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Abstract.

Wheeler’s observer-participancy and the related it from bit credo refer to quantum

non-locality and contextuality. The mystery of these concepts slightly starts unveiling

if one encodes the (in)compatibilities between qubit observables in the relevant finite

geometries. The main objective of this treatise is to outline another conceptual

step forward by employing Grothendieck’s dessins d’enfants to reveal the topological

and (non)algebraic machinery underlying the measurement acts and their information

content.

1. Introduction

I can no better summarize the topic of this essay than by borrowing the opinions

of three giants of physics, namely of J. A. Wheeler on the ‘it from bit’, of J. S. Bell on

‘nonlocality’ and of N. D. Mermin on ‘contextuality’ (I could also have referred to A.

Peres).

Wheeler [1, (a)]: We have clues, clues most of all in the writings of Bohr, but not

answer ... Are billions upon billions of acts of observer-participancy the foundation of

everything? We are about as fas as we can today from knowing enough about the deeper

machinery of the universe to answer this question. Increasing knowledge about detail

has brought an increasing ignorance about the plan.

Wheeler [1, (b)]: It from bit. Otherwise put, every it - every particle, every field

of force, even the space time continuum itself - derives its function, its meaning, its

very existence entirely - even if in some contexts indirectly - from the apparatus-elicited

answers to yes or no questions, binary choices, bits.

Bell [2]: In a theory in which parameters are added to quantum mechanics to

determine the results of individual measurements, without changing the statistical

predictions, there must be a mechanism whereby the setting of one measuring device

can influence the reading of another instrument, however remote. Moreover, the signal

involved must propagate instantaneously, so that a theory could not be Lorentz invariant.

Mermin [3, (a)]: It is also appealing to see the failure of the EPR reality criterion

emerge quite directly from the one crucial difference between the elements of reality



2

(which, being ordinary numbers, necessarily commute) and the precisely corresponding

quantum mechnical observables (which sometimes anticommute).

On the mathematical side, my arguments will rely on another eminent figure of

science, viz.

Grothendieck [4, (a), Vol. 1]: In the form in which Belyi states it, his result

essentially says that every algebraic curve defined over a number field can be obtained as a

covering of the projective line ramified only over the points 0, 1 and ∞. The result seems

to have remained more or less unobserved. Yet it appears to me to have considerable

importance. To me, its essential message is that there is a profound identity between

the combinatorics of finite maps on the one hand, and the geometry of algebraic curves

defined over number fields on the other. This deep result, together with the algebraic

interpretation of maps, opens the door into a new, unexplored world - within reach of

all, who pass by without seeing it.

Why do I refer to A. Grothendieck? Below is a sketch of an ongoing work [5, a]. My

first point is that Wheeler’s observer-participancy is contextual: the it does not preexist

to the measurement set-up and – the it from bit extraction being even more intriguing

– the measured value depends on all mutually compatible measurements. Second, a

compatibility (i. e., commutativity) diagram of observables itself has a kind of engine

that drives it. The hidden engine is, in my opionion, nothing but Grothendieck’s dessin

d’enfant (a child’s drawing). The relevant ‘quantum’ graphs that we will encounter on

our journey are mainly commuting/anticommuting graphs discovered by N. D. Mermin.

We will ask ourselves the question whether, and how, a dessin d’enfant (an algebraic

curve in the sense of Grothendieck) can be associated with the contextual set-up behind

such a graph. Interestingly enough, also confirming the it from bit claim, any relevant

‘non-algebraic’ graph will be seen to have more Shannon capacity/information than

expected in a perfect graph. This sounds in resonance with Shor’s quantum algorithm

that allows factoring of integers in polynomial time instead of exponential one (more

information in less time!).

It will suffice to play with the so-called Pauli groups of operators/observables for

two or three parties, i. e. two- or three-qubit systems: Alice, Bob and/or Charlie set-ups.

Most importantly, experiments with compatible (mutually commuting) operators make

sense, otherwise the results are expected to be fully independent [3, (b)]. Some years

ago it was realized that to mathematically grasp the essence of these (in)compatibilies

finite geometries have to be called on [5, (b)]. In what follows, it will be demonstrated

that to get further insights in this respect, the concept of a dessin d’enfant – a bipartite

graph embedded on an oriented surface – must enter the game. Any dessin can be given

the structure of a Riemann surface, and the Riemann surfaces arising this way are those

defined over the field of algebraic numbers (Belyi’s theorem). This subject is briefly

described in Sec. 2.

If one considers the fifteen two-qubit operators (the identity matrix is discarded),

here the underlying geometry – the smallest non-trivial generalized quadrangle – tells

us a lot about higgledy-piggledy collection of potential two-qubit experiments [5, (b)].
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But, as emphasized by Mermin [3, (b)], to unify all relevant concepts pertinent to non-

locality and contextuality one needs three parties. Here, a fundamental building block

is a heptad of mutually commuting operators forming the smallest projective plane, the

Fano plane, having 7 points and dually 7 lines, with three points per line and three lines

through a point. In Sec. 2, the seven points of the Fano plane are put in a bijective

correspondence with the edges of a tree-like dessin d’enfant, ensuring its algebraicity

(in Grothendieck’s sense). The symmetry group permuting the edges of the dessin and

stabilizing the lines of the Fano plane is the well known simple group of cardinality 168.

Then, in Sec. 3.1, I invoke a square graph with eight vertices, with mutually

commuting or anticommuting operators, for a proof of Bell’s theorem about non-locality.

Here, the graph is itself the dessin, and is thus algebraic. Sec. 3.2 starts a non-trivial

story about contextuality and the so-called Kochen-Specker theorem as told by N. D.

Mermin. We only need a two-player (two-qubit) set-up. The graph is a ‘magic’ square

(a three-by-three grid) embodying a contradiction between the algebra of operators and

eigenvalues [3, (b)]. We shall uncover in its shadow an interesting algebraic curve/dessin

d’enfant – displayed here for the first time. The symmetry group permuting the nine

edges of the dessin and stabilizing the lines of the magic square has order 72. Finally,

in Sec. 3.3, it comes – as expected – both contextual and ‘magic’ array of three-qubit

observables, the so-called Mermin’s pentagram. Apart from being non-algebraic, in

Grothendieck’s sense, it also occurs in another disguise: the Petersen graph, being thus

embeddable as a polyhedron in the real projective plane. Such a pentagram is one of a

totality of 12096 guys fitting the structure of the smallest exceptional Lie geometry –

the split Cayley hexagon of order two [5, (c)].

2. What is a dessin d’enfant?

... here I was brought back, via objects so simple that a child learns them while playing, to

the beginnings and origins of algebraic geometry, familiar to Riemann and his followers!

[4, (a), vol. 1].

Details can be found in [4, 6]. See also [7] for a link to Feynman diagrams.

* Step 1 (easy): A dessin d’enfant (child’s drawing) is a map drawn on a surface

(a smooth compact orientable variety of dimension two) such that vertices are points,

edges are arcs connecting the vertices, and the complement of the graph is the union of

faces (each one homeomorphic to the open disk of R2). The graph may feature multiple

edges and/or loops, but has to be connected. Taking S, A and F for the number of

vertices, edges and faces, respectively, the genus g of the map is given by Euler’s formula

S − A+ F = 2− 2g.

* Step 2 (still easy): Convert the graph of Step 1 into a bipartite graph (called also

a hyper-map) by regarding its vertices as black and placing a white vertex in each of its

edges. The set of half-edges so defined is encoded by a permutation group P = 〈α, β〉;
here, the permutation α (resp. β) rotates the half-edges around each black (resp. white)

vertex in accord with the cyclic ordering in that vertex. The cycle structure for the faces
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follows from the permutation γ satisfying αβγ = 1. The Euler characteristic now reads

2 − 2g = B +W + F − n, where B, W and n stands, respectively, for the number of

black vertices, the number of white vertices and the number of half-edges.

It is also known that maps on connected oriented surfaces are parametrized by the

conjugacy classes of subgroups of the triangle group, also called cartographic group by

A. Grothendieck,

C+

2 =
〈

ρ0, ρ1, ρ2|ρ21 = ρ0ρ1ρ2 = 1
〉

. (1)

The possible existence of a dessin d’enfant of prescribed properties (permutation group,

cycle structure) can thus be checked from a systematic enumeration of conjugacy classes

of C+

2 .

* Step 3 (difficult): The Belyi theorem states that to a combinatorial map (defined

in Step 2) there corresponds a Riemann surface X defined over the field Q̄ of algebraic

numbers. This happens if, and only if, there exists a covering f : X → C̄ unramified

outside {0, 1,∞}. The covering (an algebraic curve) f associated with a dessin d’enfant

is, in general, very difficult to find explicitly, except for simple cases devoid of loops.

Klein, as early as 1884, was the first to get them for the graphs representing Platonic

solids [9].

The Fano plane and its curve

A finite projective plane is a point-line incidence geometry such that (i) any two

lines meet in a unique point, (ii) any two distinct points are on a unique line, and (iii)

there are at least four points, not three of them collinear. The simplest case is the

projective plane of order two – the Fano plane. Projective planes are conjectured to

exist only if their order is a power of a prime number.

As already mentioned, a three-qubit maximal commuting set may be seen an heptad

of points/lines satisfying the axioms of a Fano plane [8]. The seven points are mapped to

the seven three-qubit operators and each line features a triple of mutually commuting

operators whose product is ± the identity matrix. We are in the search of a dessin

d’enfant DF whose edges can be put in a bijective correspondence with the points of

the Fano plane F in such a way that the permutation group P of DF acts transitively

on the lines of F and stabilize them. One knows that P = PSL(2, 7), the simple group

of order 168. Using the software Magma, we are able to compute the 131 subgroups of

index 7 of the cartographic group C+

2 , extract the 10 of them whose group of cosets is

isomorphic to P and also have the right action on F . One choice is depicted in Fig. 1,

as reproduced from [4, (a), vol. 2, p. 17 and p. 50]; the corresponding Belyi map is the

polynomial

Z = z4(z − 1)2(z − a) with a = (−1 − i
√
7)/4.
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Figure 1. (a) The Fano plane F and (b) a corresponding dessin d’enfant DF . The

permutation group characterising DF is P = 〈α, β〉, with α = (1)(2, 7, 6, 5)(3, 4) and

β = (1, 2)(3, 5)(4)(6)(7). One has B = 3 black vertices, W = 5 white vertices, n = 7

half-edges, F = 1 face and genus g = 0.

3. Dessins d’enfants, non-locality and contextuality

3.1. A dessin d’enfant for Bell’s theorem

Let us recall now that for dichotomic observables σ2
i
= ±1, i = 1, 2, 3, 4, when giving

the pair (σ1, σ3) to Bob and the pair (σ2, σ4) to Alice, the Bell-CHSH approach consists

of defining the number

C = σ2(σ1 + σ3) + σ4(σ3 − σ1) = ±2

and observing the Bell-CHSH inequality [10, p. 164]

| 〈σ1σ2〉+ 〈σ2σ3〉+ 〈σ3σ4〉 − 〈σ4σ1〉 | ≤ 2,

where 〈〉 here means that we are taking averages over many experiments. Bell’s theorem

simply means finding a violation of the afore-mentioned inequality with quantum

observables and dichotomic eigenvalues. A simple choice is the quadruple

(σ1 = IX, σ2 = XI, σ3 = IZ, σ4 = ZI), (2)

where X , Y and Z are the ordinary Pauli spin matrices and one uses the short-hand

notation for the tensor product, e. g. IX ≡ I ⊗X . Thus σ2
i
= 1, and one finds that

C2 = 4 ∗ I + [σ1, σ3][σ2, σ4] = 4











1 . . 1

. 1 1̄ .

. 1̄ 1 .

1 . . 1
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Figure 2. The commutation/anti-commutation diagram for Bell’s theorem is, at

the same time, a dessin d’enfant with permutation group P = 〈α, β〉 = D4, where

α = (1, 8)(2, 3)(4, 5)(6, 7), β = (1, 2)(3, 4)(5, 6)(7, 8) and the bracketed half-edge

labelling.

has eigenvalues 0 and 8, both of multiplicity 2. Taking the norm of the bounded linear

operator A as ||A|| = sup(||Aψ||/||ψ||), ψ ∈ H (the relevant Hilbert space), one gets

the maximal violation of the Bell-CHSH inequality [10, p. 174]

||C|| = 2
√
2.

A straightforward computer check shows that there are 90 such distinct proofs of Bell’s

theorem with two-qubit operators and as many as 30240 ones with three-qubit ones, all

of them yielding a maximal violation of the Bell-CHSH inequality. These numbers are

intimately connected with the structure of the corresponding contextual spaces.

Let us represent the commutation relations between the elements of (2) as

illustrated in Fig. 2, where the black vertices are labelled by i ≡ σi, and a white vertex

represents the operator which is the product of the two operators at the endpoints of

the corresponding edge (e. g. 5 = σ1σ2 = IX.XI = XX); it is worth noting that three

operators placed along the same straight-line segment mutually commute, as do two

‘white’ operators situated opposite each other. This is a remarkable instance where the

commutation/anti-commutation diagram is bipartite and, as it stands, it also represents

a dessin d’enfant (with permutation group equal to the dihedral groupD4 on 8 elements).

The algebraic curve (Belyi map) associated to it is well known (it was already derived

by Klein [9, p. 106])

Z =
(z4 − 1)2

−4z4
.
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Figure 3. (a) The Mermin square M and (b) its associated dessin d’enfant

DM with permutation group P = 〈α, β〉, where α = (3, 9, 6, 5, 2, 7)(1, 8, 4)), β =

(1)(3)(9)(2, 5)(4, 7)(6, 8). One has B = 2 black vertices, W = 6 white vertices, N = 9

half-edges, F = 3 faces and genus g = 0.

3.2. Mermin’s square

Let’s have now a bit more careful look at Fig. 2. We observe that the product of the two

observables associated with a pair of the opposite white vertices is the same, Y Y . By

supplying this ‘missing’ vertex and the two lines passing through it, we get a 3×3 grid (as

illustrated in Fig. 3a). This grid is a remarkable one: all triples of observables located in

a row or a column have their product equal to +II except for the middle column, where

XX.Y Y.ZZ = −II. Mermin was the first to observe that this is a Kochen-Specker

(parity) type contradiction since the product of all triples yields the matrix −II, while
the product of corresponding eigenvalues is +1 (since each of the latter occurs twice,

once in a row and once in a colmumn) [3, (b)]. Such a Mermin ‘magic’ square may

be used to provide many contextuality proofs from the vectors shared by the maximal

bases corresponding to a row/column of the diagram. The simplest, so-called (18, 9)

one (18 vectors and 9 bases) has, remarkably, the orthogonality diagram which is itself

a Mermin square (9 vertices for the bases and 18 edges for the vectors) [5, (c), eq. (6)].

Now, we would like to represent our Mermin square, M, in a way analogous to what

we did for the Fano plane in Sec. 2, that is we would like to draw a dessin d’enfant DM

whose 9 half-edges are in a bijective correspondence with the vertices of M and whose

permutation group P acts transitively on the rows/columns of M by stabilizing them.
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The symmetry group of M is isomorphic to Z2
3 ⋊ Z3

2, a group of order 72. Using again

the software Magma, we serached for all 1551 subgroups of index 9 in the cartographic

group C+

2 , defined in (1), extracted the two subgroups isomorphic to P and selected the

one having the right action on M; the corresponding dessin d’enfant DM is shown in

Fig. 3b. To find the corresponding Belyi map seems to be a challenging math problem.

3.3. Mermin’s pentagram

Poincaré [11, p. 342]; Peceptual space is only an image of geometric space, an image

altered in shape by a sort of perspective.

Weyl [11, p. 343]: In this sense the projective plane and the color continuum are

isomorphic with one another.

Color experience through our eyes to our mind relies on the real projective

plane RP2 [11]. Three-qubit contextuality also relies on RP2 thanks to a Mermin

‘magic’ pentagram, that for reasons explained below in (i) we denote P̄ (by abuse of

language because we are at first more interested to see the pentagram as a geometrical

configuration than as a graph). One such a pentagram is displayed in Fig. 4a. It

consists of a set of five lines, each hosting four mutually commuting operators and any

two sharing a single operator. The product of operators on each of the lines is −III,
where I is the 2 × 2 identity matrix. It is impossible to assign the dichotomic truth

values ±1 to eigenvalues while keeping the multiplicativve properties of operators so

that the Mermin pentagram is, like its two-qubit sibling, ‘magic’, and so contextual [3,

a],[5, (b) and c)].

Let us enumerate a few remarkable facts about a pentagram.

(i) The graph P̄ of a pentagram is the complement of that of the celebrated Petersen

graph P. One noticeable property of P is to be the smallest bridgeless cubic graph with

no three-edge-coloring. The Petersen graph is thus not planar, but it can be embedded

without crossings on RP2 (one of the simplest non-orientable surfaces), as illustrated in

Fig 4b.

(ii) There exist altogether 12096 three-qubit Mermin pentagrams, this number

being identical to that of automorphisms of the smallest split Cayley hexagon G2(2)

– a remarkable configuration of 63 points and 63 lines, whose structure is fully encoded

in that of the Fano plane [5, (b)].

(ii) Now comes an item close to the it from bit perspective, if one employs the

so-called Shannon capacity of P̄. The Shannon capacity Θ(G) of a graph G is the

maximum number of k-letter messages than can be sent through a channel without

a risk of confusion. One knows that Θ(G) has for its lower bound the size α(G) of

a maximum independent set and for its upper bound the Lovasz number θ(G). For

the complement graph Ḡ, the Lovasz number θ(Ḡ) is found to lie between the clique

number ω(G) and the chromatic number κ(G). For the Petersen graph, this leads to

2 ≤ Θ(P ) ≤ 4 and for the pentagram graph 2 ≤ θ(P̄ ) ≤ 3. A direct calculation yields

Θ(P̄ ) ≥
√
5 [5, (c)]. (Note hat the pentagon graph attains the tight bound

√
5.)
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Figure 4. (a) A Mermin pentagram P̄ and (b) the embedding of the associated

Petersen graph P on the real projective plane as a hemi-dodecahedron.

(iv) Does it exist a dessin d’enfant for the pentagram? In view of the relationship

of P̄ to the non-orientable RP2, this seems to be rather unlikely. Nevertheless, we

performed a search, similar to the one for the Fano plane and the Mermin square,

within the cartographic C+

2 . Using Magma, we found in it 5916 groups of index ten, 14

of which have their coset groups isomorphic to S5. However, we checked that maximum

three (of five) lines of the pentagram are stabilized. This implies the non-existence of

the Belyi map and puts three-qubit contextuality on a qualitatively different footing

when compared with the two-qubit case.

Let us conclude this essay by an excerpt from Lewis Carroll’s tale: ‘The hunting of

the snark’

“What’s the good of Mercator’s North Poles and

Equators,

Tropics, Zones, and Meridian Lines?

So the Bellman would cry: and the crew would reply

“They are merely conventional signs!
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