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Quadrilateral Modelling and Robust Control of a
nonLinear Piezoelectric Cantilever

Micky Rakotondrabe, member, IEEE, Yassine Haddab and Philippe Lutz, member, IEEE

Abstract—Piezocantilevers are commonly used for the actua-
tion of micromechatronic systems. These systems are generally
used to perform micromanipulation tasks which require high
positioning accuracy. However, the nonlinearities, i.e. the hys-
teresis and the creep, of piezoelectric materials and the influence
of the environment (vibrations, temperature change, etc.) create
difficulties for such a performance to be achieved. Various models
have been used to take into account the nonlinearities but they are
often complex. In this paper, we study a one degree of freedom
piezoelectric cantilever. For that, we propose a simple new model
where the hysteresis curve is approximated by a quadrilateral
and the creep is considered to be a disturbance. To facilitate the
modelling, we first demonstrate that the dynamic hysteresis of the
piezocantilever is equivalent to a static hysteresis, i.e. a varying
gain, in series with a linear dynamic part. The obtained model is
used to synthesize a linear robust controller, making it possible to
achieve the performances required in micromanipulation tasks.
The experimental results show the relevance of the combination
of the developed model and the synthesized robust H∞ controller.

Index Terms—Piezoelectric devices, hysteresis and creep,
quadrilateral approximate model, robust control, micromanip-
ulation.

I. INTRODUCTION

P Iezoelectric materials are commonly used for the ac-
tuation of microsystems and microrobots. This is due

to their good deformation/force ratio, high resolution and
low response time. One of their major applications in the
microworld is the actuation of microgrippers, as in [1] [2]
[3]. A piezoelectric microgripper (Fig. 1) is generally made
up of two piezocantilevers (piezoelectric cantilevers). It is used
to perform micromanipulation tasks (manipulation of micro-
objects). According to the application, the cantilevers may be
controlled in position and/or in force.

micro-object force

displacement

piezoelectric

cantilevers

Fig. 1. A piezoelectric microgripper made up of two piezocantilevers.
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In micromanipulation tasks, the displacement at the tip,
i.e. the deflection, of one piezocantilever is often lower

than a few tens of microns while the accuracy is submicromet-
ric. Such systems are very sensitive to the environment. For
example, environmental vibrations can produce displacements
greater than the reference deflections. These environmental
vibrations are often caused by surrounding electrical devices
and instruments. To perform a micromanipulation task, these
disturbances must be taken into account during the design of
the controllers.
Due to their small size, piezocantilevers can be damaged

during micromanipulation tasks. In this case, they have to be
replaced. The controller must then ensure the stability and
the performance in spite of the exchange of piezocantilevers,
as small geometrical differences always exist between the
piezocantilevers. As the size of the piezocantilever in its en-
tirety is relatively small (a few millimeters), such a difference
extensively influences the models parameters.
One of the major limitations for piezoelectric actuators

to achieve high tracking accuracy is due to their inherent
nonlinear behavior. It has been shown that when the deflexion
δ of the cantilever becomes large, generally higher than 15% of
the maximum field strength [4], hysteresis and creep phenom-
ena arise and the performances, notably the accuracy, of the
piezoactuators are decreased. To succeed a micromanipulation
task and maintain the required performances, the influences of
the hysteresis and the creep must be rejected either with open
loop or closed-loop techniques.
In the open loop techniques, two linearization methods are

used for piezoelectric materials: the charge compensation and
the model compensation. As the relation between the applied
charge and the deflection is linear, the charge compensation
consists in converting the voltage into charge and controlling
the piezocantilever through the latter [5]. In the model com-
pensation, the principle is to precisely model the nonlinearities
and place the corresponding inverse model in series with
the real system. The accuracy of the control depends on the
accuracy of the nonlinear model and its inverse. However,
open loop techniques are not suitable for disturbed systems
and closed-loop techniques should be used.
Concerning closed-loop techniques, feedforward-feedback

and feedback methods are used. The feedforward-feedback
method consists in placing an inverse hysteresis model in
the feedforward loop to cancel the hysteresis, and design a
linear feedback controller to improve the performances. In the
feedback method, a linear approximate model is used to model
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the nonlinearities and to design a linear controller.
For both techniques, various nonlinear models and linear

approximate models were proposed. For example, a logarith-
mic function [6] or the Maxwell model [7] [8] were used
to model the creep. To model the hysteresis, the Preisach
model is the most accurate [9] [10] [11]. However, due to
its complexity, the real time implementation of the Preisach
model is difficult [12]. The same problem also exists in other
precise models [13], such as the Maxwell resistive capacitor
model [14] and the Bouc-Wen model (tuning voltage based
model) [15] [16]. Consequently, linear approximate models
were proposed. They are the polynomial model [18] [13] and
the variable gain - variable phase model [19]. In the polyno-
mial model, polynomial functions are used to approximate the
ascending curve and the descending curve of the hysteresis.
The control schemes based on this approximation are very
easy to implement but as the coefficients of the polynomials
are experimentally determined with a sine input at constant
frequency and amplitude, the magnitude and rate dependence
of the hysteresis were not considered [19] [20] [21]. Finally,
the variable gain - variable phase model consists in having
a linear model with a time-delay. In this approximation, the
gain depends on the amplitude of the input while the time-
delay depends on its frequency. As the approximate model
only considers the hysteresis phenomenon, the creep is not
taken into account. A detailed survey of the different control
techniques for piezoactuators can be found in [22].
In this paper we present a simple model easy to identify

for a one degree of freedom (dof) piezoelectric cantilever.
This model, which does not need to be implemented (as in
the inversion compensation method), is used to synthesize
low power and low time consuming controllers. The proposed
model takes into account the hysteresis and the creep. In this
model, the model is approximated by a linear model subjected
to uncertainty and with a varying static gain. Before detailing
the new approximation, we first demonstrate that the hysteresis
only affects the gain of the voltage-deflection relation. Conse-
quently, as the hysteresis is rate-independent, the coefficients
of the proposed approximate model are independent of the
frequency of the input voltage. However, it will be shown that
the static gain is subjected to uncertainty. So, to ensure the
performances required in the micromanipulation stated above,
a robust H∞ controller is proposed at the end of the paper.

II. HYSTERESIS AND CREEP IN PIEZOELECTRIC
CANTILEVERS

In this section, we show experimentally that the hysteresis
in a piezocantilever only affects the static domain. Such hys-
teresis is called static hysteresis or rate-independent hysteresis,
as its shape is independent of the input signal frequency [23].
The fact that the piezocantilever hysteresis is static is of great
interest because the approximate model is independent of the
input signal frequency. Before that, we analyze the hysteresis
and the creep in a piezocantilever.
For the experiments, a unimorph piezocantilever made up

of a PIC151 piezolayer and a copper layer is used. The
characteristics of the cantilever are presented in Table I.

The experimental setup (Fig. 2) comprises a computer with
Matlab-Simulink software, a DSpace real-time board, a voltage
amplifier and a laser sensor with an accuracy of 0.5µm (from
KEYENCE).

TABLE I
Geometrical parameters of the piezocantilever.

Dimensions:
Length 15mm
Width 2mm
Total thickness 0.3mm
PIC151 thickness 0.2mm
Copper thickness 0.1mm

Fig. 2. The experimental setup.

A. Description of the piezocantilever behaviour
Let Fig. 3 represent a piezocantilever under electrical and

mechanical stimulations respectively U and F . The piezocan-
tilever may be a unimorph or a bimorph (made up of two
piezolayers) piezoelectric cantilever.

The relation between the deflection δ, the applied force F
and the voltage U when the electromechanical part is nonlinear
is as follows [26]:

δ(s) = sp · D(s) · F (s) + Γ (U(s), s) (1)

where sp is the elastic constant, D(s) is a dynamic part, s
the Laplace variable and D(0) = 1. For the rest, the Laplace
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Fig. 3. A piezocantilever under an electrical and a mechanical excitations.

signals δ(s), U(s) and F (s) are replaced by δ, U and F except
in the figures where the latter represents the signals in the
temporal domain.

Γ (U, s) is an operator that includes the hysteresis and the
creep. Since this operator includes the hysteresis, it depends on
the past and present values of U . In addition, it may depend
on the frequency of U . This is why the notation of Γ has
both U and s. Let us study the possible separation of the two
nonlinearities inside Γ (U, s).
The creep can be observed when a step voltage is applied to

the piezocantilever (Fig. 4-a). The drift tends towards a finite
value and its amplitude depends on the step amplitude. If we
consider that the drift begins just after the transient part, we
can write:

Γ (U, s) = H (U, s) + Cr(U, s) · e−T ·s (2)

where H (U, s) is the hysteresis operator, Cr(U, s) is the
creep operator and T is the delay before the creep starts.
However, many experiments have shown that the transient
part of piezocantilevers is generally below 100ms while its
creep response time is more than 3min. The delay can then
be neglected from the expression (Eq. 2) (Fig. 4-b). We obtain:

δ = sp · D(s) · F + H (U, s) + Cr(U, s) (3)

Fig. 4. Creep phenomenon.

In the expression (Eq. 3) and according to Fig. 4-a, the static
value and the transient part of the electromechanical transfer
is modelled inside the hysteresis term H (U, s). So, the creep
Cr(U, s) can be considered as a disturbance. Hence, one of the
aims of this paper is to approximate the hysteresis term by a
simpler one. Before that, let us first demonstrate that H (U, s)
can be divided into two more simple terms.

B. Analysis of the hysteresis H(U, s)
To analyze the hysteresis, we apply a sine voltage input to

the piezocantilever and no force is applied to its tip. While the
amplitude of the input signal is constant (= 40V ), different
frequencies are used. The experimental results show that the
shape of the hysteresis depends on the input signal frequency
(Fig. 5). Such a hysteresis is called dynamic hysteresis or rate-
dependent hysteresis [23].

Fig. 5. The hysteresis of the piezocantilever is dynamic, i.e. rate-dependent.

An approximate model of a dynamic hysteresis should
have parameters which are also rate-dependent. This will
firstly increase the complexity of the model and therefore the
complexity of the controller. To avoid that, we propose an
easier equivalence of the dynamic hysteresis in this section.
We show experimentally that the dynamic hysteresis H(U, s)
is equivalent to a static hysteresisHi(U) followed by the linear
dynamical part D(s) as shown in Fig. 6. A static hysteresis
has a constant shape whatever the frequency of the input.

Fig. 6. The dynamic hysteresis is equivalent to a static hysteresis followed
by a linear dynamic part.

The experimental steps are as follows.
• Step 1: We first show that the transient part of piezo-
cantilever is independent of the amplitude of the input
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U . The transient part being given by a step response, we
use a square signal with different values of amplitude
during the experiments. The dynamic part D(s) can then
be identified.

• Step 2: Following Fig. 6-b, we simulate and plot the
magnitude of Hi.D(s). The aim is to compare the ob-
tained magnitude with that of the piezocantilever which
is experimentally performed. For both, we use a sine wave
signal U with different values of amplitude. If the two
curves coincide, the simplification of the hysteresis such
as H(U, s) = Hi(U).D(s) is validated. However, we
need a precise static hysteresis model Hi for the sim-
ulation. For that, we use the Bouc-Wen static hysteresis
model because of its accuracy. This model is only used to
validate the simplification and will not be implemented
or used to synthesize a controller.

• Finally, when the relation H(U, s) = Hi(U).D(s)
is validated, we propose to approximate the static
hysteresis Hi by a new approximate model: the
quadrilateral approximation. The aim is to obtain a
simple model which is easy to identify. This model is
linear contrary to other models (Bouc-Wen, Preisach,
etc.) which are nonlinear. However, the proposed model
is less accurate than them, so we propose to synthesize a
linear robust controller. The uncertainty is easy to derive
in the proposed model.

1) Step 1: independence of the transient part.

We apply a square voltage U with a given frequency (f =
0.3Hz) to the piezocantilever. Two amplitudes were used: U =
40V and U = 20V . The corresponding step responses are
given in Fig. 7. Besides the creep phenomenon, we notice the
similarity of the transient parts for all the responses.

0 1 2 3 4 5 6 7 8 9 10

t [s]

f=0.3Hz

U=40V U=20V

δ [µm]

−60

−40

−20

0

20

40

60

Fig. 7. Response of the piezocantilever when a square signal is applied. The
different step responses are similar.

From the previous experiments, we conclude that the tran-
sient part is independent of the amplitude of the input. In
addition, when a repeated step signal (i.e. a square signal) is

applied, the transient parts are similar. It can be concluded that
a dynamic part D(s) can be separated from a static part which
contains the static gain. Let us use the previous notation D(s)
for the transient part. To identify D(s), any step response can
be used (Fig. 8). It can be approximated by a second order
model [2] [16]:

D(s) =
1

a · s2 + b · s + 1
(4)

where a = 4.722 × 10−8sec2 is the inertial coefficient and
b = 1.304 × 10−5sec is the viscous coefficient.

t [s]

δ [µm]

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

experiment (solid-plot)

identified model (dashed-plot)

Fig. 8. Step response of the real system and of the dynamic model D(s).
The static gain of D(s) has been scaled in order to allow the comparison.

In order to confirm that the piezocantilever can be modelled
by the dynamic part D(s) in series with a static part, a
harmonic analysis is performed. For that, a sine voltage with
40V of amplitude is applyed to the piezocantilever, i.e. to
H(U, s). the corresponding magnitude is plotted. After that,
the magnitude of the identified D(s) is plotted in the same
graph ((Fig. 9)). After scaling the static gain of D(s) in order
to allow the comparison, it is shown that the two curves almost
coincide with each other. However, in high frequency, i.e.
above 104[rad/s], the slopes are different. That is due to the
choice of the order of D(s). Using a higher order of D(s),
the deviance of the magnitudes is minimized even in high
frequency. For example, Fig. 9-star-plot shows the simulation
of D(s) with a sixth order model.

Finally, it is experimentally shown that the shape of the
magnitude of H(U, s) does not depend on the amplitude U .
Fig. 10 shows that the magnitude obtained with an amplitude
of 40V is similar to the one with 20V except the static gain.
The difference between the static gains indicates the presence
of a hysteresis inside the static part.

The harmonic analysis demonstrates that H(U, s) is similar
to D(s) except for a static gain. As D(s) is amplitude-
independent, the static gain should contain the hysteresis.
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Fig. 9. Experimental magnitude of H(U, s) and simulated magnitude of
D(s).
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Fig. 10. Experimental magnitude of H(U, s) using two different amplitudes.

This is a static hysteresis.

2) Step 2: comparison of the simulation Hi.D(s) and the
harmonic experiment results.

In this step, we demonstrate that H (U, s) = Hi (U) ·D(s),
where Hi (U) is a static hysteresis that represents the gain. For
that, we compare the simulation of δ = Hi (U) ·D(s) with the
experimental results of H (U, s) in the (U, δ)-plane. However,
while D(s) is given by (Eq. 4), the simulation requires a
precise model of the static hysteresis Hi (U). The Bouc-Wen
hysteresis model has been chosen due to its accuracy. Applied
to piezocantilevers, this model is represented by the following
set of equations [16]:

δ = sp · F + (dp · U − h)
ḣ = Abw · U̇ − Bbw ·

∣∣∣U̇
∣∣∣ · h − Γbw · U̇ · |h| (5)

where:
• sp and dp are respectively the elastic constant and the
piezoelectric constant,

• F is the external force (null for the different experiments
and simulations),

• h is an internal variable,

• U is the applied voltage,
• Abw is a parameter which determines the amplitude of
the hysteresis,

• Bbw et Γbw are parameters which determine the shape of
the hysteresis.

The model in the (Eq. 5) can be considered as static at
least until 500kHz (checked by simulation) which is very high
compared to the cut-off frequency of the whole system. The
parameters of the model were identified using the values given
in [16] that were adjusted. We obtain:



dp = 1.0773 × 10−6 [m/V ]

sp = 1.931 × 10−3 [m/N ]

Abw = 6.064810 × 10−7 [m/V ]

Bbw = 0.00833
[
V −1

]

Γbw = 0.00833
[
V −1

]

(6)

The experiments consist in applying a sine voltage to the
piezocantilever and tracing the corresponding (U, δ)-plane
curve. Since the cantilever includes creep and hysteresis phe-
nomena, the frequency of the sine input signal should be higher
than fcc which is the cut-off frequency of the creep. With
fcc ≤ 1

2·π·τc
≈ 1mHz and τc ≥ 3minutes is the response

time of the creep. The plotted (U, δ)-plane curve only corre-
sponds to the hysteresis H (U). Different values of frequency
were used: f = {1Hz, 300Hz, 600Hz, 900Hz} while the
amplitude was 40V . The experiments and the simulation are
shown in Fig. 11. The comparison results show clearly that the
dynamic hysteresis is equivalent to a static hysteresis followed
by a dynamic part: H (U, s) = Hi (U) · D(s).

Fig. 11. Comparison of H (U, s) (experimental result) and Hi (U) · D(s)
(simulation) with U = 40V .

In order to confirm the previous conclusion, the same
experiments and comparison were carried out with a sine
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voltage of an amplitude of 20V . As shown in Fig. 12, the
equivalence H (U, s) = Hi (U) · D(s) is still obtained.

f=10Hz

experimental curve

f=100Hz

f=200Hz

U [V] U [V]

U [V]

δ [µm] δ [µm]

δ [µm] δ [µm]

U [V]

f=400Hz

experimental curve

experimental curve

simulation of

Hi.D(s)

simulation of

Hi.D(s)

simulation of

Hi.D(s)

simulation of

Hi.D(s)

experimental curve

Fig. 12. Comparison of H (U, s) (experimental result) and Hi (U) · D(s)
(simulation) with U = 20V .

While the Bouc-Wen model used for the simulation is
a valid approximation of the hysteresis behaviour of the
piezocantilever, it contains nonlinear terms and consequently
the synthesis of a linear controller is difficult. This is why
we propose a new approximate model. The proposed model
is linear but with uncertainty. While it is not intended to be
implemented, it is used to synthesize a linear controller. In the
new version,

III. QUADRILATERAL APPROXIMATION AND
IDENTIFICATION OF THE STATIC PART

A. Presentation of the quadrilateral approximation
From the previous result and from (Eq. 3), we have:

δ = sp · D(s) · F + Hi (U) · D(s) + Cr (U, s) (7)

In this section, we are going to find a simple model linking
the input voltage U and the resulting deflection δ. As a linear
dynamic model is required to synthesize a linear controller, the
term Hi (U) ·D(s) is used to derive the model while the creep
Cr (U, s) and the mechanical terms sp ·D(s)·F are considered
as disturbances. In fact, the force F is due to the contact
with a manipulated object and then behaves like a disturbance.
Next, the problem is to seek an approximate model of Hi (U).
For that, we propose a new approximation: the quadrilateral
approximation. The principle is detailed below.
A nonlinear curve can be approximated by a piecewise

affine function, which is called multilinear approximation. For
example, a hysteresis curve can be represented by Fig. 13-a.
Assuming that the hysteresis does not reach saturation, it can
be sufficiently approximated by four segments (Fig. 13-b).

Fig. 13. a: multilinear approximation of the hysteresis. b: quadrilateral
approximation of the hysteresis.

Let (∆M ) and (∆m) represent the two straightlines of the
quadrilateral with respectively the maximal and the minimal
slopes:

{
(∆M ) : δ (t) = αM · U (t) + δM (.)
(∆m) : δ (t) = αm · U (t) + δm (.) (8)

where αM (respectively αm) represents the maximal (re-
spectively minimal) slope and δM (.) (respectively δm (.))
represents the corresponding offset.
Let αO be the middle value of the maximal and the minimal

slopes and αE be their radius, such as:{
αO = αM+αm

2
αE = αM−αm

2

(9)

we propose to replace the static hysteresisHi (U) by a linear
model with a nominal constant slope αO and a new offset δH :

Hi (U) → αO · U + δH (10)

Thereby, the hysteresis of the real system has the following
characteristics:

{
Hi (U) = αreal · U + δH

αO − αE ≤ αreal ≤ αO + αE
(11)

While (Eq. 10) is used as a nominal model, the (Eq. 11)
indicates that the nominal model has uncertainty relative to the
real system. The uncertainty is refered to the nominal static
gain αO and its amplitude can be determined with the radius
αE . Secondly, δH can be considered as a disturbance.

B. Identification of the parameters
To identify αO, a (U, δ)-curve is plotted in order to obtain

a hysteresis curve. For that, a sine voltage U is applied. On
the one hand, the frequency has been chosen to be small (f =
0.1Hz) in order to avoid the effect of the dynamic but should
be higher than the creep cut-off frequency. On the other hand,
the amplitude is chosen (40V ) to be the maximal range so that
the identification is done with the external loop.
When the hysteresis curve derived from the experiments

is obtained, a quadrilateral is fitted to it. The sides (straight-
lines) of the quadrilateral are chosen to connect the vertexes
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(obtained at U = 40) and the middle points (obtained at
U = 0) of the hysteresis curve. At the ventral points, the
hysteresis amplitude is maximal. The slope of each side of the
quadrilateral is computed. After computing, the lowest slope
is chosen to be αm while the highest slope is αM . Fig. 14
presents the hysteresis curve and the two upper sides of the
quadrilateral giving the values of αm and αM .
Thereby, the nominal static gain αO and the radius αE

are computed using the (Eq. 9). We obtain αO = 502 ×
10−9 [m/V ] and αE = 123 × 10−9 [m/V ].

Fig. 14. Identification of the parameters.

C. Performance of the identified model with a varying ampli-
tude
As we can see, the static nominal model is identified from

the external loop of the static hysteresis, where the amplitude
of the sine voltage is maximal (U = 40V ). Here, we show that
when the amplitude varies and internal loops are obtained, the
radius αE (and then the uncertainty) is lower than the one
when the amplitude is maximal. Remember that αE is given
by (Eq. 9).
Since the model is calculated from the maximal and minimal

slopes of the quadrilateral, the quadrilateral approximation of
the internal loops should have slopes that are comprised in
[αm, αM ]. So, αE with internal loops are still lower than αE

with the external loop. To check that, experiments with varying
amplitude sine voltage were performed. The results show that
the internal loops are slightly tilted relative to the external loop
(Fig. 15). It can be seen that the maximal slopes αinternal

M of
the internal loops are lower than the maximal slope αM of the
external loop. However, the minimal slope αm of the external
loop is higher than the minimal slopes αinternal

m of the internal
loops. The minimal slopes are never null even if the amplitude
of the sine voltage is very small. We have:


αO < αinternal

M < αM

0 < αinternal
m < αm < αO

(12)

In spite of that, the values of the minimal slopes are not too
different from αm. So, it can be stated that:

αinternal
m ≈ αm < αO < αinternal

M < αM (13)

Then, according to the definitions in (Eq. 9) and (Eq. 11)
and the result in (Eq. 13) , we can construe that the error of the
model on internal loops is lower than the error on the external
loop.

Fig. 15. Hysteresis curve with a varying amplitude and a constant frequency
of input voltage.

IV. COMPLETE MODEL
Using the complete expression (Eq. 7) and the quadrilateral

approximation (Eq. 10), we have:

δ = sp · D(s) · F + αO · D(s) · U + δH + Cr (U, s) (14)

The term αO ·D(s) ·U is a dynamic linear relation between
the deflection and the input voltage. It is of great interest
to choose it as the nominal model. On the other hand,
the force can be considered as a disturbance. Actually, it
is due to the contact of the cantilever with a manipulated
micro-object. Because the creep is a source of inacuracy in
micromanipulation, it can also be considered as a disturbance.
Despite the dependence of the creep on the input U , such
consideration is possible because the creep Cr (U, s) is slow
and very small relative to the term αO · D(s) · U .
So, the nominal model of the piezocantilever is:

δ(s) =
αO

a · s2 + b · s + 1
·U(s)+

1
a · s2 + b · s + 1

·δ0(s) (15)

where:
• the dynamic part D(s) has been replaced by the (Eq. 4),
• the nominal static gain αO completed by an uncertainty
represents the real static gain: αO −αE ≤ αreal ≤ αO +
αE .

• and the disturbance is defined by:

δ0 = sp · F + (δH + Cr (U, s)) · D−1(s) (16)

It can be stated that if the real system is linear, we have:
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{
αE = 0 ⇔ αreal = αO

δH = 0 (17)

Fig. 16 represents the scheme of the nominal system.

Fig. 16. Scheme of the nominal system.

Due to the presence of a disturbance (internal and external),
a closed loop control is necessary. The choice of the controller
is guided by the characteristics of the model and the specifi-
cations according to the micromanipulation tasks:

• the nominal static gain αO is subjected to uncertainty,
• the interchange of piezocantilevers as seen in the first
section of this paper is often required, so there may exist
other uncertainty types in the model,

• as we can see in Fig. 9, the nominal model (second order)
neglects fast dynamic. The higher order model fits the real
system better than the nominal model,

• the effects of the environment (temperature, vibrations,
etc.) must be rejected,

• finally, the performances required in micromanipulation
should be taken into account.

To obtain robust stability and robust performances consider-
ing the different environmental disturbances and the character-
istics of the proposed model, a robust controller best fits our
objectives. For that, a H∞ controller has been synthesized.
The performances are compared with those obtained with a
PID controller.

V. H∞ ROBUST CONTROL OF THE PIEZOCANTILEVER

A H∞ robust controller is synthesized using the nominal
model (Eq. 15). The results are compared with those of
a PID-controller in order to show the robustness. As the
controllers are intended to be implemented in an embedded
computer, we design discrete controllers. Nevertheless, the
best and simplest way to design a discrete H∞ based optimal
controller is via bilinear transformation [27] [28] [29]. The
main reasons are that continuous analysis is simpler, more
standard and has a greater physical sense than the discrete
analysis. For these reasons, we use the steps presented in
Fig. 17 to synthesize the discrete H∞ controller. First, we
derive a discret model from the (continuous) system in order
to take into account the DAC-DCA and the sampling time of
the computer. The transformation uses the zero-order-holder
(zoh) method. Then, using this discrete model, we derive a
pseudo-continuous model. A pseudo-continuous model is the
transformation of a discrete model into a continuous model

using the Tustin inverse bilinear transformation. It is called
pseudo-continuous because it is an image of the initial contin-
uous model using two transformations (the zoh and the Tustin
bilinear transformations). In the pseudo-continuous domain, a
controller can be synthesized. Finally, the discrete controller is
obtained using the Tustin direct bilinear transformation of the
synthesized controller. The Tustin bilinear transformation is
defined as a bijective application s = f(z), with s the Laplace
variable and z the discrete operator, such as:

s =
2
Ts

· z − 1
z + 1

(18)

with Ts = 0.2ms the sampling time.

Fig. 17. The steps used to synthesize the discrete controller.

Fig. 18 shows the scheme of the closed-loop system in the
pseudo-continuous domain. In this figure, δc represents the
reference deflection. Two weighting functions are introduced:
W1(s) for the tracking performances and W2(s) for the δ0

disturbance rejection.

Fig. 18. The closed-loop scheme with the weighting transfer functions.

A. Standard form
Let P (s) be the model equivalent to the nominal system

G(s) = αO · D(s) augmented by the weighting functions.
Fig. 19 represents the corresponding standard-form.
The standard H∞ problem consists in finding an optimal

value γ > 0 and a controller K(s) stabilizing the closed-loop
scheme of Fig. 19 and guaranteeing the following inequality
[30]:

‖Fl (P (s),K(s))‖∞ < γ (19)
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Fig. 19. The standard form.

where Fl(., .) is the lower Linear Fractionar Transformation
and is defined by Fl (P (s),K(s)) = o(s)

e(s) .
From Fig. 18, we have:

o = W1 · S · δc − W1 · S · G · W2 · i (20)

where S = (1 + K · G)−1 is the sensitivity function.
Using the condition (Ineq. 19) and (Eq. 20), we infer:

‖W1 · S‖∞ < γ
‖W1 · S · G · W2‖∞ < γ

⇔ |S| < γ
|W1|

|S · G| < γ
|W1·W2|

(21)
To solve the problem (Eq. 21), we use the Glover-Doyle

algorithm which is based on the Riccati equations [31]
[32]. The wanted performances are introduced through the
weighting functions.

B. Choice of the weighting functions
The choice of the weighting functions is derived from the

specifications. The latter have been chosen from general needs
in micromanipulation.
1) Choice of W1: the transfer function 1

W1
is chosen

from the specifications on the tracking performances. These
specifications are:

• the maximal response time is lower than 10ms,
• the overshoot is null,
• and the maximal statical error is lower than 0.1%.
For this, we choose:

1
W1

= 10−3 · 3 · s + 1
0.003 · s + 1

(22)

so:

W1 = 103 · 0.003 · s + 1
3 · s + 1

(23)

2) Choice of W2: here, the specifications relative to the δ0

disturbance rejection are used. In the (Eq. 21), the transfer
between the output and the disturbance is defined as follows:

δ · αO

δ0
= S · G (24)

Replacing δ0 by the (Eq. 16) and working in the static mode
(s = 0), we have:

δ · αO

δ0
=

δ · αO

sp · F + δH + Cr (U, s)
(25)

The previous equation quantifies the influence of the force
F , the hysteresis offset δH and the creep Cr (U, s) on the
deflection δ in the closed-loop form. Our objective is as
follows: when F = 5mN , δH = 5µm and Cr (U, s) = 5µm,
the deflection is less than δ = 1µm. These values respectively
correspond to:

• the maximal force used to manipulate a micro-object,
• the offset of the quadrilateral segments of the external
hysteresis loop obtained with U = 40V ,

• the creep static value obtained with U = 40V .
We have:

S · G (s = 0) = 0.25 × 10−7 (26)

This is the characteristic in the static mode and should be
lower than γ

W1·W2
(s = 0). In addition, we specify a cut-off

frequency of 1
W1·W2

at 4000 [rad/s] in order to ensure the
rejection of a wide range of frequency disturbances. Thus, we
choose the following nominal performances:

1
W1 · W2

= 0.25 × 10−7 · 10−1 · s + 1
1

4000 · s + 1
(27)

We infer:

W2 = 4 × 104 ·
(

1
4000 · s + 1

) · (3 · s + 1)
(10−1 · s + 1) · (0.003 · s + 1)

(28)

C. Calculation of the controller
The pseudo-continous controller has been calculated with

the Matlab software and its Robust Control Toolbox. After-
wards, it has been transformed into a discrete controller using
(Eq. 18). We have:

K =

3.9 × 105 · z5 − 9.1 × 105 · z4 + 5.3 × 105 · z3

+5.4 × 105 · z2 − 9.2 × 105 · z + 3.8 × 105

z5 − 1.1 · z4 − 1.6 · z3 + 1.9 · z2 + 0.6 · z − 0.8
(29)

and the optimal value of γ is:

γopt = 1.05 (30)

D. Experimental results
(Eq. 29) has been implemented into the Simulink software

and run on the DSpace board such as the sampling time is
Ts = 0.2ms. First, a step reference, from −25µm to 25µm,
is applied. Fig. 20 presents the results. It clearly shows that
the wanted performances are obtained, i.e. response time and
overshoot.
To evaluate more precisely the performances, harmonic

analysis has been performed. The experimental magnitude is
then presented in Fig. 21. The results indicate that the bandpass
is 300rad/s, it corresponds to a response time nearly equal
to 10ms. As there is no resonance, it can be stated that no
overshoot and no vibration will appear in the step response.
In order to evaluate the robustness margins of the closed

loop system, the Black-Nichols diagram is plotted (Fig. 22).
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Fig. 21. Harmonic experiments of the closed-loop system.

TABLE II
Robustness margins.

Gain margin (dB) Phase margin (◦)
]−∞, 35] 87 (at 341rad/s)

The margin gain and the margin phase can be deduced from
the figure. We have:
From the margin gain, it can be deduced that the stability

of the closed loop system is ensured as long as the gain αreal

is between 0 and 1.75×αO = 878.5× 10−9
[

m
V

]
. This range

includes the identified gains αm and αM that characterizes the
quadrilateral (see Fig. 14). That theoretically indicates that the
stability is ensured in the applied range of voltage.

VI. CONCLUSION
This paper presents a new method to model a nonlinear

piezoelectric cantilever and presents the design of a H∞
controller to control it.
First, we have demonstrated that the dynamic hysteresis of

the piezocantilever is equivalent to a static hysteresis, a varying
gain, followed by a linear dynamic system. Then, we have
proposed a new approximate model of the static hysteresis.
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Fig. 22. Black-Nichols diagram.

It consists in approximate it by a quadrilateral characterized
by the average, the maximal and the minimal slopes and the
offset of the different straights. While the average slope is
considered as a nominal gain, the offset of the straight have
been used to synthesize a H∞ controller. On the other hand,
the creep and the external applied force have been considered
as a disturbance and their effect were taken into account during
the controller synthesis. Finally, experiments have been carried
out and clearly show the robustness of the synthesized H∞
controller relative to the context of the micromanipulation.
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