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In order to compensate for the loss of performance when

scaling resonant sensors down to NEMS, a complete analyt-

ical model including all main sources of non linearities is

presented as a predictive tool for the dynamic behavior of

clamped-clamped nanoresonators electrostatically actuated.

The nonlinear dynamics of such NEMS under superharmonic

resonance of order half their fundamental natural frequen-

cies is investigated. It is shown that the critical amplitude

has the same dependence on the quality factor Q and the

thickness h as the case of the primary resonance. Finally,

a way to retard the pull-in by decreasing the AC voltage is

proposed in order to enhance the performance of NEMS res-

onators.

∗Address all correspondence to this author.

1 Introduction

The small size of NEMS resonators combined with their

physical attributes make them quite attractive and suitable for

a wide range of technological applications such as ultrasen-

sitive force and mass sensing, narrow band filtering, and time

keeping. However, at this size regime, nonlinearities occur

sooner which reduces the dynamic range of such devices.

It is a challenge to achieve large-amplitude motion of

NEMS resonators without deteriorating their frequency sta-

bility [1]. The relative frequency noise spectral density [2]

of a NEMS resonator is given by:

S f =

(

1

2Q

)2
Sx

P0
(1)
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where Sx is the displacement spectral density and P0 is the

displacement carrier power, ie the RMS drive amplitude of

the resonator 1
2
A2. Remarkably, driving the resonator at

large oscillation amplitude leads to better signal to noise ra-

tio (SNR) and, thus, simplifies the design of the electronic

feedback loop. However, doing so in the nonlinear regime

reduces the sensor performances since its frequency stabil-

ity becomes dependent on its oscillation amplitude. More-

over, even when NEMS resonators are used as oscillators in

closed-loop, a large part of noise mixing [3, 4] due to non-

linearities drastically reduces their dynamic range and alters

their detection limit.

A nonlinear model for a clamped-clamped microbeam

was introduced in a previous work [5] and the ability to sup-

press the hysteresis of the nonlinear frequency response un-

der primary resonance was demonstrated by third order non-

linearity cancellation. Thus the performances of resonant

sensors might be enhanced by driving the resonator beyond

its critical amplitude [6–8].

Nevertheless, the operating domain of the third order

nonlinearity cancellation is limited by the occurrence of the

mixed behavior [7–10] which appears proportionally sooner

with respect to the resonator size and closer to the critical

amplitude. Moreover, at this oscillation level and in the case

of electrostatic forces actuation, pull-in (the upper bound

limit) is easily reachable which makes the electrical charac-

terization of NEMS resonators quite difficult and limits the

possible domain of resolution enhancement.

In order to avoid such complications, we investigate the

dynamics of NEMS resonators under superharmonic reso-

nance. Jin and Wang [11] showed that driving a microbeam

of a resonant microsensor by a superharmonic excitation of

order one-half increases the signal-to-crosstalk ratio as com-

pared to driving it at primary resonance.

The dynamic behavior of MEMS resonators under sec-

ondary resonances has been investigated by many authors.

Turner et al [12] studied the response of a comb-drive device

to a parametric excitation that offers interesting behavior, and

a possibility for novel applications such as parametric am-

plification [13–15] and noise squeezing [13]. Younis and

Nayfeh [16] and Abdel-Rahman and Nayfeh [17] used the

method of multiple scales to study the response of an electro-

statically deflected microbeam based resonator to a primary-

resonance excitation, a superharmonic-resonance excitation

of order two, and a subharmonic-resonance excitation of or-

der one-half. Since they are based on perturbation methods,

these models yield accurate results only for small AC ampli-

tudes and hence small motions.

Younis et al [18] and Nayfeh and Younis [19] studied the

global dynamics of MEMS resonators under superharmonic

excitation and showed that the dynamic pull-in phenomenon

can occur for a superharmonic excitation at an electric load

much lower than that predicted by a static analysis.

In this paper, the dynamics of a nanoelectromechanical

resonator, actuated around half its fundamental natural fre-

quency, is simulated. A complete analytical model incorpo-

rating all main sources of nonlinearities is used based on the

Galerkin discretisation coupled with multiple scales pertur-

bation technique.

The dependences of the resonator critical amplitude on

the physical parameters are analyzed in order to compare it

with the primary resonance case. The results are shown with

respect to the quality factor and actuation voltages. Finally,

the dynamic behavior of the resonator up to the pull-in insta-

bility [19, 20] is tracked and a solution to enhance the res-

onator performances is provided.

2 Model

Existing models [16–20] for the nonlinear dynamics of

MEMS resonators with relatively high capacitive variations

concern designs with only one electrode for both actuation

and sensing. NEMS resonators though, have low capacitive

variations, and it is almost necessary to use a two port mea-

surement, i.e. to separate detection and actuation electrodes

in order to enhance the signal to background ratio. Moreover,

the use of different gaps (gd < ga) enables the maximization

of the detection signal.

The resonator considered here is presented in Fig. 1.

It consists of a clamped-clamped microbeam actuated by an

electric load v(t̃) =−Vdc +Vac cos(Ω̃t̃), where Vdc is the DC

polarization voltage, Vac is the amplitude of the applied AC

voltage, and Ω̃ is the forcing frequency.

Fig. 1. Schema of an electrically actuated microbeam

2.1 Equation of motion

The transverse deflection of the microbeam w(x, t) is

governed by the nonlinear Euler-Bernoulli equation, which

is the commonly used approximate equation of motion for a

thin beam [21]

EI
∂4w̃(x̃, t̃)

∂x̃4
+ρbh

∂2w̃(x̃, t̃)

∂t̃2
+ c̃

∂w̃(x̃, t̃)

∂t̃

−
[

Ñ +
Ebh

2l

∫ l

0

[

∂w̃(x̃, t̃)

∂x̃

]2

dx̃

]

∂2w̃(x̃, t̃)

∂x̃2

=
1

2
ε0

bCn1

[

Vac cos(Ω̃t̃)−Vdc

]2

(ga − w̃(x̃, t̃))2
H1(x̃)

−1

2
ε0

bCn2V 2
dc

(gd + w̃(x̃, t̃))2
H2(x̃) (2)
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H1(x̃) = H

(

x̃− l + la

2

)

−H

(

x̃− l − la

2

)

(3)

H2(x̃) = H

(

x̃− l + ld

2

)

−H

(

x̃− l − ld

2

)

(4)

where x̃ is the position along the microbeam length, c̃ is

the linear viscous damping per unit length, E and I are the

Young’s modulus and moment of inertia of the cross sec-

tion. Ñ is the applied tensile axial force due to the residual

stress on the silicon, t̃ is time, ρ is the material density, h

is the microbeam thickness, ga and gd are respectively the

actuation and the sensing capacitor gap thickness, ε0 is the

dielectric constant of the gap medium. The last term in Eq.

(2) represents an approximation of the electric force assum-

ing a resonator design with 2 stationary electrodes : the first

one is devoted to actuation while the second one is used for

sensing. The fringing field effect [22] was taken into account

using the coefficients Cni. Since the electrodes do not act on

the whole length of the beam, the electrostatic force distri-

butions are modeled by means of Heaviside functions H(x̃).
The microbeam is subject to the following boundary condi-

tions

w̃(0, t̃) = w̃(l, t̃) =
∂w̃

∂x̃
(0, t̃) =

∂w̃

∂x̃
(l, t̃) = 0 (5)

2.2 Normalization

For convenience and equations simplicity, the following

nondimensional variables are introduced

w =
w̃

gd

, x =
x̃

l
, t =

t̃

τ
(6)

where τ =
2l2

h

√

3ρ

E
.

Substituting Eq. (6) into Eqns. (2) and (5) yields

∂4w

∂x4
+

∂2w

∂t2
+ c

∂w

∂t
+α2Cn2

V 2
dc

(1+w)2
H2(x)

= α2Cn1
[Vac cos(Ωt)−Vdc]

2

(Rg −w)2
H1(x)

+

[

N +α1

∫ 1

0

[

∂w

∂x

]2

dx

]

∂2w

∂x2
(7)

w(0, t) = w(1, t) =
∂w

∂x
(0, t) =

∂w

∂x
(1, t) = 0 (8)

The parameters appearing in Eq. (7) are

H2(x) = H

(

x− l + la

2l

)

−H

(

x− l− la

2l

)

(9)

H2(x) = H

(

x− l + ld

2l

)

−H

(

x− l − ld

2l

)

(10)

c =
c̃l4

EIτ
, N =

Ñl2

EI
, α1 = 6

[ga

h

]2

(11)

Rg =
ga

gd

, α2 = 6
ε0l4

Eh3g3
a

, Ω = Ω̃τ (12)

2.3 Solving

The beam total displacement w(x, t) can be written as

a sum of a static dc displacement ws(x) and a time-varying

ac displacement wd(x, t). However, in the present case, the

static deflection can be considered as negligible because the

measured quality factors Q are in the range of 2.103 − 104

and Vdc ≤ 40Vac. Indeed, the ratio between the static and

the dynamic deflections is

ws(x)

wd(x, t)
≈ Vdc

2Q.Vac
≤ 1% (13)

A reduced-order model is generated by modal decompo-

sition, transforming Eq. (7) into a finite-degree-of-freedom

system consisting in ordinary differential equations in time.

The undamped linear mode shapes of the straight microbeam

are used as basis functions in the Galerkin procedure, and the

deflection is approximated by

w(x, t) =
n

∑
k=1

ak(t)φk(x) (14)

where n is the number of retained modes (size of the modal

basis), ak(t) is the kth generalized coordinate and φk(x) is the

kth linear undamped mode shape of the straight microbeam.

The linear undamped mode shapes φk(x) are governed by:

d4φk(x)

dx4
= λ2

kφk(x) (15)

φk(0) = φk(1) = φ′k(0) = φ′k(1) (16)

The analytical form of the eigenmodes is given by

φk(x) = Ak

{

[

coshλk − cosλk

sinλk − sinhλk

]

[sinλkx− sinhλkx]

+cosλkx− coshλkx

}

(17)

with λk solutions of the transcendental equation

1− cosλk coshλk = 0 (18)
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These functions are a modal basis for the scalar product

〈u,v〉=
∫ 1

0
u(x)v(x)dx (19)

and the coefficients Ak are chosen to normalize the eigen-

modes such that 〈φi,φ j〉 = δi j, where δi j is the Kronecker

symbol.

Let Eq. (7) be multiplied by φk(x) [(1+w)(Rg −w)]2

in order to include the complete contribution of the nonlin-

ear electrostatic forces in the resonator dynamics without ap-

proximation. This method, which has been used by Nayfeh

et al. [19, 20] for a one-port resonator, has some disadvan-

tages like the non orthogonality of the operator w4 ∂4w
∂x4 with

respect to the undamped linear mode shapes of the resonator,

the increase of the nonlinearity level in the normalized equa-

tion of motion (7) as well as the incorporation of new nonlin-

ear terms such as the Van der Pol damping. Nevertheless, the

resulting equation contains less parametric terms than if the

nonlinear electrostatic forces were expanded in Taylor series

and the solution of nonlinear problem is valid for large dis-

placements of the beam up to the sensing gap.

Substituting Eqns. (14) and (15) into the resulting equa-

tion, and then integrating the outcome from x = 0 to x = 1

yields a system of coupled ordinary differential equations in

time.

For several nonlinear mechanical systems such as shells

[23], many modes are needed in order to build the frequency

response without losing any physical information concerning

the nonlinear coupling between the modes. Nevertheless, in

our case (simple beam resonators), the first mode can be con-

sidered as the dominant mode of the system and the higher

modes can be neglected. This has been demonstrated nu-

merically using time integration [7] as well as shooting and

harmonic balance method coupled with an asymptotic nu-

merical continuation technique [24]. Thus, only one mode is

considered (n = 1).

Moreover, since Vac << Vdc and consequently V 2
ac <<

Vac.Vdc , the effects of the fast harmonics (proportional to

V 2
ac) on the slow excitations (proportional to Vac.Vdc ) are neg-

ligible [25]. Thus, the linear and nonlinear terms related to

the second harmonic has not been considered and the follow-

ing equation is obtained:

ä1 + cȧ1 +ωn
2a1 + µ1a1ä1 + µ2a1

2ä1 + µ3a1
3ä1

+µ4a1
4ä1 + cµ1a1ȧ1 + cµ2a1

2ȧ1 + cµ3a1
3ȧ1

+cµ4a1
4ȧ1 +χ2a1

2 +χ3a1
3 +χ4a1

4 +χ5a1
5

+χ6a1
6 +χ7a1

7 +ν+ ζ0 cos(Ωt)

+ζ1a1 cos(Ωt)+ ζ2a1
2 cos(Ωt) = 0 (20)

Some canonical nonlinear terms can be identified in Eq. (20),

such as the Duffing non linearity (χ3a1
3), the nonlinear Van

der Pol damping (cµ2a1
2ȧ1) as well as the parametric exci-

tations (ζ1a1 cos(Ωt)+ ζ2a1
2 cos(Ωt)) which are due to the

fact that the beam is actuated by two electrodes. Indeed, for

one-port resonators, the parametric terms are eliminated by

the pre-multiplication of the equation of motion by the de-

nominator of the electrostatic force [24].

Other terms correspond to high-level nonlinearities and

nonlinear parametric excitations. All these terms come from

the coupling between the mechanical and the electrostatic

nonlinearities as well as the nonlinear coupling between both

electrostatic forces due to the pre-multiplication of Eq. (7) by

the common denominator of both electrostatic forces in ac-

tuation and sensing. The appendix shows the expressions of

all the integration parameters appearing in Eq. (20), which

can be easily computed with any computational software.

To analyse this equation of motion, it proves convenient

to invoke perturbation techniques which work well with the

assumptions of ”small” excitation and damping (Q > 10),

typically valid in MEMS resonators. In this paper, the

method of multiple scales [26] is used to attack Eq. (20)

in order to determine a uniformly valid approximate solu-

tion. To this end, we seek a first-order uniform solution in

the form

a1(t,ε) = a10(T0,T1)+ εa11(T0,T1)+ · · · (21)

where ε is the small nondimensional bookkeeping parameter,

T0 = t and T1 = εt. Since the non linear response to a super-

harmonic resonance excitation of order two is analyzed, the

nearness of Ω to ωn
2

is expressed by introducing the detuning

parameter σ according to

2Ω = ωn + εσ (22)

Substituting Eq. (21) into Eq. (20) and equating coefficients

of like powers of ε yields

Order ε0

cos

(

σT1 +
T0ωn

2

)

ζ0 +ω2
na10 + a10

(2,0) = 0 (23)

Order ε1

a2
10χ2 + a3

10χ3 + a4
10χ4 + a5

10χ5 + a6
10χ6 + a7

10χ7

+a10cµ1a10
(1,0)+ a2

10cµ2a10
(1,0)+ a3

10cµ3a10
(1,0)

+cos(σT1 +T0ωn)ζ3 + cos(σT1 +T0ωn)a10ζ4

+a4
10cµ4a10

(1,0)+ a10µ1a10
(2,0)+ a2

10µ2a10
(2,0)

+a11ω2
n + cosa2

10ζ5 (σT1 +T0ωn)+ ca10
(1,0)

+2a10
(1,1)+ a3

10µ3a10
(2,0)+ a4

10µ4a10
(2,0)

+a11
(2,0)+ cos

(

σT1 +
T0ωn

2

)

a10ζ1

+cos

(

σT1 +
T0ωn

2

)

a2
10ζ2 = 0 (24)
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where a
( j,k)
i =

∂k

∂kT k
1

(

∂ j

∂ jT
j

0

)

.

The general solution of Eq. (23) can be written as

a01 = Acos(ωnT0 +Φ)− 4ζ0

3ω2
n

cos

(

ωnT0

2
+σT1

)

(25)

Equation (25) is then substituted in Eqns. (24) and the

trigonometric functions are expanded. The elimination of

the secular terms yields two first order non-linear ordinary-

differential equations which describe the amplitude and

phase modulation of the response and permit a stability anal-

ysis

Ȧ = f1(ε,A,β)+O(ε2) (26)

β̇ = f2(ε,A,β)+O(ε2) (27)

where β = 2σT1 −Φ. The steady-state motions occur when

Ȧ = β̇ = 0, which corresponds to the fixed points of Eqns.

(26) and (27). Thus, the frequency-response equation can be

written in its parametric form with respect to the phase β as

a set of two equations

A = K1(β) (28)

Ω = K2(β) (29)

This analytic expression makes the model suitable for

MEMS and NEMS designers as a fast and efficient tool for

resonant sensor performances optimisation. The expressions

of Eqns. (28) and (29) are quite large. For the sake of con-

ciseness, they are not detailed here

3 Results

All the numerical computations leading to Eqns. (28)

and (29) were carried out with the following set of param-

eters: l = 50µm, b = 0.5µm, la = 40µm, ga = 500nm,

ld = 48µm, gd = 300nm, while h, Vac and Vdc were used

for parametric analysis.

As shown in Fig. 2, the analytical model enables the

capture of all the nonlinear phenomena in the resonator dy-

namics and describes the competition between the hardening

(presented by the mechanical nonlinearity) and the softening

(presented by the electrostatic nonlinearity) behaviors. Re-

markably, the mixed behavior [9] was not observed. Indeed,

the superharmonic excitation filters out the effect of the fifth

order nonlinear terms and the compensation of the nonlin-

earities by hysteresis suppression [7, 8] is possible at large

amplitudes. The upper bound limit of such operation is obvi-

ously the pull-in detailed below, but first the bistability limit

(critical amplitude) of the resonator under superharmonic ex-

citation is investigated by comparison to the primary reso-

nance case.

Fig. 2. Competition between hardening and softening behaviors for

different values of the ratio
h

gd
(Wmax is the normalized displacement

at the middle of the beam)

3.1 Critical amplitude

As shown in Fig. 3, the critical amplitude is the oscilla-

tion amplitude Ac above which bistability occurs. Thus, Ac is

the transition amplitude from the linear to the nonlinear be-

havior. For the primary resonance of a clamped-clamped mi-

Fig. 3. Forced frequency responses of the typical resonator de-

scribed in Fig. 1 for h = 0.5µm and Q = 5000. σ is the detuning

parameter and Wmax is the displacement of the beam normalized by

the gap gd at its middle point
l
2

. B1 and B2 are the two bifurcation

points of a typical hardening behavior.

crobeam, Ac is defined as the oscillation amplitude for which

the equation
dΩ

dβ
= 0 has a unique solution βc =

2π

3
[27]. It

was also shown analytically and experimentally [7, 28] that

the critical amplitude for micromechanical clamped-clamped

beam resonators under primary resonance is only determined

by the beam thickness h in the direction of vibration and the

quality factor Q. The question is whether or not the critical
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amplitude of a NEMS resonator is invariant with respect to

the excitation.

In order to explain how to deduce the mechanical crit-

ical amplitude from Eqns. (28) and (29), we assume the

simplified case of neglected nonlinear electrostatic effects

(
h

gd

<< 1). Using Eq. (29), the derivative of the frequency

Ω with respect to the phase β is directly deduced as a func-

tion of several variables:

dΩ

dβ
= Ω′(χi,ξ0,ωn,β) (30)

One can search the condition for which the equation

Ω′(χi,ξ0,ωn,β) = 0 has a unique solution β. After some

algebraic transformations, a relation between χi, ωn and ξ0

has been identified and the critical amplitude of the electro-

static force ξ0c is expressed as a function of the design and

nonlinear parameters of the resonator. Explicitly, when the

electrostatic forcing is ξ0 = ξ0c, Ω′ is null only at the critical

phase βc =
2π
3

.

The critical amplitude is the value of Eq. (28) at the

phase β = π
2

(for a critical behavior) multiplied by 1.588

which corresponds to the amplification coefficient of the first

mode at the middle of the clamped-clamped beam x = 1
2
.

Replacing ξ0 by ξ0c in the resulting equation and multiply-

ing by the gap gd to obtain the dimensional value and using

the expressions of the needed parameters from the appendix,

yields:

Ac = 1.685
h√
Q

(31)

It can be noted that this analytic expression for the critical

amplitude is the same as in the case of primary resonance [7].

In order to validate this simple expression, some computa-

tions are carried out using Eqns. (28) and (29). The cor-

responding results are presented hereafter and the process

leading to the dependency of Ac on h and Q is explained

graphically. The AC voltage and the beam thickness are re-

spectively fixed at Vac = 0.6V and h = 1µm. Then, for three

values of DC voltage, dΩ
dβ is calculated at the phase βc =

2π
3

and plotted with respect to the quality factor Q as shown in

Fig. 4a. The critical quality factor Qc corresponds to the

intersection between the curve
dΩ( 2π

3 )

dβ [Q] and the Q-axis.

The critical amplitude is then the maximum amplitude

of the frequency response curves plotted in 4b for each of

the three values of the critical quality factor Q1, Q2 and

Q3. At this point the dependency between the critical am-

plitude and the quality factor can be plotted, as seen in

Fig. 4c. This permits to conclude that the critical ampli-

tude Ac decreases when the quality factor increases. More-

over, the identification of the coefficients Coe f1 and Coe f2

such that Log(Ac) =Coe f1−Coe f2Log(Q) leads to Coe f1 =
Log(1.685 h

gd
) = 0.448 and Coe f2 = − 1

2
, which is in very

good agreement with Eq. (31).

Fig. 4. (a): Critical quality factor determination for different DC volt-

age (h = 500nm and Vac = 0.6V ). (b): Dependency of the critical

amplitude on the quality factor (Here Ac is the peak of Wmax). (c):

Logarithmic plot of the critical amplitude with respect to the quality

factor.

Figure 5a shows the variation of the critical thickness

hc for different DC polarizations Vdc. The fixed values of

the AC voltage and the quality factor Q are Vac = 0.6V and

Q = 4900. The critical thickness hc is determined as the in-

tersection with the horizontal axis in the same way as Qc.

These values are used to plot the frequency responses of Fig.

5b and then Figure 5c is obtained, which clearly indicates the

linear dependence of the critical amplitude Ac on the thick-

6
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ness of the resonator. Again, these numerical results are in

very good agreement with Eq. (31).

Fig. 5. (a): Critical thickness determination for different DC voltage

(Q = 4900 and Vac = 0.6V ). (b): Dependency of the critical ampli-

tude on the thickness (Here Ac is the peak of Wmax). (c): Plot of the

critical amplitude with respect to the beam thickness.

3.2 Pull-in retarding

In order to make the detection technique easier for

NEMS resonant sensors, it is convenient to drive the res-

onator at very large oscillations, i.e. beyond the critical am-

plitude Ac, which means in the nonlinear regime. However,

at this vibration level, instabilities such as pull-in are likely to

occur, which might cause the ruin of the sensor. Therefore, it

is crucial for NEMS designers to predict the bistability limit

(critical amplitude) as well as the upper bound amplitude not

to be exceeded in order to avoid pull-in. In the following

we not only propose a simple analytical expression for the

pull-in amplitude, but also discuss a way to retard it.

3.2.1 Pull-in amplitude

The NEMS resonator must operate in the safe work-

ing range and away from instabilities. One of the main

drawbacks with electrostatically actuated NEMS structures

is the so-called pull-in instability, i.e., the collapse of the mi-

crobeam on the electrode, which has been investigated with

both static [29] and dynamic [20, 30] applied voltages.

The pull-in amplitude is the oscillation amplitude above

which the resonator position becomes unstable and collapses.

Several researchers predicted the presence of dynamic pull-

in in various beam-based systems at voltages lower than the

static pull-in voltage [19, 20, 30–32]. Fargas-Marques et

al [33] used an energy-based analytical method for the dy-

namic pull-in prediction in electrostatic MEMS and provided

experimental data. Ashhab et al [34] and Basso et al [35]

have also investigated the problem of escape from potential

well for atomic force microscopes (AFM), with the attractive

force being the van der Waals forces.

Unlike these energy-based approaches, we investigate

the pull-in phenomenon via the dynamic stability of a fixed

point of the corresponding Poincaré map which is obviously

a logical choice, given the developed reduced-order model

and the resulting amplitude and phase modulation equations.

More specifically, the initiation of the pull-in domain under

superharmonic resonance has been located at an amplitude

reaching an infinite slope at the phase βp = π
2

which corre-

sponds to a Floquet multiplier approaching unity [7, 19, 20].

For convenience, the lower bound of this domain is called

”pull-in amplitude” since at this oscillation level which is

beyond the critical amplitude, the beam can collapse.

Figure 6 a) shows several predicted frequency-response

curves under superharmonic resonance. For the chosen de-

sign, the resonator operates in the nonlinear regime. As a

result, the response amplitude are much greater than the nor-

malized critical amplitude given by Ac
gd

= 0.1025 which is the

limit of the linear regime. For Vdc = 15V , the response curve

exhibits a classical nonlinear hardening behavior with a max-

imum normalized amplitude Wmax = 0.26. For Vdc = 20V ,

the response curve is highly nonlinear and the dynamic pull-

in occurs at Wmax ≃ 0.35 with a phase βp =
π
2

in Eqns. (28)-

(29). As shown on Figure 6 b), the response curve also

reaches an infinite slope at the pull-in amplitude. The res-

onator becomes highly unstable inside a narrow frequency

zone surrounding the pull in amplitude. This frequency band

corresponds to an escape zone where the kinetic energy of

the nonlinear resonator exceeds the barrier of its potential

well [38]. Inside this narrow zone, the nonlinear vibrations

of the beam follow a pull-in attractor causing the damage of

the NEMS sensor. This escape phenomenon is schematically

represented by a bold point. It is worth noting that the present
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reduced-order model is capable of predicting the pull-in phe-

nomenon with only one mode retained and a semi-analytical

solving, in contrast with the purely numerical method used

in [19].

Fig. 6. (a): Predicted frequency curves for different DC voltage

(Q = 3000, h = 1µm and Vac = 0.4V ). (b): Zoom on the escape

band and the infinite slope at the phase β = Pi
2

for Vdc = 20V .

3.2.2 Pull-in control

Methods have been employed so far to control pull-in

phenomenon such the simple addition of a series capaci-

tance [36] as well as the ”voltage control algorithm”. The

latter has been applied by Chu and Pister [37]. It is based on

controlling the voltage according to a feedback loop that ex-

actly prevents the pull-in while taking into account the effect

of nonlinearity for getting more exact solutions to this insta-

bility. Unlike these techniques, we propose a simple electro-

static mechanism based on the increase of the ratio between

the applied DC and AC voltages.

Ideally, it is desirable to drive the resonator at large os-

cillations up to the gap gd in order to get the best signal to

noise ratio as possible. However, this is hardly compatible

with low dimensions devices and high quality factors accord-

ing to Eq. (31). As a result, the critical amplitude is often

very low and the operating range between the noise floor and

the critical amplitude is very narrow, i.e. the device is prone

to pull-in even at low displacements. As a consequence, res-

onators are generally designed to vibrate with amplitudes be-

low a small fraction (less than a tenth) of the gap to guarantee

the efficiency and no damage of the device. For further im-

provements of the sensors, MEMS and NEMS designers are

interested in maximizing the detected signals in order to en-

able the electric characterization of electrostatically actuated

nanoresonators with conventional measurement equipments.

The control of the pull-in amplitude is thus of prime interest

and the question is how to retard it.

In order to understand which parameters have an in-

fluence on the pull-in amplitude under superharmonic reso-

nance, the DC voltage is increased successively from 12V to

25V while lowering the AC voltage from 0.5V to 0.3V . Re-

markably, the unavoidable pull-in escape frequency band is

reached at larger oscillation amplitudes for low Vac and high

Vdc as shown in Fig. 7. The pull-in amplitude is increased

from 0.25 up to 0.45, which represents a 80% enhancement.

This pull-in retarding mechanism with respect to the res-

onator displacement is purely electrostatic and it is caused

by the amplification of the nonlinear electrostatic stiffness

which balances the mechanical hardening nonlinearities and

modifies the bifurcation topology of the expected dynamic

response. Indeed, increasing the ratio
Vdc
Vac

while keeping a

constant Vdc.Vac accelerates the spring softening effects and

consequently, it enhances the stable oscillations of the res-

onator below the pull-in amplitude.

Fig. 7. Predicted frequency curves (up to pull-in) for different AC

and DC polarizations (Q = 3000 and h = 1µm).

Figure 8 shows the variation of the resonant amplitude

up to pull-in with respect to AC voltage Vac. For NEMS res-

onators under superharmonic resonance, it is possible to shift

up the pull-in amplitude by applying a low AC voltage. It is

important to underline that this ability to control the pull-in

amplitude with only one physical parameter (the driving AC

voltage) is not possible under primary resonance [7]. How-

ever, in order to compensate for the loss of performance, the
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resonator must be actuated with higher DC polarizations.

Fig. 8. Dependency of the pull-in amplitude on the AC voltage.

4 Conclusion

A global approach to model and simulate the dynam-

ics of NEMS resonators is presented. Particularly, superhar-

monic resonance excitation of order-two is investigated and

results of analytical simulations are presented. They show

that the superharmonic excitation filters out the mixed be-

havior [9] and the third order nonlinearity cancellation [5, 7]

is only limited by the pull-in. Moreover, compared to the

primary resonance, it is demonstrated that the critical ampli-

tude of the resonator does not change and keeps the same

dependence on the quality factor Q and the thickness h. Fur-

thermore, the existence and the mechanism of the dynamic

pull-in phenomenon under superharmonic excitation are an-

alytically analyzed and close-form expressions for the pull-in

amplitude as well as the pull-in voltage could be provided us-

ing the model. In practice, this analytical model constitutes

a fast and efficient tool for NEMS designers for the evalu-

ation of the appropriate DC voltage and the amplitude and

frequency of the AC load in order to shift up or retard pull-

in while operating around the hysteresis suppression domain.

Thus the resonator performances can be enhanced since driv-

ing it linearly at large amplitude could prevent most of noise

mixing [3, 4].
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Appendix

ω2
n =−2V 2

dc

Cn2α2

Rg

∫ l+ld
2l

l−ld
2l

φ1
2 dx

−Cn1α2

2V 2
dc+V 2

ac

R2
g

∫ l+la
2l

l−la
2l

φ1
2 dx

+λ2
1 + 12.3026N (32)

µ1 = 2.65876
(1+Rg)

Rg

(33)

µ2 = 1.8519
1+ 4Rg+R2

g

R2
g

(34)

µ3 = 5.30219
1+Rg

R2
g

(35)

µ4 =−7.72721
1+Rg

R2
g

(36)

χ2 = 1.32938

(

2λ2
1

(1+ 2Rg)

Rg

+
Cn1α2V 2

ac

Rg
2

)

+Cn2α2

(

V 2
dc − 2VdcVs+Vs2

)

Rg
2

∫ l+ld
2l

l−ld
2l

φ1
3 dx

−V 2
dcCn1α2

Rg
2

∫ l+la
2l

l−la
2l

φ1
3 dx

+38.2811N
(1+ 2Rg)

Rg

(37)

χ3 = 28.2132N
1+ 4Rg+R2

g

R2
g

+ 151.354α1

+1.8519λ2
1

1+ 4Rg+R2
g

R2
g

(38)

χ4 = 470.958α1
1+Rg

Rg

+ 5.30219λ2
1

+83.1444N
1+Rg

R2
g

(39)

χ5 = 3.8636
λ2

1

R2
g

+ 61.6548
N

R2
g

+347.096α2
1

(

1+ 4Rg+R2
g

)

(40)

χ6 = 1022.89α1
1+Rg

R2
g

(41)

χ7 = 758.515
α1

R2
g

(42)

ν =−1

2

(

Cn1α2

(

V 2
ac + 2V2

dc

)

∫ l+la
2l

l−la
2l

φ1 dx

)

+Cn2R2
gα2

(

V 2
dc +Vs2

)

∫ l+ld
2l

l−ld
2l

φ1 dx (43)

ζ0 = 4VacVdcCn1α2

∫ l+la
2l

l−la
2l

φ1 dx (44)
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ζ1 =−4VacVdcCn1α2

∫ l+la
2l

l−la
2l

φ2
1 dx (45)

ζ2 = 2VacVdcCn1α2

∫ l+la
2l

l−la
2l

φ3
1 dx (46)
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