_n$-modules. At this stage, it must be noticed that, even if $K S^\xi_\lambda \simeq K S^{\xi'}_\lambda$ (where ξ' is another positive irrational number), it might happen that $S^\xi_\lambda \not\simeq S^{\xi'}_\lambda$ and $D^\xi_\lambda \not\simeq D^{\xi'}_\lambda$ (it is probable that $(S^\xi_\lambda, \phi^\xi_\lambda) \simeq (S^{\xi'}_\lambda, \phi^{\xi'}_\lambda)$ for all $\lambda \in \text{Bip}(n)$ if and only if we have also $r \leq \xi' < r + 1$).

On the other hand, if we assume further that q^2_0 is a primitive e-th root of unity, if $Q^2_0 = -q^2_0 d$ for some $d \in \mathbb{Z}$ (which is only well-defined modulo e), and if $s = (s_0, s_1) \in \mathbb{Z}^2$ is such that $s_0 - s_1 \equiv d \mod e$, then Ariki’s Theorem provides a bijection between the set of Uglov’s bipartitions $\text{Bip}^s(n)$ and the set of simple $\mathcal{C}\mathcal{H}_n$-modules. Moreover, the decomposition matrix is given by $(d^s_{\lambda\mu}(1))_{\lambda,\mu \in \text{Bip}(n)}$, where $(d^s_{\lambda\mu}(g))_{\lambda,\mu \in \text{Bip}(n)}$ is the transition matrix between the standard basis and Uglov-Kashiwara-Lusztig’s canonical basis of the Fock space (see §2.2). The first result of this paper insures that [3. Conjecture C] is “compatible” with Ariki’s Theorem in the following sense:

Theorem. Assume that [3. Conjecture C] holds and assume that $s_0 - s_1 \equiv d \mod e$ and $s_0 - s_1 \leq r < s_0 - s_1 + e$. Then $D^\xi_\lambda \neq 0$ if and only $\lambda \in \text{Bip}^s(n)$ and, if $\lambda \in \text{Bip}(n)$ and $\mu \in \text{Bip}^s(n)$, then

$$[\mathbb{C} S^\xi_\lambda : D^\xi_\mu] = d^s_{\lambda\mu}(1).$$

In particular, we have

$$[\mathbb{C} S^\xi_\lambda : D^\xi_\mu] \neq 0 \implies \lambda \preceq_r \mu.$$

Note that, in the asymptotic case (in other words, if $\xi > n - 1$), then [3. Conjecture C] holds (see [19]) and the cellular datum C^ξ is more or less equivalent to the one constructed by Dipper, James and Mathas (see the work of Geck, Iancu and Pallikaras [18]).

One of the problems raised by the previous theorem (in fact, essentially by Ariki’s Theorem) is the following: if $s' = (s'_0, s'_1) \in \mathbb{Z}^2$ is such that $s'_0 - s'_1 \equiv s_0 - s_1 \mod e$, then the sets $\text{Bip}^s(n)$ and $\text{Bip}^{s'}(n)$ are in bijection. Our second result (see Theorem §3.3) is to construct this bijection by means of an isomorphism between the crystals associated to the simple sub-modules $\mathcal{M}[s]$ and $\mathcal{M}[s']$ of the Fock spaces (see §2.3 for the definition of these modules). This shows that the “abstract crystal” of an
irreducible highest weight module is canonically associated to the representation theory of Hecke algebras of type B. By contrast, each realization of this crystal is associated with a natural parametrization of the simple modules.

Once we accept [6, Conjecture C], it is natural to ask whether the matrix $(d^\lambda_\mu(q))$ can be interpreted as a q-decomposition matrix using Jantzen’s filtration (see our Conjecture C in §4.5). It would also be interesting to see if it should be possible to construct different Schur algebras of type B directly from Kazhdan-Lusztig’s theory (for the asymptotic case, this construction should give rise to an algebra which is Morita equivalent to the two Schur algebras of type B constructed by Du and Scott [11] and Dipper, James and Mathas [9]). If so, it is then natural to ask for a generalization of Varagnolo-Vasserot Theorem for Hecke algebras of type A as well as a generalization of Yvonne’s Conjecture [34, Conj. 2.13]. Note that a construction of Schur algebras of type B is provided by the theory of Cherednik algebras [13], but this does not provide a generic Schur algebra.

If the reader wants more arguments for [6, Conjecture C], he or she is encouraged to read the original source of this conjecture [6]. Note also that recent works by Gordon and Martino (see [21], [22]) on Cherednik algebras show other compatibilities between this conjecture and the geometry of the Calogero-Moser spaces, as well as with Baby Verma modules of Cherednik algebras at $t = 0$.

Finally, it is natural to ask whether there exist different cellular structures for Ariki-Koike algebras associated to the complex reflection groups $G(d,1,n)$, these cellular structures being indexed by d-cores (or by d-uples of elements of \mathbb{Z}): however, in this case, no Kazhdan-Lusztig’s theory is available at that time (will there be one in the future?) so we have no candidate for the different cellular bases.

This paper is organized as follows. In the first section, we present the setting of our problem. Then, we recall Ariki’s Theorem which allows to compute the decomposition matrices for Hecke algebras of type B_n using objects coming from quantum group theory. In the third section, we introduce the combinatorial notions that we need to describe the Kazhdan-Lusztig theory in type B_n. The last two sections are devoted to the main results of our paper. Under some conjectures, we show the existence of several deep connections between Kazhdan-Lusztig theory and the canonical basis theory for $\mathcal{U}_e(\mathfrak{sl}_c)$.
1. Notation

Let \((W_n, S_n) \) be a Weyl group of type \(B_n \) and assume that the elements of \(S_n \) are denoted by \(t, s_1, \ldots, s_{n-1} \) in such a way that the Dynkin diagram is given by

\[
\begin{array}{cccc}
 & t & s_1 & s_2 & \cdots & s_{n-1} & \\
\end{array}
\]

The length function with respect to \(S_n \) will be denoted by \(\ell : W_n \to \mathbb{N} = \{0, 1, 2 \ldots \} \).

Let \(\Gamma \) be a torsion-free finitely generated abelian group and let \(A \) denote the group ring \(\mathbb{Z}[\Gamma] \). The group law on \(\Gamma \) will be denoted additively and we shall use an exponential notation for \(A \): more precisely, \(A = \bigoplus_{\gamma \in \Gamma} \mathbb{Z} e^\gamma \), where \(e^\gamma e^{\gamma'} = e^{\gamma + \gamma'} \) for all \(\gamma, \gamma' \in \Gamma \). We also fix two elements \(a \) and \(b \) in \(\Gamma \) and we denote by \(\mathcal{H}_n \) the Hecke algebra of \(W_n \) over \(A \) associated to the choice of parameters \(t \mapsto b \) and \(s_i \mapsto a \) for \(1 \leq i \leq n-1 \) symbolized by the following diagram:

\[
\begin{array}{cccc}
 & t & s_1 & s_2 & \cdots & s_{n-1} & \\
\end{array}
\]

More precisely, there exists a basis \((T_w)_{w \in W_n} \) of the \(A \)-module \(\mathcal{H}_n \) such that the multiplication on \(\mathcal{H}_n \) is \(A \)-bilinear and completely determined by the following properties:

\[
\begin{aligned}
T_w T_{w'} &= T_{ww'}, & \text{if } \ell(ww') = \ell(w) + \ell(w'), \\
(T_t - e^b)(T_t + e^{-b}) &= 0, \\
(T_{s_i} - e^a)(T_{s_i} + e^{-a}) &= 0, & \text{if } 1 \leq i \leq n-1.
\end{aligned}
\]

All along this paper, we also fix a field \(k \) of characteristic 0 and a morphism of groups \(\theta : \Gamma \to k^\times \): the morphism \(\theta \) extends uniquely to a morphism of rings \(\mathbb{Z}[\Gamma] \to k \) that we still denote by \(\theta \). We then set

\[k\mathcal{H}_n = k \otimes_A \mathcal{H}_n \]

and we still denote by \(\theta \) the specialization morphism \(\mathcal{H}_n \to k\mathcal{H}_n \). Moreover, we assume that the following holds: there exist natural numbers \(d \) and \(e \) such that \(e \geq 1 \) and

\[
\begin{aligned}
\theta(a)^2 &= \text{is a primitive } e\text{-th root of unity;} \\
\theta(b)^2 &= -\theta(a)^{2d}.
\end{aligned}
\]

If \(M \) is an \(\mathcal{H}_n \)-module, we denote by \(kM \) the \(k\mathcal{H}_n \)-module \(k \otimes_A M \). The Grothendieck group of \(k\mathcal{H}_n \) will be denoted by \(\mathcal{R}(k\mathcal{H}_n) \) and, if \(L \) is a \(k\mathcal{H}_n \)-module, its class in \(\mathcal{R}(k\mathcal{H}_n) \) will be denoted by \([L]\). Note that the algebra \(k\mathcal{H}_n \) is split.

Since \(\Gamma \) is torsion-free, the ring \(\mathbb{Z}[\Gamma] \) is integral and we denote by \(K \) its field of fractions. Then the algebra \(K\mathcal{H}_n = K \otimes_A \mathcal{H}_n \) is split semisimple. Its simple modules
are parametrized by the set Bip(n) of bipartitions of n: we shall denote this bijection by
\[\text{Bip}(n) \rightarrow \text{Irr} K\mathcal{H}_n, \]
\[\lambda \rightarrow V_\lambda. \]
This bijection is chosen as in [19, 10.1.2]. We denote by Bip the set of all bipartitions (i.e. Bip = \(\coprod_{n \geq 0} \text{Bip}(n) \)), the empty partition will be denoted by \(\emptyset \) and the empty bipartition \((\emptyset, \emptyset)\) (which is the unique bipartition in Bip(0)) will be denoted by \(\emptyset. \) Since \(A \) is integrally closed (it is a Laurent polynomial ring in algebraically independent indeterminates), there is a well-defined decomposition map [19, Theorem 7.4.3] \(d_n : R(K\mathcal{H}_n) \rightarrow R(k\mathcal{H}_n). \)

2. Fock space, canonical basis and Ariki’s Theorem

The aim of this section is to recall Ariki’s Theorem relating the canonical basis of the Fock space and the decomposition matrix \(d_n. \) The main references are [2], [14] and [35].

2.1. The Fock space. Let \(v \) be an indeterminate. Let \(\mathfrak{h} \) be a free \(\mathbb{Z} \)-module with basis \((h_0, \ldots, h_{e-1}, 0) \) and let \((\Lambda_0, \ldots, \Lambda_{e-1}, \delta) \) be its dual basis in \(\mathfrak{h}^* = \text{Hom}_\mathbb{Z}(\mathfrak{h}, \mathbb{Z}). \) The quantum group \(\mathcal{U}_v(\widehat{\mathfrak{sl}_e}) \) is defined as the unital associative \(\mathbb{C}(v) \)-algebra generated by elements \(\{e_i, f_i \mid 0 \leq i \leq e - 1\} \) and \(\{k_h \mid h \in \mathfrak{h}\} \) subject to the relations given for example in [31, chapter 6]. We denote by \(\mathcal{U}_v(\widehat{\mathfrak{sl}_e})' \) the subalgebra of \(\mathcal{U}_v(\widehat{\mathfrak{sl}_e}) \) generated by \(e_i, f_i, k_{h_i}, k_{h_i}^{-1} \) for \(i \in \{0, 1, \ldots, e - 1\}. \)

We fix a pair \(s = (s_0, s_1) \in \mathbb{Z}^2. \) To \(s \) is associated a Fock space (of level 2) \(\mathfrak{F}^s: \) this is an \(\mathcal{U}_v(\widehat{\mathfrak{sl}_e}) \)-module defined as follows. As a \(\mathbb{C}(v) \)-vector space, it has a basis given by the symbols \(|\lambda, s\rangle \) where \(\lambda \) runs over the set of bipartitions:
\[\mathfrak{F}^s = \bigoplus_{\lambda \in \text{Bip}} \mathbb{C}(v) |\lambda, s\rangle. \]
The action of the generators \(\mathcal{U}_v(\widehat{\mathfrak{sl}_e}) \) is given for instance in [33]. By [29], \(\mathfrak{F}^s \) is an integrable \(\mathcal{U}_v(\widehat{\mathfrak{sl}_e}) \)-module.

If \(m \in \mathbb{Z}, \) we denote by \(\bar{m} \) the unique element of \(\{0, 1, \ldots, e - 1\} \) such that \(m \equiv \bar{m} \mod e. \) We then set
\[\Delta(s) = \frac{1}{2} \sum_{j=0}^{e-1} \frac{s_j - \bar{s}_j}{e} (s_j + \bar{s}_j - e). \]
Since \(|\emptyset, s\rangle \) is a highest weight vector of \(\mathfrak{F}^s \) and as \(\mathfrak{F}^s \) is an integrable module, it follows that the submodule \(\mathcal{U}_v(\widehat{\mathfrak{sl}_e})|\emptyset, s\rangle \) generated by \(|\emptyset, s\rangle \) is an irreducible
module. We denote it by $\mathcal{M}[s]$ and it is isomorphic to the irreducible $\mathcal{U}_e(\widehat{\mathfrak{sl}}_e)$-module with highest weight $-\Delta(s)\delta + \Lambda_{s_0} + \Lambda_{s_1}$. In addition, the submodule $\mathcal{U}_e(\widehat{\mathfrak{sl}}_e)|\emptyset, s\rangle$ generated by $|\emptyset, s\rangle$ is also an irreducible highest weight module with weight $-\Delta(s)\delta + \Lambda_{s_0} + \Lambda_{s_1}$. We denote it by $\mathcal{M}[s]'$.

Remark 2.1 - If \mathcal{M} and \mathcal{N} are simple $\mathcal{U}_e(\widehat{\mathfrak{sl}}_e)'$-modules with highest weight Λ and Λ' respectively, then $\mathcal{M} \simeq \mathcal{N}$ if and only if $\Lambda \equiv \Lambda' \mod \mathbb{Z}\delta$. Therefore, if $s' = (s'_0, s'_1) \in \mathbb{Z}^2$, then $\mathcal{M}[s]' \simeq \mathcal{M}[s'']'$ if and only if $(s_0, s_1) \equiv (s'_0, s'_1) \mod \mathbb{Z}^2$ or $(s_0, s_1) \equiv (s'_1, s'_0) \mod e\mathbb{Z}^2$. □

2.2. **Uglov’s canonical basis.** We shall recall here Uglov’s construction of a canonical basis of the Fock space, which contains as a particular case the Kashiwara-Lusztig canonical basis of the simple $\mathcal{U}_e(\widehat{\mathfrak{sl}}_e)$-module $\mathcal{M}[s]$ (which is the same as the one of $\mathcal{M}[s']$). The reader may refer to Uglov’s original paper [33] for further details.

First, recall that there is a unique \mathbb{C}-linear involutive automorphism of algebra $\mathcal{U}_e(\widehat{\mathfrak{sl}}_e) \longrightarrow \mathcal{U}_e(\widehat{\mathfrak{sl}}_e)$ such that, for all $i \in \{0, 1, \ldots, e-1\}$ and $h \in \mathfrak{h}$, we have

$$\overline{v} = v^{-1}, \quad \overline{k_h} = k_{-h}, \quad \overline{e_i} = e_i, \quad \overline{f_i} = f_i.$$

It is $\mathbb{C}(v)$-antilinear (with respect to the restriction of $\overline{\cdot}$ to $\mathbb{C}(v)$).

One of the main ingredients in Uglov’s construction is a $\mathbb{C}(v)$-antilinear involution

$$\overline{\cdot} : \mathfrak{g}^s \longrightarrow \mathfrak{g}^s$$

which is defined using the *wedge realization* of the Fock space. This involution is $\mathcal{U}_e(\widehat{\mathfrak{sl}}_e)$-antilinear, that is, for all $u \in \mathcal{U}_e(\widehat{\mathfrak{sl}}_e)$ and $f \in \mathfrak{g}^s$, we have

$$u \cdot f = \overline{u} \cdot \overline{f}. \quad \text{(2.2)}$$

Moreover, recall that

$$|\emptyset, s\rangle = |\emptyset, s\rangle.$$ \quad \text{(2.3)}

Now, if $\lambda \in \text{Bip}$, there exists a unique $G(\lambda, s) \in \mathfrak{g}^s$ satisfying

$$\begin{cases} \overline{G(\lambda, s)} = G(\lambda, s), \\ G(\lambda, s) \equiv |\lambda, s\rangle \mod v\mathbb{C}[v]. \end{cases}$$

The proof of this result is constructive and gives an algorithm to compute this canonical basis. This algorithm has been improved by Yvonne [36]. Let us write, for $\mu \in \text{Bip}$,

$$G(\mu, s) = \sum_{\lambda \in \text{Bip}} d^{s}_{\lambda, \mu}(v) |\lambda, s\rangle,$$

where $d^{s}_{\mu, \mu}(v) = 1$ and $d^{s}_{\lambda, \mu}(v) \in v\mathbb{C}[v]$ if $\lambda \neq \mu$.

Finally, recall that there exists a unique subset Bipl_e of Bip such that
\[(2.4) \quad (G(\lambda, s))_{\lambda \in \text{Bipl}_e} \text{ coincides with Kashiwara-Lusztig canonical basis of } \mathcal{M}[s].\]
We set
\[\text{Bipl}_e(n) = \text{Bipl}_e \cap \text{Bip}(n).\]

2.3. Ariki’s Theorem. We shall recall here the statement of Ariki’s Theorem, using the later construction of Uglov:

\textbf{Ariki’s Theorem.} Assume that $d \equiv s_0 - s_1 \mod e$. Then there exists a unique bijection
\[\text{Bipl}_e(n) \underset{\mu}{\longrightarrow} \text{Irr } k \mathcal{H}_n \underset{\mu}{\longmapsto} D^*_\mu\]
such that
\[d_n[V_\lambda] = \sum_{\mu \in \text{Bipl}_e(n)} d^*_{\lambda, \mu}(1) [D^*_\mu]\]
for all $\lambda \in \text{Bip}(n)$.

This theorem, together with the algorithm for computing the Kashiwara-Lusztig canonical bases [23], provides an efficient tool for computing the decomposition map d_n.

3. Domino insertion

We shall review here some combinatorial results about the \textit{domino insertion algorithm}: the reader may refer to [27], [28] and [32] for further details.

3.1. Domino tableaux, bitableaux. Let $r \in \mathbb{N}$. We denote by δ_r the 2-core $(r, r - 1, \ldots, 1)$, with the convention that $\delta_0 = \emptyset$. Let \mathcal{P} denote the set of all partitions and let \mathcal{P}_r denote the set of partitions with 2-core δ_r. We denote by $\mathcal{P}_r(n)$ the set of partitions of 2-weight n and 2-core δ_r, so that
\[\mathcal{P}_r = \coprod_{n \geq 0} \mathcal{P}_r(n)\]
and
\[\mathcal{P} = \coprod_{r \geq 0} \mathcal{P}_r.\]
Note that partitions in $\mathcal{P}_r(n)$ are partitions of $2n + \frac{r(r-1)}{2}$. Let $q : \mathcal{P} \rightarrow \text{Bip}$ the map sending a partition to its 2-quotient. By composition with the bijection

$$\text{Bip} \rightarrow \text{Bip}$$

$$(\lambda^0, \lambda^1) \mapsto \begin{cases} (\lambda^0, \lambda^1) & \text{if } r \text{ is even} \\ (\lambda^1, \lambda^0) & \text{if } r \text{ is odd} \end{cases}$$

the restriction of q to \mathcal{P}_r induces a bijection

$$q_r : \mathcal{P}_r \sim \rightarrow \text{Bip}.$$

The restriction of q_r to $\mathcal{P}_r(n)$ induces a bijection

$$\mathcal{P}_r(n) \sim \rightarrow \text{Bip}(n)$$

that we still denote by q_r if no confusion may arise.

Let $SDT_r(n)$ denote the set of standard domino tableaux whose shape lies in $\mathcal{P}_r(n)$ (and filled with dominoes with entries 1, 2, ..., n) and let $SBT(n)$ denote the set of standard bitableaux of total size n (filled again with boxes with entries 1, 2, ..., n). We denote by $\tilde{q}_r : SDT_r(n) \rightarrow SBT(n)$ the bijection obtained as a particular case of [8, Theorem 7.3]. If $\lambda : SBT(n) \rightarrow \text{Bip}(n)$ (respectively Δ) sends a bitableau (respectively a domino tableau) to its shape, then the diagram

$$\begin{array}{ccc}
SDT_r(n) & \sim \rightarrow & SBT(n) \\
\Delta \downarrow & & \lambda \downarrow \\
\mathcal{P}_r(n) & \sim \rightarrow & \text{Bip}(n)
\end{array}$$

is commutative.

3.2. Orders between bipartitions.

The bijection q_r allows us to define several partial orders on the set of bipartitions. First, let \preceq denote the dominance order on \mathcal{P}. We then define the partial order \preceq_r on Bip as follows: if $\lambda, \mu \in \text{Bip}$, then

$$\lambda \preceq_r \mu \iff q_r^{-1}(\lambda) \leq q_r^{-1}(\mu).$$

Remark 3.2 - If $r \geq n - 1$ and $s \geq n - 1$, then the partial orders \preceq_s coincide on $\text{Bip}(n)$. In fact, they coincide with the classical dominance order on bipartitions that we shall denote by \preceq_∞. □

Example 3.3 - Here are the orders \preceq_0 and $\preceq_1 = \preceq_2 = \cdots = \preceq_\infty$ on $\text{Bip}(2)$:

- $(\emptyset; 11) \preceq_0 (11; \emptyset) \preceq_0 (1; 1) \preceq_0 (\emptyset; 2) \preceq_0 (2; \emptyset)$
- $(\emptyset; 11) \preceq_\infty (\emptyset; 2) \preceq_\infty (1; 1) \preceq_\infty (11; \emptyset) \preceq_\infty (2; \emptyset)$
Example 3.4 - Here are the orders \(\preceq_0, \preceq_1 \) and \(\preceq_2 = \preceq_3 = \cdots = \preceq_\infty \) on \(\text{Bip}(3) \).

In the diagram, we put an arrow between two bipartitions \(\lambda \rightarrow \mu \) if \(\mu \preceq_i \lambda \) and if there is no other bipartition \(\nu \) such that \(\mu \preceq_i \nu \preceq_i \lambda \).

3.3. Domino insertion algorithm. Recall that \(r \in \mathbb{N} \) is fixed. If \(w \in W_n \), then the domino insertion algorithm, as described for instance in [27], associates to \(w \) a standard domino tableau \(P_r(w) \in \mathcal{SDT}_r(n) \). We set

\[
S_r(w) = \tilde{q}_r(P_r(w)).
\]
Then \(S_r(w) \) is a standard bitableau of total size \(n \). We also set
\[
Q_r(w) = P_r(w^{-1}) \quad \text{and} \quad T_r(w) = S_r(w^{-1}) = \tilde{q}_r(Q_r(w)).
\]
It turns out that \(P_r(w) \) and \(Q_r(w) \) have the same shape, as well as \(S_r(w) \) and \(T_r(w) \).

Also, if we set \(SBT^{(2)}(n) = \{(S, T) \in SBT(n) \times SBT(n) \mid \lambda(S) = \lambda(T)\} \),

then the map
\[
(3.5) \quad \begin{array}{ccc}
W_n & \rightarrow & SBT^{(2)}(n) \\
\downarrow & & \downarrow \\
w & \mapsto & (S_r(w), T_r(w))
\end{array}
\]
is bijective. If \(w \in W_n \), then we set
\[
\lambda_r(w) = \lambda(S_r(w)) \in \text{Bip}(n).
\]

Note that
\[
(3.6) \quad \lambda_r(w) = \lambda(T_r(w)) = \lambda_r(w^{-1}).
\]

Remark 3.7 - If \(r, r' \geq n - 1 \), then the bijection \(W_n \rightarrow SBT^{(2)}(n), w \mapsto (S_r(w), T_r(w)) \) coincides with the bijection \(W_n \rightarrow SBT^{(2)}(n), w \mapsto (S_\infty(w), T_\infty(w)) \). Similarly, we shall set \(\lambda_\infty(w) = \lambda(S_\infty(w)) \).

4. **Kazhdan-Lusztig theory**

The aim of this section is to show that Kazhdan-Lusztig theory with unequal parameters should provide cellular data on \(\mathcal{H}_n \) which are compatible with Ariki’s Theorem. The reader may refer to [30] for the foundations of this theory.

We denote by \(\mathcal{H}_n \rightarrow \mathcal{H}_n, h \mapsto \overline{h} \) the unique automorphism of ring such that \(e^\gamma = e^{-\gamma} \) and \(T_w = T_w^{-1} \), for all \(\gamma \in \Gamma \) and \(w \in W_n \). It is an \(A \)-antilinear involutive automorphism of the ring \(\mathcal{H}_n \).

4.1. **Kazhdan-Lusztig basis.** From now on, we fix a total order \(\leq \) on \(\Gamma \) which endows \(\Gamma \) with a structure of ordered group.
\[
A_{\leq 0} = \bigoplus_{\gamma \leq 0} \mathbb{Z}e^\gamma \quad \text{and} \quad A_{< 0} = \bigoplus_{\gamma < 0} \mathbb{Z}e^\gamma.
\]

Then \(A_{\leq 0} \) is a subring of \(A \) and \(A_{< 0} \) is an ideal of \(A_{\leq 0} \). We also set
\[
\mathcal{H}_n^{< 0} = \bigoplus_{w \in W_n} A_{< 0}T_w.
\]

It is a sub-\(A_{\leq 0} \)-module of \(\mathcal{H}_n \).
If \(w \in W_n \), then [30, Theorem 5.2] there exists a unique element \(C_w^\prec \in H_n \) such that
\[
\begin{align*}
C_w^\prec &= C_w^\prec; \\
C_w^\prec &\equiv T_w \mod H_n^\prec^0.
\end{align*}
\]
Also, \((C_w^\prec)_{w \in W_n} \) is an \(A \)-basis of \(H_n \) and this basis depends on the choice of the order \(\prec \) on \(\Gamma \). We define the preorders \(\leq_L, \leq_R, \leq_LR \), and \(\leq_LR \) on \(W_n \) as in [30, §8.1] and we denote by \(\sim_L, \sim_R, \sim_{LR} \) the equivalence relations respectively associated to these preorders. Here, the exponents or the indices \(\prec \) stands for emphasizing the fact that the objects really depends on the order \(\leq \) on \(\Gamma \).

4.2. Bonnafé-Geck-Iancu-Lam conjectures. From now on, we shall assume that the parameters \(a, b \) in \(\Gamma \) are strictly positive and that \(b \not\in \{a, 2a, \ldots, (n-1)a\} \).

If \(b < (n-1)a \), then we denote by \(r \) the unique natural number such that \(ra < b < (r+1)a \). If \(b > (n-1)a \), then we may choose for \(r \) any value in \(\{n-1, n, n+1, \ldots\} \cup \{\infty\} \).

Note that the flexibility on the choice of \(r \) whenever \(b > (n-1)a \) will not change the statements below (see Remarks 3.2 and 3.7). Note also that, once \(a \) and \(b \) are fixed elements of \(\Gamma \), then the number \(r \) depends only on the choice of the order \(\leq \) on \(\Gamma \) (again with some flexibility if \(b > (n-1)a \)).

Conjecture A. With the above definition of \(r \), we have, for all \(w, w' \in W_n \):
\[
\begin{align*}
(a) & \ w \sim_L \prec w' \text{ if and only if } T_r(w) = T_r(w') \\
(b) & \ w \sim_R \prec w' \text{ if and only if } S_r(w) = S_r(w') \\
(c) & \ w \sim_{LR} \prec w' \text{ if and only if } \lambda_r(w) = \lambda_r(w') \\
(c^+) & \ w \leq_{LR} \prec w' \text{ if and only if } \lambda_r(w) \leq_r \lambda_r(w').
\end{align*}
\]

Remark 4.1 - First, note that the statements (a) and (b) in Conjecture A are equivalent. Note also that, if Lusztig’s Conjectures P1-P15 in [30, Chapter 14] hold, then (a) and (b) imply (c).

Note also that the statements (a), (b) and (c) have been proved whenever \(b > (n-1)a \) (asymptotic case: see [4, Theorem 7.7] and [3, 3.9]): the statement \((c^+)\) has been proved only if \(w \) and \(w' \) have the same \(t \)-length (i.e. if the numbers of occurrences of \(t \) in a reduced expression of \(w \) and \(w' \) are equal), see [4, 3.8].

Statements (a), (b) and \((c^+)\) have also been proved whenever \(a = 2b \) or \(3a = 2b \) (see [4, Theorem 3.14]).

Finally, we must add that Conjecture A is “highly probable”: it has been checked for \(n \leq 6 \) and is compatible with many other properties of Kazhdan-Lusztig cells.
and other conjectures of Lusztig. For a detailed discussion about this, the reader may refer to [3]. □

From now on, and until the end of this paper, we assume that Conjecture A holds. We shall now define a basis of H_n which depends on a, b and \leq as follows. If $(S, T) \in SBT^{(2)}(n)$, let w be the unique element of W_n such that $S = S_r(w)$ and $T = T_r(w)$: we then set

$$C^{\leq}_{S, T} = (C^w_{\leq})^\dagger,$$

where $\dagger : H_n \to H_n$ is the unique A-algebra involution such that $T_s^\dagger = -T_s^{-1}$ for all $s \in S_n$. Now, if $\lambda \in \text{Bip}(n)$, we denote by $SBT(\lambda)$ the set of standard bitableaux of shape λ (i.e. $SBT(\lambda) = \lambda_{-1}(\lambda)$). Finally, we denote by $H_n \to H_n$, $h \mapsto h^*$ the unique A-linear map such that

$$T^*_w = T_w^{-1}$$

for all $w \in W_n$. It is an involutive anti-automorphism of the A-algebra H_n. Then we have constructed a quadruple $((\text{Bip}(n), \leq_r), SBT, C^{\leq}, *)$ where

- $(\text{Bip}(n), \leq_r)$ is a poset;
- For each $\lambda \in \text{Bip}(n)$, $SBT(\lambda)$ is a finite set;
- Let $SBT^{(2)}(n) = \bigsqcup_{\lambda \in \text{Bip}(n)} SBT(\lambda) \times SBT(\lambda)$ then the map

$$C^{\leq} : SBT^{(2)}(n) \longrightarrow H_n,$$

$$(S, T) \longmapsto C^{\leq}_{S, T}$$

is injective and its image is an A-basis $(C^{\leq}_{S, T})_{(S, T) \in SBT^{(2)}(n)}$ of H_n;

- The map $* : H_n \to H_n$ is an A-linear involutive anti-automorphism of the ring H_n such that $(C^{\leq}_{S, T})^* = C^{\leq}_{T, S}$ for all $(S, T) \in SBT^{(2)}(n)$.

The next conjecture is taken from [3, Conjecture C].

Conjecture B. The quadruple $((\text{Bip}(n), \leq_r), SBT, C^{\leq}, *)$ is a cell datum on H_n, in the sense of Graham-Lehrer [20].

Remark 4.2 - For a discussion of some evidences for this conjecture, see again [3]. Note that if Lusztig’s Conjectures P1-P15 in [3, Chapter 14] hold and if Conjecture A above holds, then Conjecture B holds by a recent work of Geck [15]. □

In the rest of this paper, we shall give some more evidences for Conjectures A and B, towards their compatibilities with Ariki’s Theorem.

Hypothesis: From now on, and until the end of this paper, we assume that Conjectures A and B hold. We shall denote by C^{\leq} the cell datum $((\text{Bip}(n), \leq_r), SBT, C^{\leq}, *)$.
4.3. **Interpretation of Ariki’s Theorem.** Since we assume that Conjectures A and B hold, the general theory of cellular algebras [20] shows that the cell datum \(C^\xi \) provides us with a family of Specht modules \(S^\xi_\lambda \) associated to each bipartition \(\lambda \) of \(n \). Moreover, \(S^\xi_\lambda \) is endowed with a bilinear form \(\phi^\xi_\lambda : S^\xi_\lambda \times S^\xi_\lambda \to A \) such that, for all \(h \in H_n \) and \(x, y \in S^\xi_\lambda \), we have

\[
\phi^\xi_\lambda (h \cdot x, y) = \phi^\xi_\lambda (x, h^* \cdot y).
\]

We denote by \(k\phi^\xi_\lambda \) the specialization of \(\phi^\xi_\lambda \) to \(kS^\xi_\lambda \) (through \(\theta : \Gamma \to k^* \)). We then set

\[
D^\xi_\lambda = kS^\xi_\lambda / \text{rad}(k\phi^\xi_\lambda).
\]

By \ref{rad}, \(\text{rad}(k\phi^\xi_\lambda) \) is a \(kH_n \)-submodule of \(S^\xi_\lambda \), so that \(D^\xi_\lambda \) is a \(kH_n \)-module. We set

\[
\text{Bip}^{(k)}(n) = \{ \lambda \in \text{Bip}(n) \mid D^\xi_\lambda \neq 0 \}.
\]

Then, by the theory of cellular algebras [20], Thm. 3.4, \((D^\xi_\lambda)_{\lambda \in \text{Bip}^{(k)}(n)} \) is a family of representatives of isomorphism classes of irreducible \(kH_n \)-modules.

Remark 4.4 - Note that the \(kH_n \)-modules \(D^\xi_\lambda \), as well as the \(H_n \)-modules \(S^\xi_\lambda \), depend heavily on the choice of the order \(\leq \) on \(\Gamma \) (they depend on \(r \)): several choices for \(\leq \) will lead to non-isomorphic \(kH_n \)-modules. In particular, the set \(\text{Bip}^{(k)}(n) \) does depend on \(\leq \) (see §5). □

Once we accept Conjectures A and B, it is highly probable that the Specht modules satisfy the following property.

Conjecture B’. *For all* \(n \in \mathbb{N} \) *and for all* \(\lambda \in \text{Bip}(n) \), *we have*

\[
KS^\xi_\lambda \simeq V_\lambda
\]

Recall that \(\theta \) is the specialization morphism \(H_n \to kH_n \) such that there exist natural numbers \(d \) and \(e \) such that \(e \geq 1 \) and

\[
\begin{cases}
\theta(a)^2 \text{ is a primitive } e\text{-th root of unity;} \\
\theta(b)^2 = -\theta(a)^{2d}.
\end{cases}
\]

The following result is a generalization of [1] and [17] (see also [15]).

Theorem 4.5. *Assume that Conjectures A, B and B’ hold. Let* \(\lambda \in \text{Bip}(n) \). *Let* \(p \) *be the unique integer such that*

\[
d + pe \leq r < d + (p + 1)e.
\]

Put

\[
s = (d + pe, 0)
\]
then \(\text{Bip}^e_{(k)}(n) = \text{Bip}_{e}^s(n) \) and

\[
[k S^e_{\lambda} : D^e_{\mu}] = d^s_{\lambda, \mu}(1)
\]

for all \(\mu \in \text{Bip}^e_{(k)}(n) \). In other words, \(D^e_{\mu} \simeq D^s_{\mu} \) and

\[
d_n[V^e_{\lambda}] = \sum_{\mu \in \text{Bip}^e_{(k)}(n)} d^s_{\lambda, \mu}(1)[D^e_{\mu}].
\]

Proof. Assume that \(p \) is the unique integer such that

\[
d + pe \leq r < d + (p + 1)e.
\]

and put

\[
s = (d + pe, 0)
\]

Let \(\mu \in \text{Bip}_{e}^s(n) \). Then, because of the above condition on \(p \), we can use the same strategy as in the proof of [14, Theorem 5.4] to show that:

\[
G(\mu, s) = |\mu, s\rangle + \sum_{\lambda \leq_r \mu, \lambda \neq \mu} d^s_{\lambda, \mu}(v) |\lambda, s\rangle,
\]

Now, assume that \(\nu \in \text{Bip}^e_{(k)}(n) \). Then by Ariki’s Theorem there exists \(\mu \in \text{Bip}_{e}^s(n) \) such that for all \(\lambda \in \text{Bip}(n) \):

\[
d_{\lambda, \nu} = d^s_{\lambda, \mu}(1),
\]

where \(d_{\lambda, \nu} = [k S^e_{\lambda} : D^e_{\nu}] \). We have :

\[
d_{\mu, \nu} = 1 \text{ and } d_{\lambda, \nu} = 0 \text{ if } \mu \leq_r \lambda \text{ and } \mu \neq \lambda
\]

By the property of cellular algebras [20, Proposition 3.6], this implies that \(\nu = \mu \). As we have a bijection between \(\text{Bip}^e_{(k)}(n) \) and \(\text{Bip}_{e}^s(n) \), this implies that these two sets are equal. The rest of the theorem is now obvious. \(\square \)

Remark 4.6 - The above theorem gives a conjectural interpretation of Ariki’s parametrization of simple \(kh_n \)-modules in terms of a new cellular structure on \(H_n \) (coming from Kazhdan-Lusztig’s theory). \(\square \)

4.4. **Uglov bipartitions.** The bipartitions in \(\text{Bip}_{e}^s(n) \) are known as Uglov bipartitions. They are constructed by using the crystal graph of the associated Fock space representation (see for example [2] for details on crystal graphs). In general, we only have a recursive definition for them. However, there exist non-recursive characterizations of such bipartitions in particular cases:

- in the case where \(-e \leq d + pe < 0\), see [14] and [24, Proposition 3.1] (the Uglov bipartitions are then called the FLOTW bipartitions);
in the case where \(d + pe > n - 1 - e \), see [3], [4] (the Uglov bipartitions are then called the Kleshchev bipartitions). Note that this includes the “asymptotic case”, that is, the case where \(b > (n - 1)a \).

4.5. Jantzen filtration. Once we believe in Conjectures A and B, it is natural to try to develop the theory as in the type A case. For instance, one can define a Jantzen filtration on \(kS^\xi_\lambda \) as follows. First, there exists a discrete valuation ring \(\mathcal{O} \subset K \) containing \(A \) such that, if we denote by \(p \) the maximal ideal of \(\mathcal{O} \), then \(p \cap A = \text{Ker} \theta \). Since \(K \) is the field of fractions of \(A \), the map \(\theta : A \to k \) extends to a map \(\tilde{\theta} : \mathcal{O} \to k \) with kernel \(p \) and we have

\[
\mathcal{O}H_n = k \otimes_{\mathcal{O}} \mathcal{O}H_n
\]

where \(\mathcal{O}H_n = \mathcal{O} \otimes_A H_n \). Similarly, if \(\lambda \in \text{Bip}(n) \), then \(\mathcal{O}S^\xi_\lambda \) is an \(\mathcal{O}H_n \)-module and the extension of scalars defines a bilinear form \(\mathcal{O}\phi^\xi_\lambda \) on \(\mathcal{O}S^\xi_\lambda \). We then set, for all \(i \geq 0 \),

\[
\mathcal{O}S^\xi_\lambda(i) = \{ x \in \mathcal{O}S^\xi_\lambda \mid \forall y \in \mathcal{O}S^\xi_\lambda, \mathcal{O}\phi^\xi_\lambda(x, y) \in p^m \}.
\]

We then set

\[
kS^\xi_\lambda(i) = (\mathcal{O}S^\xi_\lambda(i) + pS^\xi_\lambda)/pS^\xi_\lambda.
\]

Then there exists \(m_0 \) such that \(kS^\xi_\lambda(m_0) = 0 \) and the \(S^\xi_\lambda(i) \)'s are \(\mathcal{O}H_n \)-submodules of \(kS^\xi_\lambda \). Moreover, \(kS^\xi_\lambda(0) = kS^\xi_\lambda \) and \(kS^\xi_\lambda(1) = \text{rad} k\phi^\xi_\lambda \). The Jantzen filtration of \(kS^\xi_\lambda \) is the filtration

\[
0 = kS^\xi_\lambda(m_0) \subseteq kS^\xi_\lambda(m_0 - 1) \subseteq \cdots \subseteq kS^\xi_\lambda(1) \subseteq kS^\xi_\lambda(0) = kS^\xi_\lambda.
\]

The next conjecture proposes an interpretation of the polynomials \(d^s_{\lambda, \mu} \) as a \(v \)-decomposition matrix. This is a generalization of a conjecture by Lascoux, Leclerc and Thibon [29, §9].

Conjecture C. Let \(\lambda \in \text{Bip}(n) \) and \(\mu \in \text{Bip}^\xi_k(n) \). Let \(p \) be the unique integer such that

\[
(d + pe)a < b < (d + (p + 1)e)a.
\]

Put

\[
s = (d + pe, 0),
\]

then

\[
d^s_{\lambda, \mu}(v) = \sum_{i \geq 0} [kS^\xi_\lambda(i)/kS^\xi_\lambda(i + 1) : D^\xi_\mu] \ v^i.
\]

It would also be very interesting to find an analogue of Jantzen’s sum formula. This formula could be obtained using the matrix described by Yvonne in [35, §7.4].
4.6. **An example: the asymptotic case.** Assume here, and only in this subsection, that \(b > (n-1)a \) (in other words, if \(r \geq n-1 \)). Then Theorem 4.5 holds without assuming that Conjectures A and B are true in this case. However, note that, at the time this paper is written, the Conjecture A is not fully proved. As it is explained in Remark 4.1, only (a), (b) and (c) are proved and part of (c+). However, we can define an order \(\preceq \) on \(\text{Bip}(n) \) as follows: if \(\lambda, \mu \in \text{Bip}(n) \), we write \(\lambda \preceq \mu \) if \(w \leq LR, w' \) for some (or all) \(w \) and \(w' \) in \(W_n \) such that \(\lambda(w) = \lambda \) and \(\lambda(w') = \mu \). Then, by the work of Geck-Iancu [16] and Geck [15], we have that \((\text{Bip}(n), \preceq, \text{SBT}, C^c, *)\) is a cell datum on \(H_n \) and it is easily checked that the proof of Theorem 4.5 remains valid if we replace everywhere \(\preceq_r \) by \(\preceq \).

Note also that the cell datum \((\text{Bip}(n), \preceq, \text{SBT}, C^c, *)\) is roughly speaking equivalent to the cell data constructed by Graham and Lehrer [20, Theorem 5.5] or Dipper, James and Mathas [9, Theorem 3.26].

5. **Generic Hecke algebra**

In the last section, we have shown that, if we assume that conjectures A and B hold, the choice of a pair \((a, b) \in \Gamma^2\) and the choice of a total order on \(\Gamma \) lead to an “appropriate” representation theory for the associated Hecke algebra of type \(B_n \). In this section, we show that these results can be applied to find several “Specht modules” theories for the same algebra: we shall work with the group \(\Gamma = \mathbb{Z}^2 \), with \(a = (1, 0) \) and \(b = (0, 1) \) and the main theme of this section will be to make the order \(\preceq \) vary.

Hypotheses and notation: From now on, we assume that \(\Gamma = \mathbb{Z}^2 \), \(a = (1, 0) \) and \(b = (0, 1) \). We set \(Q = e^b \) and \(q = e^a \) so that \(A = \mathbb{Z}[Q, Q^{-1}, q, q^{-1}] \).

In this case, \(H_n \) is called the generic Hecke algebra of type \(B_n \). Recall that

\[
(T_t - Q)(T_t + Q^{-1}) = (T_{s_i} - q)(T_{s_i} + q^{-1}) = 0
\]

for all \(i \in \{1, 2, \ldots, n-1\} \). Now, any choice of elements \(Q_0 \) and \(q_0 \) in \(k^x \) defines a unique morphism \(\theta : \Gamma \to k^x, a \mapsto v_0, b \mapsto V_0 \).

5.1. **Orders on \(\mathbb{Z}^2 \).** Our main theme in this section is to use the possibility of endowing \(\Gamma = \mathbb{Z}^2 \) with several orders. For instance, if \(\xi \in \mathbb{R}_{>0} \setminus \mathbb{Q} \) (a positive irrational number), then we can define

\[
(m, n) \preceq_\xi (m', n') \text{ if and only if } m + \xi n \preceq m' + \xi n'.
\]
This defines a total order on \mathbb{Z}^2. Moreover, $0 <_\xi a$ and $0 <_\xi b$, so that all the results of this paper can be applied. If r denotes the entire part $[\xi]$ of ξ, then

$$ra < b < (r + 1)a.$$

For simplification, we shall denote by S^ξ_λ the \mathcal{H}_n-module S^ξ_λ and D^ξ_λ the $k\mathcal{H}_n$-module D^ξ_λ. We also set $\text{Bip}^\xi_{(k)}(n) = \text{Bip}^\xi_{(k)}(n)$. We also assume that the following holds: there exist natural numbers d and e such that $e \geq 1$ and

$$\begin{cases}
\theta(a)^2 \text{ is a primitive } e\text{-th root of unity;} \\
\theta(b)^2 = -\theta(a)^{2d}.
\end{cases}$$

We can now restate the Theorem 4.5 in this case:

Theorem 5.1. Assume that Conjectures A, B and B’ hold. Let $\lambda \in \text{Bip}(n)$. Let p be the unique integer such that

$$d + pe < \xi < d + (p + 1)e.$$

Put

$$s = (d + pe, 0)$$

then $\text{Bip}^\xi_{(k)}(n) = \text{Bip}^s_{(k)}(n)$ and

$$[kS^\xi_\lambda : D^\xi_\mu] = d^s_{\lambda, \mu}(1)$$

for all $\mu \in \text{Bip}^\xi_{(k)}(n)$. In other words, $D^\xi_\mu \simeq D^s_\mu$ and

$$d_n[V_\lambda] = \sum_{\mu \in \text{Bip}^\xi_{(k)}(n)} d^s_{\lambda, \mu}(1)[D^\xi_\mu].$$

This Theorem shows that, if Conjectures A and B hold, then the different choices of ξ (or of other orders on \mathbb{Z}^2) lead to:

- Different cellular structures on \mathcal{H}_n;
- Different families of Specht modules;
- Different parametrizations of the simple $k\mathcal{H}_n$-modules,
- Different “ν-decomposition matrices” as defined in [4,5] (despite the fact that the decomposition matrices must be equal up to permutations of the rows and the columns).

For instance, if ξ and ξ' are two positive irrational numbers, then the $K\mathcal{H}_n$-modules KS^ξ_λ and $KS^\xi'_\lambda$ are isomorphic, but the \mathcal{H}_n-modules S^ξ_λ and $S^\xi'_\lambda$ might be non-isomorphic.
Remark 5.2 - If $\xi > n - 1$, then Geck, Iancu and Pallikaros have shown that the Specht modules S^ξ_λ are isomorphic to the ones constructed by Dipper, James and Murphy. □

5.2. Crystal isomorphisms. Let ξ_1 and ξ_2 be irrational numbers. Let r_1 and r_2 be the natural numbers such that

$$r_1 < \xi_1 < (r_1 + 1) \quad \text{and} \quad r_2 < \xi_2 < (r_2 + 1).$$

Then if we use the order $\leqslant \xi_1$, we obtain a complete set of non-isomorphic simple modules for the specialized algebra kH_n:

$$\{D^\xi_{\lambda} | \lambda \in \text{Bip}_{r_1}(n)\}.$$

On the other hand, if we use the order $\leqslant \xi_2$, we obtain a complete set of non-isomorphic simple modules for the same algebra:

$$\{D^\xi_{\lambda} | \lambda \in \text{Bip}_{r_2}(n)\}.$$

By Theorem 5.1, there exist $s_1 \in \mathbb{Z}^2$ and $s_2 \in \mathbb{Z}^2$ such that:

$$\text{Bip}^{\xi_{\lambda}}_{(r_1)}(n) = \text{Bip}^{s_1}_{(n)} \quad \text{and} \quad \text{Bip}^{\xi_{\lambda}}_{(r_2)}(n) = \text{Bip}^{s_2}_{(n)}$$

and we have a bijection

$$c : \text{Bip}^{s_1}_{(n)} \to \text{Bip}^{s_2}_{(n)}$$

which is uniquely determined by the condition that:

For all $\mu \in \text{Bip}^{s_1}_{(n)}$, $D^\xi_{\lambda}\mu \simeq D^\xi_{\lambda}c(\mu)$.

In this section, we want to explicitly determine the bijection c. To do this, we first note that this map induces a bijection between the vertices of the crystal graphs of $M[s^1]$ and $M[s^2]$.

The modules $M[s^1]'$ and $M[s^2]'$ are isomorphic as $U(\widehat{\mathfrak{sl}}_n)'$ modules. As a consequence, the crystal graphs of $M[s^1]$ and $M[s^2]$ are also isomorphic. This bijection may be obtained by following a sequence of arrows back to the empty bipartition in the crystal graph of $M[s^1]$ and then applying the reversed sequence from the empty bipartition of $M[s^2]$. One can also define it as follows. Let

$$B_{s^1} := \{G(\mu, s^1) | \mu \in \text{Bip}^{s^1}_{(n)}\}$$

be the elements of the canonical basis of $M[s^1]$ and let

$$B_{s^2} := \{G(\mu, s^2) | \mu \in \text{Bip}^{s^2}_{(n)}\}$$

be the elements of the canonical basis of $M[s^1]$. Then if we specialize the element of B_{s^1} or B_{s^2} to $v = 1$, we obtain a basis of the same irreducible highest weight $U(\widehat{\mathfrak{sl}}_n)$-modules. Hence, for all $\mu \in \text{Bip}^{s^1}_{(n)}$, there exists $\gamma(\mu) \in \text{Bip}^{s^2}_{(n)}$ such that

for all $\lambda \in \text{Bip}(n)$, $d^{s^1}_{\lambda, \mu}(1) = d^{s^2}_{\lambda, \gamma(\mu)}(1)$.

Then we have a bijection

\[\gamma : \text{Bip}_e^s(n) \rightarrow \text{Bip}_e^s(n). \]

This bijection has been explicitly described, in a non-recursive way in [24] (see also the generalization in [25]).

Theorem 5.3. Assume that Conjectures A and B hold. Then for all \(\mu \in \text{Bip}_e^s(n) \), we have

\[c(\mu) = \gamma(\mu). \]

Proof. Let \(r_1 \) (respectively \(r_2 \)) denote the entire part of \(\xi_1 \) (respectively \(\xi_2 \)). Let \(\mu \in \text{Bip}_e^s(n) \). By Ariki’s Theorem and the theory of cellular algebras, \(c(\mu) \) is the maximal element with respect to \(\unrhd_{r_2} \) such that \(|c(\mu), s^1 \rangle \) appears with non-zero coefficient in \(G(\mu, s_1) \).

We have \([\text{CS}_\lambda : D^\xi_1]_\mu = [\text{CS}_\lambda : D^\xi_2]_{c(\mu)}\) and \([\text{CS}_\lambda : D^\xi_1] = d_{\lambda(\mu)}(1) = d_{\lambda, \gamma(\mu)}(1) = [\text{CS}_\lambda : D^\xi_2]_{c(\mu)}\). Hence \(\gamma(\mu) \) is the maximal element with respect to \(\unrhd_{r_2} \) such that

\[d_{\gamma(\mu)}(1) \neq 0 \]

This implies that

\[c(\mu) = \gamma(\mu). \]

This concludes the proof. \(\square \)

Remark 5.4 - Note that using the non-recursive parametrization of \(\text{Bip}_e^s(n) \) known in particular cases (see §4.4), it is possible to obtain nice characterizations of \(\text{Bip}_e^s(n) \) in all cases by applying the above bijection.

Example 5.5 - Assume that \(n = 4 \) and that \(\theta(a)^2 = \theta(b)^2 = -1 \). Then \(\theta(a) \) is a primitive 2-root of unity and we have \(\theta(b)^2 = -\theta(a)^0 \). If \(0 < \xi_1 < 2 < \xi_2 < 4 \) (i.e. \(r_1 \in \{0,1\} \) and \(r_2 \in \{2,3\} \)), then we have

\[\text{Irr} (\mathcal{C}H_4) = \{ D^\xi_1_\mu | \mu \in \text{Bip}_e^{(0,0)}(4) \}. \]

\[\text{Irr} (\mathcal{C}H_4) = \{ D^\xi_2_\mu | \mu \in \text{Bip}_e^{(2,0)}(4) \}. \]

To compute \(\text{Bip}_e^{(0,0)}(4) \) (respectively \(\text{Bip}_e^{(2,0)}(4) \)), we compute the crystal graph associated to the action of the quantum group \(U_q(\hat{\mathfrak{sl}}_2) \) on the Fock space \(\mathcal{F}^{(0,0)} \) (respectively \(\mathcal{F}^{(2,0)} \)). The submodule generated by the empty bipartition gives an irreducible highest weight module \(M[0,0] \) (respectively \(M[2,0] \)) with highest weight \(2\Lambda_0 \). We only give the part of both crystals containing the bipartitions up to rank 4. They are computed as explained in [24, 2.1, 2.2]:
Crystal graph of $\mathcal{M}[0, 0]$

\[
\begin{array}{c}
(0, \emptyset) \\
0 \\
(1, \emptyset) \\
0 \quad 1 \\
(1, 1) \\
1 \\
(2, 1) \\
0 \\
(2, 2) \\
(3, 1, \emptyset) \\
(3, 1) \\
\end{array}
\]

Crystal graph of $\mathcal{M}[2, 0]$

\[
\begin{array}{c}
(0, \emptyset) \\
0 \\
(1, \emptyset) \\
0 \quad 1 \\
(1, 1) \\
1 \\
(2, 1) \\
0 \\
(2, 1, \emptyset) \\
(2, 1, 1) \\
(3, 1) \\
\end{array}
\]

By Theorem 4.3, we then have
\[
\text{Irr}(\mathcal{CH}_4) = \{ D_{(4, \emptyset)}, D_{(31, \emptyset)}, D_{(3, 1)}, D_{(2, 2)} \}
\]

and, by Theorem 5.3, we have
\[
\begin{align*}
D_{(4, \emptyset)}^{\xi_1} &\simeq D_{(4, \emptyset)}^{\xi_2} \\
D_{(31, \emptyset)}^{\xi_1} &\simeq D_{(31, \emptyset)}^{\xi_2} \\
D_{(3, 1)}^{\xi_1} &\simeq D_{(3, 1)}^{\xi_2} \\
D_{(2, 2)}^{\xi_1} &\simeq D_{(2, 1, 1)}^{\xi_2} \\
\end{align*}
\]

Acknowledgements. We would like to thank Bernard Leclerc and Meinolf Geck for many useful discussions on the topic of this paper. Both authors are supported by the “Agence national de la recherche” No. JCO7 192339.

References

Labo. de Math. de Besançon (CNRS: UMR 6623), Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France

E-mail address: cedric.bonnafe@univ-fcomte.fr, nicolas.jacon@univ-fcomte.fr