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Abstract – Rolling element bearing failure is one of the foremost causes of 

breakdown in rotating machinery. It is not uncommon to replace a defected/used 

bearing with a new one that has shorter remaining useful life than the defected 

one. Thus, prognostics of bearing plays critical role for increased availability and 

reduced cost. Effective prognostics highly depend on the quality of the extracted 

features. Diagnostics is basically a classification problem, whereas the 

prognostics is the process of forecasting the future health states. The quality of the 

features for classification has been studied thoroughly. However, evaluation of the 

quality of features for prognostics is a relatively new problem. This paper presents 

an evaluation method for the goodness of the features for prognostics and presents 

results on bearings run until failure in a lab environment.  

 

 

I. Introduction 

 

Rolling element bearing failure is one of the foremost causes of breakdown in rotating 

machinery [1]. Bearing faults account for the 40% of motor faults according to the 

research conducted by Electric Power Research Institute (EPRI) [2]. Turbine engine 

bearing failures are the leading cause of class-A mechanical failures (loss of aircraft) 

[3]. Even one aircraft saved with prognostics would pay its development cost [4]. 

Bearing faults can be categorized as follows: 1) outer bearing race defects 2) inner 

bearing race defect 3) ball defects 4) cage (train) defect. There are also faults such as 

imbalance, misalignment, looseness, and debris contamination, which include high 

randomness related to environment and human error. Bearings are typically designed to 

have a life greater than the subsystem they are in. Failure initiation in bearings includes 

high randomness especially for failures related to debris contamination or mishandling.  

Currently, defects of size much smaller than 6.25 mm
2
, which is commonly considered 

as a fatal failure size by industry standard [5], can be detected using diagnostics 

methods. However, failure detection forces machinery to shut down that causes 

tremendous time, productivity and capital loss. In addition, it is not uncommon to 

replace a defected/used bearing with a new one that has shorter remaining useful life 

than the defected one. For example, remaining useful life of a bearing with a newly 

detected defect may be substantially more than its L10 life, which is the life of 90% 

bearing population survival [1], [5]. Thus, identification of the most convenient time of 

maintenance after failure detection without reducing the safety requirements is crucial, 

which is possible with prognostics capability. Thus, bearing prognostics is very critical 

for effective operation & management. 

Each failure type causes a distinct signature in the vibration frequency [2] and vibration 

analysis is considered as the most reliable method in bearing failure detection [6]-[9]. 

However, it is often difficult to extract the failure signature due to the noise in the data 



especially in early stages of the failure [10]-[12]. Thus, several other sensor types such 

as current [13] and angular speed [14] have been used for bearing fault detection.  

Prognostics is far more difficult task than diagnostics. In prognostics, failure 

progression should be modelled and forecasted in addition to the diagnostics. The 

prognostics methods can be broadly grouped into two categories: physics-based and 

empirical-based. Physics based methods analyze the physical nature of the system and 

failure as shown in Fig. 1 and have potential to lead to precise estimations if it can be 

modelled properly. However, reaching to perfect physical modelling is very difficult, if 

not impossible, especially for complex systems. Even though physics based prognostics 

models have been attempted for a variety of mechanical components with some success 

and might give better results than empirical-based models, they are much more 

expensive to implement. In addition, the replication of a physics-based method to 

slightly different equipment is prohibitive and intractable. Any small modification in 

the material or sub-component of the system will lead to need of remodelling.  Physics-

based methods also have scalability problems.  

 

 

 

 

 

 

 

Fig 1: Physics based prognostics 

In physics based prognostics, a deterministic fatigue crack propagation model based on 

Paris’s formula, which relates the stress intensity to crack growth under fatigue stress, 

was presented for bearing prognostics in late 90s [1]. The model is enhanced by 

modification with a log-normal random variable [5]. Bearings are unique in failure 

progression since spall formation occurs as a result of thousands of small cracks rather 

than the propagation of a single dominant crack. Thus, traditional fatigue modelling 

cannot represent the failure progression perfectly [4]. 

Empirical prognostic methods can be grouped into three categories: First approach, 

evolutionary prognostic, involves trending of features combined with simplistic 

thresholds set from past experience and analysis of change rate from current condition 

to the known failure in feature space as shown in Fig 2. FFT, Wigner-Ville distribution, 

wavelet, Hilbert-Huang transform, blind source separation, statistical signal analysis are 

examples of the first group [15].  

 

Fig 2: Evolutionary Based Empirical Prognostics 

The complexity of the systems often require more processing for effective prognostics. 

Second approach in empirical prognostic methods is to utilize statistical regression 

models and/or computational intelligence methods such as Artificial Neural Network 

(ANN)-based [16], Genetic Algorithm (GA)-based [17], Fuzzy Logic (FL) based 
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methods [18] to model known failure degradation paths in feature space. Thus, some 

valuable properties (features) of signals are extracted and used in intelligent systems for 

further processing as shown in Fig 3. Third approach, future state estimation, estimates 

a state vector that represents the equipment health condition from brand new to failure 

by employing subspace and non-linear dynamic methods as shown in Fig 4. These 

methods forecast the progression of health states of the machine from current state 

estimated by diagnostician to the failure state by employing transition probabilities 

between states and time spent in each state. Hidden Markov Model is the most 

commonly known state based prognostics method [19]-[23]. 

 

Fig 3: Regression/Computational Intelligence Based Empirical Prognostics 

 

 

Fig 4: State Based Empirical Prognostics 

 

As can be seen from the figures above, feature extraction is the common step in all 

types of prognostic approaches and one of the most critical steps in diagnostics and 

prognostics. Diagnostic and prognostic methods use the extracted features as input and 

their effectiveness rely on the features’ representation capability to the failures and their 

progression. The goodness (quality) of the features affects the complexity of the 

diagnostic and prognostic methods. Features that represents healthy, close to failure 

machinery and their progression perfectly may lead to very simple diagnostic and 

prognostic methods. On the other hand, very complex diagnostic and prognostic 

methods using features that are ineffective in representation of failure and failure 

progression may lead to poor results. Thus, extraction of effective features is a pre-

requisite for effective diagnostics and prognostics. 

 

Diagnostics is a classification problem, whereas the prognostics is the process of 

forecasting the future health states. The goodness of the features for diagnostics is 

basically a measure of separability between data from healthy and faulty equipment. 

Good separability indicates that samples from different classes (i.e., healthy and faulty) 

are far apart from each other and samples from the same class are close to each other. 

Within class separability (parameters a and b in Fig 5) and between class separability 

(parameter c in Fig 5) are used to quantify the separability. Many class separation 

metrics have been reported in the literature [24]-[25]. These metrics focus on static 

classes; do not consider progression from one class to another. One feature may be 

good at separation of the classes, but not at representation of progression from one class 

to another. For example, separability measure (S2) of feature 2 (F2) is higher than in 

separability measure (S1) of feature 1 (F1) in Fig 5. However, this does not mean that 

F2 is better in representing the failure progression. As seen from the figure, failure 

progression in F2 involves higher variation. Thus, a new quality measure should be 

employed for prognostics, which is a relatively new problem.  
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Fig 5: Feature quality for diagnostics and prognostics 

 

This paper presents an evaluation method for the goodness of the features for 

prognostics. An effective feature evaluation method will achieve the selection of best 

features, which is critical for obtaining better prognostics results. Organizations may 

focus on the development of core prognostics methods after ensuring that the selected 

features are the best ones for prognostics. The feature evaluation method is applied to 

bearings that were run until failure in a lab environment. Section II presents the 

quantification metric for the quality evaluation of features for prognostics. Section III 

presents results and experiments. Section IV concludes the paper. 

 

II. Goodness of  Failure Progression Representation Metric 

 

This section presents a metric that evaluates the goodness of features in failure 

progression representation. A good feature for prognostics should be monotonically 

non-decreasing or non-increasing for all samples. Formal definition of monotonically 

non-increasing and non-decreasing function is given below. 

 

Monotonically non-increasing or non-decreasing: Mathematically, a function f is 

called monotonically increasing (monotonically non-decreasing), if for all x and y such 

that x ≤ y one has f(x) ≤ f(y) (f(y) ≤ f(x)). Examples of monotonically non-increasing 

and non-decreasing functions are given in Fig 6.  

 

             
 

Fig. 6. Examples of monotonically non-decreasing and non-increasing functions 

 

It may be trivial to check the monotonicallity for a single failure progression sample by 

analyzing the difference between consecutive points. When all the difference values are 

greater (less) than or equal to 0, then the function is defined as non-decreasing (non-

increasing). However, monotonicallity over all samples representing failure progression 

should be considered rather than individual analysis of samples. Example of several 

samples representing failure progression is displayed in Fig. 7. As seen from the figure, 
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the time is segmented for effective analysis of the failure progression. The effectiveness of 

a feature to represent the failure progression is calculated as the average separability of 

segments as represented in (1). The higher the total separability value (S) is, the better 

representation of the failure progression. Thus, the goal is to find the feature that has the 

highest S value. 

 
Fig. 7. Failure progression for multiple samples 
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S: Average separability value 

st: Separability at time t 

T: Total number of time segments 

 

The distribution of the data points from different samples in each time segment should 

be used to measure the separability at a given time segment. L represents the distance 

between 25
th

 and 75
th

 percentiles. The ratio of the length of the non-overlapped portion 

(called a) to L is a measure of the separability (a/L). When the separation is low as in 

Fig 8.A, a/L ratio will be close to 0. When the separation is high as in Fig 8.B, a/L 

becomes closer to 1. When there is no overlap between 25-75 percentiles of the 

distributions (a/L=1), there exist two different possibilities. In the first one, there is 

some overlap within data greater than 75
th

 percentile or less than 25
th

 percentile as 

shown in Fig.8.C. The second one represents complete separation as shown in Fig. 8.D. 

When a/L becomes 1, then the ratio of number of data points causing overlap to the 

total number of data points in the distribution is subtracted in separability calculation. 

The separability calculation is formulated in (2).  
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α    : Number of samples overlapping with the distribution in consecutive time frame 

tN   : Number of samples in time segment t 

 

 
Fig 8. Illustration of increase and decrease 

 

.  

III. Experiments & Results 

 

The presented feature evaluation metric will be applied to real data obtained from a 

bearing experiment set. Two applications are discussed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 9. PRONOSTIA experimental Platform 
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1. Experimental Setup: The accelerated bearing life test bed is called PRONOSTIA 

(displayed in Fig. 9), which it is an experimentation platform dedicated to test and to 

validate bearing health assessment, diagnostic and prognostic. In the present 

experimental setup a natural degradation process of bearings is performed. During the 

experiments any failure types (inner race, outer race, ball, or cage) or their 

combinations could occur. This is allowed in the system to better represent a real 

industrial situation.   

 

The experimental platform PRONOSTIA is composed of two main parts: a first part 

related to the speed variation and a second part dedicated to load profiles generation. 

The speed variation part is composed of a synchronous motor, a shaft, a set of bearings 

and a speed controller. The synchronous motor develops a power equal to 1.2 kW and 

its operational speed varies between 0 and 6000 rpm. The second part is composed of a 

hydraulic jack connected to a lever arm allowing to create different loads on the bearing 

mounted on the platform for degradation.  

A pair of ball bearings is mounted on one end of the shaft to serve as the guide bearings 

and a NSK6307DU roller ball bearing is mounted on the other end to serve as the test 

bearings. The transmission of the movement between the motor and the shaft drive is 

coupled by a rub belt.  

Two high frequency accelerometers (DYTRAN 3035B) are mounted horizontally and 

vertically on the housing of the test roller bearing to pick up the horizontal and the 

vertical accelerations. In addition, the monitoring system includes one temperature 

probe (of type PT100) to record the temperature of the tested bearing. A speed sensor 

and a torque sensor are also available on the PRONOSTIA platform. The set of sensors 

installed on the platform allow the user to know at each time the current operating 

conditions of the experiment. A data acquisition card (NI DAQCard-9174) is also used, 

which allows the integration of three modules: the first includes the two acceleration 

sensors, the second is for the temperature probe and the third for the torque transducer.  

The monitoring data are transmitted via an USB 2.0 link to a dedicated computer where 

they are stored. The data acquisition software is programmed by using a LabView 

interface. The readings can be directly taken from the digital readout on the analyzer, 

graphical representation of the data can be displayed on the screen and finally, the data 

can be analyzed online or offline during later processing. The sampling frequency of 

the NI DAQCard-9174 data acquisition card is set to 25600 Hz and the vibration data 

provided by the two accelerometers are collected every 1 second. Each record is stored 

in a matrix format where the following parameters are defined: the time, the horizontal 

acceleration, the vertical acceleration, the temperature, the speed and the torque.  

The bearing operating conditions are determined by instantaneous measures of the 

radial force applied on the bearing, the rotation speed of the shaft handling the bearing 

and of the torque inflicted to the bearing. Thus, three sensors are used: a load cell and 

its transducer amplifier, an incremental encoder and its analogue signal converter, and a 

torque transducer with its converter. With this experimental platform, several types of 

profile can be created by varying the load and the speed. This is very important as it 

allows simulating constant as well as variable operating conditions for bearing’s 

degradation. For the measurement of the degradation's characteristics during the test, 

the bearing starts from its nominal operating mode until its faulty operating mode or 

state. The bearing’s behaviour is captured during its whole degradation process by 

using the different sensors. 

 

 



2 Extracted features: 12 different features are extracted to be used for failure 

progression (maximum, mean, standard deviation, skewness, kurtosis, root mean square 

error (RMS), crest factor and highest frequency). RMS and crest factor are applied in 

three different ways. The first one involves raw data. The other two pre-process the raw 

data by applying outlier detection with different levels using low pass and high pass 

filters. Thus, total of 36 features are analyzed for bearing prognostics in this paper.  

 

After analyzing the data, two different types of degradation are detected. The first type 

occurs from the initial use of the bearing until the failure reaches a severity level. The 

second type of degradation includes the data working in a failure state. The first type is 

relatively smooth compared to the second type. The second type of degradation 

includes more variability and is more unpredictable. Both degradation types are 

analyzed in this paper and displayed in Fig. 10. 
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Fig. 10: Vibration signal obtained for whole life of a bearing 
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Fig. 11. Separability measure for selected features 

 

Fig. 11 displays the separability values obtained for all features for two vibration 

signals from the first degradation type. The following analysis can be obtained from the 

figure. 

 

1. Standard deviation and RMS (RMS, RMS1, and RMS2) are the best 

features with highest separability values for both vibration signals. 

2. The failure signature is hidden within the high frequency data 

because when low pass filter is applied the separability values 

decrease even for the best features. Fig. 12 that displays the 

frequency time amplitude diagram for bearing fault justifies the 

statement above. The effects of the failure are seen in high 

frequencies.  

3. The separability measure is increased by applying high pass filter in 

vibration signal 2. The effects of failure occur in high frequencies in 

vibration signal 2 and high pass filter is able to filter the unnecessary 

data successfully. However, no significant difference can be 

observed in vibration signal 1 when high pass filter is applied. The 

effect of bearing failure on vibration signal 1 is either spread over all 

frequencies or the high pass filter needs to be optimized further for 

more effective results. Since the main focus of this paper is not to 

extract the best features, but to create a methodology for feature 

evaluation in prognostics; the filtering methods are not thoroughly 

optimized.   

4. Vibration signal 2 (horizontal vibration) is more sensitive to the 

bearing failure compared to vibration signal 1 (vertical). This result 



is logical due to the experimental setup. It is acknowledged by the 

experts that the horizontal vibration is more sensitive to the failure. 

Maximum separability value of vibration signal 2 is around 6 

whereas it is around 4 for vibration signal 1. If one needs to select 

only one vibration sensor; it is recommended to have the second 

vibration sensor based on these results. 

 

 
 

Fig 12: Frequency time amplitude for bearing fault analysis 

 

Fig 13 displays two good (RMS and standard deviation); two bad features (Skewness and 

crest factor) for prognostics. As you can see from the figures, failure progression can be 

seen in the features with high separability measure. 
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Fig 13: Illustration of good and bad features 

 

Fig 14 displays the standard deviation of both vibration signals. As seen from the figure 

the failure progression in vibration signal 2 is clearer. However, it is not always easy and 

possible to visually observe the failure progression. Thus, quantification metric for 

representation ability of failure progression is important.  
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Fig 14: Illustration of good and bad features 

 

Fig 15 displays the separability values of second type of degradation. Similar results are 

obtained with the first type of degradation. Due to high variability, the effects of failure 

are seen in high range of frequencies. Thus, analysis of raw data without filtering gives 

better results. In this type of degradation, the effects of the failure are very clear and can 

be seen in both vibration sensors in similar degrees. Fig 16 displays the examples of good 

and bad features for failure degradation. Standard deviation and RMS are the good 

examples, whereas skewness and crest factor are the bad examples.  

 

 



 
 

Fig 15: Separability values for the second type of degradation 
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Fig 16: Examples of good and bad features for failure degradation 

 

 

IV. Conclusion 

 

The quality of the features is critical for effective diagnostics and prognostics. 

Diagnostics is the identification of an existing failure, whereas prognostics is the 

forecasting the time of failure before it occurs. Evaluation of the quality of features in 

diagnostics has been studied extensively since diagnostics is essentially a 

classification problem. On the other hand, evaluation of the features for prognostics is 

a new problem. This paper presents quantification metric for evaluation of the quality 



of features. The presented metric is applied to features extracted from bearing 

vibration data collected. Bearings were run until failure in a lab environment. 12 

features are extracted for raw, high pass filtered, and low pass filtered data. The 

results obtained from the presented metric are very promising and justified with 

analysis of the bearing failure analysis.  
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