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Résumé

L’échinococcose alvéolaire (EA) est une zoonose parasitaire rare mais qui, si elle n’est
pas traitée ou si elle est traitée trop tardivement, peut se révéler extrémement grave et
méme fatale. La maladie est en relation non seulement directement avec la destruction
hépatique qui accompagne le développement du métacestode, le stade larvaire
d’Echinococcus  multilocularis, mais aussi avec la réponse immunitaire
granulomateuse trés importante qui entoure le tissu parasitaire ; tous deux sont
responsables de la fibrose et de la nécrose hépatiques et de la cholestase chronique qui
peuvent conduire a I’insuffisance hépatique terminale. Les Iésions, qui se composent a
la fois du métacestode, manifesté sous la forme de multiples vésicules, et des cellules
qui ont migré des organes et tissus lymphoides périphériques pour coloniser le foie
autour du métacestode, se comportent comme une tumeur maligne a marche lente qui
envahit progressivement le foie, puis les organes et tissus de voisinage, et peut enfin
métastaser a distance dans d’autres organes.

En dépit du réle connu de la réponse granulomateuse de 1’hote dans les complications
de ’EA, et de son role invoqué a la base de I'imagerie fonctionnelle des lésions
hépatiques (comme celle obtenue par la Tomographie par émission de Positons utilisant
le Fluoro-deoxy-glucose comme traceur), on connait peu de choses sur la réponse
immune locale et sur les facteurs immuno-régulateurs qui influencent la migration des
cellules de I'immunité dans le foie, de méme que sur ceux qui seraient susceptibles
d’influencer les principales caractéristiques de I’homéostasie hépatique comme la
régénération/prolifération, dégénérescence, et dysfonction des hépatocytes. On sait
depuis longtemps que le foie est le site privilégi¢ du développement de I’infection par
E. multilocularis. La croissance du métacestode induit de nombreuses voies de la
réponse immunitaire et les mécanismes immunitaires impliqués dans les interactions
hote-parasite ont fait 1’objet de nombreuses ¢études. L’implication des voies
d’orientation cytokinique T helper (Th)1 et Th2, et de plusieurs autres cytokines prises
individuellement, ont été largement étudiées au cours des deux dernic¢res décennies,
que ce soit chez les patients atteints d’EA ou les rongeurs expérimentaux. Cependant,
ces ¢tudes n’ont €té réalisées qu’a partir de prélevements faits dans le systéme
immunitaire périphérique: rate, ganglions lymphatiques chez les rongeurs
expérimentaux, et cellules mononucléées du sang circulant chez I’homme ou cellules
péritonéales chez la souris. Par ailleurs, des observations cliniques, chez les patients,
comme I’importance de 1’hépatomégalie du foie ‘sain’, non atteint par les Iésions et la
tolérance du foie vis-a-vis des résections hépatiques majeures, ainsi que des
observations expérimentales, comme la diffusion de la fibrose a des zones hépatiques

distantes de I’invasion par le métacestode et la réaction granulomateuse, suggérent que
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le métacestode et la réponse immunitaire locale pourraient influencer le parenchyme
hépatique lui-méme, y compris a distance des zones hépatiques atteintes. Cet aspect n’a
jamais ét¢ étudié spécifiquement et de fagcon approfondie et les mécanismes potentiels
en sont totalement inconnus. En particulier, I’étude des mécanismes impliqués dans les
modifications de I’homéostasie hépatique aux différents stades de I’infection, mais
aussi une analyse détaillée des profils de cytokines et chimiokines présents dans
I’infiltrat cellulaire périparasitaire hépatique, de la présence du transforming growth
factor-B (TGF-B) et des autres acteurs de sa voie d’activation, et de I’implication
possible du Fibrinogen-like protein-2 (FGL2), une molécule effectrice des lymphocytes
T-régulateurs (CD25'CD4" Tregs) récemment identifiée, n’ont jamais été entrepris
avec 1’objectif de cerner de facon globale I’interaction de ces différents facteurs tout au
long du développement de I’infection par E. multilocularis.

L’objectif de ce travail de theése était donc d’explorer les acteurs-clés des échanges
entre le métacestode et son hote et les conséquences de leur mise en jeu sur le foie.
Méthodes. Pour les études in vivo, des souris BALB/c femelles exemptes de
pathogénes ont recu une injection de métacestode d’E. multilocularis dans le lobe
antérieur du foie, pour le modele d’infection secondaire intra-hépatique, ou dans le
péritoine, pour le modele d’infection secondaire intra-péritonéale. A chaque temps
d’autopsie dans le modele intrahépatique, 10 souris infectées expérimentalement ont
¢té étudiées dans le groupe ‘E. multilocularis’ et comparées a 5 souris du groupe
‘témoin’ qui avaient recu une injection intra-hépatique de sérum physiologique, selon
le méme protocole chirurgical. Les souris ont été autopsiées a 2, 8, 30, 60, 90, 180, 270
et 360 jours apres I’infection. Des échantillons de tissu hépatique prélevés a proximité
et a distance des Iésions parasitaires ou dans le lobe hépatique des souris témoins, ont
été utilisés pour 1’étude de la prolifération/croissance des hépatocytes, pour les analyses
utilisant des puces a ADN, ou pour la détection des cytokines et chimiokines et des
composants de la voie d’activation du TGF-f, a ’aide de techniques de Western-Blot,
de qRT-PCR et d’immuno-histochimie. De plus, des échantillons de tissu prélevés a la
périphérie des Iésions, dans la zone de granulome, ont été étudiées avec les mémes
techniques pour la détection des cytokines et chimiokines et de leurs récepteurs. A
chaque temps d’autopsie dans le modéle intra-péritonéal, six souris infectées par voie
intra-péritonéale (souris Knock-Out fgl2”" versus souris de type sauvage) ont été
¢tudiées dans le groupe ‘E. multilocularis’ et comparées a 6 souris témoins qui avaient
regu une injection intra-péritonéale de sérum physiologique, selon le méme protocole.
Les souris ont été autopsiées a 1 et 4 mois apres 'infection. Les cellules spléniques et
les cellules de 1’exsudat péritonéal (PEC) ont été prélevées chez les souris infectées et
les souris témoins et analysées pour détecter la réactivité lymphocytaire et la

maturation des cellules dendritiques (DC).
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Pour les études in vitro, 1) la co-culture des hépatocytes de rat avec le liquide
vésiculaire d’E. multilocularis a été utilisée pour étudier TGF-B1 et les Smads de sa
voie d’activation en Western-Blot ; 2) la co-culture de cellules spléniques primaires
avec la concanavaline A (ConA) ou le liquide vésiculaire a été utilisée pour étudier la
réactivité lymphocytaire T et la maturation des DC en cytométrie de flux ; 3) la
co-culture de lymphocytes Tregs CD4'CD25" et de lymphocytes T CD4 CD25" a été
utilisée pour étudier la fonction suppressive des Tregs en ELISA BrdU.

Résultats: 1) Les résultats obtenus par les études de prolifération/arrét de croissance
des hépatocytes ont montré qu’apres I’infection par E. multilocularis, I’expression des
genes de la Cycline Bl et celle de la Cycline D1 augmentaient jusqu’au jour 30, puis
revenaient au niveau des témoins apres le jour 60 ; celles des genes de Gadd45b, de la
Cycline A et le PCNA augmentaient tout au long de la période; ERK1/ 2 était activée
en permanence. Pendant ce temps, 1’expression génique de p53, p21 et Gadd45c, et
I’activation de la caspase 3 augmentaient graduellement en fonction du temps. Au
stade terminal de I’infection (jours 180 a 360), I’expression génique de p53, p21 et
Gadd45c était significativement plus €levée que chez les souris témoins ; JNK et la
caspase 3 ¢étaient activées. L’analyse par la technique TUNEL a aussi montré
I’apoptose des hépatocytes a ce stade. Il n’y avait pas de modification pour la Cycline
E, PARN messager de p53 et I’expression de p38 quel que soit le stade d’infection.

2) Les niveaux d’expression des ARN messagers dans les 1ésions parasitaires ont
montré 1’établissement trés précoce (deés 2 jours aprés 'infection) d’une réponse
immune mixte, Th1 et Th2, caractérisée par la présence concomitante d’IL-12a, IFN-y
et IL-4. Ensuite, le profil se complétait par I’apparition de cytokines tolérogenes,
comme IL-5, IL-10 et TGF-f. IL-17 était exprimée de fagon permanente dans le foie
des souris infectées, essentiellement dans ’infiltrat périparasitaire ; ce fait été confirmé
par ’augmentation des ARN messager d’IL-17A et d’IL-17B dé¢s le stade trés précoce,
suivie d’une diminution de I’expression d’IL-17A. Les chimiokines de type Thl et Th2
étaient également présentes pendant tous les stades de I’infection, généralement bien
corrélées a la présence des cytokines correspondantes.

3) Les études de ’expression de TGF-B1, de ses récepteurs, et des Smads de sa voie
métabolique ont confirmé qu’elle était trés importante dans I’infiltrat périparasitaire,
mais ont aussi montré qu’elle était présente dans les hépatocytes, a proximité et a
distance des 1ésions d’EA. La fibrose était significative deés 180 jours apres 1’infection
dans D’infiltrat périparasitaire, et é¢galement dans le parenchyme hépatique, méme a
distance des Iésions. Sur 1’ensemble de 1’évolution de I’infection, 1’expression de
TGF-B1 était corrélée avec le rapport CD4/CDS8 des lymphocytes T du granulome,
depuis longtemps décrit comme caractéristique de la gravité de I’AE.

4) Les souris déficientes en FGL2 infectées par E. multilocularis avaient une charge

parasitaire significativement moins élevée que les souris de type sauvage; cette
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protection contre [’infection était associée a une prolifération augmentée des
lymphocytes T en réponse a I’incubation avec la ConA et avec le liquide parasitaire, a
une polarisation relative Thl, et a un nombre augmenté de lymphocytes B producteurs
d’anticorps. Le nombre relatif et I’état de maturation des DC étaient plus élevés chez les
souris fgl2”; les marqueurs de co-stimulation CD80 and CDS86 étaient aussi plus
exprimés sur les DCs de ces souris, aprés stimulation par la ConA et le liquide
vésiculaire. Des études complémentaires ont montré qu’IL-17A était impliquée dans la
sécrétion de FGL2 dans ce modele.

Conclusion : Le métacestode d’E. multilocularis exerce une influence profonde sur
I’homéostasie du foie. Nos résultats soutiennent le concept d’activation séquentielle
des voies métaboliques qui favoriseraient d’abord la prolifération des cellules de
I’immunité et des cellules du foie, et donc la fertilit¢ du métacestode et sa tolérance par
I’héte, puis favoriseraient ensuite la destruction hépatique, I’apoptose des hépatocytes,
la diminution de la synthése protéique et le métabolisme des xénobiotiques, et de fagon
concomitante le déficit immunitaire, et donc la dissémination des protoscolex apres que
la fertilit¢ du métacestode ait été acquise. Certains de nos résultats donnent une
explication rationnelle aux observations cliniques, comme 1’hépatomégalie du foie non
atteint et la survie parfois surprenante des patients atteints d’EA aprés résections
hépatiques majeures, ou la fibrose, la nécrose et la défaillance hépatique aux stades
avancés de la maladie, chez ’homme et chez 1’animal expérimental.

Nos résultats suggerent également que la réaction inflammatoire qui entoure le
métacestode dans le foie contribue significativement a la sécrétion de cytokines et de
chimiokines et aux mécanismes fonctionnels immunitaires de [’interaction
hoéte-parasite. En plus de donner une vue d’ensemble de I’évolution de la production
des cytokines et chimiokines dans les 1ésions d’EA, ces résultats peuvent contribuer a
identifier de nouvelles cibles pour une thérapeutique immunologique qui permettrait de
pallier les conséquences pathologiques de I'infection par E. multilocularis et de
complémenter I’action seulement parasitostatique des benzimidazoles. Nos résultats
suggerent qu’une régulation étroite de la production des divers isotypes d’IL-17, sous
I’influence de TGF-B et de sa voie métabolique dépendant des Smads, ¢galement
impliquée dans le développement de la fibrose hépatique, pourrait déterminer
I’équilibre subtil entre tolérance vis-a-vis du parasite et protection de 1’hote. Le role du
couple TGF-P/IL-17 pourrait étre encore amplifié par I’effet exercé sur d’autres
médiateurs de la tolérance comme le FGL2.

En effet, les données apportées par notre travail sur FGL2 donnent un nouvel éclairage
aux processus de tolérance dans I’infection par E. multilocularis. Elles démontrent que
ce facteur non-cytokinique contribue au devenir de I’infection par E. multilocularis en
intervenant dans la maturation des DC et en favorisant les fonctions des cellules Tregs ;

elles dévoilent pour la premicre fois le role d’IL-17 dans la régulation de FGL2 ; et elles
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suggerent que FGL2 pourrait servir de cible pour le développement de nouveaux
traitements pour les maladies infectieuses, y compris I’EA.

Les études que nous avons développées dans notre travail de thése n’ont pas permis de
répondre a toutes les questions posées par les échanges complexes et réciproques entre
la réponse immunitaire induite par le parasite et le foie de 1I’hote. Elles représentent
cependant une base de départ pour une meilleure compréhension des mécanismes
moléculaires qui sous-tendent ces échanges localement, dans le foie, et apportent, au
niveau de la biologie cellulaire, quelques explications mécanistiques a des faits

d’observation clinique.
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Summary in Chinese

MARER: WAEHM (Alveolar Echinococcoisis, AE) & % 5 BlER 4t Ht
(Echinococcus multilocularis, Em)%@é?‘ AR BT ) — b 25 D AE BOHE 4 2 A

s JUPYERTHENE, WRE& KBHEIT, 105015 51890%. JEEREITE H [A]
i B B 2R 7 RAEKBURE AN E, PR, KAMAHZ, FERESL
R JZRE B A, fhSEEHANRTCHERR, RS S5
A, SIERAATHLURA ., WA FFerdifh. 498, BHERMRE, Ml
U — PR B A B SS, IR« 2 FR, TERZE. Tk
[WIEH K GTWE RAZCT (PET-CT) ¥ CTHPETRIUY—, HCTIRALHLLK
RS e A, T PETHR HE 0 b Ji] [5G 12 40 it % JH- 200 e ) A Q5 L2 o e 7
R SRS FEE, BARE. dEl. 553 eSS s, 78
IS W, AT CURE B A kL, I8 AT LUK A VR BRI S 14
TERMN T AT AT, 8o T R A7 1 A8 — ANt R 7, K& IR R A A
B FEIE SR SRR G L R 1 32 S R LATh1 28 3, 34 H JE W L
Th2Zoh =, JEERYE “ gkl ” A2 % AEmE FERE K, RN EERETETE
T WL S BT B PR e fei i e J RIS () A4 A B A Rt 2 5 4 B S 928 N 2
RIRLSEBY B, B 28 T R e A ARIDIRAS A Ve TRl 2 3 P Tl 38 B T ok 1) 4 e e
I E . H R BRI 5] R S N BT 7T 32 B AR IR S B (Bhiek
orp R BT T A, ML) BEERE R4 (AER A R ZEF T4 E
ALY, s rh R EE R TS o RO A dUm A kS IR
FE2H 23 2 [B) A7 JE) 300 164 5 45 R Vi B B X PR KB A7 A AR 28 1 R 7 A TNF -
TL-6FNTL-1B A K BT R MR R 7 TL-10. TGF-B#f-4 % H v ity T M 20 A s ke 22
PATN A IX 45135 AT B2 B TV BRI 2 18 430 S ot 28 B B o0 28 JHF I
S H %7 A GBI TE 3 e A i KR AN . FALAE K IR (TGF
) -BEFIREE T =, XE B RN IS A 5, TR R R B SR AE, (HJ2& H AT XS
T BRI B AL 5] A 1 e SO NERT A = FEF T 240 PR 53 55 1 21 B0 AL ) T AR 2
o RERGEE IR T, WA RS A0 B Ak SR T TGF-B.
CD4'CD25" Treg#i AN 43 ¥ FGL2TE A 3293 BRA 4% HH (1)1 F S ML) oA DL FR I o
AHIE T 5 TE ) B R AR G 2 R S REAH S AT IRl 1. T4 528 AH 5 i 4 g K] -7
12tk R T K CD4'CD25 " Treg# BR8N 73 T FGL2TE L BRI UL v F A K ML
s S ILAETE R ELR A A AL

IS WARr

A sEEs PIER BELAL N 27 P 2 7 BRI L . 8-10 JAI Sl BALB/C /)y
R, B SCIRH AT A . A BERRIE, SEUQZH TG EAL N A2 i i

0. 1mL JBRIIR B, 222048 G OCHIIRNE o Nk HEZHAH [R) A 3 o 4 1 A 2 2R K
o &Y 2. 8. 30. 60. 90. 180. 270. 360 KALFL/NER, LLILE T A HAH
[F AL R EERR A SR 36K /)N B 45 3k R 4 S AZ AT IR0 0 At BALB/c /)N R BR
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WGBS, I IE R mRNA R AR S s i e B Rk R R B LR
% GeneBank S5 A5 1, R LAY ThREIEAT /r2%. N H] Gene Cluster3.0 &
YE B RTARAL 73 A A AT SR SRS A M o IR I SR I S B A SG RE IR]s JR B i) U
Je/NERFRELHZ, /R AR . AbE A, dumiEsiy) . HE Je il 45 3
Ak, s ditk )i, Western Blot 1Szt 52 % & & RT-PCR ¥l TGF-B1.
Smads. MAPK. 413 FI T-AH S8 1 X mRNA FIRIE 5 040, JRALR
IpAnIc AR (CTUNELD) A os b A M08 175 IR s v S el v e s g Sk e 7
8-10 JH WMt BALB/C /INBR,  BEML 3y SEEG 2RI HRZH o SIZHG2H /) BRI i v 559
0. 1mL JEERMIR B, MHRAL/NRRES 2 AT IR, YL 1. 4 AN,
G WSS B A RN £g 12 S5k PRI R B /) B M 4 B R R i, 9 X A A 000
qRT-PCR AWl T 4 AL v& £k A2 DC 4H A B 24 o

S SEES (DR AT TR B KR4, SiEEkgFER LR 7%, 15min,
30min. 1h. 2h. 24h t&E40M1, Western Blot £l TGF-B1. Smads. MAPK
FHRE A MRS QFATEFR/DNREIEES ConA BRI FERILREFE, 48h
8% 96h J5 it XA B A WA I T 40 MG 4k Sz DC 4l g fli#; (3)CD4"CD25" Tregs
5 CD4'CD25 %N T 4 dt59%, BrdU ELISA 4G40 i 384 55

SEIGEE R (DI ERMYERGL R, DL ERKA/2 {5 5@ B wss, (et iF4nig
(PXG5E; TR, DL Gadd45B ki, AR mPTET: ;s 7RG
W), CIARIE T8 p53. p21 kil A AR A KA i T

Q) ER MG FIHCL Th s N N, BRI 2 BUH R A1 Th1/Th2 Gk
SN, TG A G2 e S RERAR, A A R TR BRI SR e R v R PR A L B
IVER, i kh 5% A2 3 1 4R B R A4k 22 R 1 10 7 AR R s 7R IR R
WG LI, IL-17A R IL-17F TE93 Kk 98 PRy 2 SURI Lk 55 T AL 2 1 s 3R,
LI IL-17A RIS TR, 1 IL-17F Rk FrBRA%, B4 T 5 R
()BE & VBRI B (R B, R in, A4 FE s n, TGF-B1
JAE TGF-B/Smad 15 5 18 B 1 BRI R 4L ot S 4R 4 A h B R EAT (O3
BRI B YL 0T T £ AT 4N i TGF-B/Smad 15 5l %, & 1 AT £F4Efk; e/ ek
YL, TGF-B1 IR IE S CD4/CDS LU 2 B IEAH

(5FGL2 FE R bR Refeidt T 4G SE . IS5 Treg B ZEANHIER . {2k Thl Fu)%
SN PR A B B M 2RI . FEAERE DC 4R, AT 2 35 ()9 i sk
WIETE RN AR SEIE; RIMeEe R0 TL-17A f&if FGL2 A R,

g (DFEVEERMYEGE F IR AR, ek S BB (B R A
B RS WA B oy AR FE e R A ) BRI (1 TE % R G TGE-B
FARSANB IR ) R, FeAgn Rt 3 s S AN BSOS N, e A
Ho MAPK {55 1@ #% (ERK FT INK {5518 2% ) F140 i J& HIAH DGR A1, S2mmfeE
TP A, SIS EATYRMIEAE . A KM . TR AT 40 Th A i AR 4%,
BASEE BRI R GRGeR. di]) e IFEZE4E . DR RG]
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IR G LI L Th G [ Ny E, G 2L TR A 1) Th1/Th2 4
PEIRL, A PR 12 Y R Rk i A ot A 45 B RO, ikt 55 A
GURHE T AR A A A A DR i P AR R A
GYE VAE AR B A 2@ e 7, JCHAE IL-17, I ERIM) Gy 1 55 R 1k
A AL 55 AT PR 36 BRI, 453 TGF-B Xt IL-17 AR AR
&N Treg BATIEAER, YT T AR RES €T m ik, IFE T Rk L
T2, AT SR ) e e 63t , [N & i 32 4234510
DA TCEE R AFE7R, AELERMIRGLTE AR R, R IR 5| T
FRNE IR N BER ) B, 43 TGF-B I SOEMPL 2 AEA MR 7, W0E T il
Smad {5 FilE, FHENRRZINFIIRES LR, &R Bk i g ke, [H]
IS 3 20 3 PP A A B 45
G)IATRT Treg Fr AN 735~ FGL2 HIHT 7Ty e W I BRI G G BE s 32 A HL A 32
BB ANE, e dUm TR R B BT A AR A L

xy A HURHR G e 55 1 2 B AR AT 2 TR Sk R FE RIS 25, A 2R HL
B ANE R . BRI RAAETS T AR MBS R R ST, 5T A5
PRI RRIE R &R, DL S TR A PR SR AE g TR A R RIE
s WA TR PET, HERURAT BT 0 KPR BRI G T 1
AR B A T R AL, TR AR SO A PR IA T SR AR K B, AT Dt —
B e P 2 B R ) BE AT R kAl

SEER: PR ICH TP ThRAIIH T+ BILE T+ H0ERME: BFT4EML: T
Bl
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Summary in English

Background: Alveolar echinococcosis (AE) is a rare, but - if remaining untreated or
treated too late- severe and fatal zoonotic helminthic disease, predominantly caused
not only by the direct hepatic damage which follows the continuous tumor-like
proliferation of the larval stage (metacestode) of Echinococcus multilocularis
(E.multilocularis), but also indirectly by the intense local granulomatous immune
response which surrounds the parasitic tissue; both are responsible for chronic liver
injury, liver fibrosis, necrosis, chronic cholestasis and finally hepatic failure.

The lesions, composed both of the multiple vesicle-forming metacestode and of cells
homing from lymphoid organs and permanently settling around the metacestode,
behave like a slow-growing liver cancer, progressively invading the liver, then the
neighboring tissues and also metastazing to other organs. Despite the alleged
involvement of the granulomatous response in the functional imaging (e.g. through
Fluoro-deoxy-glucose-Positron Emission Tomography) and in the complications of AE,
very little is known on the local, hepatic, immune response and key immune-regulation
factors to influence immune cell-homing to the liver as well as liver cell homeostasis:
regeneration, degeneration and dysfunction.

It has long been known that the liver is the key organ in E. multilocularis infection. E.
multilocularis growth induces the activation of numerous pathways of the immune
response and the immune mechanisms involved in the interaction between the parasite
and its host have been extensively studied. The involvement of Th1/Th2 and individual
cytokines has been rather extensively studied within the past 2 decades both in humans
and in experimental rodents. However, nearly all studies have been performed on
peripheral lymphoid organs (spleen, lymph nodes in experimental animals) or cells
(peripheral mononuclear cells in humans, peritoneal cells in experimental animals). On
the other hand, clinical observations, such as the magnitude of hepatomegaly in AE
patients and/or the tolerance of the liver to major resections at surgery, or the diffusion
of fibrosis to parts of the liver which are not involved in the parasitic and immune
periparasitic processes in experimental animals, have suggested that direct influence
could be exerted by the metacestode-induced immune response on the liver
parenchyma. However, this has never been studied in depth and the potential
mechanisms are unknown. Especially, the study of the mechanisms involved in
changes in liver homeostasis at different infection stages, a detailed cytokine and
chemokine profile analysis of the periparasitic infiltrate in the liver, the presence of
transforming growth factor-f3 (TGF-P) and other components of TGF-/Smad pathway
in the liver, and novel CD4'CD25" Treg effector molecule fibronogen-like protein2
(FGL2) have, however, not yet been carried out in a comprehensive way all along the
whole course of infection in E. multilocularis intermediate hosts. The aim of this thesis
work was to explore the key actors (innate and proinflammation cytokines, Th-related
cytokines and chemokines, major immune regulation cytokine TGF-B and CD4 CD25"
Treg effector molecule FGL2) and the consequence in the liver (hepatocyte
proliferation/growth arrest) in the crosstalk between E. multilocularis and its hosts.
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Methods: For in vivo studies, pathogen-free female BALB/c mice were injected by E.
multilocularis metacestodes both in the anterior liver lobe (intra-hepatic infection
mouse model) and in the peritoneum (intra-peritoneal infection mouse model). For
each autopsy time-point in the intra-hepatic infection mouse model, ten experimentally
infected mice were used in E. multilocularis group and compared with five control
mice, which received an intra-hepatic injection of 0.1 mL of saline in the anterior liver
lobe using the same surgical procedure. Mice were killed at 2, 8, 30, 60, 90, 180, 270
and 360 days, respectively.

Liver tissue samples taken close to or distant from the parasitic lesions or from the
sham-injected liver lobe in control mice were used for hepatocyte proliferation/growth
arrest or DNA microarray or TGF-B/Smad signaling pathway detection by using
Western Blot, qRT-PCR and immunohistochemistry. In addition, to study cytokine and
chemokine expression in the liver, samples were taken at the periphery of the lesions, in
the granulomatous area. For each autopsy time-point in the intra-peritoneal infection
mouse model, six experimentally infected mice (fgl2'/' Knock-Out mice versus wild
type mice) were used in E. multilocularis group and compared with six control mice,
which received an intra-peritoneal injection of 0.1 mL of saline using the same
procedure. Mice were killed at 1 and 4 months, respectively. Spleen cells and peritoneal
exudate cells (PEC) were taken from AE- fg12'/' and AE-WT mice (and non-infected
mice as control) and used for T cell reactivity and Dendritic Cells (DC) maturation
detection.

For in vitro studies, 1) Co-culturing primary rat hepatocytes with E. multilocularis
fluid was used to study TGF-B1, down-stream Smads activation by using Western Blot.
2) Co-culturing primary spleen cells with ConA or E. multilocularis fluid was used for
T cell reactivity and DC maturation detection by using flow cytometry. 3) Co-culturing
CD4'CD25" Tregs with CD4'CD25" T cells was used for Treg suppression function
assay by using BrdU ELISA.

Results: 1) Results of hepatocyte proliferation/growth arrest studies showed that, after
E. multilocularis infection, CyclinB1 and CyclinD1 gene expression increased up to
day30 and then returned to control level after day60; Gadd45b, CyclinA and PCNA
increased all over the period; ERK1/ 2 was permanently activated. Meanwhile, p53,
p21 and Gadd45c gene expression, and caspase 3 activation, gradually increased in a
time-dependent manner. In the late stage (day180-360), p53, p21 and Gadd45c gene
expression were significantly higher in infected mice; JNK and caspase 3 were
activated. TUNEL analysis showed apoptosis of hepatocytes. No significant change in
CyclinE, p53 mRNA and p-p38 expression were observed at any time.

2) mRNA expression levels in the hepatic parasitic lesions showed that a mixed
Th1/Th2 immune response, characterized by the concomitant presence of IL-124,

IFN-y and IL-4, was established very early in the development of E. multilocularis.
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Subsequently, the profile extended to a combined tolerogenic profile associating IL-5,
IL-10 and TGF-B. IL-17 was permanently expressed in the liver, mostly in the
periparasitic infiltrate; this was confirmed by the increased mRNA expression of both
IL-17A and IL-17F from a very early stage, with a subsequent decrease of IL-17A after
this first initial rise. All measured chemokines were significantly expressed at a given
stage of infection; their expression paralleled that of the corresponding Thl, Th2 or
Th17 cytokines

3) TGF-P1, its receptors, and down-stream Smads were markedly expressed in the
periparasitic infiltrate and also in the hepatocytes, close to and distant from AE lesions.
Fibrosis was significant at 180 days p.i. in the periparasitic infiltrate and was also
present in the liver parenchyma, even distant from the lesions. Over the time course
after infection TGF-B1 expression was correlated with CD4/CD8 T-cell ratio long
described as a hallmark of AE severity.

4) FGL2-deficient mice infected with E. multilocularis exhibited a significantly
decreased parasite load, associated with increased T cell proliferation in response to
ConA, impaired Treg numbers and function, relative Thl polarization, and increased
numbers of antibody-producing B cells, as compared to infected WT mice. Both
relative number and maturation status of dendritic cells were higher in fg12'/' mice and
CD80 and CD86 were more expressed in DCs following ConA and VF stimulation.
Additional experiments confirmed that IL-17A contributes to FGL2 secretion in this
model.

Conclusions: E. multilocularis metacestode definitely exerts a deep influence on liver
homeostasis. Our data support the concept of a sequential activation of metabolic
pathways which (1) would first favor parasitic, liver and immune cell proliferation and
survival, and thus promote metacestode fertility and tolerance by the host, and (2)
would then favor liver damage/apoptosis, impairment in protein synthesis and
xenobiotic metabolism, as well as promote immune deficiency, and thus contribute to
the dissemination of the protoscoleces after metacestode fertility has been acquired.
These findings give a rational explanation to the clinical observations of hepatomegaly
and of unexpected survival of AE patients after major hepatic resections, and of
fibrosis, necrosis and hepatic failure at an advanced stage and in both human patients
and experimental animals.

Our results also suggest that the surrounding inflammatory reaction in the liver
contributes  significantly to cytokine/chemokine secretion and functional
immunological mechanisms within the host-parasite interactions. In addition to giving
a comprehensive insight in the time course of cytokines and chemokines in E.
multilocularis lesion, our results contribute to identify new targets for possible immune
therapy to minimize E. multilocularis-related pathology and to complement the only

parasitostatic effect of benzimidazoles in AE.
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Our data suggest that TGF-$ and downstream Smads signaling pathway are associated
with fibrosis, while a TGF-B-related fine tuning of the various isotypes of IL-17 may
determine the overall balance between tolerance towards the parasite and protection of
the host. The fine tuning of IL-17 by TGF-$ would then regulate other mediators of
immune tolerance such as FGL2.

Our data on the novel CD4'CD25" Treg effector molecule FGL2 give new insight into
the tolerance process in E. multilocularis infection. They demonstrate that this
non-cytokine factor contributes to the outcome of E. multilocularis infection by
interfering in the maturation of DCs and in promoting Treg cell functions; they give
evidence for a role of IL-17 in FGL2 regulation, and suggest that targeting FGL2 could
be used for the development of novel treatment approaches in infectious diseases.

Our investigations have not answered all multiple questions raised by the complex and
reciprocal interactions between the parasite-induced immune response and the host
liver; however, they constitute an excellent starting point for an increased
understanding of the molecular mechanisms underlying these interactions and give

some mechanistic/cell biology-related explanations to clinical observations.

Key words: Echinococcus multilocularis; Alveolar echinococcosis; Hepatocyte
proliferation/growth arrest; Cytokines; Chemokines; TGF-; Liver Fibrosis; FGL2;
CD4'CD25" Treg
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1. Introduction: Echinococcus multilocularis and Alveolar

Echinococcosis
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Echinococcus multilocularis (E.multilocularis ) is a cyclophyllid tape worm
present in the intestine of carnivores such as dogs, wolves, foxes. Along with some
other members of the Echinococcus genus (especially E. granulosus), its larval form
(metacestode) produces the disease known as echinococcosis in certain terrestrial
mammals, including wolves, foxes, jackals, coyotes, domestic dogs and humans.
Unlike E. granulosus, which usually produces a single large-sized cyst, E.
multilocularis produces many small cysts (also referred to as loculi, in Latin language,
hence the name) that spread throughout the liver, then invades other organs of the
infected animal. Ingestion of these cysts, usually by a canid eating an infected rodent,
results in a heavy infestation of the canid’s gut by tapeworms.

1.1 Life cycle

The life cycle of E. multilocularis involves a primary or definitive host and a
secondary or intermediate host, each harboring different life stages of the parasite.
Foxes, domestic dogs and other canids are the definitive hosts for the adult stage of
the parasite. The head of the tapeworm attaches to the intestinal mucosa by hooks and
suckers. It then produces hundreds of microscopic eggs, which are dispersed through
the feces (Vuitton et al. 2011). Wild rodents such as voles, mice, Ochotona spp.
(‘pikas’) and small lagomorphs (on the Tibetan plateau, China) serve as the
intermediate hosts. Eggs ingested by rodents develop in the liver, lungs and other
organs to form multilocular cysts. Humans could also become an intermediate host by
handling infected animals or ingesting contaminated food, vegetable, and water. The
life cycle is completed after a fox or canine consumes a rodent infected with cysts.
Larvae within the cyst develop into adult tapeworms in the intestinal tract of the
definitive host (Vuitton, 2011; Zhang et al. 2011; Yang et al. 2012) . Except in rare
cases where infected humans are eaten by canines, humans are a dead-end or
incidental host (an intermediate host that does not allow transmission to the definitive

host) for E. multilocularis.
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Figurel.1 Life cycle of Echinococcus multilocularis
1. adult worms are present in intestine of definitive host

2. eggs pass into feces, ingested by humans or intermediate host

3. onchospheres penetrate the intestinal wall, are carried via blood vessels to lodge

in organs
4. echinococcosis vesicles (metacestode) develop in liver, lungs, brain, heart

5. protoscoleces (‘hydatid sand’ in cystic echinococcosis) ingested by definitive hosts

attach to the small intestine and develops into adult worms
1.2 Epidemiology

The main endemic regions for human AE are Central Europe (southern Germany,
Switzerland, western Austria, eastern France), Russia, Turkey, Japan (Hokkaido),
China and North America (Alaska, northern Canada) (Kern ef al. 2003; Vuitton ef al.
2003). 573 cases were registered in the French registry between 1982 and December
2013, 200 cases (35%) from Franche comté Region, the region where Besangon
University Hospital is located (Grenouillet et al. 2013; Said-Ali ef al. 2013). AE is
generally considered, compared to most of other infectious diseases, to be a “rare”
disease. However, the disease has extended its range in Europe and USA in the last
few decades (Kern ef al. 2003; Vuitton ef al. 2003, 2011). Between 1982 and 2000 a
total of 559 cases were reported throughout Europe (Kern et al. 2003; Grenouillet et
al. 2013). And the disease is spreading throughout the Midwestern United States,

where it was previously rare or nonexistent (Torgerson et al. 2010). Besides, the
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current estimates suggest an annual of 20000 new human cases worldwide with 91%
of them occurring in the People's Republic of China (PRC) (Torgerson ef al. 2010).
New epidemiological trends are related to an unprecedented increase in the fox
population in Europe, to the unexpected development of urban foxes in Japan and in
Europe, and to changes in the environmental situation in many countries worldwide
due to climatic or anthropic factors which might influence the host-predator
relationship in the animal reservoir and/or the behavioral characteristics of the
populations in the endemic areas (Torgerson et al. 2010).

Figure 1.2 Endemic areas of alveolar echinococcosis

The incidence of human infection with E. multilocularis and AE is increasing in
urban areas, as wild foxes (an important reservoir species of the sylvatic cycle) are
migrating to urban and suburban areas and gaining closer contact with human
populations (Vuitton et al. 2011). Also, restocking fox enclosures for fox hunting with
infected animals spreads the disease. Children, health care workers and domestic
animals are at risk of ingesting the cysts after coming into contact with the feces of
infected wild foxes. Even with the improvement of health in developed/industrialized
countries, the prevalence of alveolar echinococcosis (AE) did not decrease (Vuitton et
al. 2011). On the contrary, incidence of AE has now also been registered in
east-northern European countries, such as the Baltic States, and sporadic incidence

was mentioned in other European countries (Vuitton et al. 2011).
1.3 Alveolar echinococcosis in humans and its diagnosis and treatment

The severity of AE in humans is related to a very long clinical latency and a
progression in the liver comparable to a slow-growing cancer. The parasitic tissue is

surrounded by an intense fibro- inflammatory reaction and both the biliary and
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vascular walls may be involved in the parasitic process. Macroscopical examination
indicates that the parasitic tissue has no clear limits with the adjacent liver
parenchyma (Figure 1.3). At the periphery, the tissue is composed of numerous small
irregular cavities corresponding to the parasitic vesicles, which is the active area of
the parasitic mass. In the centre, the older part of the parasitic lesion is mainly made
up of fibrous tissue that is sometimes calcified. Very often, particularly in huge AE
lesions, necrosis develops in this central part due to poor vascularization of the lesion.
This necrotic area favours superimposed bacterial infection leading to a clinical

picture of liver abscess.

i

Figure 1.3 Macroscopical view of alveolar echinococcosis of the liver in a partial
hepatectomy. The yellow parasitic mass (on the left) has no clear limits with the adjacent liver
parenchyma (dark brown on the right). The periphery of this huge lesion is the ‘‘active’’ area,
composed of fibro-inflammatory tissue and small parasitic vesicles (thin arrows). The center
of the lesion is largely necrotic (thick arrow).

According to: Bresson-Hadni et al, Parasitology International, 2006 (55) S267 — S272

Microscopically, E. multilocularis larvae grow as tumorlike buds that transform
into multiple vesicles filled with fluid and, in 15% of cases, with protoscoleces. The
parasitic vesicles are lined with a germinal layer and a laminated layer, which are
immediately surrounded by an exuberant granulomatous response generated by the
host's immune system. This reaction has two main consequences, fibrosis and
necrosis. Both reactions protect the host against larval growth but may also be
deleterious (Vuitton ef al. 2011).

The periparasitic granuloma is a major characteristic of AE pathology in humans,
and pathological changes in AE are associated with an intense infiltration by immune
cells, i.e. macrophages of various functional types (Vuitton & Gottstein, 2010),
including the so-called “epithelioid cells” and “giant cells”, typical of granulomas and
T lymphocytes (Bresson-Hadni et al. 1990). Experimental studies in infected mice

and immunologic studies in humans have revealed the importance of cell-mediated
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immunity in the control of larval growth. Immune responses, characterized by a
helper T cell Th 1 profile of cytokine secretion, can kill the larvae, thus protecting the
host. Conversely, the progressive forms of the disease are characterized by a Th 2
profile consisting of increased interleukin (IL)-10, transforming growth factor
(TGF)-B, and IL-5 secretion (Mejri et al. 2010; Vuitton & Gottstein, 2011).

Directly or indirectly based on the immune response of the host, serological tests
and imaging exams are commonly used to diagnose this disease (Kern, 2010).
Currently, a range of imaging techniques can be used at the different stages of
management of AE. For diagnosis, ultrasonography remains the first line examination.
For a more accurate disease evaluation, aiming to guide the surgical strategy,
computerized tomography (CT), Magnetic Resonance (MR) imaging, including
cholangio-MR imaging are of importance, providing useful complementary
information. More recently, Positive-Emission Tomography (PET) using [18F]
fluoro-deoxyglucose (FDG) has been developed for the follow-up of inoperable AE

patients under long-term benzimidazole therapy.

1.3.1 Serological diagnosis

Frequently used serological tests including antibody tests, ELISA, Western blot
and indirect hemaglutination (IHA) are important not only for confirmation of AE
cases, but also for epidemiological studies in endemic areas such as Germany (Jensen
et al. 2001; Roming et al. 1999), France (Bresson-Hadni et al. 1994) and China
(Bartholomot et al. 2002; Craig ef al. 2000; Craig et al. 1992). The search for highly
sensitive and specific antigens probably represents the greatest challenge in the
immunodiagnosis of E. multilocularis infection. Thus, in the last three decades, a
wide range of antigens from different developmental stages of the parasite have been
assayed for their potential as candidate molecules for the sero-diagnosis of AE in
humans. In particular, the use of partially purified and recombinant antigens has
improved the sensitivities and specificities of the diagnostic tests considerably
(Gottstein et al. 1983; Sako, 2002). Metacestode antigens used for diagnosis are as
follows:

The native Em2 antigen (also termed Em2a), revealed by in-vivo and in-vitro
studies, is a structural component found only in the metacestode laminated layer, and
not in freshly hatched oncospheres, protoscolex or adult stages (Gottstein et al. 1983;
Deplazes et al. 1991). The glycosylated antigen Em2 (G11) has been found to be the
major antigenic component of Em2 (Deplazes et al. 1991). It induces non-specific

in-vitro T-lymphocyte proliferation in B-cell-deficient uMT mice, and low-avidity

30



IgG isotypes in vivo in C57BL/6 mice (Dai et al. 2001). These findings seem to
indicate that Em2 (G11) is a T-cell-independent antigen that could contribute to the
tolerance towards proliferation of the parasite metacestode. Em492, an E.
multilocularis metacestode component identified more recently by Walker et al.
(Walker et al. 2004), shares with Em2 (G11) the galactose-a (1,4)- galactose epitope,
suggesting that both antigens may be related immunologically. Em492, as well as
Em2 (G11), is localized in the laminated layer of the metacestode, and seems also to
be involved in the immunosuppressive events that occur at the host-parasite interface
(Vuitton & Gottstein, 2010). With regard to metabolized proteins, an E. multi-
locularis protoscolex-associated antigen of 62 kDa (Auer ef al. 1988), two 70- and 90
kDa- proteins (Korkmaz et al. 2004), and several recombinant E.
multilocularis-proteins (such as antigen II/3 (Vogel et al. 1988) and its subfragments
II/3-10 (Miiller et al. 1989), EM10 (Frosch et al. 1991), and Em18 (Ito ef al. 1995),
have all been published and discussed in view of a potential biological role (Mejri et
al. 2010). However, these antigens were mainly used to investigate respective
immune responses with emphasis on immunodiagnosis of AE, and their biological
functions have not been appropriately studied. Em2""- ELISA and Em18-Western
Blot are currently widely used to distinguish between AE and CE with very high
specificity (Helbig et al. 1993; Ma et al. 1996). EmAP (alkaline phosphatase), an
antigen which was shown to induce the production of antibodies associated with
disease severity and resistance to treatment in AE patients, was also shown to induce
only Th2-type cytokine secretion (Lawton ef al. 1997; Sarciron et al. 1997).
Thel4-3-3-gene of E. multilocularis appears to play a key role in basic cellular events
related to cellular proliferation, including signal transduction, cell-cycle control, cell
differentiation, and cell survival (Siles-Lucas et al. 1998; Siles-Lucas & Gottstein et
al. 2003). The recently identified Em P29, was shown to induce non-specific in-vitro
T-lymphocyte proliferation and a Th1 immune response, suggesting that it is
protective against secondary E.multilocularis infection (Gottstein, personal

communication; unpublished data).
1.3.2 Ultrasonography and computerized tomography in AE

Ultrasonography (US) and computerized tomography (CT) remain the basic
morphological imaging techniques in AE. Colour and pulsed doppler coupled with
US is very useful in studying the relationship between the parasitic lesion and vessels
(Vuitton et al. 2004; Bresson-Hadni et al. 2005; Reuter et al. 2001).

US is the current screening method of choice for diagnosis and regular follow-up

imaging in AE. A typical US aspect is observed in 70% of the cases, when AE lesions
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are generally large in size. The lesion is characterized by irregular limits and
heterogeneous content with juxtaposition of hyperechogenic (fibrous tissue) and
hypoechogenic (‘‘active’’ parasitic tissue) areas. Very often, the hyperechogenic
fibrous tissue contains scattered calcifications, well identified by US, as
hyperechogenic foci with characteristic dorsal shadowing. US can also provide
information on biliary and vascular involvement: intra-hepatic bile duct dilatations
can be easily disclosed, as well as infiltration of the inferior vena cava, hepatic or
portal veins walls by the parasitic tissue (Bresson-Hadni ez al. 2006). Recently,
contrast-enhanced US has been evaluated in AE: results suggest that the typical
enhancement at the periphery of the lesions may correspond to the periparasitic
immune infiltrate/granuloma, due to its rich vascularization (Tao et al. 2011; Zeng et
al. 2012).

The second imaging technique is CT that is always performed after US
examination to confirm the morphological aspects of AE. CT helps to specify the
number, size and localization of the lesions in the liver. It is the best technique to
detect the typical calcifications inside the lesion (Reuter et al. 2001). In the case of
very calcified lesions, US examination is of limited use and CT is mandatory to
delineate precisely the parasitic mass, particularly the posterior border. CT also shows
the extent of regeneration/hypertrophy in the liver lobe, which was not invaded by the
metacestode pseudo-tumor, and its part taken in the hepatomegaly often found in AE

patients.

1.3.3 Magnetic resonance (MR) imaging in AE

MR imaging may facilitate the diagnosis in uncertain cases with non-calcified
lesions, by showing the small aggregated vesicles, thus the pathognomonic aspect of
the disease: “honeycomb” or “bunch of grape” pictures, best see on T2 weighted
images (Reuter ef al. 2001; Claudon et al. 1990; Bartholomot et al. 1997; Kodama et
al. 2003). MR imaging is the best technique to characterize the different components
of the parasitic lesion and could become the reference radiological exam in case of a
nodular homogeneous form detected by US, which seems to correspond to an early
AE lesion, either primary or recurrent after surgery. Moreover, this technique is very
useful in studying the extension of the parasitic tumor to adjacent structures, and,
therefore, should be included in pre-operative evaluations, especially if a large

resection or a liver transplantation is planned. The proximity of parasitic lesions to
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blood vessels is sometimes better assessed with MR imaging than CT. It is
particularly useful in the pre-operative evaluation to show inferior vena cava and
hepatic vein invasion and the up- and downstream consequences. But MR imaging
does not detect calcifications, considered as quite specific of AE lesions
(Bresson-Hadni et al. 20006).

1.3.4 Positron emission tomography in AE

Conventional imaging techniques are unable to give information on parasite
metabolic activity. Radio-labelled fluoro-deoxyglucose positron-emission tomography
(FDG- PET) is a valuable technique in nuclear medicine for detecting tissue metabolic
activity; it was initially proposed to assess parasite viability and seemed very
promising to appreciate the efficacy of AE treatments (Reuter et al. 1999).
Morpho-PET, which is a PET- scan combined with a CT-scan using image fusion,
combines the advantages of both imaging exams. The results of the evaluation of 30
patients in France, using morpho-PET, totally agreed with those of the previous

German studies on PET: in unresectable patients, PET-CT can evaluate the

morpho-functional aspects of the disease and assess the efficacy of BZM treatment
(Bresson-Hadni et al. 2006) (Figure 1.4).

Figurel.4 FluoroDeoxyGlucose-Positron Emission Tomography (PET)/Computed
Tomography (CT) imaging in alveolarechinococcosis of the liver (A, B)
CT-scan image (A): Bi-focal AE in a young woman under albendazole (ABZ) therapy for 14
years. PET image of the same lesions (B): Intense peri-lesional activity (“hot-spots’”) around
the huge left AE focus. The other AE lesion, located in the right lobe of the liver, became
largely calcified during the follow-up and shows no peri-lesional enhancement, suggesting an
efficacy of ABZ.

According to Bresson-Hadni et al, Parasitology International, 2006 (55) S267 — S272
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With the assumption that PET accurately reflected the viability of the parasite,
albendazole treatment withdrawal, based on PET images, was evaluated, and results
were rather disappointing, since recurrence were observed several months after
withdrawal, despite negative PET images in these patients (Reuter ez al. 1999, 2001,2
004; Bresson-Hadni et al. 2006; Ehrhardt et al. 2007; Crouzet et al. 2010;
Bresson-Hadni et al. 2011). Recently, one study showed that delayed '*F-FDG PET
(images taken 3 hours after FDG injection) better differentiated between active and
inactive liver lesions in AE patients (Caoduro ef al. 2010); its value to serve as a basis
for treatment withdrawal has still to be evaluated prospectively. However, all
observations made from the clinical use of PET also raised the question of the cells
actually responsible for FDG uptake, and thus PET images, in patients with AE, and it
is currently widely accepted that PET images only reflect indirectly parasite viability.
The accumulation of FDG may well reflect the metabolic activity of the immune
cells; but the relationship between parasite viability and the nature, composition and
activity of the periparasitic granulomatous infiltrate is far from being known, in
humans as well as in the experimental models of AE. Such observations largely
contributed to the initiation of my thesis project, in order to better understand the
composition and dynamics of the periparasitic infiltrate, i.e. the profiles of
cytokines/chemokines related to immune cell-homing to the parasitic lesions, the role
of key cytokines and molecules on immune tolerance/protection, thus on parasite

viability, and the mutual influence of the parasite and the liver.
1.3.5 Treatment of AE

If no specific therapy is initiated, in 94% of patients the disease is fatal within
10-20 years following diagnosis (Jura ef al. 1998). Radical surgery is the basis of
treatment for early AE, but patients not suitable for surgery and those who have had
surgical resection of parasite lesions must be treated with benzimidazoles
(albendazole, mebendazole) for several years (McManus, 2012). Benzimidazoles only
halt parasite proliferation; they do not kill the parasites; despite the improvements in
the chemotherapy of echinococcosis with benzimidazole derivatives, complete
elimination of the parasitic mass cannot be achieved in most of the infected patients.
In patients without complete resection of the lesions, they should thus be given
life-long although they may have deleterious side effects such as liver damage (Kern,
2010; Vuitton & Bresson-Hadni, 2014). Several alternative drugs have been tested in
vitro and in vivo against E. multilocularis metacestode (reviewed in Vuitton &
Bresson-Hadni, 2014), but none has currently been tested in clinical trials. Results of

observations in humans and experimental studies in animals also suggest that, in the

34



absence of fully effective anti-parasitic chemotherapy for AE, modulation of the
host’s immune response could be envisaged to fight against the parasite (Vuitton &
Gottstein, 2010); to achieve this goal, the mechanisms involved in the host-parasite
interplay in the liver should be better elucidated. On the other hand, to evaluate the
progression/regression of the disease in benzimidazole treated patients, and decide of
a possible treatment withdrawal after some years, markers of progression/regression,
both imaging (i.e. PET or other functional imaging techniques), and
biochemical/immunological, markers (i.e. serology, other markers, such as FGL2, a
novel molecule possibly related to E. multilocularis tolerance) need to be further

explored.
1.4 Experimental models to study E. multilocularis metacestode stage

In vivo methods of studying experimental echinococcosis in laboratory rodents
include oral inoculation of eggs from adult cestodes (Yamashita et al. 1963) and
subcutaneous (Ali-Khan et al. 1980; Kassis et al. 1976; Yamashita et al. 1956),
intraperitoneal (Yamashita ef al. 1968a) and intrahepatic (Yamashita ef al. 1963)
secondary infection. The method of oral inoculation with eggs has advantages in that
primary lesions mimic those of a natural infection (Rausch, 1954; Ohbayashi, 1960;
Veit et al. 1995; Bauder ef al. 1998) and are usually located in the liver (Ohbayashi et
al. 1960). However, the technique is hazardous in that eggs from the adult worm are
infective to humans (Yamashita et al. 1968b). Moreover, until the recent development
of techniques to grow adult Echinococcus to maturity in laboratory rodents (Kamiya
et al. 1990), it necessitated keeping the definitive host (usually a dog) and harvesting

its feces for eggs.

The secondary subcutaneous murine AE model is currently used for
experimental treatment studies (Stettler ez al. 2004). In this model, the parasite
metacestodes are injected into the subcutaneous tissue of a mouse or a Mongolian jird
(Meriones unguiculatus), where the parasites proliferate and develop tumor-like
features such as progressive growth and invasion of neighboring tissues (Kiister et al.
2013).

The secondary intra-hepatic murine AE mouse model (Liance et al. 1984)
represents a combined model of infection (development of the E. multilocularis larva),
immune response (granulomatous reaction leading to fibrosis) and tumor (occupying
process in the liver with simultaneous induction of liver regeneration) (Vuitton et al.
2003). An intra-hepatic infection model can be used for a parallel cellular and

molecular study of the parasite and of the liver in which it is growing; it may allow a
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simultaneous approach of the crosstalk between the granuloma and the liver and of its
consequences on liver fibrosis. In addition, as the liver has special properties
regarding immune tolerance (Jenne & Kubes, 2013), reproducing the most usual
location of the parasite, may allow conclusions closer to the clinical situation.
However, as it requires surgical operation, for practical and ethical reasons, this
model is more difficult to develop than the usual intra-peritoneal infection.

The secondary intra-peritoneal murine AE mouse model, i.e. injection of
protoscoleces into the peritoneum, is the most widely used model of alveolar
echinococcosis in rodents. It is an easy way for in vivo testing of anti-parasite drugs.
For immunological research, this model allows the study of peritoneal macrophages
and of mesenteric and/or para-aortic lymph nodes (Mejri et al. 2011). The
intra-peritoneal infection model can give a comprehensive insight in the mechanisms
of immune response with a therapeutic purpose.

However, using the in vivo models, the only one available for decades, it was
difficult to draw definite conclusions from studies about the factors modulating .
multilocularis metacestode differentiation, and investigations into gene expression
and regulation were hampered by the close and complex host—parasite interactions
that exists (Hemphill et al. 2002). Several in vitro metacestode culture models have
thus been developed to study the basic parameters of parasite proliferation and
differentiation, to investigate the interactive role of heterologous cells, to localize
several E. multilocularis antigens, and to dissect the ultrastructure and composition of
the acellular laminated layer (the structure that is predominantly involved in the
physical interaction between the parasite and host immune and non-immune cells and
tissues) (Brehm & Spiliotis, 2008; Spiliotis & Brehm, 2009).

Spiliotis developed an in vitro system for the long-term cultivation of E.
multilocularis larvae. In his system, the parasite was first grown in co-culture with
Reuber cells (3-w), after which the parasite was cultured in the absence of host cells
but in the presence of supernatant of these feeder cells. In the absence of feeder cells
from the host, long-term survival of the parasite depended strictly on low oxygen
conditions and the presence of reducing agents in the medium. Host serum supported
survival of the parasite but the growth of metacestode vesicles and differentiation
towards the protoscolex stage only occurred in the presence of culture medium that
was preconditioned by hepatoma cells or several other immortal cell lines (Spiliotis et
al. 2004).

In terms of beneficial effects of host cells on parasite development, it has been
suggested that Caco2 and/or hepatocyte feeder cells and/or cell lines produce growth
factors for metacestode vesicles (Hemphill & Gottstein, 1995; Jura et al. 1996;
Spiliotis et al. 2004). Host cells may also remove compounds from the culture

medium which are toxic for the parasite.

36



For immunological studies, the availability of cultured E. multilocularis germinal
cells, isolated or structured in vesicles, has allowed a more precise study of the
sensitivity of parasite cells to initiators/modulators of the immune response, and open

new avenues in the research on the host-parasite cross-talk.
1.5 Host-parasite relationship and immune responses to the metacestode stage

Host-parasite interactions in the E. multilocularis-intermediate host model depend
on a subtle balance between cellular immunity, which is responsible for host's
resistance towards the metacestode, the larval stage of the parasite, and tolerance
induction and maintenance. The pathological features of alveolar echinococcosis are
related both to parasitic growth and to host's immune response, leading to fibrosis and
necrosis. The disease spectrum is clearly dependent on the genetic background of the
host as well as on acquired disturbances of Thl-related immunity, as mentioned

above.
1.5.1 Susceptibility and Resistance to E. multilocularis

In the experimental animals, E. multilocularis exhibits different growth rates and
maturation characteristics in various species of hosts, that is, species of rodents or
lagomorphs for E. multilocularis, but also of multiple other animal species such as
swine and primates (Vuitton & Gottstein, 2010). Extensive studies in the differences
in host immune responses suggest that differences in susceptibility/resistance, is
putatively related to respective immune responses in different murine models (Liance
et al. 1984, 1990; Bresson-Hadni et al. 1990; Guerret et al. 1998; Gottstein et al.
1994). It was shown that impairment of cellular immunity (immune suppression) is
followed by an increase in susceptibility to E. multilocularis in immunosuppressed
mice (Baron & Tanner, 1976) and was further demonstrated in SCID mice (Playford
et al. 1992) and in nude mice (Dai et al. 2004). A similar increase of susceptibility of
experimental mice, associated with a decrease of delayed type hypersensitivity, was
also observed in mice infected with E. multilocularis and treated with an
immunosuppressive drug, cyclosporine, which interferes with IL-2 production in T-
cells (Liance ef al. 1992). Conversely, cellular immune response against parasitic
antigens is stronger in infected resistant mice (Liance ef al. 1990; Gottstein ef al.
1994), and resistance is increased by stimulation of the cellular immune response
(Rau et al. 1975).

In humans, increased susceptibility was evidenced by a rapid increase in size of
lung metastases, the development of brain metastases, late re-invasion of the

transplanted liver by parasitic cell remnants, and even early re-invasion of the
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transplanted liver from a spleen metastasis in the transplanted patients (Bresson-Hadni
et al. 1999; Koch et al. 2003); and by a rapid and irreversible growth of E.
multilocularis larvae in the HIV-co-infected patients (Sailer ef al. 1997; Zingg et al.
2004). It was shown an inhibition of specific lymphocyte proliferative responses in
transplanted patients with recurrence of the disease, whereas transplanted patients
considered as cured exhibited a very high proliferative response over a long time
period (Bresson-Hadni et al. 1998). The persistence of a high proliferative response
was also observed in Alaska patients with lesions containing dead parasites, and
patients with severe AE had a depressed proliferation rate (Gottstein ez al. 1991).
The genetic basis for either host resistance (no immunosuppression?) or
susceptibility (immune suppression?) is clearer in humans than in the mouse model.
Preliminary investigations showed that the frequency of certain HLA alleles
(HLA-DR13) was increased in patients with a regressive course of disease after
therapy compared to controls or patients with progressive alveolar echinococcosis
(Gottstein & Bettens, 1994). A European study showed that HLA-DRB1*1 was
associated with a reduced risk for disease development (Eiermann ef al. 1998) and
that there was a significant link between MHC polymorphism and clinical
presentation of AE, such as association of HLA-DQB1*02 and disease severity, and
the spontaneous and higher secretion of IL-10 in patients with a progressive AE and
the HLA DR3", DQ2" haplotype (Godot et al. 2000). Clustering of cases in certain
families, in communities otherwise exposed to similar risk factors, also points to
immuno-genetic predisposition factors that may allow the larva to escape host
immunity more easily (Vuitton et al. 2006). However, since inbred mice of the same
H-2 haplotype differ significantly in their susceptibility to E. multilocularis there are

obviously other, non-MHC-linked genes contributing to the disease susceptibility.
1.5.2 Pathological observations in AE

The pattern of growth and development of AE is different from that observed in
cystic echinococcosis, due to E. granulosus. Structurally, the lesions are more
complex (multivesicular), with infiltrative rather than expansive growth. These
multiple cysts do not lead to the formation of a limiting fibrous layer (adventitial layer)
or a host-tissue barrier. In susceptible animal hosts, fibrosis is present but may be
limited (Guerret et al. 1998). In resistant animal hosts and in humans an intense
fibrosis reaction develops from the center to the periphery of the parasitic mass, with
concomitant degeneration of the parasite vesicles. In this mass of fibrous tissue, the
germinal and laminated membranes appear disorganized and distorted among focal
calcifications, and embedded in acellular fibrosis and/or necrosis (Vuitton et al. 1986;

Guerret et al. 1998). The normal pattern of multiple small cysts seen in the natural
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intermediate hosts, which can be also be seen at the very beginning of .
multilocularis development in humans, is only observed at the periphery of the lesions
when the development of the parasitic pseudo-tumor has lasted for several years. The
germinal cells infiltrate surrounding tissues, forming small exogenous and
endogenous vesicles enmeshed in the dense cellular connective tissue. Most of the
periparasitic immune infiltrate is thus found at the periphery of the lesions (in those
areas where enhancement of contrast is observed at CT or contrast-enhanced US, and
where FDG uptake is observed at PET imaging). If the germinal cells (or vesicle
debris including viable germinal cells) enter blood or lymphatic vessels, metastatic
growth may occur in distant organs, most commonly in the lungs and brain
(Bresson-Hadni ef al. 2006).

In humans, accidental intermediate hosts, the severity of AE results from both the
continuous asexual proliferation of the metacestode and the intense inflammatory
granulomatous infiltration around the parasite which causes pathological damages in
the liver. Granuloma, extensive fibrosis, and necrosis are actually the characteristic
pathological findings in E. multilocularis infection. The lesions, composed both of the
multiple vesicle-forming metacestode and of cells homing from lymphoid organs and
permanently settling around the metacestode, behave like a slow-growing liver cancer,
progressively invading the liver. Fibrosis in AE is extremely active from the
beginning of the infection. Irreversible acellular fibrosis composed of cross-linked
collagens ensues and isolates the parasitic lesions from the host but also compresses
and obstructs major vessels and bile ducts, destroys the liver parenchyma resulting in
symptoms of biliary obstruction, portal hypertension and necrosis of the central
portion of the cyst with abscess formation (Kern, 2010). Ascites, and esophageal,
gastric and duodenal varices may develop at the terminal stages of the disease,
because of portal hypertension due to vessel compression/obstruction, which may
generate sometimes fatal clinical complications; irreversible liver failure is rare,

usually due to secondary biliary cirrhosis (Kern, 2010).

1.5.3 The periparasitic immune cell infiltrate in AE

Pathological changes in AE are associated with an intense infiltration by immune
cells, i.e. macrophages of various functional types, including the so-called “epithelioid
cells” and ““giant cells”, typical of granulomas and T lymphocytes (Manfras ef al.
2002). At the time of initial encounter with its murine host, the metacestode might
modulate the immune response. The changes that it induces are dynamic and depend
on the stage of development, for example, ranging from oncosphere, to early stage

vesicles up to a fully maturated and fertile metacestode. Dendritic cells (DCs) and
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macrophages (M@s) are among the first cells encountered by the parasite, which, by
secreting and expressing certain molecules, has evolved mechanisms to suppress the
major inflammatory and thus immunopathological pathway. Besides, CD4" T
lymphocytes are present from the early stage of parasite growth, and CD8" T
lymphocytes were shown to home to the periparasitic infiltrate secondarily and to be
associated with parasite tolerance and severity of the disease (Vuitton, 2003; Vuitton
et al. 2006; Manfras et al. 2002; Manfras et al. 2004).

Dendritic cells and macrophages (MO)

DCs, the most important antigen-presenting cells (APCs) in the initiation of a
type 1 or type 2 immune response, depending on the nature of the antigen(s) (Foti et
al. 2006), range among the first players in the elaboration of a specific immune
response. In the frame of a Th1 immune orientation, it is largely accepted that DCs are
activated mostly by bacterial or viral pathogens via Toll-like receptor (TLR) ligation
to produce IL-12 and TNF-a, both pro-inflammatory cytokines inducing a Th1
oriented response (Boonstra ef al. 2003; Takeda et al. 2003). Thl-associated DC
activation by microbial products evokes rapid phenotypic changes, including
up-regulation of MHC class II, CD80, CD86 and CD40 (Reis e Sousa et al. 1999;
Romagnoli ef al. 2004). Thereafter, DCs have the ability to fully activate effector T
cells. There is no mirror-image signature of cytokine and surface ligands that DCs
express to stimulate Th2 differentiation. However, exposure of DCs to some
helminthic antigens, including the products of filarial Acanthocheilonema viteae
(ES-62), Schistosoma mansoni soluble egg antigen (SEA), and the
schistosome-associated glycan lacto- N-ficopentaose III (LNFPIII), was found to
pulse DCs to prime CD4+ T cells into Th2 type cells, and this occurred in the absence
of increased MHC class II expression and co-stimulation molecule up-regulation
(Whelan et al. 2000; MacDonald ef al. 2001; Thomas et al. 2003). Ingold et al. (2000)
have revealed the presence of high molecular mass glycans that form the major
structural elements on the laminated layer of the metacestode of E. multilocularis.
Whether exposure of DCs to these AE-glycans would pulse them to prime naive CD4"
T into Th2 differentiated cells needs to be addressed.

Macrophages from AE-infected mice (AE-M@) as APCs exhibited a reduced
ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific
responder lymph node T cells when compared to normal MO from non-infected mice
(Mejri & Gottstein, 2006). This obstructed activity in antigen presentation of AE-M@
appeared to trigger an unresponsiveness of T cells, which in turn led to the
suppression of their clonal expansion during the chronic phase of AE infection. In a

similar context it was shown that high periparasitic NO production by peritoneal

40



exudate cells, mainly AE-M@s, also contributed to periparasitic immunosuppression
(Dai &Gottstein, 1999; Andrade et al. 2004). Parasite- derived molecules also
interfered with antigen presentation and cell activation, leading to a mixed
Th1/Th2-type response at the later stage of infection. This correlated with the marked
depression of the cell mediated immune response that had been observed in chronic
AE (Devouge & Ali-Khan, 1983; Kizaki et al. 1991, 1993).

T and other cells

Cells of the innate immune system are not the only targets of these
immunomodulatory parasite-derived molecules. Endothelial cells (in the skin, lungs,
intestine and liver) can also be induced to express and secrete anti-inflammatory
mediators, such as IL-10 and prostaglandins (Zaccone et al. 2008). In this way, the
parasite not only reduces its likelihood of elimination but can also minimize local
host-tissue damage, with coincidental and paradoxical benefits for the host. By
inducing functional changes in DCs and M@s, the metacestode can achieve important
shifts in T cell subsets. From those data accumulated in the last 2 decades it has been
concluded that, in E. multilocularis metacestode infection, an initial acute
inflammatory Th1 response was subverted gradually to a mixed Th1/Th2 response
during the chronic phase of AE (Vuitton, 2006; Vuitton & Gottstein, 2010).

In the past decade, the Th1-Th2 paradigm has been revisited continually and
alternative T cell lineages have been proposed. CD4" CD25" Foxp3 " regulatory T
(Treg) cells and Th17 cells are as two distinct subsets from Th1l and Th2 cells. They

play important role in human AE, as mentioned in details in 1.5.4.
Eosinophils

One of the striking features observed in experimental murine AE (and also in
naturally acquired AE of humans) is the absence of any eosinophilia. The
mobilization of eosinophils is known to be a crucial immunological event that plays
an important role in the host defence against helminths (Yamaguchi et al. 1988), but
its role remains controversial. In many examples of nematode infections, eosinophilia
is a marked characteristic, and eosinophils directly cause profound damage to the
worm tegument, such as in Strongyloides ratti and in T. spiralis, in which a marked
reduction of fertility and longevity was observed (Machado et al. 2005). On the other
hand, eosinophils had no detectable effects on the infection with Mesocestoides corti,
Hymenolepis diminuta and Fasciola hepatica (Ovington & Behm, 1997). An
extravasation of eosinophils causing eosinophilia in the peritoneal cavity has been
demonstrated to be beneficial for the host by causing damage to the immigrant im-

mature Fasciola hepatica, resulting in the erosion of the tegumental syncytium
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(Burden et al. 1983). It was shown in experimental murine AE that metacestode
antigens (VF and E/S) exhibit proteolytic activity on eotaxin in vitro (Mejri &
Gottstein, 2009). Inhibition of eotaxin activity may suppress the mobilization of
eosinophils into the peritoneal cavity of intraperitoneally AE- infected mice. In
experimental murine AE, the detected eotaxin inactivation by VF and E/S products
may contribute to explain the absence of eosinophils within the peritoneal cavity of
AE-secondary infected mice. Absent eosinophils thus may be a part of a series of
events that maintain a low level of inflammation displayed within the peritoneal

cavity of experimentally infected mice.
1.5.4 Cytokine profile of AE

Th1/Th2 related Cytokines in AE

Cytokine profiles, due to the secretion of characteristic cytokines by (mostly but
not only) T “helper”(Th) cells give an insight into immune mechanisms involved in
host-infectious organism relationship and in the types of immune responses that are
developed after the early stage of antigen and “pattern” recognition (Vuitton &
Gottstein, 2010). In most previous studies, secretion and expression of cytokines,
chemokines, and related factors that govern immune cell-homing to E. multilocularis
infection site were studied in the peripheral blood of human AE patients (Hubner et
al. 2006; Kocherscheidt et al. 2008; Dreweck et al. 1999; Godot et al. 2000; Jenne et
al. 1997; Harraga et al. 2003) and and on spleen and lymph node cells in the
experimental model (Dai et al. 2004; Bresson-Hadni et al. 1990; Dai &
Gottstein1999). In the immune-competent but susceptible host, E. multilocularis
induces skewed Th2-responses, with high production of IL-4, IL-5 and IL-10
(Dreweck et al. 1999). In chronic AE, Th2-cytokines are associated with increased
susceptibility to disease, while Th1-cytokines induce a rather protective immunity
which involves IFN-a (Godot ef al. 2003) and IL-12 (Emery et al. 1998) as initiating
cytokines, and IFN-y (Liance, et al. 1999) and TNF-a (Shi et al. 2004; Amiot ef al.
1999) as effector cytokines.
Th17 related Cytokines in AE

Recently, the discovery of the IL-17 cytokine family has added a new dimension
to the balance of inflammation and tolerance during parasite infections. The presence
of IL-17 secreting CD4" T (Th17) lymphocytes correlates with severe hepatic
pathology in murine schistosomiasis (Rutitzky et al. 2005). A more recent study,
published during the completion of our thesis, showed that different isotypes played
different roles in E. multilocularis infection, e.g. [L-17A was rather protective, while
IL-17F might contribute to both protection and pathogenesis, as reported in human
AE patients (Lechner et al. 2012).
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Cytokines leading to tolerance

CD4" CD25" Tregs expressing the fork head/winged helix transcription factor
(Foxp3) inhibit IL-2 production (Hori et al. 2003; Ghiringhelli ez al. 2005). It has
been suggested to play important role in immune tolerance by a study in patients with
AE (Hiibner et al. 2006), and in the experimental AE mouse model (Mejri et al. 2010).
It is widely accepted that Tregs regulate immune response during E. multilocularis
infection through the regulatory cytokines IL-10 and TGF-B (Vuitton & Gottstein,
2010). In a previous study, by using a microarray-based approach, researchers from
our team observed that mRNA levels of the Fibrinogen-like protein 2 (FGL2), a Treg
novel effector molecule, were significantly up-regulated in the liver of mice perorally
infected with E.multilocularis eggs (Gottstein et al. 2011); this prompted us to study
this factor as an additional actor of Treg-induced tolerance in AE.

FGL2, a member of the fibrinogen-related superfamily of proteins known to be
secreted by T cells, has recently been reported by a number of groups to be highly
expressed by Tregs and has been proposed to have a role in Treg effector function
(Levy et al. 2000). It has been shown that FGL2 could inhibit dendritic cell
maturation and induce apoptosis of B cells through binding to low-affinity
FcgammaRIIB receptor, and thus contribute to Treg activity (Liu et al. 2008). There is
evidence that FGL2 exerts immunosuppressive effect on T cell proliferation. Thus it
plays an important role both in innate and adaptive immunity, being expressed by
activated CD4 and CDS8" T cells and reticulo-endothelial cells (macrophages and
endothelial cells) (Ghanekar et al. 2004; Belyavsky et al. 1998; Fingerote et al. 1996;
Liu et al. 2010; McGilvray et al. 1998; Ning et al. 1998). It has been implicated as a
novel biomarker of cancer (Rabizadeh ef al. 2012), and in the pathogenesis of
inflammatory disorders such as allo- and xenograft rejection (Ghanekar et al. 2004;
Mendicino et al. 2005; Ning et al. 2005; Wilczynski et al. 2006; Xie et al. 2011;
Zhang et al. 2004), or cytokine-induced fetal loss (Clark et al. 2002). It was also
shown to play a role in infectious diseases, such as viral hepatitis (Belyavsky et al.
1998; McGilvray ef al. 1998). To our knowledge, it has until now been neglected as a
key-player in parasite-induced tolerance. As the therapeutic tools in AE are very
limited so far, and immune modulation might represent an alternative option, Tregs
and their effector molecule FGL2 could become attractive targets, putatively allowing
a modulation of the patient's immune response to yield protective immune reactions
that will result in a dying-out of the parasite metacestode; it could also represent an
interesting marker of the tolerance status of AE patients, thus of the progression of the
metacestode.

As mentioned above, the main cytokines involved in immune tolerance are IL-10
and TGF-f, have been largely studied in the past 3 decades. The metacestode actively

achieves a tolerance status through the induction of regulatory cytokines IL-10 and
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TGF-B (Mejri et al. 2009). Most of the studies in AE as well as in the experimental
models have first focused onto IL-10. Spontaneous secretion of IL-10 by the PBMCs
is the immunological hallmark of patients with progressing lesions of AE (Godot ef al.
1997). However, only very preliminary results showed the presence of TGF-3
secreting cells in the periparasitic granuloma surrounding E. multilocularis vesicles in
the liver of patients with AE (Zhang et al. 2008), and exploring TGF-f in its multiple
functions in E.multilocularis infection is still an open field of research.
TGF-pin AE

TGF-p is a major regulator of the immune responses, inducing and maintaining
T-regulatory cells, reducing cytotoxic effector immune response and balancing the
tolerogenic and immunogenic forces at play in various physiological states and
chronic diseases, such as fetus growth and survival during gestation (Ouellette et al.
1997), cancer (Cufi et al. 2010), chronic inflammatory diseases (Feng et al. 2011), or
chronic and allergic respiratory diseases (Jetten et al. 1986). In these conditions, this
polypeptide also regulates a variety of cell events involved in tissue regeneration and
fibrosis. Similarly, its role has been recognized both to induce and maintain immune
tolerance towards parasites and to induce fibrosis in several examples of helminth
infection (Harraga et al. 2003). However, opposite to the recognized role of IL-10
(Harraga et al. 2003; Vuitton, 2003), little is known about TGF-B involvement in the
pathophysiology of larval echinococcosis. Only preliminary studies are available in
AE: TGF-B was shown to be expressed in most lymphocytes of the periparasitic
infiltrate in liver biopsies from AE patients. It was suggested that TGF-B may play a
role in maintaining host tolerance against E. multilocularis growth by preventing
T-cell cytotoxicity against the parasite (Zhang et al. 2008). In cystic echinococcosis
(CE), immunostaining of TGF- has also been shown at the periphery of hydatid cysts
in the liver of patients (Wu et al. 2004); and another study confirmed a progressive
increase in the expression of mRNA of TGF-B in the liver of E. granulosus-infected
BALB/c mice (Mondragon-de-la-Pena et al. 2002). There is abundant evidence that
TGF-B1, besides its role in immune tolerance, is an extremely potent inducer of the
synthesis of procollagen and other extra-cellular matrix (ECM) components (Bartram
et al. 2004; Higashiyama et al. 2007), and has an essential role in the pathogenesis of
liver fibrosis. The major signaling pathway for all TGF-B members is activated
through ligand binding to a cell-surface receptor complex of type I and type II serine—
threonine kinases receptors; and a group of intracellular signaling intermediates
known as Smads is then phosphorylated. Phosphorylated Smads translocate to the
nucleus where they function as transcription factors, initiating target gene
transcription (Banas et al. 2007). However, although it may be crucial in the
host-parasite interactions, the relationship between the TGF-B/Smad pathway, and

especially the expression of Smad7 which may play a regulatory role in the system,
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and clinical and/or pathological features of AE in experimental models as well as in

humans has never been addressed.

1.5.5 Chemokine profile of AE

In addition to cytokines, granulomas are associated with a variety of chemokines
(Sadek et al. 1998; Qiu et al. 2001), which represent a family of molecules whose
presumed function is to direct cellular movement. Chemokines are involved during
innate recognition stages of immunity and may help direct Thl and Th2
cytokine-producing cells during the generation of adaptive immunity (Lu ez al. 1998;
Lo et al. 1999). In addition, chemokines may be inflammatory or homeostatic, and
facilitate lymphocyte migration during inflammation and immune surveillance
(Kroetz et al. 2011). Furthermore, there is also considerable in vitro evidence that
immune-related cytokines further capitalize on these effector molecules by regulating
their expression and secretion. Chemokine expression by a variety of cultured cell
types has been demonstrated to display positive or negative regulatory responses to
cytokine stimulation (Sherry et al. 1998; Teran et al. 1999; Gasperini et al. 1999;
Pype et al. 1999; Lamkhioued et al. 2000; Fujisawa et al. 2000).

Kocherscheidt et al. studied chemokine responses in AE patients at different
states of infection (progressive, stable and cured AE) (Kocherscheidt et al. 2008). The
production of CC and CXC chemokines which are associated with inflammation
(MIP-1 alpha/CCL3, MIP-1 beta/ CCL4, RANTES/CCLS5 and GRO-alpha/CXCL1)
was constitutively larger in all groups of AE patients than in controls (Kocherscheidt
et al. 2008). A disparate cellular responsiveness was observed in all groups of AE
patients to viable E. multilocularis vesicles; cluster 1 (GRO-alpha/CXCLI,
MCP-3/CCL7, MCP-4/CCL13, TARC/CCL17, LARC/CCL20) and cluster 2
chemokines (PARC/CCL18, MDC/CCL22, MIG/CXCL9) were downregulated, while
cluster 3 chemokines (MIP-1 alpha/CCL3, MIP-1 beta/CCL4, RANTES/CCLS)
appeared up-regulated (Kocherscheidt et al. 2008). The fact that E. multilocularis
metacestodes selectively suppressed cellular chemokine production in AE patients
may constitute an immune escape mechanism, which reduces inflammatory host
responses, prevents tissue destruction and organ damage, but may also facilitate
parasite persistence (Mejri et al. 2009). However, little is known on the expression of
chemokines in the liver, and on the dynamics of the expression of chemokines in the
periparasitic infiltrate, perhaps because of the difficulties of such studies in humans. It
was never studied in experimental animals either, although experimental models may
allow us to better characterize the course of chemokine expression at the various

stages of E. multilocularis development.
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2. Working hypothesis, questions and objectives
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We hypothesized that E. multilocularis metacestode exerted a deep influence on
liver homeostasis. On the other hand, we anticipated that functional imaging of AE in
humans could be better interpreted if the factors governing immune cell homing
around the metacestode were better known. And finally, both to define new markers
of AE progression and to target immune modulation as a therapeutic tool in AE, we
addressed the respective roles of TGF-f and TGF-/Smad signalling pathway, and of
the CD4'CD25" Treg-effector molecule FGL2. We proposed a concept of immune
cell activation at early infection stage and immune tolerance at late infection stage
which would 1) first favor parasitic, liver and immune cell proliferation and survival,
and thus promote metacestode fertility and tolerance by the host, and 2) would then
favor liver damage/apoptosis, as well as promote immune deficiency, and thus
contribute to the dissemination of the protoscolex after metacestode fertility has been

acquired (Figure 2.1).

. . Growth
st | | BCCON
(EGF, TGF,
others... )
Losssneation | | |+~ [T
Response
Cells, w‘\
Cytokines,
s chemokines,
I I q other factors

m— Proliferation

Growth
arrest and

apoptosis

—
.

Figure2.1 Working hypothesis

Interactions between the parasite and the host are multiple and complex, and
until now, most of the studies have focused on the parasite and the immune cells of
the host; only some studies considered how the parasite-induced immune response
interfere with the liver parenchyma, especially for the induction of fibrosis (Grenard
et al. 2001). We thus focused part of our studies on the liver parenchyma. In addition,
most of previous studies dealt with systemic immune response, in the spleen, lymph
nodes, or peripheral blood; our aim was thus to study the immune response locally, in
the liver, whenever possible.

The scientific questions and objectives of this thesis work were as follows:

Question 1. Has E.multilocularis any influence on host’s liver homeostasis, and
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especially on liver proliferation/apoptosis? The objectives are to explore the activation
of proteins involved in proliferation and/or growth arrest/apoptosis metabolic
pathways during the 3 stages of E. multilocularis infection; and to explore sequential
activation of liver and immune cell proliferation and survival.

Question 2.What is the dynamics of cytokine/chemokine expression in the
periparasitic immune infiltrate and adjacent liver? The objectives are to give a
comprehensive appraisal of the various factors and pathways involved in immune cell
homing around the E. multilocularis metacestode, at the various successive stages of
disease; and to study the parasite and the host immune response in their usual context,
the liver, in the experimental mouse model of hepatic secondary infection.

Question 3. How are TGF-f and TGF-f/Smad signaling involved in the
interactions between E. multilocularis and its host? The objective is to explore the
influence of TGF-/Smad signaling pathways in liver fibrosis in AE and possible
dysregulation promoting fibrosis and/or tolerance.

Question 4. Is FGL2 involved in the cross-talk between E. multilocularis and its
host and how does it regulate immune tolerance? The objectives are to study the role
of FGL2 on T and B cell reactivity and maturation of dendritic cells (DC) at the
different stages of E. multilocularis infection, i.e. early and late stages; to study how
parasite-origin components exert an effect on immune response in condition of fgl2
depletion due to E. multilocularis infection; and to explore how FGL2 is secreted due

to E. multilocularis infection
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3. Models and Methods used in the thesis work
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3.1 In vivo and in vitro models used in this thesis work
Primary infection (peroral) mouse model

An established mouse model of primary alveolar echinococcosis was used as
previously described (Siles-Lucas, 2003; Pater, 1998). Briefly, 8-weeks-old female
C57BL6/J mice were infected (n = 10) at the age of 10 weeks by peroral inoculation
with 100 mL sterile water containing 2 X 10° eggs of E. multilocularis, using
appropriate biosafety level 3 laboratory conditions (Swiss biosafety approval number
A990006/3A). The infecting organisms (parasite eggs) were initially isolated from a
naturally infected fox. Egg viability and infection potential were pre-evaluated upon
explorative titrated infection experiments carried out in mice preliminarily to the
present studies (Gauci, 2002). Mock-infected control animals (n=5) were perorally
inoculated with 100 mL of sterile water. Animals were sacrificed with an overdose of
pentobarbital (100 mg/kg, intraperitoneally) for the mock-infected control group (n =
5) and for the group representing the chronic stage of primary AE (n = 10).

Intra-hepatic infection mouse model
Pathogen-free female BALB/c mice (8—10-week old) were housed in cages with a
12-h light/dark cycle and provided with rodent chow and water. BALB/c mice were
infected by E. multilocularis and tissue samples were collected and detected as
previously described (Lin ef al. 2010; Zhang et al. 2011). For each autopsy time-point,
ten experimentally infected mice were used in E. multilocularis group (n=10) and
compared with five control mice (n=5), which received an intra-hepatic injection of
0.1 mL of saline in the anterior liver lobe using the same surgical procedure.
Intraperitoneal infection mouse model
The parasite used in this study was a cloned E. multilocularis (KF5) isolate
maintained by serial passages (vegetative transfer) in C57BL/6 mice (Gottstein et al.
1992). Metacestode tissue was obtained from infected mice by aseptic removal from
the peritoneal cavity. After grinding the tissue through a sterile 50 um sieve, 100
freshly prepared acephalic vesicular cysts were suspended in 100 uL. RPMI-1640
(Gibco, Basel, Switzerland) and injected intraperitoneally. Each experimental group
included 6 animals unless otherwise stated. Control mice (mock-infection) received
100uL of RPMI-1640 only.
3.2 Laboratory methods used in this thesis work
Microarray data analyses and annotation of gene function

RNA extracts from both infected and control mice were selected for array
hybridization after intra-hepatic infection. Total RNA was purified with NucleospinH
RNA Clean-up Kit (Macherey-Nagel, Germany) and each purified RNA sample
isolated from an individual sample was run on a single microarray. All microarray

procedures were done according to a previously described procedure (Lin et al. 2011).
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Quantitative real-time RT-PCR

gRT-PCR was run in a thermocycler (i1Q5 Bio-Rad, Hercules, CA, USA) with
the SYBR Green PCR premix (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. To normalize for gene expression, mRNA expression of
the housekeeping gene B-actin was measured in parallel. Fluorescence was measured
in every cycle, and a melting curve was analyzed after the PCR by increasing the
temperature from 55 to 95 °C (0.5 °C increments). A defined single peak was
obtained for all amplicons, confirming the specificity of the amplification.
Immunohistochemistry analysis

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded
tissue. Briefly, 4 um tissue sections were de-paraffinized in xylene and rehydrated in
gradual dilutions of ethanol. Endogenous peroxidase was blocked with 3% hydrogen
peroxide. Sections were pretreated by microwave heating for 15 min in antigen
unmasking solution to increase staining, and were incubated with non-immune goat
serum for 30 min to block non-specific background. Sections were then incubated
overnight at 4°C with the primary antibody and subsequently with horseradish
peroxidase conjugated host-specific secondary antibodies, 3, 3’-diaminobenzidine
was used as chromogen. Sections were counterstained with hematoxylin for 5 min,
dehydrated, and covered with slips. For all samples, negative controls consisted of
substitution of the isotype-matched primary antibody with PBS.
Western Blot analysis

Western Blot analysis of cell lysates was performed by SDS-PAGE using
NuPAGE followed by transfer to nitrocellulose membrane. The appropriate antibodies
and GAPDH were detected with Western Breeze Kit (Invitrogen, California, USA).
The expression levels of respective proteins (in “relative units”) were quantified using
Quantity One software.
Flow cytometry

After blocking non-specific binding of antibodies to the FcylIl and Fcyll
receptors with 1 pg of purified anti-CD16/CD32 for 20 min in the dark, the cells were
stained with surface maker separately for 15 min with 1 pg of primary antibodies. For
intracellular staining, after surface maker staining, the cells were first fixed for
20mins at room temperature, and then stained with PE-labeled cytokine antibodies in
Inside Perm for 15mins. The corresponding primary labeled isotype control antibodies
were used for staining controls. Stained cells were analyzed in a flow cytometer
(Becton Dickinson, Heidelberg, Germany) using the corresponding CELL QUEST
software.
Sandwich Enzyme-Linked Immunosorbent Assay

After washing of pre-coated plates 3 times with Tris-Tween buffered saline,

serum samples (50 puL) were added to each well, and after a 2-hour incubation at room
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temperature and three washes with Tris-Tween buffered saline, the wells were
incubated with mouse FGL2 detection antibody for 1 hour at room temperature. The
plate was washed again for 3 times, and polyclonal anti-FGL2 binding was detected
with a secondary horseradish peroxidase-conjugated anti-rabbit antibody.
Tetramethlybenzidine was then added and absorbance was measured at 450 nm using
an enzyme linked immunosorbent assay (ELISA) plate reader.
Luminex assay for cytokine expression in the serum

Cytokine levels in mouse serum samples were assessed undiluted using
microsphere-based multiplex assays (MILLIPLEX® MAP Mouse
Cytokine/Chemokine Multiplex Assays MPXMCYTO-70K, Merck Millipore, Zug,
Switzerland) according to the manufacturer’s instructions. Serum concentrations of
selected cytokines were measured. A minimum of 50 beads per analyte was measured
on a Bioplex-200 platform (Bio-Rad, Hercules, CA, USA). Calibration was performed
using BioPlex Manager software version 4.1.1 by linear regression analysis using the
four lowest standards provided by the manufacturer. When measured cytokine
concentrations were below the detection limit, a value corresponding to the detection
limit of the assay was used for statistical analysis (Table 3.1 and Figure 3.6).

Table 3.1 Laboratory methods used in the thesis work

Method Aim Reference
Microarray analyses To screen the changed immune related genes ~ Wang, 2013
qRT-PCR To further study the mRNA levels of target Zhang, 2012,

genes, i.e. key cell cycle genes, Wang, 2013

Th1/2/17/Treg related cytokines and
chemokines, TGF-p and Smad genes

Immunohistochemistry  To locate and semi-quantify the target Zhang, 2012,
proteins in the cells, i.e. key cell cycle and Wang, 2013
apoptosis proteins, TGF-f and Smads, liver
fibrosis makers

Western Blot To semi-quantify the target protein in the Zhang, 2012,
cells, i.e. key cell cycle and apoptosis Wang, 2013
proteins, TGF-$ and Smads

Flow cytometry Cell counting, target protein detection and cell Wang 2014
sorting, i.e. different cytokine expression in
CD4" T cells, maturation of DCs,
CD4'CD25" Treg isolation
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ELISA To detect the serum level of FGL2 FGL2 paper

Luminex To detect the serum levels of selected FGL2 paper
cytokines, i.e. IFN-y, IL-4, IL-17A, IL-10,
IL-1B, IL-6
To study the suppression function of Treg on

Suppression assay effector T cell proliferation, i.e. CD4'CD25"  FGL2 paper
Treg from WT mice and fgl2-/- mice

co-cultured with effector T cells

3.3 Statistical analysis methods

All the data were analyzed by SPSS 17.0. The results were presented as means +
SD. One-way ANOVA and Student’s #-test were used to compare the differences
between groups, and Spearman’s rho was used to analyze the correlation coefficient.

P<0.05 was considered to indicate statistical significance.
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4. Has E.multilocularis any influence on host’s liver

homeostasis, and especially on liver proliferation/apoptosis?
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To address this question, we employed the intra-hepatic AE mouse model and
measured the levels of MAPKSs activation, Cyclins, PCNA, Gadd45b, Gadd45c, p53
and p21 expression from day 2 to 360 post-infection by western blot and qPCR and,
using immunohistochemistry we studied the same components in relation to the
pathological changes in the liver, both in the infection site and in the neighboring liver

parenchyma where proteins and mRNAs were measured.

Background and objectives:

AE is characterized by an infiltrative, destructive and tumor- like growth of the E.
multilocularis metacestode, usually affecting the liver of natural intermediate hosts
such as small rodents or the human liver. Clinical manifestations are results of both a
slow but continuous asexual proliferation of the metacestode and an intense
infiltration by macrophages, T lymphocytes, and fibroblasts/myofibroblasts around
the parasite, eventually leading to fibrosis and necrosis. A striking clinical observation
in AE patients is also the hepatomegaly observed in the liver lobe/segments that are
not invaded by the parasite; such liver regeneration, which allows surgeons to perform
extensive liver resections (Wen et al. 2011; Mantion & Vuitton, 2011), is partly
explained by the portal vein obstruction; a direct influence of E. multilocularis and
associated immune reaction has never been considered. Very little is known on the
influence of helminth parasites which develop in the liver on the proliferation/growth
arrest metabolic pathways in the hepatocytes of the infected liver over the various
stages of infection. The aims of the present study were 1) to explore the influence of E.
multilocularis metacestode on components of cell cycle regulation which characterize
the host’s hepatic proliferation in the liver of mice infected with E. multilocularis; 2)
to simultaneously explore the activation of inhibitory proteins involved in growth

arrest/apoptosis metabolic pathways during the 3 stages of infection.
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Abstract

Background: Alveolar echinococcosis (AE) is characterized by the tumor-like growth of Echinococcus (E.) multilocularis. Very
little is known on the influence of helminth parasites which develop in the liver on the proliferation/growth arrest metabolic
pathways in the hepatocytes of the infected liver over the various stages of infection.

Methodology/Principal Findings: Using Western blot analysis, gPCR and immunohistochemistry, we measured the levels of
MAPKs activation, Cyclins, PCNA, Gadd45f, Gadd45y, p53 and p21 expression in the murine AE model, from day 2 to 360
post-infection. Within the early (day 2-60) and middle (day60-180) stages, CyclinB1 and CyclinD1 gene expression increased
up to day30 and then returned to control level after day60; Gadd45f, CyclinA and PCNA increased all over the period; ERK1/
2 was permanently activated. Meanwhile, p53, p21 and Gadd45y gene expression, and caspase 3 activation, gradually
increased in a time-dependent manner. In the late stage (day180-360), p53, p21 and Gadd45y gene expression were
significantly higher in infected mice; JNK and caspase 3 were activated. TUNEL analysis showed apoptosis of hepatocytes.
No significant change in CyclinE, p53 mRNA and p-p38 expression were observed at any time.

Conclusions: Our data support the concept of a sequential activation of metabolic pathways which 1) would first favor
parasitic, liver and immune cell proliferation and survival, and thus promote metacestode fertility and tolerance by the host,
and 2) would then favor liver damage/apoptosis, impairment in protein synthesis and xenobiotic metabolism, as well as
promote immune deficiency, and thus contribute to the dissemination of the protoscoleces after metacestode fertility has
been acquired. These findings give a rational explanation to the clinical observations of hepatomegaly and of unexpected
survival of AE patients after major hepatic resections, and of chronic liver injury, necrosis and of hepatic failure at an
advanced stage and in experimental animals.
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Introduction {oncospheres); progression of the lesions is very slow and the
observed complications and liver dysfunction are the result of a
complex and often latent sequence of events. In the experimental

model of secondary K. multiboenlaris metacestode infection, which

The larval stage of the fox-tapeworm Fchinococcus (E.) multi-
loeularis is the causative agent of alveolar echinococcosis (AE), one

of the most dangerous parasitic discase of the northern hemisphere
|1]. AE is characterized by an infiltrative, destructive and tumor-
like growth of the K. multiloculan's metacestode, usually affecting the
liver of natural intermediate hosts such as small rodents or the
human liver [2|. Clinical manifestations are results of both a slow
but continuous asexual proliferation of the metacestode and an
intense infiltration by macrophages, 'I' lymphocytes, and fibro-
blasts/myofibroblasts around the parasite, eventually leading to
fibrosis and necrosis [3,4,5,6]. Clinical symptoms usually appear
many years after the first contact with the parasite eggs
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well mimics the natural infection [7,8], according to its clinical
course AE is divided into 1) an carly stage with tumor-like growth
of the metacestode and mild hepatic enlargement, 2) a middle
stage with invasive parasitic lesions and progressive hepatomegaly
and 3) an advanced/terminal stage (also called “late stage”)
associated with invasion of other organs and/or metastases,
fibrosis of the lesions and cholestasis, which may cause secondary
liver cirrhosis with subsequent portal hypertension and eventually
impaired liver function [9]. We and others have shown in previous
stuclies that these clinical changes were accompanied by a typical
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course of cytokine production, with, sequentially 1) a Thl profile
followed by 2) a combined Th1 and Th2 profile, also characterized
by a markedly increased production of IL-10 [10], and finally 3) a
decrease in all types of cytokines associated with a deep
impairment of the immune response [11,12]. Changes with time
in a variety of other components/enzymes involved in the immune
response such as chemokines [13], proteing of the acute
inflammatory phase [14], and nitric oxide synthase [15] have also
been shown. However, despite the presence of well-known clinical
symptoms (hepatomegaly, liver necrosis) which evoked such
influence in patients with AE, until recently, little was known on
the influence of the metacestode on the hepatocytes of the
surrounding liver parenchyma.

The orderly progression of cells through the phases of the cell
cycle is governed by the sequential assembly and activation of
holoenzyme complexes [16]. The Mitogen-Activated Protein
Kinase (MAPK) pathway and cell cycle regulatory proteins,
including Cyclins, Cyclin-dependent kinases (Cdks), Cyclin-depen-
dent kinase inhibitor 1o (Cdknlo or p21), growth arrest and DNA
damage-inducible 45(Gadd450, Gadd458 and Gadd45y), partici-
pate in the regulation of cell cycle progression [17,18,19,20].
Importantly, CyclinD1, a regulator of cellular proliferation, is itself
regulated by ERK1/2 [21,22]. The Cip/Kip family member, p21
was shown to inhibit cell proliferation and activities of several
Cyclin-Cdk complexes i vitro [23,24]. Transcriptional regulation of
the p21 gene is controlled by the tumor suppressor protein p53
acting on the p53 responsive element in the distal region of the p21
promoter in response to intracellular signals such as DNA damage
[25.26]. Furthermore, Gadd45y is also a p53-regulated human
gene, which interacts with PCNA, a normal component of multiple
quaternary complexes, including the Cycling Cdks and the Cdk
inhibitor p21, which play a central role in DNA repair, growth
suppression and apoptosis [27,28,29]. In addition, the JNK and p38
cascades appear to be pro-apoptotic. Their activation, via MTK1/
MEKKH4, is mediated by Gadd45y as was shown in response to
various external stresses including bacterial infection, hyperosmo-
larity, and UV irradiation; these cascades also appear to be closely
related to cell death [30,31,32].

Our previous study, using western blot technique, has shown
that metabolic pathways involved in liver proliferation and growth
arrest and especially the MAPKS system were specifically induced
by E. multilocularis growth. We observed that ERK1/2 and p38
were activated in the liver of AE patients and that ERK, JNK and
p38 were activated in rat primary hepatocytes during exposure to
E. mudtilocularis vesicle fluid (EmF) or K. multilocularis axenic culture
supernatant (EmCM) iz @itro [33]. Furthermore, using microarray
and qPCR technique, we followed the time-course of E.
multilocularis infection from day30 to 180 after intrahepatic
injection of metacestode for the expression of genes involved in
the inflammatory/immune response as well as numerous meta-
bolic pathways specific to the liver. We found an increased
expression of Gadd45 (2.19 fold at day90; 4.49 fold at day180),
Gadd45y (3.98 fold at day60; 4.92 fold at day90 and 21.94 fold at
day180) and p21 (5.60 fold at day60; 4.42 fold at dayl80) in the
middle and late stages of £. multilbocularis infection in mice [34].
Gadd45B gene was originally characterized as a primary
responder in myeloid differentiation induced by IL-6 [35]. More
recent studies have shown that Gadd45B, unlike two other
homologs (Gadd45a and y), plays an anti-apoptotic role and is
activated by TNF-o zia NFkB [19]. Thus, induction of Gadd45f8
coincides with the entry into an active cell cycle; its action might
be to protect hepatocytes from apoptosis in the middle stage. Then
induction of p21 and Gadd45y coincides with the entry into an
inhibitory phase regarding cell proliferation; its action might be to
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promote hepatocyte growth arrest and/or apoptosis in the late
stage. However, the underlying mechanisms for the involvement of
the host liver MAPK signaling pathways, and of cell cycle
regulated proteins such as Cycling, Gadd45B, p53, p2l and
Gadd45y in the progression of E. multilocularis-infected mice in vivo
are unknown to date. Their contribution to the hepatocyte
proliferation and growth arrest process which appears to
accompany K. multilocularis metacestode development is  also
ignored.

The aims of the present study were thus, in the secondary
experimental murine model of AE, 1) to explore the influence of £.
mudtilocularis metacestode on components of cell cycle regulation
which characterize the host’s hepatic proliferation in the liver of
mice infected with E. mudtilocularis over a time period of lyr, i.c.
from the date of £. multilocularis inoculation to the very late stage of
infection; 2) to simultancously explore the activation of inhibitory
proteins involved in growth arrest/apoptosis metabolic pathways
during the 3 stages of infection. For these purposes, we measured
the levels of ERKI1/2, JNK, p38 activation, Cyclins, PCNA,
Gadd45B, Gadd45y, p53 and p21 by western blot and gPCR and,
using immunohistochemistry we studied the same components in
relation to the pathological changes in the liver, both in the
infection site and in the neighboring liver parenchyma where
proteins and mRNAs were measured.

Results

Hepatic injury induced by E. multilocularis

As shown in Figure 1, from day30 to 180 post-infection, the
typical pathological changes which characterize K. multilocularis
lesions were observed in the liver of the mice infected with £
multilocularis; at days 2 and 8, only infiltrating lymphocytes,
surrounding £. multilocularis inoculum, could be observed; at days
270 and 360 post-infection, the pscudo-tumor parasitic mass
included many vesicular and/or cystic structures embedded within
thick fibrous tissue, the periparasitic arca was composed of
inflammatory fibrous tissue and necrotic arcas and mixed with
small granulomatous nodules [34]. The hepatic parenchyma close
to the lesions was progressively invaded by fibrous connective
tissue septa, and solitary islands of hepatic tissue were observed. At
the same time points, no hepatic injury was observed in the mice
of the control groups (Figure 1).

Activation of MAPKs in the liver of mice during
E. multilocularis infection

As shown in Figure 2A and 2B, western blotting showed
increased ERKI1/2 phosphorylation (p-ERK1/2) from day2
(~1.40-fold) to 360(~2.78-fold); it peaked at day180 (~5.69-fold);
there was a significant difference between K. multilocularis infected
and non-infected mice at day90 post-infection (£ << 0.05), and
increased JNK phosphorylation (p-JNK) from day180 (~1.89-fold)
to 360 (~1.85-fold); it peaked at day270 (~2.19-fold) post-
infection; it was significantly different between E. mudtilocularis-
infected and non-infected mice at all time points since day 180 (P <
0.05). Interestingly, no phosphorylated-p38 (p-p38) was observed
in liver during the course of infection. As shown in Figure 2C, in
the lesion area, p-ERK1/2 was expressed in a few hepatocytes at
days 2 and 8 while there was no positive staining in the
inflammatory response zone. At days 30 and 60 the intensity of
the immunostaining increased, showing p-ERK1/2 localization in
infiltrating lymphocytes and fibroblast-like cells. At days 90, 180
and 270, the staining was more intense in the infiltrating
lymphocytes, and then decreased at day360. Within the liver
parenchyma close to the lesion and peri-parasitic infiltrate, p-
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Figure 1. Representative histopathology of mice liver during E. multilocularis infection. (a-h): No morphological changes were observed in
the liver of control mice. (i-p): Proliferating hepatocytes close to the parasitic lesions were observed from days 2 to 180 (thin arrow) and some
coagulation necrosis areas (thick arrow) close to the parasitic lesions were observed from days 180 to 360 in the liver from E. multilocularis infected
mice. The arrowheads indicate the parasitic lesions in the liver of infected mice (“lesion” row); the lesions had the typical aspect of £ multilocularis
germinal layer and laminated layer, surrounded by a periparasitic cell infiltrate composed mostly, from the center to the periphery, of macrophages
and fibroblasts/myofibroblasts, and lymphocytes. Final magnification, 200 x. con, control, non-infected mice; Em, E. multilocularis infected mice.

doi:10.1371/journal.pone.0030127.g001

ERK1/2 was observed in hepatocytes from day?2 to 60. At days 90
and 180, the number of hepatocytes which expressed p-ERK1/2
progressively increased, with staining intensities from “weak™ to
“moderate”; then p-ERK1/2 expression in hepatocytes decreased
at day360. No liver cell positive for p-ERK1/2 immunostaining
were observed in the liver of non-infected mice.

Expression of Gadd45p in the liver of mice during
E. multilocularis infection

As shown in Figure 3A and 3B, western blotting showed
increased Gadd45B expression from day60 (~1.75-fold) to 360
(~2.52-fold); it peaked at dayl80 (~62.64-fold) post-infection;
there was a significant difference between £, multilocdaris-infected
and non-infected mice at days 60 and 180 (£ < 0.05). Gadd45B
mRNA expression was increased from day?2 (~1.27-fold) to 360
(~L81-fold): it peaked at day 90 (~3.28-fold) post-infection
(Figure 3C). There was a significant difference between £,
multiloculan's infected and non-infected mice at days 60 and 90 (P
<< (1.05). At day8, Gadd45p expression was observed in infiltrating
lymphoceytes: it progressively increased in fibroblast-like cells and
infiltrating lymphocytes from day30 to 180 (Figure 3D). Within the
liver parenchyma close to the lesion and peri-parasitic infiltrate,
Gadd45f expression was observed in hepatocytes around  the
portal and central veins at day30: it markedly increased at days 90
and 180 post-infection, with staining intensities from “moderate™
to “strong”: then Gadd45B expression in hepatocytes mildly
decreased at days 270 and 360. No liver cell positive for Gadd45
was observed in the livers of non-infected mice.

Expression of Cyclins A, B1, D1 and E in the liver of mice
during E. multilocularis infection

As shown in Figure 4A and 4B, western blotting showed increased
Cyclin A expression from day2 (~1.52-fold) to 270 (~ 1.63-old); it
peaked at day60 (~8.46-fold), and then decreased under the baseline
at day360 (~0.86-old) post-infection. There was a significant
difference between £ mudtilocularis infected and non-infected mice at
days 8. 30, 60, 90 and 180 (P < 0.05). Increased Cyclin Bl
expression was observed at days 2 (~6.53-fold) and 8 (~3.7 1 Hfold): it
then decreased to the bascline from day 30 to 360 post-infection.
There was a significant ditference between £, multilocudaris infected
and non-infected mice at days 2 and 8 (£ << 0.05). Increased Cyclin
D1 expression was observed at days 8 (~2.07-fold) and 30 (~1.41-
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fold): it then decreased under the bascline from day60 to 360 post-
infection. There was a significant difference between K. mudtilocularis
infected and non-infected mice at days 8 and 30 (£ < 0.05). Mild
increase in Cyclin E expression was observed from day 2 (~1.44-
fold) to 180 (~1.30-old), but no significant difference was found
during the whole time-points (£ > 0.05).

Cyclin A mRNA expression was increased from day? (~1.62-
fold) to 180 (~1.35-fold) and then decreased under the baseline at
days 270 and 360; it peaked at day30 (~2.65-fold) post-infection
(Figure 4C). There was a significant difference between £
mudtilocularts infected and non-infected mice at day30 (£ << 0.05).
Cyclin Bl mRNA expression was increased at day 2 (~2.17-fold); it
then decreased to the baseline from day30 to 360 post-infection.
However, there was no significant difference between £ mudtilocularis
infected and non-infected mice (£ > 0.05). Cyelin DI mRNA
expression was increased from day2 (~1.41-fold) to 30 (~2.34-fold);
then it decreased under the bascline from day 60 to 360 post-
infection. There was a significant difference between £ multilocularis
infected and non-infected mice at day8 (2 < 0.05). Cyelin E mRNA
expression was mildly increased at days 2 (~1.30-fold), 8 (~1.25-
fold) and 180 (~1.64-fold), but no significant difference was found
cduring the whole course of infection (£ = (.05).

Expression of PCNA in the liver of mice during
E. multilocularis infection

As shown in Figure 5A and 5B, western blotting showed
increased PCNA  expression from day8 (~1.49-4old) to 180
(~2.52-fold) which peaked at day90 (~2.54-old) post-infection;
it then decereased to the baseline at days 270 (~1.33-fold) and 360
(~L19-fold). There was a significant difference between £
mudtilocularis-infected and non-infected mice at days 30, 60, 90
and 180 (P << 0.05). PCNA mRNA expression was increased from
day8 (~2.06-fold) to day90 (~3.74-fold); it peaked at day90
(Figure 5C), then decreased to the baseline from day180 to 360.
There was a significant difference between £, multilocularis infected
and non-infected mice at days 8, 60 and 90 post-infection (£ <
0.03). As shown in Figure 5D, immunohistochemistry showed an
increased expression of PCNA in the hepatocytes of £, multilocularis
infected and non-infeeted mice at days 2 and 8, then no PCNA
expression was observed in the liver of non-infected mice:
increased expression of PCNA was observed since day 8 until
day180 in infected mice.
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Figure 2. Activation of MAPKs in the liver of mice during E. multilocularis infection. Western blot analyses were performed on lysates from
liver samples with antibodies that recognize phosphorylated (p-) and total ERK1/2, JNK and p38 respectively (A). Relative amount of phosphorylated
and total ERK1/2, JNK and p38 was calculated from semi-quantitative analysis of the Western blots using densitometry (B). Histo-immunochemical
analysis of p-ERK1/2 expression was performed on tissue samples: p-ERK1/2 expression was observed in infiltrating lymphocytes (lesion) and
fibroblast-like cells (lesion) but also in hepatic cells (close to lesion) in the liver from E. multilocularis infected mice (arrow) (C). The arrowheads indicate
the parasitic lesions in the liver of infected mice (“lesion” row). Final magnification, 400 x. "P<:0.05 versus control. con, control, non-infected mice; Em,
E. multilocularis infected mice; AU: arbitrary units; lesion: £. multilocularis metacestode and surrounding immune infiltrate; close: liver parenchyma

close to E. multilocularis lesion.
doi:10.1371/journal.pone.0030127.9002

Expression of p53 in the liver of mice during
E. multilocularis infection

As shown in Figure 6A and 6B. western blotting showed
increased p33 expression at days 60 (~2.63-fold), 90 (~4.11-old),
270 (~3.13-fold) and 360 (~2.77-fold); it peaked at day360 post-
infection. There was a significant difference between . multi-
locularis-infected and non-infected mice at days 90, 270 and 360 (P
< 0.05). As shown in Figure 6C, no significant change of p53
mRNA expression was obscerved at any time-point.

Expression of p21 in the liver of mice during
E. multilocularis infection

As shown in Figure 7A and 7B, western blotting showed
increased p2l expression from day60 (~ 1.84-fold) to 360 (~8.15-

@ PLOS ONE | www.plosone.org

fold); it peaked at day360 post-infection. The difference between
E. multilocularis-infected and non-infected mice was significant at
days 180, 270 and 360 (P < 0.05). As shown in Figure 7C, p21
mRNA expression, despite its increase from day30 (~3.21-old) to
360 (~4.06-fold), was significantly different from that measured in
non-infected mice when it peaked at day270 post-infection
(~9.01-fold) (P < 0.05). As shown in Figure 7D, in the lesion
arca, p2l expression was observed in infiltrating lymphocytes and
fibroblast-like cells at dayl80; it progressively increased from
day270 to 360. Within the liver parenchyma close to the lesion
and peri-parasitic infiltrate, p21 expression was observed in
hepatocytes close to the lesion at dayl80. A marked increase in
the liver cell expression of p21 was observed at days 270 and 360
post-infection, with staining intensities from “weak”™ o “moder-
ate™.
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Figure 3. Gadd45f expression in the liver of mice during £ multilocularis infection. Western blot analyses were performed on lysates from
liver samples with antibodies that recognize Gadd45 (A). Relative amount of Gadd45p expression was calculated from semi-quantitative analysis of
the Westaem blots using densltometry (B). Gadd45 mRNA expression was measured by gPCR (C). Histo-immunochemical analysis of Gadd45f
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infected mice; AU: arbitrary units; lesion: E multilocularis metacestode and surrounding immune infiltrate; close: liver parenchyma close to E.

multilocularis lesion.
doi:10.1371/journal.pone.0030127.9003

Expression of Gadd45y in the liver of mice during
E. multilocularis infection

As shown in Figure 8A, before day60, Gadd45y mRNA
expression was unchanged: it then increased from day60 (~3.23-
fold) to 360 (~3.47-fold) and peaked at dayl80 (~7.86-fold)
post-infection; it was significantly different between E. multi-
loeularis-infected and non-infected mice at days 180 and 360
post-infection (P << 0.05). As shown in Figure 8B, Gadd45y
expression was observed in periparasitic infiltrating lymphoeytes
at day180; it increased inside the lesion at days 270 and 360.
Within the liver parenchyma close to the lesion and peri-
parasitic infiltrate, Gadd45y expression was observed at day90
and markedly increased at days 180, 270 and 360 post-infection,
with staining intensitics from “moderate™ to “strong”™. No liver
cell positive for Gadd45y was observed in the livers of non-
infected mice.

‘.@: PLoS ONE | www.plosone.org

Activation of caspase 3 in the liver of mice during
E. multilocularis infection

Caspase 3 activation, a marker of the apoptotic protease
cascade, was measured by western blotting, qPCR and immuno-
histochemistry. As shown in Figure 9A which shows immunoblot-
ting with anti-caspase 3 (35kDa) and anti-cleaved caspase 3 (17
and 19kDu), cleaved caspase 3 was significantly increased at days
90, 270 and 360 post-infection. As shown in Figure 9B, before
day60, caspase 3 mRNA level was unchanged; it then increased
from day60 (~1.43-fold) to 270 (~2.98-fold), peaked at day90
(~3.70-fold), and decreased to the baseline at day360. There was a
significant difference between £, multilocularis-infected and non-
infected mice at dayl80 post-infection (P << 0.01). As shown in
Figure 9C, in the periparasitic infiltrate, caspase 3 and cleaved-
caspase 3 expression were observed in the lymphocytes at day90; it
then increased inside the lesion from dayl80 to 360. Within the
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Figure 4. Cyclins A, B1, D1 and E expression in the liver of mice during £ muiltilocularis infection. Western blot analyses were performed
on lysates with antibodies that recognize cyclins A, B1, D1 and E (A). Relative amount of cyclins A, B1, D1 and E expression was calculated from semi-
quantitative analysis of the Western blots using densitometry (B). Cyclins A, B1, D1 and E mRNA expression was measured in the liver from E.
multilocularis infected or non-infected mice by gPCR(C). "P<0.05 versus control. con, control, non-infected mice; Em, E. multilocularis infected mice;
AU: arbitrary units.

doi:10.1371/journal.pone.0030127.g004

liver parenchyma close to the lesion and peri-parasitic infiltrate, apoptosis were observed at day180; the number of apoptotic
caspase 3 and cleaved-caspase 3 expression was observed at days hepatoceytes significantly increased in a time-dependent manner up
60 and 90; it then markedly increased at days 270 and 360 post- to day360 post-infection: during the late stage of infection,

infection, with staining intensitics from “moderate™ to “strong™. TUNEL staining intensities ranged from “weak™ to “moderate”.

Minimal immunostaining for caspase 3 and cleaved-caspase 3 was No apoptotic liver cells were observed in the livers of the non-

observed in the livers of non-infected mice. infected mice.

TUNEL-positive cells in the liver of mice during Discussion

E. multilocularis infection Changes in the metabolic pathways involved in the regulation of
To determine whether cells exhibited DNA strand breakage hepatic cell proliferation and growth arrest, and especially in the

during Emultilocularis infection, and could thus be considered MAPKs system, have been extensively studied in infectious/

apoptotic, the TUNEL assay was applied to the liver sections. As inflammatory conditions, especially of viral origin [36.37.38]. Very

shown in Figure 10, in the periparasitic infiltrate, some little is known of the influence of helminth parasites which develop

inflammatory cells with apoptosis were observed inside the lesion in the liver on the proliferation/growth arrest of the hepatocytes in
at days 180, 270 and 360. Within the liver parenchyma close to the infected liver. Until recently, no study had ever specifically
the lesion and peri-parasitic infiltrate, a few hepatocytes exhibiting addressed the issue of liver proliferation/regeneration and growth
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Figure 5. PCNA expression in the liver of mice during E. multilocularis infection. Western blot analyses were performed on lysates with
antibodies that recognize PCNA (A). Relative it of PCNA expression was calculated from semi-quantitative analysis of the Western blots using
densitometry (B). PCNA mRNA expression was measured by gPCR (C) and PCNA expression by hepatic cells (close to lesion) in the liver from E.
multifocularis infected or non-infected mice by histo-immunochemical analysis(arrow) (D). Final magnification, 400x. "P<:0.05 versus control. con,
control, non-infected mice; Em, E. multilocularis infected mice; AU: arbitrary units.

doi:10.1371/journal.pone.0030127.g005
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Figure 6. p53 expression in the liver of mice during £. multilocularis infection. Western blot analyses were performed on lysates from liver
samples with antibodies that recognize p53 (A). Relative amount of p53 expression was calculated from semi-quantitative analysis of the Western
blots using densitometry (B). p5S3 mRNA expression was measured in the liver from E multilocularis-infected or non-infected mice by qPCR (C).
“P<0.05 versus control. con, control, non-infected mice; Em, £. multilocularis infected mice; AU: arbitrary units.

doi:10.1371/journal.pone.0030127.g006

arrest/apoptosis after £, multilocularis infection. In this longitudinal
study using the murine experimental model of £ mudtilocularis
infection, we could show that, opposite to those involved in cell
proliferation and anti-apoptosis which were activated in the first
half of the infection course, metabolic pathways involved in growth
arrest and apoptosis were significantly activated in the liver of the
infected mice in the second half of the infection course (Figure 11),

In the present study, we could confirm the induction of p-
ERK1/2 and a parallel expression of Cyelin D1 and PCNA from
the beginning of infection and their persistence during the
progression of K. multilocularis growth in the liver during the first
2 stages of parasite development. This suggested that, as shown in

PLoS ONE | www.plosone.org

other models, activation of the ERKI1/2 pathway increased
hepatocyte DNA synthesis and was involved in the activation of
cell eyele [39.40,41]. Increased expression of PCNA in the hepatic
cells under the influence of E. multilocularis was constantly found in
wviv, in previous studies [ 33,34 | and in this study as well. PCNA is a
stable cell cycle-related 36 kDa nuclear protein - which s
increasingly expressed in late G1 and throughout S phase of the
cell eyele, Its rate of synthesis is correlated with the proliferative

rate of cells, and PCNA immunoblot and immunostaining can be
used to reliably define and map proliferating cells in animal and
human tissues [42.43]. Expression of PCNA in the liver
hepatoeytes of both infected and non-infected mice at days 2

January 2012 | Volume 7 | Issue 1 | e30127
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Figure 7. p21 expression in the liver of mice during E. multilocularis infection. W were p d on lysates from liver
blots using densitometry (B). p21 mRNA expression was measured by gPCR (C). Histo-i chemical analysis of p2 was performed on
tissue samples: p21 expression was observed in infiltrating lymphocytes (lesion) and fibroblast-like cells (lesion) but also in hepatic cells (close to
lesion) in the liver from E. multilocularis infected mice (arrow) (D). The arrowheads indicate the parasitic lesions in the liver of infected mice (“lesion”

row). Final magnification, 400%. "P<0.05 versus control. con, control, non-infected mice; Em, E multilocularis infected mice; AU: arbitrary units; lesion,

E. multilocularis metacestode and surrounding immune infiltrate; close, liver parenchyma close to lesion.

doi:10.1371/journal.pone.0030127.g007

and 8 after infection clearly shows the regeneration process induced
by the injection in the liver, which constitutes, per se, a liver injury.
In our study, qPCR confirmed that intrahepatic PCNA synthesis
was more increased in £ mudtilocndaris-infected mice than in non-
infeeted mice as carly as day8, and that PCNA synthesis increase
was also correlated with £ mudtiloculars development until day 180,
Then we alko found that the induction of p-JNK induced by
metacestode components we observed in vito in a previous study
[33] began at the end of the middle stage of infection and remained
markedly increased at its late stage (up to | year). Such activation
parallcled an up-regulation of p53, p21, Gadd45y, an increased
expression of cleaved-caspase 3, an increase in the number of
TUNEL-positive (apoptotic) cells in the lesion and in the liver
parenchyma, and a down-regulation of PCNA and Cyclin A.
Activation of the metabolic pathways which govern growth arrest
and apoptosis also paralleled the previously described decrease of
lymphocyte proliferation and of cytokine production observed at the
late stage of experimental infection [10.11.12].

Accumulated data have suggested that the stress- and cytokine-
inducible Gadd45 family proteins (Gadd45o, Gadd45p, Gadd45y)

@ PLoS ONE | www.plosone.org

serve similar but not identical functions along various pro- or anti-
apoptotic and growth-suppressive pathways [44]. Gadd45f, which
interacts with critical cell cycle regulatory proteins, such as PCNA,
Cdkl and Cyclin BI, plays an active role in cell eycle adjustment
127.3545]. From our previous microarray analysis, we could
observe Gadd45B up-regulation at days 90 and 180 in the murine
AE model [34], which highly suggested that up-regulated
expression of Gadd45p gene might actually be a trigger for
hepatic cell survival. Our present study showed that Gadd45p
mRNA was significantly increased from day60 to 180. Both
immunostaining and immunoblotting confirmed that Gadd45p
protein was actually expressed in the liver during the same period.
especially in the vicinity of the metacestode. Interestingly,
Gadd45p is able to inhibit TNF-g-induced eytotoxicity and Fas-
induced apoptosis [19.46.47], both of which were showed to be
expressed at the periphery of the periparasitic granuloma, at the
border of the liver parenchyma, in human AE [3.48]. A recent
study has demonstrated that ERK and Gadd45p are closely
related to NF-kB activity, forming a loop-ike connection to
increase cell survival after lethal damage induced by ionizing

9 January 2012 | Volume 7 | Issue 1 | e30127
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Figure 8. Gadd457 expression in the liver of mice during £ multilocularis infection. Gadd45y mRNA expression was measured by gPCR (A).
Histo-immunochemical analysis of Gadd45y expression was performed on tissue samples. Gadd45y expression was observed in infiltrating
lymphocytes (lesion) and hepatic cells (close to lesion) in the liver from E. multilocularis-infected or non-infected mice (arrow) (B). The arrowheads
indicate the parasitic lesions in the liver of infected mice (“lesion” row). Final magnification, 200 x. “P<0.05 versus control. con, control, non-infected
mice; Em, £ multilocularis infected mice; AU: arbitrary units; lesion, E. multilocularis metacestode and surrounding immune infiltrate; close, liver

parenchyma close to £ multilocularis lesion.
doi:10.1371/journal.pone.0030127.g008

radiation [49]. Taken together, these observations suggest that
activation of ERK1/2, Gadd45p and Cyclin A are able to interact
and promote hepatocyte anti-apoptosis at the middle stage of
infection. Gadd45y is a critical and essential mediator of apoptosis
induction among the three Gadd45 isoforms because Gadd45y
has strongly pro-apoptotic roles at all times [50]. Gadd45y may
interact with MTKI/MEKK4, which in turn activate both JNK
and p38 leading to apoptosis in response to environmental stresses
151,52,53]. Our data obtained during the course of infection
suggested a sequential activation of, first, Gadd45 in the first
stages of infection, and, then, of Gadd45y in the late stage of
infection: however, the factors which are responsible for the shift to
Gadd45y expression after day180 of infection are unknown. Our
present study showed that, like Gadd45y expression, activation of
JNK was observed from day 180 to 360. Generally, JNK acts as a
critical mediator of hypoxia/reoxygenation-induced apoptosis and
also of TNF-induced apoptosis by glutathione depletion in
hepatocytes [54.55]. Our data also suggest that p33-dependent
mechanisms (p53-p21 and p53-Gadd45y signaling pathways) may
be involved following £ multilocularis infection to induce hepato-
cyte growth arrest/apoptosis. Our data regarding TUNEL-
positive cells and elevation of cleaved-caspase 3 highly suggest
that hepatocyte apoptosis is a significant event at the late stage of
infection. These observations are consistent with the results of
previous studies which showed that apoptosis-mediated damage
was present in other parasitic discases such as Chagas discase,
toxoplasmosis, leishmaniasis, schistosomiasis due to Schistosoma

-@ PLoS ONE | www.plosone.org

mansoni, and cerchral malaria  [56,57,58.59.60]. Hepatocyte
apoptosis at the late stage of infection could result from either
toxic by-products originating from the parasite or from parasite-
induced inflammation. But unlike growth arrest/apoptosis, the
activation of hepatocyte proliferation/anti-apoptosis processes we
observed in the same experimental mice appears to be a less
common phenomenon, which could represent one of the
specificities of K. multilocularis infection at its carly stages.
Hepatocytes suffering sublethal injury have the capacity to
activate an internally-triggered cell regeneration mechanism and
our previous studies as well as this one have brought evidence that,
as it also occurs during viral infection or toxic injury [61], this
regeneration mechanism was also operating in £ multilocularis
infection [33,34], and was especially prominent at the first stages
of infection, as was shown in experimental mice until day180 after
infection. Liver regeneration is controlled by a wide array of
signaling factors and plays a key role in recovery after acute and
chronic liver injury. Hepatic cell proliferation is essential to
enhance or restore hepatic function [62,63]. Although hepatocyte
proliferation is often mediated by the injury/regeneration
response, however, in other circumstances it is part of an adaptive
response to stress stimuli which do not lead to cell death (direct
hyperplasia). This proliferative response is regulated by cell cyele
regulated proteins [64]. In AE. influence of the parasite on
hepatoeyte proliferation (and/or anti-apoptosis) is supported by
the up-regulation of Cyclins A, Bl, D1 and Gadd45f, which is
summarized in Figure 10. Until day180, ie. in the early and

January 2012 | Volume 7 | Issue 1 | e30127
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Figure 9. Activation of caspase 3 in the liver of mice during £ multilocularis infection. Western blot analyses were performed on lysates
from liver samples with antibodies that recognize caspase 3 and cleaved-caspase 3 (A). Caspase 3 mRNA expression was measured by qPCR (B). Histo-
chemical lysis of caspase 3 and cleaved-caspase 3 expression was performed on tissue samples. Caspase 3 and cleaved-caspase 3
expression was observed in infiltrating lymphocytes (lesion) and hepatic cells (close to lesion) in the liver from E. multioculans—lnfected or non-
infected mice (arrow) (C). The arrowheads indicate the parasitic lesions in the liver of infected mice (“lesion” row). Final magnification, 200 x. ~"P<0.01
versus control. con, control, non-infected mice; Em, E. multilocularis infected mice; AU: arbitrary units; lesion, E. multilocularis metacestode and
surrounding immune infiltrate; close, liver parenchyma close to E. multilocularis lesion.
doi:10.1371/journal.pone.0030127.g009

Figure 10. TUNEL assay in the liver during £ multilocularis infection. TUNEL assays were performed on the livers from E. multiloculari-infected
and non-infected mice. Some TUNEL-positive infiltrating lymphocytes (lesion) and hepatic cells(close to lesion) were found in the liver of infected
mice from day180 to 360; None was found at day60 and 90 (arrows). The arrowheads indicate the parasitic lesions in the liver of infected mice
(“lesion” row). No TUNEL-positive cells were seen in the liver of non-infected mice. Final magnification, 400 x. con, control, non-infected mice; Em, E.
multilocularis infected mice; AU: arbitrary units; lesion: E. multilocularis metacestode and surrounding immune infiltrate; close: liver parenchyma close
to E. multilocularis lesion.

doi:10.1371/journal.pone.0030127.g010
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Figure 11. Overall changes in the gene expression of cell proliferation/cell cycle proteins (a) and cell growth arrest/apoptosis
proteins (b) during the process of £ multilocularis-induced liver injury in mice.

doi:10.1371/journal.pone.0030127.g011

middle stages of infection, gene expression level of CyclinA was
increased in a time-dependent manner, while gene expression
levels of Cyelin BI and CyelinD1 were increased up to day30 and
then returned to the control level after day60. On the other hand,
no significant change in the expression of Cyclin E was observed at
any time during the period of observation. Up-regulation of
PCNA, Cyclin D1, A and Bl is related to the regulation of the
G1/S and G2/M phases [65.66]. which were previously reported
to increase biphasically after partial hepatectomy and other
parasitic infection [67.68]. The “late stage™ of infection, ie. alter
day180 after infection, has rarely been studied in the murine
model of secondary (or primary) £. multilocularis infection. In the
most susceptible mice, impairment of vital functions due to £.
multilocularis progression and metastases is fast and occurs between
day180 and 270, which makes studies difficult to interpret. In
addition, most of the studies addressed immunological mecha-
nisms of immune tolerance; since they were just failing at that late
stage [10.11,12], it was thus considered of less interest for that
purpose. As the experimental mice we are working with, albeit
quite susceptible to k. multiloculan's, have a prolonged survival until
day360, and because we observed activation of both proliferation
and apoptosis pathways at day 180, we decided to measure the
expression and/or activation of the components of these pathways
until day360. We were thus able to show the mirror image of
growth arrest/apoptosis versus proliferation/anti-apoptosis during
the natural course of metacestode progression in the liver
(Figure 12). These results might suggest that the proliferative
capability of hepatocytes was exhausted  during  continuously
lasting hepatic  damage, due to direet toxicity of parasitic
components and/or cytotoxic attacks by the immune system.
This exhaustion might also be due to the profound malutrition
(wasting disease/cachexia) observed in £, mudtilocularis-infected
mice in the advanced stage of the discase, and the altered ability of
liver cells to synthesize proteins, as suggested by the changes in the

PLoS ONE | www.plosone.org
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expression of many genes at this stage in the microarray analysis
we recently performed [34]. However, during the carly and
middle stage of infection, despite the presence of the metacestode
and its growth. very litde necrosis is observed on the liver
pathological sections in the experimental model; we could
confirm such observations [69]. Necrosis of the liver lesion is
not observed in all patients with AE: it has only been observed in
more advanced/severe cases, and was associated with suscepti-
bility markers and/or with expression of TNF-o by the
periparasitic macrophages [48]. On the other hand, the immune
tolerance generated by the presence of K. muldtilocularis metaces-
tode in the liver is associated with a poor development of NK
cytotoxicity and an inhibition of T-lymphocyte-dependent
cytotoxicity, despite the high proliferation potential of I-
lymphoceytes, the presence of numerous CD8 ‘T-lymphocytes in
the liver within the parasitic lesion, and the expression of the
appropriate ligands, such as MICA/B [70.71,72]. Such an
inhibition is possibly due to the combined influence of 1L-10 and
TGF-B production [7,73,74]. In addition, hepatocytes do not die
but do proliferate in response to parasite growth at the carly and
middle stages of infection, and we could observe a significant
increase in the expression and/or activation of the components of
the proliferation pathways by hepatic cells at that stage. Such
observations at least partially rule out a direct influence of
cytotoxic components, which would manifest itself at all stages of
parasite development. Similar “exhaustion™ at the late stage of
the discase has also been observed for lymphocyte proliferation
and cytokine secretion in  susceptible  experimental  mice
[10,11,12]. In patients with AE, incubation of peripheral blood
mononuclear cells with parasitic antigens has been shown to
induce significantly less proliferation in AE patients with severe
discase than in patients with abortive or surgically cured cases
|75]: taken together, these observations suggest a common
negative influence of parasitic components on all types of cell

January 2012 | Volume 7 | Issue 1 | e30127
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Figure 12. Schematic diagram summarizing the metabolic pathways involved in hepatocyte proliferation/anti-apoptosis and
growth arrest/apoptosis in the liver of mice with £ multilocularis infection.

doi:10.1371/journal.pone.0030127.g012

proliferation, which would become patent only at an advanced
stage of K. multiboculars development.
From day90 to 180 after infection, in the BALB/¢ mice, AE

vesicles have become fully fertile and exhibit a number of

protoscoleces: it might be hypothesized that this period represents
the critical phase when the maturation of the metacestode has
been achieved and after which the host is no longer required to
promote parasite growth and fertility. In our experiments, day90
and 180 represented the eritical steps when we still observed
expression of the proliferation pathway components and peaks in
the expression/activation of anti-apoptotic pathway components,

as well as beginning of increase in the expression/activation of

growth arrest/apoptotic pathway components. Then, growth
arrest/apoptotic pathways clearly overcome proliferation/anti-
apoptotic pathways. Our previous i it experiments showed that
such sequential events were not associated with any non-specific
“exhaustion”, which could only be observed i . They strongly
suggested that they are governed by components of parasitic
origin: activation of such pathways was observed in isolated
hepatocytes under the influence of components present in the
vesicle fluid and in the supernatants of metacestode axenic cultures
|33]. Future work should clucidate the nature of these components

PLoS ONE | www.plosone.org
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which would act in a sequential manner: 1) at the carly stage and
beginning of the middle stage of E. mudtioenlaris infection, they
would favor parasitic cell, liver cell and immune cell proliferation
and survival. and promote metacestode fertility and tolerance by
the host, and 2) after fertility has been acquired. at the end of
middle stage and all late stage of infection, they would contribute
to the dissemination of the protoscoleces and next steps of the
parasite cycle by favoring liver damage /apoptosis and subsequent
major impairment in protein synthesis and xenobiotic metabolism
|34, as well as immune deficiency [10,11,12,75], and eventually
lead to the host’s death.

In conclusion, this study is the first report which demonstrates a
coordinated activation of the proliferation/anti-apoptosis and
growth arrest/apoptosis mechanisms i vive during the course of £
multilocudaris infection. As suggested in a schematic diagram
(Figure 12): 1) at the ecarly stage of infection, activation of
ERKI1/2 and downstream targets such as CyelinD 1, A, Bl and
PCNA would favor hepatocyte proliferation, 2) at the middle stage
of infection, permanent activation of ERK1/2 and Cyclin A and
clevated Gadd45B expression may synergize to mediate an anti-
apoptotic response to enhance liver cell survival and prevent lethal
tissue damage induced both by the parasite itsell and cytokines

January 2012 | Volume 7 | Issue 1 | 30127



such as TNF-o, and 3) at the late stage of infection, activation of
JNK and the increased expression of p53, p2l, Gadd45y and
cleaved-caspase 3 would induce hepatocyte growth arrest/
apoptosis. These findings also give a rational explanation to the
clinical ohservations: 1) hepatomegaly of unusual size is frequent at
presentation; and an unexpected survival rate is ohserved after
major hepatic resection in AE patients [76], and 2) chronic liver
injury, necrosis, and hepatic failure in AE patients at an advanced
stage and in experimental animals [6,9]. They provide a molecular
basis for the balance between liver damage and repair in the
progression of K. multilocularis infection.

Materials and Methods

Ethics Statement

All animals received humane care in compliance with the
Medical Research Center’s guidelines, and animal procedures
were approved by the Animal Care and Use Committee and the
Ethical Committee of First Affiliated Hospital of Xinjiang Medical
University (20081205-2).

Experimental design

Pathogen-free female BALB/c¢ mice (8-10 wecks old) were
purchased from the Animal Center of Xinjiang Medical University
and were maintained in an air-conditioned animal room with a
12-h light/dark cycle and provided with rodent chow and water.
E. multilocularis metacestodes were obtained from intraperitoneal
lesions maintained in Meriones unguiculatus, and 0.1 mL of pooled
lesions (~1, 000 protoscoleces) was injected into the anterior liver
lobe of infected mice as previously described [69]. For ecach
autopsy time-point, ten experimentally infected mice were used in
E. multilocularis group (n = 10) and compared with five control mice
(n=35), which received an intra-hepatic injection of 0.1 mL of
saline in the anterior liver lobe using the same surgical procedure.
Mice were killed at days 2, 8, 30, 60, 90, 180, 270 and 360.

Tissue sampling

In E. multiloculars infected mice, liver tissue samples were taken
close to the parasitic lesions, i.c. 1-2mm from the macroscopic
changes due to the metacestode/granuloma lesion (white-yellowish
color), thus avoiding liver contamination with parasitic tissue and
infiltrating immune cells; in control mice, liver tissue samples were
taken from the same (anterior) liver lobe in the sham-injected arca.
Tissue fragments were separated into two parts and cither deep-
frozen in liquid nitrogen for western blot and gPCR or formalin-
fixed for immunohistochemistry. In addition, liver tissue samples
were also taken from the parasitic lesion (including periparasitic
liver tissue adjacent by 1 mm to the macroscopically visible
parasitic lesion) for histopathology and immunohistochemistry.

Pathology and parasitology

For histopathology livers were placed in 10% buffered formalin
and then embedded in paraffin. Five micrometer thick microtome
sections were prepared from each liver sample and stained with
hematoxylin-cosin. The sections were examined for the patholog-
ical changes generated by E. multilocularis and for hepatotoxicity.
The histological slides were evaluated blindly by two of the
authors.

Western blot analysis

Western blot analysis of cell lysates was performed by SDS-
PAGE using NuPAGE (Invitrogen, California, USA) followed by
transfer to PVDF membrane. Using the appropriate antibodies:
against total and p-ERKI1/2, p-JNK, p-38 (dilution 1:500, Cell
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Signaling technology, Massachusetts, USA), Gadd45p (dilution
1:800), Cyclins A, BI, D1 and E (dilution 1:500), PCNA (dilution
1:1000), p33, p21 (dilution 1:500, Santa Cruz, California, USA),
full length caspase 3 (35kDa) and large fragment of caspase 3
resulting from cleavage (17kDa) (dilution 1:500, Cell Signaling
technology, Massachusetts, USA), and GAPDH (dilution 1:1000,
Santa Cruz, California, USA) were detected using the Wester-
nBreeze Kit (Invitrogen, California, USA). The expression levels
of respective proteins (in “relative units™) in non-infected mice and
infected mice were quantified using Quantity One software (Bio-
Rad, Hercules, CA), according to a previously described
procedure [77].

Quantitative real-time PCR analysis (qPCR)

After removing contaminated DNA from the isolated RNA
using DNasel (Fermentas, Vilnius, Lithuania), 1 pg of total RNA
was reverse transcribed into ¢DNA in 20 pL reaction mixtures
containing 200U of Moloney murine leukemia virus reverse
transcriptase (MMLYV, Promega, Madison, USA); 100 ng per
reaction of oligo (d'T) primers; and 0.5mM cach of dNTPs, dATP,
dCTP, dGTP, and dTTP. The reaction mixture was then
incubated at 42°C for 1 hour and at 95°C for 5 min to deactivate
the reverse transcriptase.

The qPCR was run in a thermocycler (iQ5 Bio-Rad, Hercules,
CA) with the SYBR Green PCR premix (T'aKaRa, Dalian, China)
following the manufacturer’s instructions. Thermo-cycling was
performed in a final volume of 20 pL. containing 2 pL. cDNA and
10 pmol of each primer (Table 1). To normalize for gene
expression, mRNA expression of the housckeeping gene beta-actin
was measured. For every sample, both the housckeeping and the
target genes were amplified in triplicate using the following cycle
scheme: after initial denaturation of the samples at 95°C for
1 min, 40 cycles of 95°C for 5 s and 60°C (or other) for 30 s were
performed. Fluorescence was measured in every cycle, and a
melting curve was analyzed after the PCR by increasing the
temperature from 55 to 95°C (0.5°C increments). A defined single
peak was obtained for all amplicons, confirming the specificity of
the amplification.

Immunohistochemical staining

Paraffin-embedded liver tissue samples of control mice and
infected mice were examined to determine the expression and
distribution of p-ERK1/2, Gadd45B, PCNA, p21, Gadd45y,
caspase 3 and cleaved-caspase 3 protein at cach time points. All
sections were first deparaffinized and then incubated with 3%
hydrogen peroxide for 10 min to block the endogenous peroxidase
activity. After being washed with PBS and incubation for 1 hour
with 5% normal goat serum to reduce non-specific background
staining, the sections were incubated with the above mentioned
primary antibodies against p-ERK1/2 (dilution 1:50), Gadd458
(dilution 1:100), PCNA (dilution 1:300), p21 (dilution 1:50),
Gadd45y (dilution 1:200), caspase 3 and cleaved-caspase 3(dilution
1:100) at 4°C overnight. Immunoreactive proteins were visualized
using the appropriate anti-IgG secondary antibodies labeled with
horseradish peroxidase (Santa Cruz, California, USA) and the
chromogen 3'-diaminobenzidine (DAB, Zhongshan, Beijing,
China) as a substrate [5]. Negative controls were incubated without
primary antibodies but were otherwise subjected to all the
immunohistochemical procedures. Sections were examined mi-
croscopically for specific staining and photographs were taken
using a digital image-capture system (Leica, Solms, Germany); the
intensity of positive hepatocyte staining was classified on an
arbitrary scale including “negative”, “weak”, “moderate”, and
“strong’ staining.
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TUNEL analysis

Apoptosis in the livers of infected mice and non-infected mice
was further analyzed using a commereial kit (Roche, Mannheim,
Germany) based on the TdT-mediated dUTP-digoxigenin nick-
end labeling ('UNEL) of apoptotic cells. Five micrometer sections
of paraffin-embedded samples of liver were prepared as deseribed
above. Sections were examined microscopically for  specific
staining and photographs were taken using a digital image-capture
system (Leica, Solms, Germany) (the intensity of TUNEL-positive
hepatocyte staining was classed on an arbitrary scale from
“negative”™ to “strong™ staining).

Statistical analysis
All data were presented as the means with standard deviation

and analyzed using SPSS version 11.0 software (SPSS, Chicago,
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Main conclusions and remarks:

1) Within the early (day 2-60) and middle (day60-180) stages, CyclinBl and
CyclinD1 gene expression increased up to day30 and then returned to control level
after day60; Gadd45b, CyclinA and PCNA increased all over the period.

2) ERK1/ 2 was permanently activated.

3) Meanwhile, p53, p21 and Gadd45c gene expression, and caspase 3 activation,

gradually increased in a time-dependent manner.

4) In the late stage (dayl180-360), p53, p21 and Gadd45c gene expression were
significantly higher in infected mice; JNK and caspase 3 were activated. TUNEL

analysis showed apoptosis of hepatocytes.

5) No significant change in Cyclin E, p53 mRNA and p-p38 expression were
observed at any time.
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5. What is the dynamics of cytokine/chemokine expression in

the periparasitic immune infiltrate and adjacent liver?
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To address this question, we employed the intra-hepatic AE mouse model and
assessed the hepatic gene expression profiles of 18 selected cytokine and chemokine
genes using qRT-PCR in the periparasitic immune reaction and the subsequent
adjacent, not directly affected, liver tissue of mice from day 2 to day 360 post
intra-hepatic injection of metacestode. DNA microarray analysis was also used to get
a more complete picture of the transcriptional changes occurring in the liver
surrounding the parasitic lesions.

Background and objectives:

The periparasitic granuloma is a major characteristic of AE pathology in humans
and in experimentally infected mice. Despite the alleged responsibility of the
granulomatous response in the images obtained by functional imaging techniques (e.g.
through Fluoro-deoxy-glucose-Positron Emission Tomography) and their well-known
role in the complications of AE, a comprehensive picture of the cytokine/chemokine
immune response occurring in situ, in the periparasitic granuloma, had never been
evidenced experimentally. And although their crucial role in cell homing to the
inflammatory reaction sites is well known in other infection models, chemokines and
IL-17 had received little attention in E. multilocularis infection. Our aims were to 1)
give a comprehensive appraisal of the various components, especially cytokines and
chemokines, involved in immune cell homing around the E. multilocularis
metacestode, at the various successive stages of disease, and 2) to study the parasite
and the host immune response in their usual context, the liver, in the experimental
mouse model of hepatic secondary infection. Eighteen key-cytokines and
-chemokines were measured both in the lesion, including the periparasitic infiltrate,

and in the surrounding liver, close to the lesions, using qRT-PCR.
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Abstract

Pathogenesis of chronically developing alveolar echinococcosis (AE) is characterized
by a continuous, granulomatous, periparasitic infiltration of immune cells surrounding
the metacestode of Echinococcus multilocularis (E.multilocularis) in the affected liver.
A detailed cytokine and chemokine profile analysis of the periparasitic infiltrate in the
liver has, however, not yet been carried out in a comprehensive way all along the
whole course of infection in E. multilocularis intermediate hosts. We thus assessed
the hepatic gene expression profiles of 18 selected cytokine and chemokine genes
using qRT-PCR in the periparasitic immune reaction and the subsequent adjacent, not
directly affected, liver tissue of mice from day 2 to day 360 post intra-hepatic
injection of metacestode. DNA microarray analysis was also used to get a more
complete picture of the transcriptional changes occurring in the liver surrounding the
parasitic lesions. Profiles of mRNA expression levels in the hepatic parasitic lesions
showed that a mixed Th1/Th2 immune response, characterized by the concomitant
presence of IL-12a, IFN-y and IL-4, was established very early in the development of
E. multilocularis. Subsequently, the profile extended to a combined tolerogenic
profile associating IL-5, IL-10 and TGF-B. IL-17 was permanently expressed in the
liver, mostly in the periparasitic infiltrate; this was confirmed by the increased mRNA
expression of both IL-17A and IL-17F from a very early stage, with a subsequent
decrease of IL-17A after this first initial rise. All measured chemokines were
significantly expressed at a given stage of infection; their expression paralleled that of
the corresponding Th1, Th2 or Th17 cytokines. In addition to giving a comprehensive
insight in the time course of cytokines and chemokines in E. multilocularis lesion, this
study contributes to identify new targets for possible immune therapy to minimize E.
multilocularis-related pathology and to complement the only parasitostatic effect of
benzimidazoles in AE.

Key words: Cytokines; Chemokines; 1L-17; E. multilocularis
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Author summary

Previous studies on peripheral lymphocytes showed that a specific time-dependent
cytokine secretion evolved during the course of progressing AE in mice, with an
initial Thl profile, followed by a combined Th1-Th2 one. However, such a course had
not yet been studied in the liver, in the periparasitic immune infiltrate surrounding the
parasitic vesicles. Chemokines as well as IL-17 which are likely to be involved in the
homing and persistence of inflammatory cells in the periparasitic area, had never been
studied. Our data yield a dynamic and comprehensive picture of the immunological
process characteristic of E. multilocularis infection. It shows that the combined
cytokine profile associating IL-12a, IFN-y but also the “starter-Th2 cytokine”, IL-4, is
established very early in the periparasitic infiltrate, and that subsequent decrease in
IL-12a and TNF-a is accompanied by tolerogenic profile, IL-10, IL-5 and TGF-f. For
the first time, it shows the major involvement of different chemokines and of IL-17.
These results represent the basis of knowledge on which complementary studies
focused onto individual components of the immune response to E. multilocularis may
be designed. They will also serve as a basis to design immune manipulations that
could be used for the treatment of AE in patients.
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Introduction

Alveolar echinococcosis (AE) is a rare, but - if remaining untreated or treated too
late- severe and fatal zoonotic helminthic disease, predominantly caused not only by
the direct hepatic damage which follows the continuous tumor-like proliferation of the
larval stage (metacestode) of Echinococcus multilocularis (E.multilocularis), but also
indirectly by the intense local granulomatous immune response which surrounds the
parasitic tissue [1]. Granuloma, extensive fibrosis, and necrosis are actually the
characteristic pathological findings in E. multilocularis infection. The lesions,
composed both of the multiple vesicle-forming metacestode and of cells homing from
lymphoid organs and permanently settling around the metacestode, behave like a
slow-growing liver cancer, progressively invading the liver, then the neighboring
tissues and also metastazing to other organs [2]. Pathological changes in AE are
associated with an intense infiltration by immune cells, i.e. macrophages of various
functional types, including the so-called “epithelioid cells” and “giant cells”, typical
of granulomas [3] and T lymphocytes. CD4" T lymphocytes are present from the early
stage of parasite growth and CD8 T lymphocytes are known to home to the
periparasitic infiltrate secondarily and to be associated with parasite tolerance and
severity of the disease [1,2,3,4]. Non-immune cells such as fibroblasts and
myofibroblasts which are crucial for the development of fibrosis are also attracted by
the host’s immune response around the parasite.

It has been shown that E. multilocularis infection induced numerous pathways of
the immune response; the involvement of individual cytokines has been rather
extensively studied within the past 2 decades both in humans and in experimental
rodents [1]. In the immune-competent but susceptible host, E. multilocularis induces
skewed Th2-responses [5]. In chronic AE, Th2-dominated immunity is associated
with increased susceptibility to disease, while Thl cell activation induces a rather
protective immunity which involves IFN-a [6] and IL-12 [7] as initiating cytokines,
and IFN-y [8] and TNF-a [9,10] as effector cytokines. During the course of E.
multilocularis infection, as studied in mice, an initial acute stage Thl response
gradually switches to an increasingly dominating Th2 response; the thus mostly
mixed Th1/Th2 profile of the chronic stage is associated with the expression of
pro-inflammatory cytokines in the granuloma [11,12]. Th2 cytokines down-modulate
the Thl response which nevertheless decreasingly persists all along the infection until
the late pre-mortem immune-suppressed stage of AE [11]. The metacestode actively
achieves a tolerance status through the induction of regulatory cytokines, such as
IL-10 and TGF-UB [11]. However, this bulk of information has mostly been obtained

from studies on peripheral blood mononuclear cells (in humans), and on spleen and

80



lymph node cells in the experimental model [5,13,14]. In addition, nothing was
known until very recently about role of IL-17 and Thl7 cells [13,14] during E.
multilocularis infection. Only two studies have given some insight into chemokine
[15,16] and IL-17 [17] involvement in E. multilocularis infection, respectively; and
this was done only in AE patients, and never in the infected liver tissue; the actual
involvement of IL-17 and chemokines in the lesions is thus unknown. The time course
of IL-17 expression is also unknown since human AE is usually discovered late, i.e.
years after E. multilocularis infection of the patients, and findings in humans reflect
only the late chronic stage of infection. Studies in the experimental mouse model are
therefore necessary to dissect the various stages of E. multilocularis infection
regarding the host’s immune response.

In the present report, our objectives were to 1) give a comprehensive appraisal of
the various components, especially cytokines and chemokines, involved in immune
cell homing around the E. multilocularis metacestode, at the various successive stages
of disease, i.e. early, middle and late stages as defined previously [18,19], and 2) to
study the parasite and the host immune response in their usual context, the liver, in the
experimental mouse model of hepatic secondary infection. Eighteen key-cytokines
and -chemokines were measured both in the lesion, including the periparasitic
infiltrate, and in the surrounding liver, close to the lesions, using qRT-PCR. To get a
more complete picture of the influence of the parasite-induced host’s immune
response on the host’s liver, a microarray technique was also used to study the

surrounding liver tissue.

Materials and methods

Ethics Statement
The animal study was performed in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals. The protocol was approved by the
Animal Care and Use Committee and the Ethical Committee of First Affiliated
Hospital of Xinjiang Medical University (20081205-2). All surgery was performed
under sodium pentobarbital anesthesia, and every effort was made to minimize
suffering.
Mice and experimental design

Pathogen-free female BALB/c mice (8—10-week old) purchased from the Animal
Center of Xinjiang Medical University (accredited by the ALLLAC) were housed in
cages with a 12-h light/dark cycle and provided with conventional rodent chow and
water ad libitum. All animals received human care in compliance with the Medical
Research Center’s guidelines, and animal procedures were approved by the Animal

Care and Use Committee and the Ethical Committee of First Affiliated Hospital of
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Xinjiang Medical University. Echinococcus multilocularis (E. multilocularis)
metacestodes were obtained from intraperitoneal lesions maintained in Meriones
unguiculatus, and 0.1 mL of pooled lesion suspension was injected into the anterior
liver lobe of mice to be experimentally infected. For each autopsy time-point, eight
experimentally infected mice were used in the E. multilocularis group (n=8) and
compared with five control mice (n=5), which received an intra-hepatic injection of
0.1 mL sterile saline solution into the anterior liver lobe using the same surgical
procedure. Mice were killed at 2, 8, 30, 60, 90, 180, 270 and 360 days p.i.,
respectively.
Tissue sampling of the parasitic lesion and surrounding granuloma, and of
adjacent non-affected (periparasitic) liver tissue; and histological examination

In E. multilocularis infected mice, liver samples were taken both from (1) the
parasitic lesion (including liver tissue directly adjacent by 1 mm to the
macroscopically visible parasitic lesion, subsequently designated as “parasitic lesion
tissue”) for qRT-PCR, histopathology and immunohistochemistry (Zhang, 2012); and
from (2) the liver tissue relatively close to the lesion (subsequently designated as
“periparasitic liver tissue”), i.e. starting 2 mm from the macroscopic changes due to
the metacestode/granuloma lesion, thus avoiding gross contamination of liver tissue
by parasitic E.multilocularis tissue/cells and correspondingly involved infiltrating
host immune cells, for both qRT-PCR and microarray analyses. Tissue fragments
were directly deep-frozen in liquid nitrogen. Control samples were taken from the
same (anterior) liver lobe from non-infected control mice.
RNA extraction and cDNA synthesis

‘Lesion’ and ‘periparasitic liver’ tissue samples of each mouse were processed
and analyzed separately. Approximately 50 mm’ —sized tissue samples from E.
multilocularis infected mice or same size liver tissue samples from control mice were
used to extract total RNA using TRIzol reagent (Invitrogen, Gaithersburg, MD, USA).
The quality of RNA was confirmed by formaldehyde agarose gel electrophoresis, and
the concentration of RNA was determined by reading the absorbance at 260/280nm.
cDNA was synthesized from 1ug of RNA in the presence of ribonuclease inhibitor
(Promega, Shanghai, China), dNTPs, Oligo(dT) 18 primers, and RevertAid™
M-Mulv reverse transcriptase in a total of 25 pL reaction mix.
Quantitative real-time RT-PCR

gRT-PCR was run in a thermocycler (1Q5 Bio-Rad, Hercules, CA, USA) with
the SYBR Green PCR premix (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. Thermocycling was performed in a final volume of 20
uL containing 2 pL cDNA and 10 pM of each primer (Table 5.1). To normalize for
gene expression, mMRNA expression of the housekeeping gene B-actin was measured

in parallel. For every sample, both the housekeeping and the target genes were
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amplified in triplicate using the following cycle scheme: after initial denaturation of
the samples at 95 °C for 1 min, 40 cycles of 95 °C for 5 s and 60 °C (or other) for 30 s

were performed. Fluorescence was measured in every cycle, and a melting curve was

analyzed after the PCR by increasing the temperature from 55 to 95 °C (0.5 °C

increments). A defined single peak was obtained for all amplicons, confirming the

specificity of the amplification.

Table 5.1 Primers and cycling parameters of qRT-PCR

Gene

B-actin

TNF-a

IL-1B

IL-6

IFN-y

CXCL9

CXCL10

CXCL12

IL-4

IL-5

CCLS8

CCL12

CCL17

IL-17A

IL-17F

Foxp3

TGF-B 1

Gene bank
accession
NM_007393
NM 013693.2
NM_008361.3
NM_031168.1
K00083.1
NM_008599.4
NM 021274.1

NM_021704.3

M25892.1

NM_010558.1

NM_021443.3

NM_011331.2

NM 0113323

NM 010552.3

NM_145856.2

NM_054039.1

NM 011577

Primer Sequences

F:5'-AACTCCATCATGAAGTGTGA-3'
R:5'-ACTCCTGCTTGCTGATCCAC-3'

F: 5'- TATGGCCCAGACCCTCACA-3'

R: 5-GGAGTAGACAAGGTACAACCCATC-3'
F: 5'-ATCTCGCAGCAGCACATC-3'

R: 5'-CCAGCAGGTTATCATCATCATC-3'

F: 5-TTCCATCCAGTTGCCTTCTTG-3'

R: 5-TCATTTCCACGATTTCCCAGAG-3'

F: 5“-ACTCAAGTGGCATAGATGTGGAAG-3'
R: 5-GACGCTTATGTTGTTGCTGATGG-3'

F: 5'-CTGGAGCAGTGTGGAGTTC-3'

R: 5-CCGTTCTTCAGTGTAGCAATG-3'

F: 5-TTCTGCCTCATCCTGCTG-3'

R: 5-AGACATCTCTGCTCATCATTC-3'

F: 5'-CAGAGCCAACGTCAAGCATC-3'

R: 5'-CGTCTTATCCAAGTGGTTTATGGAA-3'
F: 5-AGTTGTCATCCTGCTCTTC-3'

R: 5-GTGTTCTTCGTTGCTGTG-3'
F:5-TGAGGCTTCCTGTCCCTACTCATAA-3'
R:5'-TTGGAATAGCATTTCCACAGTACCC-3'

F: 5-CTTTGCCTGCTGCTCATAG-3'

R: 5'-GCACTGGATATTGTTGATTCTC-3'
F: 5'-GCTACCACCATCAGTCCTC-3'

R: 5-CTGGCTGCTTGTGATTCTC-3'

F: 5'-TCAGTGGAGTGTTCCAGGGATG-3'
F: 5'-GGCGTCTCCAAATGCCTCA-3'

F: 5-GTGTCTCTGATGCTGTTG-3'

R: 5-AACGGTTGAGGTAGTCTG-3'
F:5'-GTCGCCATTCAGCAAGAAAT-3'

R: 5-CAGCCAACTTTTAGGAGCATCT-3'

F: 5-GAGAGGCAGAGGACACTCAATG-3'

R: 5-GCTCAGGTTGTGGCGGATG-3'
F:5-GTGTGGAGCAACATGTGGAACTCTA-3'
R: 5-TTGGTTCAGCCACTGCCGTA-3'

Annealing
temperature
60.0 °C
60.0 °C
60.0°C
60.0 °C
60.0°C
60.0°C
60.0°C
60.0°C

55.0°C

60.0°C

60.0°C

60.0°C

60.0°C

60.0°C

60.0°C

60.0°C

60.0°C

Expected
Size
248bp
199bp
193bp
176bp
167bp
167bp
200bp
152bp

165bp

119bp

150bp

135bp

151bp

193bp

108bp

143bp
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IL-10 NM_010548.2 F:5'-GCCAGAGCCACATGCTCCTA-3' 60.0°C
R:5'-GATAAGGCTTGGCAACCCAAGTAA-3'

145bp

Microarray data analyses and annotation of gene function

RNA extracts from 3 infected and 3 control mice were selected for array

hybridization, corresponding to 30 days, 60 days, 90 days and 180 days after infection.

Total RNA was purified with NucleospinH RNA Clean-up Kit (Macherey-Nagel,
Germany) and each purified RNA sample isolated from an individual sample was run
on a single microarray. All microarray procedures were done according to a
previously described procedure [22].
Immunohistochemical analyses

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded
tissue: 4um tissue sections were de-paraffinized in xylene and rehydrated in gradual
dilutions of ethanol. Endogenous peroxidase was blocked with 3% hydrogen
peroxide. To increase staining, sections were pre-treated by microwave heating for 15
min in antigen unmasking solution (pH 6.8, 0.1 M citrate buffer, Zhongshan Jinqiao
Biology Corporation, Beijing). To block non-specific background, the sections were
incubated with non-immune goat serum for 30 min. Sections were then incubated
overnight at 4°C with the primary antibody diluted in pH 7.3 phosphate-buffered
saline (PBS) (IL-17 1:100 (Santa Cruz Corporation, CA, USA). After 3 washes in
PBS, the sections were subsequently incubated with horseradish peroxidase
conjugated host-specific secondary antibodies and 3,3’-diaminobenzidine was used as
chromogen. Sections were counterstained with hematoxylin for 5 min, dehydrated,
and covered with slips. For all samples, negative controls consisted of substitution of

the isotype-matched primary antibody with PBS.

Expression of the data and statistical analysis

Immunostaining for IL-17 was semi-quantified by calculating “expression
scores” that consider both staining intensity and the percentage of cells stained at a
specific range of intensities. A score of zero indicated the percentage of positive cells
< 5%, 1+ = 5-25%, 2+ =25-50%, 3+ =50-75%, 4+ >75%. The staining intensity of
each specimen was judged relative to the intensity of a control slide including an
adjacent section stained with an irrelevant negative control antibody that was matched
by species and isotype to the specimen. Staining of the section labelled with the
negative reagent control was considered as background. A score of zero indicated no
staining relative to background, 1 + = weak staining, 2 + = moderate staining, and 3 +
=strong staining. According to standard pathology practices, staining intensity was
reported at the highest level of intensity observed in all tissue elements, except the

distinctive tissue element for which an expanded scoring scheme was reported. The
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“expression scores” were calculated by multiplying the percentage of positive cells
(0—4) and the staining intensity scores (0—3). For example: for a specimen with 30%
of positive cells (3+), and a moderate staining intensity (2+), the “expression
score”was3x2=6. Three pathologists read the sections and established the scores, and
they were blinded to each other's results. Cells with a positive immunostaining were
counted in five random visual fields of 0.95 square mm each, at initial magnification:

x 20, for each sample.

All the data were analysed by SPSS 17.0. mRNA expression of the various
cytokines, chemokines, and other components of the immune response of E.
multilocularis infected mice were compared to the results obtained on the liver
samples taken from control mice in the sham-infected liver lobe at the same time
point. The results were presented as means = SD. One-way ANOVA and Student’s
t-test were used to compare the differences between groups, and Spearman’s rho was
used to analyse the correlation coefficients. P< 0.05 was considered to indicate
statistical significance.

Results

Hepatic histopathology during E. multilocularis-infection

From day 2 to day 360 post-infection (p.i.) with E. multilocularis, the hepatic
parasitic lesions showed the various morphological patterns specific to the different
stages of murine AE, as described in a previous study using the same experimental
mice (data not shown) [18,19]. According to previous reports on the course of E.
multilocularis secondary infection in experimental susceptible mice [18,19], the 3
main stages were defined as follows: early stage, from infection to day 60; middle
stage from day 60 to day 180; and late stage from day 180 to day 360.
Innate immunity and pro-inflammatory cytokines

In E. multilocularis ‘parasitic lesions’ (i.e. including adjacent infiltrates, as
defined in the Materials and Methods section), qRT-PCR showed that IL-12a mRNA
expression was 6.3-fold higher at as early as day 2 p.i. than in control mice (Figure
5.1A). There was a significant difference between E. multilocularis-infected mice and
control mice, at the early stage of infection, at time points of 2-, 8- and 30-day p.i.
(P<0.05). In the ‘periparasitic liver tissue’ (i.e. liver parenchyma close to the lesions,
as defined in the Materials and Methods section), IL-12a mRNA expression was also
higher than in control livers from day 8 to day 30 p.i.. There was a significant
difference at 30-days p.i. (P<0.05). Changes in IL-12a mRNA expression with time
are shown in Figure 5.1A.

In E. multilocularis lesions, qRT-PCR showed that TNF-a mRNA expression
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was increased at the early stage of infection, especially at days 2 and 8 p.i.; it
remained high at 30 days p.i. but decreased subsequently (Figure 5.1B). There was a
significant difference between E. multilocularis infected mice and control mice, at the
time points of 2-, 8- and 30-day p.i. (P<0.05). In the periparasitic liver tissue, TNF-a
mRNA expression did not change from day 2 to day 360 (Figure 5.1B). In the lesions,
there was an increase in IL-1f mRNA expression all over the infection course, from
day 2 to day 360 p.i.,, with a peak at 60 days p.i.. IL-13 mRNA expression was
2.5-fold higher at day 2 and 7.6-fold higher at day 60 (Figure 5.1C), when compared
to control mice. There was a significant difference between E. multilocularis infected
mice and control mice, at the time points of 30-, 60-, 90-, 270- and 360-days p.i. (P<
0.05). In the liver tissue, IL-1B mRNA expression increased later, from 2.9-fold at day
30 to 4.7-fold at day 90 (Figure 5.1C), and was at its maximum at the middle stage of
infection. There was a significant difference at the time points of 30-, 60- and 90-days
p.i. (P<0.05). In the lesions, IL-6 mRNA expression was markedly increased as early
as 2 days; then it relatively decreased at day 30 p.i., then re-increased very
significantly from day 90 p.i. (4.8-fold) (Figure 5.1D). There was a significant
difference between E. multilocularis infected mice and control groups, at the time
points of 2-, 60-, 90-, 180- and 360-days p.i. (P< 0.05). In the liver, IL-6 mRNA
expression increased at the very early stage of infection, 1.8-fold at day 2 and1.9-fold
at day 8 (Figure 5.1D); it returned back to normal at day 30, and re-increased from
day 60 to day 90, then a high level was maintained until day 360.
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Figure 5.1 IL-12a and pro-inflammatory cytokine gene expressions in the liver of mice
during E. multilocularis infection
Course of [L-1200 mRNA expression measured by q RT-PCR (A).Course of TNF-a mRNA
expression measured by qRT-PCR (B).Course of IL-13 mRNA expression measured by q
RT-PCR (C).Course of IL-6 mRNA expression measured by qRT-PCR (D).
a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’ versus ‘Control’. *P< 0.05;
**P<(.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and
surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the FE.

multilocularis lesion, but excluding macroscopically visible liver tissue alterations.

AU: arbitrary units.

Th1 cytokines and related chemokines
Thl cytokines

In the lesions, an increase in IFN-y mRNA expression was observed from day 2
to day 360 p.i., with a peak at 30 days p.i.. Except for an apparent decrease at day 8§,
IFN-y mRNA-expression was especially increased at the early stage of infection, from
3.6-fold at day 2 to 4.8-fold at day 30 (Figure 5.2A). There was a significant
difference between E. multilocularis infected mice and control mice, at the time
points of 2-, 30-, and 60-day p.i., but also at the latest stage, 360- day p.i. (P<0.05).
In the liver, IFN-y mRNA expression was increased from 2.4-fold at day 2 to 3.1-fold
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at day 30 (Figure 5.2A), but became abrogated at the late stage of infection, from 0.5-
fold at day 90 to 0.4 at day 360, compared to control mice. There was a significant
difference at the time point of 30-day p.i. (P< 0.05).
Thl-related chemokines

Expression of CXCL9 mRNA was observed from day 2 to day 360 p.i.. In the
lesions, CXCL9 mRNA expression was increased from day 90 to day 360, with a peak
of 9.75-fold at day 180 (Figure 2B), compared to control mice. There was a
significant difference between E. multilocularis-infected mice and control mice, at the
time points of 2-, 8-, 90-, 180- and 270-days p.i., i.e. at the late stage of infection (P<
0.05). In the liver, CXCL9 mRNA expression was increased by 1.72-fold at day 2 and
2.78-fold at day 8 (Figure 2B); it was decreased by 0.30- fold at day 30 and by
0.21-fold at day 60, then expression re-increased by 3.5- fold at day 90 compared to
control mice. There was a significant difference at the time points of 8- and 90-day p.i.
(P< 0.05). In the lesions of E. multilocularis-infected mice, CXCL10 mRNA
expression was increased by 1.6-fold at day 2; then levels progressively increased to a
peak (7.8-fold the levels in control mice) at day 90 p.i. (Figure 5.2C). There was a
significant difference between E. multilocularis infected mice and control mice, at the
time points of 30-, 60- and 90-days p.i. (P<0.05), i.e. at the middle stage of infection.
In the liver, CXCL10 mRNA expression was increased at day 60 (2.1-fold) and at day
90 (2.2-fold) (Figure 5.2C), and was lower both at the early stage and the late stage of
infection when compared to control mice. Expression of the mRNA of CXCLI12, a
chemotactic factor for lymphocytes, was observed from day 2 to day 360 p.i.. In the
lesions, CXCL12 mRNA expression was markedly increased as early as day 2
post-infection, when it reached a peak (11.6-fold); it remained elevated until day 60
(Figure 5.2D). There was a significant difference between E. multilocularis infected
mice and control groups, at the time points of 2-, 8- and 60-days p.i. (P<0.05). In the
liver, CXCL12 mRNA expression was increased early, from 1.1-fold at day 2 to
2.1-fold at day 8 (Figure 5.2D), and was lower than that observed in control mice at
the late stage, from day 90 to day 360. There was a significant difference at the time
points of 8- and 270-days p.i. (P<0.05).
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Figure 5.2 Thl-cytokine and related chemokine gene expressions in the liver of mice
during E. multilocularis infection
Course of [FN-y mRNA expression measured by qRT-PCR (A). Course of CXCL9 mRNA
expression measured by qRT-PCR (B). Course of CXCL10mRNA expression measured by
qRT-PCR (C). Course of CXCL12 mRNA expression was measured by qRT-PCR (D).
a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’ versus ‘Control’. *P<0.05;
**P<(0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and
surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E.

multilocularis lesion, but excluding macroscopically visible liver tissue alterations.

AU: arbitrary units.

Th2 cytokines and related chemokines
Th2 cytokines

In E. multilocularis lesions, IL-4 mRNA expression followed a biphasic curve: it
was increased early (3.8-fold at day 2), and was significantly different from that
observed in control mice at 2 and 8 days; but it relatively decreased at 30 p.i.; it then
re-increased and was still elevated at the late stage [4.2-fold at day 360; significantly
different from control mice (P< 0.05). (Figure 5.3A)]. In the liver, IL-4 mRNA
expression was increased compared to control mice [4.8-fold at day 8 and 3.2-fold at
day 60, significantly different from control mice (P< 0.05) (Figure 5.3A)]. In E.

multilocularis lesions, IL-5 mRNA expression was present from the early stage
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(2.3-fold at day 2); however (Figure 5.3B), there was a peak of 13.6-fold at day 90,
and a significant difference between E. multilocularis infected mice and control mice,
all over the middle and late stages of infection, at the time points of 60-, 90-, 180- and
360-days p.i. (P< 0.05). In the liver, IL-5 mRNA expression was also markedly
increased at the middle stage of infection: 3.5-fold at day 60 and 6.54-fold at day 90
(Figure 5.3B). There was a significant difference at the time points of 60- and 90-days
p-i. (P<0.05).
Th2-related chemokines

In the lesions, mRNA expression of CCLS8, chemotactic for and activator of
various immune cell types, including mast cells, eosinophils and basophils,
monocytes, T cells, and NK cells [22], was increased from day 2 to day 360 p.i., with
a peak at day 90 (Figure 5.3C). There was a significant difference between E.
multilocularis infected mice and control mice, at the very early and at the middle
stage of infection, at the time points of 8- and 90-days p.i. (P<0.05). In the liver, there
was no difference in CCL8 mRNA expression from day 2 to day 360 (Figure 5.3C)
between infected and control mice. In the lesions, mRNA expression of CCL12,
another Th2-related chemokine, which attracts eosinophils, monocytes and
lymphocytes [25], increased early, from 2.0-fold at day 2 to 6.6-fold at day 8 p.i.
when it became significantly different from control mice (Figure 5.3D); levels were
also elevated at day 90 p.i. (3.5-fold; also significantly different from control mice).
In the liver, CCL12 mRNA expression did not change from day 2 to day 360 (Figure
5.3D), compared to control mice. mRNA expression of CCL17, which induces T-cell
chemotaxis and elicits its effects by interacting with the chemokine receptor CCR4,
was observed in the lesions (1.7- fold increase at day 2 and 2.0-fold at day 180 p.i.),
(Figure 5.3E). There was a significant difference between E. multilocularis infected
mice and control groups, at the time points of 8-, 60- and 90-days p.i., when its
expression peaked at 3.7 fold (P< 0.05). A slight decrease in CCL17 mRNA
expression was observed at day 30 p.i., concomitant to the slight decrease also
observed for the Th2-related cytokines IL-4 and IL-5. In the liver, CCL17 mRNA
expression was higher than in control mice from day 2 to day 180 (Figure 5.3E).
There was a significant difference at 90-days p.i. between infected and control mice
(P<0.05).
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Figure 5.3 Th2-cytokine and related chemokine gene expressions in the liver of mice
during E. multilocularis infection
Course of [L-4 mRNA expression measured by qRT-PCR (A). Course of IL-5 mRNA
expression measured by qRT-PCR (B). Course of CCL8 mRNA expression measured by
gRT-PCR (C).Course of CCL12 mRNA expression measured by qRT-PCR (D). Course of
CCL17 mRNA expression was measured by qRT-PCR (E).
a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic Liver tissue’ versus ‘Control’. *P<0.05;
**P<(.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and
surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E.

multilocularis lesion, but excluding macroscopically visible liver tissue alterations.

AU: arbitrary units.

Th17 cytokines
1IL-17 and its isotypes

In the periparasitic infiltrate area, IL-17, disclosed by immunostaining (Figure
4A), was observed in most lymphocytes and macrophages in the periparasitic
infiltrate, as well as in fibroblasts, and endothelial cells in hepatic sinusoids,

especially around the granulomas, and in infiltrating immune cells of portal spaces,
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from day 8 to day 360 p.i.. IL-17 positive scores ranged from 0.13 to 4.80 and reached
the peak point at day 90p.i. (Figure 5.4B). In the liver close to the parasite lesions,
moderate IL-17 expression was observed; there was a significant difference between
AE-infected and sham-injected mice at day-8, -30, -90, 270 and 360p.i..

In E. multilocularis lesions, IL-17A mRNA expression was increased at the very
early stage of infection, by 6.9-fold at day 2 and by 9.6-fold at day 8 p.i. (Figure 5.4C),
and decreased at the late stage, from day 180 to day 360 p.i.. There was a significant
difference between E. multilocularis infected mice and control groups, at the time
points of 2-, 8- and 90-days p.i. (P<0.05). In the liver, IL-17A mRNA expression was
also increased at the very early stage: 6.7-fold at day 8; at this time point, the
difference was significant (Figure 5.4C) (P< 0.05). In the lesion, IL-17F mRNA
expression was present all over the infection course, from day 2 to day 360 p.i.
(Figure 5.4D), with a peak of 5.63-fold at day 8 compared to control mice. There was
a significant difference between E. multilocularis infected and control mice, at the
time points of 8- and 60-days p.i. (P<0.05). At the late stage, despite an apparent
increase, compared to control mice, the difference was not significant. In the liver,
IL-17F mRNA expression did not change significantly from day 2 to day 360 (Figure
5.4D).
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Figure 5.4 Th17-cytokine gene expression in the liver of mice during E. multilocularis
infection
Course of IL-17AmRNA expression measured by qRT-PCR (A). Course of IL-17F mRNA
expression measured by qRT-PCR (B). IL-17 expression at day 90, in most of the infiltrating
lymphocytes of areas with inflammatory granulomas, in the cytoplasm of hepatocytes,
endothelial cells of the hepatic sinusoids and fibroblasts (arrow indicates the area also shown
at high magnification) (C). Expression scores of IL-17 was calculated from quantitative
analysis of the histo-immunostaining using both staining intensity and the percentage of cells
stained at a specific range of intensities (see Materials and Methods section)(D).
a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’versus ‘Control’. *P<0.05;
**P<(.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and
surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E.

multilocularis lesion, but excluding macroscopically visible liver tissue alterations.

AU: arbitrary units.

Treg-related nuclear transcriptional factor and cytokines
Treg related nuclear transcriptional factor (Foxp3)

In E. multilocularis lesions, Foxp3 mRNA expression was increased by 2.4-fold
at day 2 and by 3.0-fold at day 8 p.i. (Figure 5.5A); it then decreased from day 30 to
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day 60 p.i., and re-increased, from 1.9-fold at day 90 to 2.3-fold at day 360 p.i., with a
peak of 3.1-fold at day 180, at the late stage of infection (Figure 5A), thus following a
biphasic curve in the course of infection. There was a significant difference between E.
multilocularis infected mice and control mice, at the time points of 2-, 8-, 180- and
360-days p.i. (P<0.05). In the liver, there was no significant change in Foxp3 mRNA
expression (Figure 5.5A).
Treg-related cytokines

In E. multilocularis lesions, TGF-B1 mRNA expression also followed a biphasic
curve, with a decrease at days 30 and 60 p.i.; it was increased by 3.6-fold at day 2 and
3.2-fold at day 270 p.i. (Figure 5.5B) with a peak of 5.7- fold at day 180 (Figure 5.5B).
There was a significant difference between E. multilocularis infected mice and control
mice, at the early and late stages of infection, at time points of 2-, 8-, 90-, 180-, 270-
and 360-day p.i. (P<0.05). In the liver, TGF-f1 mRNA expression was also increased
from day 8 to day 360 p.i., with a peak at day 180 p.i.. Conversely to the expression of
TGF-B1 mRNA in the lesions, in the liver, TGF-B1 mRNA was significantly elevated
at the middle and late stages, at the time points of 90-, 180- and 270-days p.i. (P<
0.05). In E. multilocularis lesions, IL-10 mRNA expression was also biphasic, with a
significant increase at the early and late stages of infection, but not at its middle stage
(Figure 5.5C). There was a significant difference between E. multilocularis infected
mice and control mice, at the time point of 8-day, then at 180-, 270- and 360-days p.i.
(P<0.05). In the liver, IL-10 mRNA expression did not change from day 2 to day 360

(Figure 5.5C) compared to control mice.
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Figure 5.5 Treg transcription factor and Treg-cytokine gene expression in the liver of mice
during E. multilocularis infection
Course of Foxp3 mRNA expression measured by q RT-PCR (A).Course of TGF-f1 mRNA
expression measured by qRT-PCR (B).Course of IL-10 mRNA expression measured by
qRT-PCR (C).
a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’ versus ‘Control’. *P<(.05;
**P<(0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and
surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E.

multilocularis lesion, but excluding macroscopically visible liver tissue alterations.

AU: arbitrary units.

Immune response and inflammation gene expression in the liver of E.
multilocularis infected mice

To further give a comprehensive picture of the immune response-related changes
in the adjacent liver during E. multilocularis infection, and especially detect
hyper-expression of the genes of cytokine/chemokine receptors, cDNA microarray
technology was used. The individual genes associated with the gene ontology
biological process “immune response”, and “pathogen response” assessed at different
time periods of infection, i.e. 30, 60, 90, 180 days p.i., are presented in Table 1. We
used Gene Ontology (GO; www.geneontology.org) analysis which clusters the genes

associated with immune response/defense (n=59) into functional subgroups including
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macrophages, APCs, chemokines and chemokine receptors, lymphocytes, B-cells and
eosinophils.

More precisely, at 30 days p.i., several biological processes relating to an active
infection, as defined by GO cluster classification, were involved, including genes
mostly associated with the response to external stimuli, response to wounding,
immune response, response to stress, chemokine activity, defense response,
MHC-related functions and inflammatory response. While several chemokine genes
were found activated in the liver of AE mice by qRT-PCR, microarray analysis did not
show any up-regulation of cytokine genes. Among genes of cytokine receptors, only
those for IL-1 (IL-R1 like) and IL-7 (2.92 and 2.25 fold respectively) were
up-regulated at day 30 (Table 1). Among genes encoding for chemokines, CCL5
(RANTES), a Thl7-related chemokine that up-regulates IL-12 and IFN-y, and is
involved in Th1 cell-migration [16], was up-regulated 2.35-fold at day 30. Th2-related
CCL8, CCL12 and CCL17 were up-regulated 29.58-fold, 5.64-fold and 3.36-fold at
day 30, respectively. Among genes related to macrophage function, MGL1 and MGL2
(C-type macrophage galactose-type lectins) were up-regulated 2.56- and 4.64-fold
respectively, compared to control mice.

At 60 days p.i., genes involved in the response to stress, response to external
stimulus and response to biotic stimuli were added. There were few changes in the
immune response gene expression, except for MPA2L (macrophage activation 2-like),
which was down-regulated 2.33-fold and C4b (Complement component 4B), which
was up-regulated 3.09-fold, respectively.

At 90 days p.i.,, among genes encoding for cytokine receptors, IL-13 Ral was
up-regulated 2.39-fold (Table 1). Among the interferon-activated genes, Ifi202b,
Ifi203 and Ifi204 were up-regulated 2.88-, 2.13-, and 2.47-fold, respectively. Among
genes encoding for macrophage functions, MSR1 (macrophage type-I class-A
scavenger receptors) and MPA2L (macrophage activation 2-like) were up-regulated
2.11- and 3.99-fold, respectively, when compared to control mice.

At 180 days p.i.,, hyper-expression of genes of the inflammatory response,
response to stress, and response to external stimuli was maintained, and genes of
antigen processing and presentation, complement activity and antigen processing via
MHC class II were also hyper-expressed. Among genes of cytokine receptors, IL-17R
was up-regulated 2.90-fold (Table 1). Among genes encoding for chemokines,
CXCL9 was up-regulated 3.81-fold at day 180, and CXCL12 was down-regulated
2.11-fold at day 180.
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Table 5.2 Gene ontology category: immune response and inflammatory response. Genes with

up- or down-regulated transcriptions in the liver of Echinococcus multilocularis

(E.multilocularis)-infected BALB/c mice are shown in comparison with non-infected

sham-injected control animals (fold increase/decrease)

GeneBank Gene
accession number  Symbol
5830443L2 RIKEN CDNA 5830443124 gene

76074

4Rik
11699 Ambp
56298 Arl6ip2
236573 BC057170
12260 Clgb
12262 Clqc
12279 Clqg
625018 C4b
230558 C8a
20304 Ccl5
20307 Ccl8
20293 Ccll2
20295 Ccll7
93671 Cdl163
12500 Cd3d
23833 Cds2
12516 Cd7
12525 Cd8a
12526 Cd8b1
12628 Cfhrl
18636 Cfp
17474 Clec4d
56619 Clec4de
17329 Cxcl9
20315 Cxcl12
14131 Fcgr3
55932 Gbp3

Name

Alpha 1 microglobulin/bikunin
(Ambp)

ADP-ribosylation factor-like 6
interacting protein 2

cDNA sequence BC057170
Complement component 1, q
subcomponent, beta polypeptide
Complement component 1, q
subcomponent, C chain
Complement C1q subcomponent, C
chainprecursor.

Complement component 4B (Childo
blood group)

Complement component 8, alpha
polypeptide

Chemokine (C-C motif) ligand 5
chemokine (C-C motif) ligand 8
chemokine (C-C motif) ligand 12
chemokine (C-C motif) ligand 17
CD163 antigen

CD3 antigen, delta polypeptide
(Cd3d)

CDS52 antigen

CD7 antigen (Cd7)

CD8 antigen, alpha chain (CdS8a)
CDS antigen, beta chain 1
Complement factor H-related 1
Complement factor properdin
C-type lectin domain family 4,
member d (Clec4d)

C-type lectin domain family 4,

member e (Clec4e)

Chemokine (C-X-C motif) ligand 9
chemokine (C-X-C motif) ligand 12
Fc receptor, IgG, low affinity 111
Guanylate nucleotide binding

30 days

-2.35

2.35
29.58
5.64
3.36

2.14

2.19

4.41

3.13

3.97

5.08

60 days

90 days

2.84

2.05

3.41

2.15

180 days

2.12

3.58

2.18

2.81
-2.21
2.73

*
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15139
15439
17082

16197
16164
16172
26388
15950
15951
16010

16797
17395
17312

216864

100702
20288
80891
18405
18406
18514

233489

27226

18761

20208

20210
20211

20714

20716

Hc
Hp
I11rl

I17r
I113ral
11 7r
1£i202b
111203
1fi204
Igfbp4

Lat
Mmp9
Mgll

Mgl2

Mpa2l
Msrl
Msr2
Orml
Orm2
Pbx1

Picalm

Pla2g7

Prkeq
Saal
Saa3
Saad

Serpina3k

Serpina3n

protein 3
Hemolytic complement
Haptoglobin

Interleukin 1 receptor-like 1 (I11rl1),

transcript variant 2

Interleukin 7 receptor (I17r)
interleukin 13 receptor, alpha 1
interleukin 17 receptor D
Interferon activated gene 202
Interferon activated gene 203
Interferon activated gene 204
Insulin-like growth factor
bindingprotein 4

Linker for activation of T cells (Lat)
Matrix metallopeptidase 9 (Mmp9)

macrophage galactose
N-acetyl-galactosamine specific
lectin 1

macrophage galactose
N-acetyl-galactosamine specific
lectin 2

macrophage activation 2 like
macrophage scavenger receptor 1
macrophage scavenger receptor 2
Orosomucoid 1

Orosomucoid 2

Pre B-cell leukemia transcription
factor 1

Phosphatidylinositol binding
clathrin assembly protein
Phospholipase A2, group VII
(platelet-activating factor
acetylhydrolase, plasma)

Protein kinase C, theta

Serum amyloid A 1

Serum amyloid A 3

Serum amyloid A 4

Serine (or cysteine) peptidase
inhibitor, clade A, member 3K
(Serpina3k)

Serine (or cysteine) peptidase
inhibitor, clade A, member 3N

2.12
2.74
2.56

4.64

2.39

2.88

2.13
247

3.99

2.11

2.19

2.01

2.03
2.75

2.61
8.94

2.57

11.63
9.69
232

3.12
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20750 Sppl Secreted phosphoprotein 1 * * 3.54
192187 Stab1 Stabilin 1 * * *
21822 Tgtp T-cell specific GTPase * * *
107568 Wwpl WW domain containing E3 * * 2.37

ubiquitin protein ligase 1

2.04

2.79

Correlations between mRNA levels of the various cytokines over the course of
infection

Spearman correlation coefficients indicated a significant positive correlation
between TGF-B1 mRNA expression in E. multilocularis‘parasitic lesion’, and that of
Foxp3 (r=0.719, P=0.045), IL-10 (r=0.761, P=0.028) and CXCL9 (r=0.946, P< 0.01),
but a significant negative correlation with IFN-y (r=-0.743, P=0.035) (Table 5.3); it
also showed a significant positive correlation between Foxp3 expression in E.
multilocularis ‘parasitic lesion’, as measured by qRT-PCR, and IL-10 (r=0.761,
P=0.028) and TNF-a (r=0.742, P=0.035), but a significant negative correlation with
IL-1B (r=-0.754, P=0.033) (Table 5.4). There was a significant positive correlation
between IL-17A expression in E. multilocularis ‘parasitic lesion’, as measured by
gRT-PCR, and CCL12 (r=0.833, P=0.011), CCL17 (r=0.733, P=0.039), IL-4 (r=0.710,
P=0.049) and TNF-a (r=0.804, P=0.016) (Table 5.5); there was also a significant
positive correlation between IL-17F mRNA expression in E. multilocularis ‘parasitic
lesion” and CCL12 (r=0.708, P=0.049) and CCL17 (r=0.749, P=0.032)(Table 4).
TNF-oo mRNA expression in E. multilocularis ‘parasitic lesion” was also significantly
correlated to IL-12a (r=0.888, P=0.033) (Table 5.6).

Table 5.3 Correlations between mRNA of TGF-1 and Foxp3, IL-10, IFN-y and CXCL9

Foxp3 IL-10 IFN-y CXCL9

TGF-B1 Spearman’stho  0.719" 0.761" -0.743" 0.946"
Sig. 0.045 0.028 0.035 0.000
N 8 8 8 8

Note: * P< 0.05, ** P<0.01.

Table 5.4 Correlations between mRNA of Foxp3 and TGF-B1, IL-10, IL-18 and TNF-a

TGF-B1 IL-10 IL-1B TNF-q

Foxp3 Spearman’stho  0.719° 0.761" -0.754" 0.742°
Sig. 0.045 0.028 0.033 0.035
N 8 8 8 8

Note: * P<0.05, ** P<0.01.
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Table 5.5 Correlations between mRNA of IL-17 and CCL12, CCL17, IL-4, and TNF-o

CCLI12 CCL17 1L-4 TNF-a

IL-17A Spearman’s rho 0.833" 0.733" 0.710" 0.804"
Sig. 0.011 0.039 0.049 0.016
N 8 8 8 8

IL-17F Spearman’stho  0.708" 0.749" 0.695 0.497
Sig. 0.049 0.032 0.056 0.210
N 8 8 8 8

Note: * P< 0.05.

Table 5.6 Correlations between mRNA of TNF-a and IL-12a, as well as IL-17A

IL-12a IL-17A
TNF-a Spearman’s rho 0.888" 0.804"
Sig. 0.003 0.016
N 8 8

Note: * P<0.05, ** P<0.01.

Discussion

Despite the alleged causative involvement of the granulomatous response in the
clinical development of AE and its role in functional imaging of the disease, since it is
responsible for the Fluorodeoxyglucose (FDG) uptake in Positron Emission
Tomography (PET) [20], a comprehensive picture of the cytokine/chemokine
response that occurs in situ, i.e. in the periparasitic granuloma, had never been given.
Chemokines and IL-17, which are crucial for immune cell homing, have so far
received little attention in E. multilocularis infection. In the present longitudinal study
of experimental E. multilocularis intra-hepatic infection model, we showed for the
first time that 1) the mixed Th1/Th2/Treg response and the tri-phasic course of
cytokines, suggested by previous studies on spleen cells from E.
multilocularis-infected mice, was also documented in the periparasitic infiltrate, but
nevertheless differed in some aspects, especially the marked and parallel expression
of IL-12a and TNF-a but also IL-4 at a very early stage of the parasite/host
interactions; 2) IL-17 was involved locally at the beginning of the immune response
and remained so all along the course of infection, with a successive expression of
different isotypes with possibly different roles; 3) a parallel course of cytokines and
their related chemokines was highly in favor of their permanent role to maintain the
homing of immune cells at close proximity of the parasitic vesicles; and 4) at least

some of the components of the immune response were present in the surrounding liver
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and were thus involved in a process which was long considered to be a localized
“tumor-like” event (Figure 5.6 and 5.7).

a) Morphology of hepatic parasitic lesions

b) Innate immunity and pro-mflammatory cytoklnes

Gene expression

2 8 30 60 90 180 270 360 davs
Figure 5.6 Course of the changes in the gene expression of innate immunity and

proinflammtory cytokins (a), Th1 related cytokines and chemokines (b), Thl related
cytokines and chemokines (c), Th17 related cytokines (d), Foxp3 and Treg related cytokines

(e) during the process of E. multilocularis-infection in mice
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Figure 5.7 Schematic diagram summarizing the pathways of immune response involved in

the host-parasite relationship in £. multilocularis infection

In the present study, we found that IL-1200 and TNF-a were developing in
parallel during the different stages of E. multilocularis infection. After an initial
increase, IL-12a and TNF-a expression decreased dramatically after the 30" day of
infection of mice. This fits well to previous findings, which had indicated a protective
role against E. multilocularis by in vivo treatment with recombinant IL-12 in
C57BL/6J mice [7], while mice KO for TNF-a [10], as well as patients with AE
treated with a TNF-a inhibitor [20], had a faster and more severe course of disease.
IL-1B and IL-6 were then showing up, presumably to sustain the inflammatory
response, with a ‘mirror’ image of their respective increase all along infection. The
initial peak of IL-6 as early as 2 days post-infection may be related to the early
activation of the acute phase protein genes in the hepatocytes, disclosed by previous
microarray studies [21,22]. Conversely, the absence of a significant increase of 1L-6
at day 270 probably explains why, despite increased levels of haptoglobin, a-1 acid
glycoprotein, C3 and C4, and ceruloplasmin in patients with AE, no increase of
C-reactive protein (CRP) levels, typically associated with IL-6 stimulation, is usually
observed, except in cases complicated by bacterial infection. Secretion of the
pro-inflammatory cytokines IL-1B and IL-18 by PBMC of AE patients had been
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shown to be reduced in response to E. multilocularis metacestode vesicles, compared
to controls [12]. In our study in mice, although IL-1P was highly expressed at the
early and middle stage, it subsequently decreased at the late stage and was not
significantly different from control mice at day 180 post-infection and later, a time
point which may approximately represent the disease stage of most patients at
diagnosis of AE. Such selective dynamics of pro-inflammatory cytokine release may
both install and maintain the periparasitic immune infiltrate from the very early stage
of infection on, and also limit its activation and thus participate in the tolerance

process.

In most previous studies, secretion and expression of cytokines, chemokines, and
related factors that govern immune cell-homing to E. multilocularis infection site
were studied in the peripheral blood of human AE patients [23], and in lymph node or
spleen cells of experimentally infected mice [13,24,25]; in situ investigations
focussing on the periparasitic infiltrate and the adjacent liver tissue are virtually
lacking. Early expression of IFN-y, as previously shown in studies on peripheral
lymphocytes, was also confirmed in our longitudinal study of the periparasitic
infiltrate; we hypothesize that it was very likely induced by the early expression of
IL-12. The apparent decrease in IFN-y at day 8 may be due either to a technical
artefact or, more probably, to a temporary inhibition by IL-4, also markedly expressed
at days 2 and 8 p.i.. Sustained IFN-y expression together with the permanent
expression of Thl chemokines, and its negative correlation with TGF-1 in the
parasitic lesions all along the course of infection, although Th2 and T-reg cytokines
are also permanently expressed, suggests that IFN-y is very important for the
persistence of the periparasitic infiltrate by permanent homing of immune cells and/or
inhibition of their emigration. The decrease of IL-12 after the early stage of disease
could be, at least partly, responsible for the lack of activation of CD8 T-cell or NK
cell cytotoxicity despite the presence of IFN-y [11,14,26].

Several concordant observations showed that the PBMCs of AE patients as well
as spleen or lymph node cells of experimentally infected mice exhibit a markedly and
steadily increasingTh2-oriented response characterized by high levels of 1L-4, IL-5
andIL-10 expression [27]. The results from many studies have clearly identified
IL-4/1IL-5/IL-10 as important regulatory cytokines in parasitic infections, such as
infection by Schistosoma mansoni in mice [28,29] and humans [30], Schistosoma
haematobium([31], Trichuris muris [32], and Trichinella spiralis|33]. In E. granulosus
infection, IL-4/IL-5/IL-10 had been found to be predominant in serum samples of
infected individuals [34]; furthermore, in the peritoneal cells of experimental mice,

i.e. at the site of E. granulosus establishment, IFN-y was secreted first, at day 3, but as
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early as day 5, a Th2-type response, including IL-4 and IL-13 was stimulated [35].
These results in CE suggest that a Th2-type response does not impair the
establishment of E. granulosus metacestode, and does not prevent the development of
the pericyst, a characteristic of CE pathology, which, conversely to AE, limits the
progression of the metacestode [15]. In the parasitic lesions of F.
multilocularis-infected mice, we observed a biphasic curve of IL-4 mRNA expression,
with also a very early peak at 2-8 days. This early peak differed from what is usually
reported in E. multilocularis infection upon investigation of peripheral lymphocytes
stimulated by E. multilocularis antigens [5]. The early local expression of IL-4
mRNA might be crucial to prime naive CD4" T cells into differentiated Th2 type cells
[35], and to prevent anti-parasite resistance, such as that occurring in most
intermediate hosts, including humans. We hypothesize that early IL-4 mRNA
expression is likely induced through the activation of innate immunity by specific
metabolic components of the metacestode. Such an activation of IL-4 production has
actually been described in vitro under the influence of Echinococcus components,
both from E. multilocularis [23] and from E. granulosus [36]. In the present study, we
also found a delayed increase of IL-5 and IL-10 in the middle/late stage of E.
multilocularis infection. This delayed increase of IL-5 and IL-10 is matching previous
observations made by others at the ‘late stage’ of infection, in human AE [37,38,39]
and are in agreement with the data usually reported from the study of lymphocytes
from experimentally infected mice [40]; this combined cytokine profile has been

strongly linked to parasite evasion from the host immune response [27,41].

The discovery of the IL-17 cytokine family has added a new dimension to the
balance of inflammation and tolerance during parasite infections. The presence of
IL-17-secreting CD4" T (Th17) lymphocytes correlates with severe hepatic pathology
in murine schistosomiasis [42]. In our study, IL-17, as detected by a monoclonal
antibody directed against the common epitopes of the protein, was present in cells of
the periparasitic infiltrate all along the course of infection; however, as far as the
expression of mRNA isotypes of the cytokines is concerned, both IL-17A and IL-17F
were increased at the early stage of E. multilocularis infection, and then decreased at
the late stage; they were both positively correlated with CCL12 and CCL17; however,
IL-17A exhibited a positive correlation with TNF-a, and appeared lower than even in
controls, at the late stage of infection, while IL-17F was also expressed at low levels,
but still higher than controls. This may indicate that IL-17A was rather protective but
quickly inhibited, while IL-17F was less suppressed with time and may contribute to

both protection and pathogenesis, as reported in human AE patients[17].
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Chemokines are involved in the homing and persistence of immune cells in
inflammatory reactions, especially to infectious agents [43,44]; they also participate in
innate recognition stages of immunity and may help direct Thl and Th2
cytokine-producing cells during the generation of adaptive immunity [18]. There is
also considerable in vitro evidence that cytokines further capitalize on these
molecules by regulating their expression and secretion and by using them to activate
effector cells such as macrophages and fibroblasts [18]. Conversely, specific
suppression of certain chemokine production and/or function by E. multilocularis
metacestode in AE patients may constitute an additional immune escape mechanism
[15]. We only measured the mRNA expression of ‘key’ chemokines, directly related
to the main cytokine profiles, among the multiple components with chemokine
activity. But all measured chemokines were significantly expressed at a given stage of
infection. These results confirmed the importance of these compounds to maintain the
granulomatous infiltrate at the proximity of the metacestode. The courseof
Thl-related chemokines appeared “complementary”; CXCL 9 was more expressed
when CXCL10 was less expressed, and vice versa, with a ‘mirror’ image, as
previously described for IL-1 and IL-6. This may indicate some balance to ensure
lymphocyte homing and persistence in the lesions. Th2-related chemokines were also
permanently expressed: expression of CCL12 and CCL17 followed the course of IL-4,
and CCL 8 followed the course of IL-5. Such changes in chemokine release may
prevent pathogenic inflammation at the late stage. In addition, the microarray
technique revealed a hyper-expression of RANTES (CCLS5), chemotactic for Thl
cells, eosinophils, and basophils[11]. This finding suggests that this chemokine is also
secreted by cells of the granuloma at the early stage (8-30 days) when IL-12, IFN-y
and IL-17 secretions are at their maximum. This should consequently also be explored
more in detail in future studies.

The involvement of the adjacent, not directly affected liver tissue in the immune
process of E. multilocularis/host interaction has received little attention. Recent
studies have provided evidence that the adjacent liver was fully involved in the
relationship between the parasite and its host; these studies have mostly focused on
the proliferation/apoptosis balance [18] and the involvement of the TGF-f/Smad
system [19]. Our study confirms that other mediators of the immune reaction and their
receptors appear principally expressed in the liver tissue, thus also in areas not
directly affected by the parasite and the periparasitic granuloma. In the adjacent
periparasitic liver tissue, the expression of the various cytokines/chemokines was
selective: not all cytokines/chemokines were expressed in the surrounding liver; some
seemed to be specific for the immune cells of the periparasitic infiltrate, e.g. TNF-a,
IL-17F and CCLS8, which were not expressed at all in the liver. The contribution of

the surrounding liver tissue, however, was quite significant for other ones, e.g. IL-12,
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IFN-y, IL-4 and IL-17A, at the early stage of infection; CXCL9, IL-4, IL-5, CCL17,
at the middle stage; and IL-10 and TGF-f at the late stage of infection. From our
study, which was performed on liver samples without cell identification, it is difficult
to know if such expression was restricted to cells of the immune response present in
the sinusoids/portal spaces after their homing to the liver, or was also present in
autochthonous liver cells such as Kupffer cells, stellate cells, or hepatocytes. Precise
identification and respective location will require appropriate studies. Among
cytokine receptors, only those for IL-1 (IL-R1 like), IL-7, IL-13 (IL-13 Ral), and
IL-17 (IL-17 R) were up-regulated. This indirectly suggests that the liver was affected
by at least one pro-inflammatory cytokine (IL-1) and one growth factor (IL-7), and by
two types of Th-cytokines (Th2 and Th17). However, absence of up-regulation of
IL-6 and TGF-P receptors in hepatic cells is puzzling and has to be further confirmed

using other techniques in the same model.
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Main conclusions and remarks:

Profiles of mRNA expression levels in the hepatic parasitic lesions showed that

1) IL-12a and TNF-a were developing in parallel during the different stages of E.
multilocularis infection.

2) A mixed Th1/Th2 immune response, characterized by the concomitant presence of
IL-120, IFN-y and IL-4, was established very early in the development of E.
multilocularis.

3) At middle/late stage of E. multilocularis infection, the profile extended to a
combined tolerogenic profile associating IL-5, IL-10 and TGF-p.

4) IL-17 was permanently expressed in the liver, mostly in the periparasitic infiltrate;
both IL-17A and IL-17F were increased at the early stage of E. multilocularis
infection, and then decreased at the late stage; they were both positively correlated
with CCL12 and CCL17; however, IL-17A exhibited a positive correlation with
TNF-a, and appeared lower than even in controls, at the late stage of infection, while
IL-17F was also expressed at low levels, but still higher than controls.

5) The course of Thl-related chemokines appeared “complementary”; CXCL 9 was
more expressed when CXCL10 was less expressed, and vice versa, with a ‘mirror’
image. Th2-related chemokines were also permanently expressed: expression of
CCL12 and CCL17 followed the course of IL-4, and CCL 8 followed the course of
IL-5.
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6. How are TGF-p and TGF-p/Smad signaling involved in

the interactions between E. multilocularis and its host?
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To address this question, we measured the levels of TGF-f1, TGF-f receptors,
and down-stream Smad2/3, Smad4 and Smad7 activation, as well as fibrosis marker
a-SMA, Collagen I and III expression by using Western Blot, qRT-PCR and
immunohistochemistry in an intra-hepatic mouse AE model from day 2 to 360

post-infection (p.1i.).

Background and objectives:

TGF-B serves as a global regulator of immunity by controlling the initiation,
maintenance, and resolution of inflammatory responses. After a preliminary study by
researchers from our team had shown that TGF-$ was abundantly expressed in the
periparasitic infiltrate in patients with AE, our study of the sequential expression of
cytokines and related chemokines in the liver confirmed that, among the factors
essential to maintain the tolerance state (Treg-related cytokines), TGF-f3 was actually
expressed in the periparasitic infiltrate all along the course of infection. This
expression followed a biphasic curve, with a decrease at the middle stage and a
re-increase at the end stage of infection (Wang, 2014 a). On the other hand, we also
showed that the parasite and/or the periparasitic immune response were also involved
in metabolic changes in the adjacent, not directly affected, liver tissue, and we
suggested that TGF-B might be one of the actors of such changes (Zhang, 2012). In
addition, fibrosis is among the hallmarks of AE, and TGF-f is well known to play a
role in fibrogenesis. TGF-f3 might thus be a major regulator of the immune response
in AE, and could also be involved in liver homeostasis and liver fibrosis. However,
very little was known on the presence and course of the other components of the
TGF-B/Smad pathway in the liver, and on their possible influence on fibrosis, over the
various stages of infection. The aims of this study were 1) to delineate the location of
TGF-B and components of the TGF-f3 pathway in the periparasitic immune cells and
in hepatocytes, close to and distant from the lesions in the liver; 2) to better
understand the functioning of the TGF-B/Smad pathway, and its possible relationship
with the development of liver fibrosis in the parasite’s hosts; 3) to further explore how

TGF-p was secreted and regulated.
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severity. The time course of the various actors of the TGF-fi/Smad system in the in vivo mouse model as well as down-
regulation of Smad?7 in liver areas close to the lesions in human cases highly suggest that TGF-f} plays an important role in
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Introduction lesions; it was also suggested that cytokines might be involved in
the cross-linking of the collagen bundles. Little evidence, however,
has been given until now on how £ multilocudaris metacestode
interacts with its host to promote fibrosis and especially on the
nature and role of cytokines in fibrosis development in AE.
TGF-f is a major regulator of the immune responses, inducing
and maintaining T-regulatory cells, reducing cytotoxic eflector
immune response and balancing the tolerogenic and immunogenic
forces at play in various physiological states and chronic discases,
such as fetus growth and survival during gestation [8], cancer [9],
chronic inflammatory discases [10], or chronic and allergic
respiratory discases [11]. In these conditions, this polypeptide also
regulates a variety of cell events involved in tissue regeneration and
fibrosis. Similarly, its role has been recognized both to induce and
maintain immune tolerance towards parasites and 1o induce
fibrosis in several examples of helminth infection |[12]. However,
opposite to the recognized role of Interleukin-10 [12,13], little is
known about TGF-f involvement in the pathophysiology of larval
cchinococcosis. Only preliminary studies are available in AE:
Zhang ct al. [14] showed that TGF-ff was expressed in most
lymphoceytes of the periparasitic infiltrate in liver biopsies from AE
patients. It was suggested that TGF-f may play a role in

Alveolar echinococcosis (AE) is a rare, but severe zoonotic
helminthic disease due to the proliferation of the larval stage of
cestode Echinocaccus mudtilocularis (K. multitocularis) [1]. In humans,
accidental intermediate hosts, the severity of this discase results
from both a continuous asexual proliferation of the metacestode
and an intense inflammatory granulomatous infiltration around
the parasite which causes pathological damages in the liver. The
lesions act like a slow-growing liver cancer. progressively invading
the neighboring tissues and organs. Granulomas around the
parasitic vesicles, extensive fibrosis, and necrosis are the charac-
teristic pathological findings [2]. Studies performed in the 1980s-
1990s showed that dense and irreversible fibrosis composed of
thick concentric bundles of heavily cross-linked type 1 and type 111
collagens surrounded the parasitic vesicles, and that 2-smooth
muscle actin (2-SMA)-expressing myolfibroblasts (MFB) derived
from the hepatie stellate cells (HSC) could play an important role
in fibrosis development [3-7]. The diffusion of the fibrotic process
even far from the parasitic lesions strongly suggested that cytokines
produced in the periparasitic area could be involved in collagen
synthesis. locally in the lesions and also in the liver distant from the
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maintaining host tolerance against £ multilocularis growth by
preventing T-cell eytotoxicity against the parasite [14]. In cystic
echinococcosis (CE), immunostaining of TGF-# has also been
shown at the periphery of hydatid cysts in the liver of patients [15]:
and another study confirmed a progressive increase in the
expression of mRNA of TGF-f in the liver of £ granulosus-
infected BALB/¢ mice [16]. There is abundant evidence that
TGF-B1. besides its role in immune tolerance, is an extremely
potent inducer of the synthesis of procollagen and other extra-
cellular matrix (ECM) components [17.18], and has an essential
role in the pathogenesis of liver fibrosis. The major signaling
pathway for all TGF-f members is activated through ligand
binding to a cellsurface receptor complex of type 1 and type 11
serine-threonine kinases receptors: and a group of intracellular
signaling intermediates known as Smads is then phosphorylated.
Phosphorylated Smads translocate to the nucleus where they
function as transcription factors, initiating target gene transerip-
tion [19]. Smad4 is apparently common to all ligand-specific
Smad pathways, and is a central mediator in TGF-f superfamily
signaling |20]. Smad7, which is induced by TGF-f itself, forms
part of an inhibitory feedback loop by binding to the intracellular
domain of the activated TGF-§ R1 [21-24|. Because Smad7 is
responsible for the fine-tuning of TGF-f signals [25], an aberrant
expression of Smad7 might disrupt the balanced activity of TGE-f
under physiological and pathophysiological conditions. However,
although it may be crucial in the host-parasite interactions (Fig. 1),
the relationship between the TGF-f/Smad pathway, and espe-
cially Smad7 expression, and clinical and/or pathological features
of AE in experimental models as well as in humans has never been
addressed.

The aims of this study were 1) to delineate the location of TGF-
f and components of the TGF-fi pathway in the periparasitic
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molecules ??
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TARII @] TARI

/ CD4/CD8 T cells
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immune cells and in hepatocytes, close to and distant from the
lesions in the liver; 2) to better understand the functioning of the
TGF-f/Smad pathway, and its possible relationship with the
development of liver fibrosis in the parasite’s hosts: 3) to further
explore how TGF-f§ was secreted and regulated. For this purpose,
and to get a comprehensive appraisal of TGF-f seeretion and of its
role in K. multilocularis infection, experimental AE in a mouse
model of liver-targeted secondary AE [4] allowed us to study the
time course of TGF-f expression as well as the dynamics of TGF-
f signaling-related components, TGF-f RIL TGF-f RIL pSmad
2/3, Smad4 and Smad7, and to corrclate them with the time
course of the periparasitic infiltration by T-cell subpopulations,
and to biochemical indicators of liver fibrosis, such as 2-smooth
muscle actin (z-SMA), and collagens 1 (COL 1), and 111 (COL 111}
We also studied TGF-# and ‘TGF-f signaling-related components
in the liver of AE patients both at the protein and mRNA levels, in
order to assess the situation at the late stage of infection in resistant
hosts where immune tolerance and development of fibrosis are
combined.

Results

Pathological Examination of the Livers Infected with E.
multilocularis

In experimental mice, at the very carly stage (2 and 8 days p.i.),
in the surrounding of the metacestode injection site, lipid
accumulation was observed in some hepatocytes (focal steatosis),
and lymphocytes infiltrated the portal arcas. No obvious change
was found in the distant liver. From day 30 to day 90 afier
infection, at the periphery of the lesion, fibroblasts and inflam-
matory cells proliferated and an obvious increase of liver fibrosis
was observed at the periphery of the lesion. There was no change
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Figure 1. The TGF-//Smad pathway; hypothesis for its invol

doi:10.1371/journal.pone.0055379.9001
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in the areas distant from the lesion, except fibroblast and Kupffer
cell proliferation, and an increased presence of lymphocytes in
portal spaces. From day 180 to day 360, the typical granulomatous
and fibrous periparasitic infiltrate of AE was fully established; in
the liver, degencrating hepatocytes with atrophy and necrosis, as
well as fibrous tissue development were observed in the areas
immediately surrounding the granulomatous host response. Both
fibroblasts and Kupfler cells proliferated in areas distant from the
lesion. Mice in the control group at the same time-points showed
normal hepatic histology (data not shown; available from reference
[26]).

In AE patients, the liver lesions were similar to those observed in
experimental mice at day 180 after infection, with the typical
granulomatous and fibrous reaction surrounding parasite vesicles
cither active or degenerating. In the liver areas distant from the
lesions, there was Kupffer cell proliferation, and lymphocytes
infiltrated the portal areas. In the liver areas immediately
surrounding the lesions, a few hepatocytes showed degeneration
{data not shown).

Expression of «-SMA, and Collagen |, lll in the Livers
Infected with E. multilocularis

In experimental mice, in the liver of control animals a-SMA
expression was present in the cytoplasm of smooth muscle cells, i.c.
restricted to the walls of most of the portal and central veins while
there was nearly no staining in the liver parenchyma (Fig. 2). 180
days after E. multilocularis infection, 2-SMA positive score was
higher in infected than in control mice; distribution of x-SMA
positive cells was diffuse in the liver parenchyma, suggesting a
myofibroblastic differentiation of stellate cells in the liver (Fig. 3A).

In AE patients, in the liver areas close to lesions, there was a
strong 2-SMA immunostaining present in the ECM and 2-SMA
expression scores were significantly higher in the arcas close to
lesions compared to those distant from lesions (Fig. 2 and 3F).

In experimental mice, there was a marked difference between £.
multilocularis-infected mice and control mice with regard to the
nature and location of collagens in the liver. At all time-points,
strong staining for Collagen I and III was present in the peri-
parasitic granuloma as concentric bundles extending from the
laminated layer of the parasitic vesicles to the border of the normal
liver (Fig. 2). Collagen 111 was also present as dotted lines between
the cells at the outer part of the granulomatous infiltrate and,
occasionally, in the cytoplasm of round cells in the sinusoids of the
surrounding liver (Fig. 2).

In AE patients, in the liver areas close to lesions, there was a
strong Collagen I and I immunostaining in the ECM. Expression
scores of Collagen I and Collagen III were significantly higher in
the arcas close to lesions compared to those distant from lesions
(Fig. 3F).

Infiltration by CD4" and CD8" T Cells in the Periparasitic
Area in Emultilocularis-infected Mice

As the experimental model of AE allowed us to study the
correlation, if any, between T lymphocyte infiltration in the liver
and TGF-f expression over the time course of infection, CD4 and
CD8 immunostaining was performed in the liver of mice; this was
not performed in the liver of AE patients, since the time course
could not be assessed. There was nearly no infiltration by CD4™ T
cells nor by GD8" T cells in the control groups whenever the time
point after sham injection of saline in the liver (Fig. 2). In the
periparasitic infiltrate surrounding the metacestode, in experi-
mental infected mice, CD4™ T cells were present from day 60 to
day 360. CD4 positive scores ranged from 0.6 to 3.7 and reached
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the peak point at day 90 (Fig. 3D). Infiltration by CD8™ T cells was
expressed by scores which ranged from 2.3 to 5.4 and reached the
peak point later than CD4™ T cells, at day 360 (Fig. 3E).

Expression of TGF-fi1 in the Livers Infected with E.
multilocularis

Protein expression of TGF-pl. In experimental mice, a
strong immunostaining for TGF-f1 was observed in the peripar-
asitic infiltrate in most of areas with inflammatory granulomas
from 30 days to 360 days p.i. In the liver area close to the parasitic
lesions, a faint expression of TGE-f1 was observed in the
endothelial cells at day 30; a marked expression was observed in
endothelial cells of the hepatic sinusoids and in fibroblasts at day
60, as well as in endothelial cells of the hepatic sinusoids and in
hepatocytes close to the parasitic lesions from 90 days to 360 days
p.i. In the liver distant from the parasitic lesions, a faint staining for
TGEF-f1 was observed in the endothelial cells of hepatic sinusoids
from 30 to 90 days p.i; there was a moderate staining in
endothelial cells of hepatic sinusoids from 180 to 360 days p.i.,
while a faint staining was observed in the hepatocytes from 90 and
360 days p.. (Fig. 4 and 5A). An increased TGF-f1 expression
measured using Western Blot in the liver of experimental infected
mice was observed from day 2 (0.9-fold) to day 360 (3.2-fold); it
peaked at day 180 (8.2-fold) after infection with E. multilocularis,
then decreased to lower levels, albeit higher than in control mice
until the end of follow-up; difference between experimental and
control mice was significant at day 90, 180, 270 and 360 (P<0.05).

In AE patients, as observed in the mouse model, a strong
immunostaining for TGF-f1 was observed in most lymphocytes
and macrophages in the periparasitic infiltrate, as well as in
Kupffer cells, fibroblasts, and endothelial cells in hepatic sinusoids,
especially around the granulomas, and in infiltrating immune cells
of portal spaces (Fig. 4). In the non-infiltrated liver, faint staining
with anti-TGF-$1 antibodies was observed in hepatocytes, even in
those observed in areas distant from the parasitic lesions (Fig. 4).
Percentage of TGF-fil positive cells was higher in areas close to
than distant from lesions (Fig. 6A), with an intensity gradient from
the periparasitic areas to the distant liver, since TGF-f1 staining
appeared stronger close to the granulomatous reaction (Fig. 4.
Western Blot measurements of TGF-$1 also showed that protein
levels of the cytokine were significantly higher in the liver tissue
close to lesions than in that distant from lesions (Fig. 6B and C)
(P<0.05).

Correlation with T cell subpopulations and fibrosis
markers. TGF-f1 expression in the periparasitic infiltrate was
highly positively correlated with CD4/CD8 ratio (r = 0.818) but
not correlated with either CD4™ or CD8" T cell scores, taken
independently (Table ).

Spearman correlation coefficients indicated a positive correla-
tion between TGF-B1 expression and 2-SMA, Collagen I, and
Collagen III expression scores (r=0.628, P=0.009; r=0.836,
P<0.001; r=0.781, P<0.001 respectively) in the livers from day
90 to day 360 p.i. in experimental mice under study (Table 2).
There was also a positive correlation between TGE-f1 expression
and 2-SMA, Collagen 1, and Collagen III expression scores
(r=0.620, P=0.001; r=0.498, P=0.013; r=0.655, P=0.001
respectively) in the livers from the 16 patients with AE under study
(Table 3).

RNA expression of TGF-f1. In experimental mice, real-time
RT-PCR showed an increase in TGF-f1 mRNA expression from
day 8 to the end of follow-up, with a peak at day 180 after
infection. TGF-$1 mRNA expression increased from 0.57-fold at
day 2 to 5.37-fold at day 180 (Fig. 5D) compared to control mice.
There was a significant difference between E. multilocularis infected
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doi:10.1371/journal.pone.0055379.g002

and control group at the time points of 60-, 90- and 180-days p.i.
(P<0.05).

In AE patients, reaktime RT-PCR showed that TGF-f1
mRNA expression was significantly higher in the liver tissue close
to lesions compared to that distant from lesions (Fig. 6D) (P<0.05).

Expression of TGF-f Rl and Rll in the Livers Infected with
E. multilocularis

Protein expression of TGF-# RI and RII. In experimental
mice, TGF-$ Rl immunostaining was observed in the cytoplasm
of lymphocytes and macrophages in the periparasitic infiltrate,
and in most of the hepatocytes, fibroblasts, and endothelial cells
in the liver close to the periparasitic infiltrate; no positive
staining was observed in the control liver sections (Fig. 4.
Positive cells ranged from 0.25% to 20.5% and reached a peak
at day 60 p.i. In the liver distant from the parasitic lesions, a

PLOS ONE | www.plosone.org

very faint staining for TGF-f Rl was observed in the
endothelial cells of hepatic sinusoids from 30 to 90 days p.i.,
a faint staining was observed in the hepatocytes from 60 to 360
days p.i. and in endothelial cells of hepatic sinusoids from 180
to 360 days p.i. (Fig. 7A). There was a significant difference
between k. multibicularis-infected and control groups, close to
lesion and distant from lesion at all time-points since day 30
(P=<0.05, Fig. 7A). However, Western Blot results could not
show a significant difference in the protein levels of TGF-ff# R1
and TGF-f RII in infected versus control mice during the
whole time course of k. multilocularis infection. TGF-f RIL
immunostaining was observed in the same cells as TGF-ff Rl in
infected mice (Fig. 4). Positive cells ranged from 4.0% to 15.0%
and reached a peak at day 60. There was a significant
difference between K. multilocularis infected and control groups,
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Figure 3. Semiquantitative expression of fibrosis markers in £ muitilocularis-infected liver in experimental mice and in AE patients.
Score for each marker expression was calculated from quantitative analysis of the histo-immunostaining using both staining intensity and the
percentage of cells stained at a specific range of intensities (arrow) (see Materials and Methods section). A: Course of =-SMA expression in E.
multilocularis-infected mice, B: Course of collagen | expression in E. multilocularis-infected mice; C: Course of collagen Ill expression in £ multilocularis-
infected mice; D: Course of CD4' T cell infiltration in E multilocularis-infected mice; E: Course of CD8' T cell infiltration in E multilocularis-infected
mice; F: Expression of fibrosis markers in the liver of AE patients. a: close versus control; b: close versus distant. *P<<0.05; **P<<0.01. ‘Control’, non-
infected mice; ‘Lesion; E. multilocularis metacestode and surrounding immune infiltrate; ‘Close’: liver parenchyma close to E. multilocularis lesion;

‘Distant”: liver parenchyma distant from E. multilocularis lesion.
doi:10.1371/journal.pone.0055379.g003

close to lesion and distant from lesion at all time-points
(P<0.05, Fig. 7A).

In AE patients, expression of TGF-f Rl differed markedly
between patients and taking all 16 patients into account, there was
no significant difference between the positive cells for TGF-f Rl in
arcas close to and distant from lesions (Fig. 6A). Similarly, Western
Blot results showed that TGF-ff RI protein levels were not
different in the liver tissue close to lesions compared to that distant
from lesions (Fig. 6B and (). There was no significant difference
cither between the expression of TGF-f RII in areas close to and
distant from lesions (Fig. 6B and C). However, compared with the
arcas distant from the parasitic lesions, the areas close to lesions
displayed a stronger staining for TGF-f RIL protein both at the
cell membrane and in the cytoplasm (Fig. 4). Western Blot results
showed that TGF-f RII protein levels were significantly elevated
in the liver tissue close to lesions compared to that distant from
lesions (Fig. 6B and C).

mRNA expression of TGF-§ RI and RIL. In experimental
mice, an increased TGF-ff RI mRNA expression was observed in

PLOS ONE | www.plosone.org

infected mice at day 60 to day 180, which peaked at day180.
E.multilocularis infection increased TGE-ff RI mRNA expression
from 0.43-fold at day 8 to 3.48-fold at day 180 (Fig. 7D). There
was a significant difference between E. mudfilocularis infected and
control groups at day 270 p.i. (P<0.05); however at that time,
mRNA expression was lower in infeeted mice, despite a marked
sion of the receptor as measured by

increase in the expr
immunostaining. Increased TGEF-f RII mRNA expression was
observed from day 30 to 90 and peaked at day 60 after infection.
E.mudtilocularis infection increased TGF-f RII mRNA expression
from 0.70-fold at 8 days to 2.52-fold at 60 days (Fig. 7D). The
difference between £ mudtilocularis-infected and control mice was
significant at day 60 and 90 (P<0.05).

In AE patients, there were no significant differences in TGF-
PRI as well as TGF-$ RII mRNA levels measured by real-time
RT-PCR in the liver close to and distant from the lesions
(Fig. 6D).
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arrowheads indicate the parasitic lesions in the liver of infected mice and human patients. Final magnification: 200 x.

doi:10.1371/journal.pone.0055379.g004

Phosphorylation of Smad2/3 and Expression of Smad4 in
the Livers Infection with E. multilocularis

Protein expression of phosphorylated Smad 2/3. In
experimental mice, pSmad2/3 was most usually expressed in the
eytoplasm of the hepatocytes: very little nuclear expression was
observed. In infected mice, immunostaining displayed a patchy
distribution, and strong staining was observed in those hepatocytes
which were close to the periparasitic infiltrate (Fig. 4). Conversely,
no or a faint staining was observed in the liver distant from the
parasitic lesions and in the liver from control mice. The positive
cells of pSmad 2/3 ranged from 0.15% to 8.2% in the liver close to
lesion, and reached a peak at day 30 and day 60 after infection.
There was a significant difference between £, mudtilocularis infected
and control groups, close to lesion and distant from lesion at day
30, 60,90 and 180 (P<0.05, Fig. 8A). Western Blot measurements
showed that there was no difference either in the phosphorylation
of Smad2/3 protein in the arcas close to lesions compared to those
distant from lesions (Fig. 8B and C).

In AE patients, immunostaining of pSmad2/3 displayed a
patchy distribution (Fig. 4), however non-related to the lobular
structure of the liver and/or to the distance to the parasitic lesions.
There was no significant difference between the positive cells of
pSmad2/3 in arcas close to and distant from lesions (Fig. 6A).
Western Blot measurements showed that there was no difference
cither in the phosphorylation of Smad2/3 protein in the arcas
close to lesions compared to those distant from lesions (Fig. 6B and
Q).

PLOS ONE | www.plosone.org

mRNA expression of Smad2 and 3. In experimental mice,
inereased Smad2 and Smad3 mRNA expression was observed
from day 30 to day 90. Smad2 mRNA expression peaked at day
90 and ranged from 0.8-fold at day 2 to 4.4-fold at day 90
(Fig. 8D). There was a significant difference between K. multi-
locularis infected and control groups at day 30 (P<0.05). Smad3
mRNA expression peaked at day 60 and ranged from 2.6-fold at
day 60 days to 0.5-fold at day 360 (Fig. 8D). There was a
significant difference of between . multilocularis infected and
control groups at day 60 (P<0.05).

In AE patients, there were no significant diflerences in Smad2
mRNA levels measured by real-time RT-PCR (Fig. 6D). However,
mRNA levels of Smad3 were significantly higher in tissue samples
close to lesions compared to those distant from lesions (Fig. 6D).

Protein expr of Smad4. In experimental mice,
immunohistochemical study of Smad4 protein revealed higher
cytoplasmic and nuclear staining of hepatocytes in arcas close to
lesions compared with areas distant from lesions. Distribution of
Smad4 expression was similar to that of pSmad2/3 in its location,
but more diffuse (Fig. 4). Positive cells for Smad4 ranged from
0.2% to 18.0% in the liver close to lesion, and reached a peak at
day 60 p.iThere was a significant difference between £, multi-
locularis-infected and control groups. close to lesion and distant
from lesion at day 30, 60, 90, 180, and 270 (P<0.05, Fig.9A).
However, Western Blot analysis of Smad4 expression did not show
any diflerence between infected and control mice, as well as
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Figure 5. Course of TGF-/1 expression in the liver of experimental mice during £. multilocularis infection. A: Course of TGF-/}1 expression
observed by immune-staining in the liver from E. multilocularis infected mice, calculated as the percent of positive cells to the total number of
counted cells (see Materials and Methods section). B: Relative amount of TGF-fi1 calculated from semi-quantitative analysis of the Western Blot using
densitometry. C: Representative example of the course of TGF-{i1 protein measured by Western Blot. D: Course of TGF-{i1 mRNA expression measured
by real time RT-PCR. a: ‘close’ versus ‘control’; b: ‘close’ versus ‘distant’. *P<:0.05; **P<<0.01. ‘Control’, non-infected mice; ‘Lesion": E. multilocularis
metacestode and surrounding immune infiltrate; ‘Close: liver parenchyma close to E. multilocularis lesion; ‘Distant’: liver parenchyma distant from E.

multilocularis lesion. AU: arbitrary units; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

doi:10.1371/journal. pone.0055379.g005

between the liver close to and distant from the lesions, all over the
time course (Fig. 9B and C).

In AE patients, immunohistochemical staining for Smad4
protein in the liver revealed cytoplasmic and nuclear staining of
hepatocytes, with a homogenous distribution among cells; positive
cells were higher in the areas close to lesions compared with those
distant to lesions. Intensity of nuclear staining of Smad4 protein
was noticeably higher in the arcas close to the lesions (Fig. 4).
Western Blot results also confirmed that Smadd4 protein levels were
significantly higher in the liver parenchyma close to lesions
compared to that distant from lesions (Fig. 6B and C).

mRNA expression of Smad4. In experimental mice,
increased Smad4 mRNA expression was observed from day 30
to day 90. Smad4 mRNA expression peaked at day 90 and ranged
from 0.6-fold at day 8 to 1.9-fold at day 90 (Fig. 9D). There was a
significant difference between £, multilocularis infected and control
mice at day 90 (P<<0.05).

In AE patients, the “lesions to periphery gradient™ observed for
the protein expression was also demonstrated at the mRNA level,

PLOS ONE | www.plosone.org

as measured by real-time RT-PCR, with higher expression close to
the lesions (Fig. 6D).

Expression of Smad 7 in the Livers Infected with E.
multilocularis

Protein expression of Smad7. In experimental mice,
Smad7 immunostaining was mostly present in the cytoplasm of
the hepatocytes, with a varying intensity throughout the liver,
higher in the arcas close to the lesion than in those distant from the
lesion (Fig. 4). A faint staining was observed in the hepatocytes
from 30 10 360 days in the arcas distant from the lesion and in the
control group (Fig. 10A). Smad7 positive cells in the hepatic cells
ranged from 0.40% to 9.45% and reached a peak at 90 days.
There was a significant difference between £, multilocudaris infected
and control groups, close to lesion and distant from lesion at 60
days, 90 days. 180 days and 270 days p.i. (P<0.05, Fig. 10A).
Western Blot results showed that there was no change in Smad7
expression between K. mudtilocularis infected and control mice
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during the whole time course of . multitocularts infection (Fig. 10B
and C).

In AE patients, Smad7 immunostaining was mostly present in
the cytoplasm of the hepatocytes, with a varying intensity
throughout the liver. Opposite to the decreasing gradient from
the lesions to the distant parenchyma observed with most of the
other components, the expression scores of Smad7 expression were

Table 1. Results of the correlation analysis between TGF-f}1
and CD4/CD8, CD4, CD8 positive cells in murine AE (from the
histo-immunochemistry analysis).

CD4/CD8 D4 b8
TGF-fi1  Spearman's rho 0.818* 0639 -0.118
Sig. 0.013 0.088 0.780
N 8 8 8
Note: *P< 0.05.

doi:10.1371/journal.pone.0055379.t001

PLOS ONE | www.plosone.org

lower in the areas close to lesions than in those distant from the
lesions (Fig. 4B). Western Blot results also showed that Smad7

Table 2. Results of the correlation analysis between TGF-f1,
Smad?7 and liver fibrosis markers in murine AE (from the histo-
immunochemistry analysis).
a-SMA Collagen | Collagen Ill

TGF-1 Spearman’'s tho  0.628** 0.836*" 0.781*

Sig. 0.009 P< 0001  P< 0001

N 8 8 8
Smad7 Spearman’s tho ~ —0.600 —0.853** -0316*

Sig. 0.400 P< 0001 0684

N 8 8 8
Note: *P<0.05,
=p<001,
doi:10.1371/joumal.pone.0055379.t002
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Table 3. Results of the correlation analysis between TGF-f1 protein levels were significantly lower in the liver parenchyma
Smad7 and liver fibrosis markers in human AE {from the histo- close to lesions compared to that distant from lesions (Fig. 6B and
Jimmunochemistry analysis). G
Correlati with T cell subpopulations and fibrosis
markers. Spearman corrclation coeflicients indicated a nega-
«-SMA Collagen|  Collagen Il tive correlation between Smad7 expression and #-SMA. Collagen
: = = I, and Collagen 111 expression scores which was significant for
el SRS i e Lt RE Collagen I and Collagen 111 (r = —0.853. £<0.01; and r = —0.316.
Sig. 0.001 0013 0.001 P<0.05 respectively) in the livers from day 90 to day 360 p.i. in
N 16 16 16 experimental mice under study (Table 2). There was also a
Smad7 Spearman’s tho ~ —0.569* -0313 —0.463* negative correlation between Smad7 expression and o-SMA,
Sl 0004 0136 0023 Collagen 1, and Collagen III expression scores, which was
N 1& 3% 16 significant for #-SMA and Collagen 1l (r=—0.569, P=0.01:
and r=—0.463, P=0.05, respectively) in the livers from the 16
Note: *P<0.05, patients with AE under study (Table 3).
“P<O01. mRNA expression of Smad7. In experimental mice. Smacd7
AaRIn37 W jaurakpone00 33/9:400 mRNA expression was significantly higher in £, mudtilocularis-
infected than in control mice at day 30 (P<0.01) (Fig. 10D).
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Figure 7. Course of TGF-/1 receptors (TGF-/ Rl and TGF-/RIl) expression in the liver of mice during E multilocularis infection in
experimental mice. A: Course of TGF-§ Rl and RIl expression observed by immune-staining in the liver from E. multilocularis infected mice
compared to control mice, calculated as the percent of positive cells to the total number of counted cells (see Materials and Methods section). B:
Relative amount of TGF-fJ Rl and RIl calculated from semi-quantitative analysis of the Western Blot using densitometry. C: Representative example of
the course of TGF-f Rl and Rl protein measured by Western Blot in experimental mice. D: Course of TGF-f Rl and Ril mRNA expression measured by
real time RT-PCR in experimental mice. a: ‘close’ versus ‘control’; b: ‘close’ versus ‘distant’. *P<<0.05; **P<0.01. ‘Control’, non-infected mice; ‘Lesion": £.

multilocularis metacestode and surrounding immune infiltrate;

‘Close”; liver parenchyma close to E. multilocularis lesion; ‘Distant”: liver parenchyma

distant from E. multilocularis lesion. AU: arbitrary units; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

doi:10.1371/journal.pone.0055379.g007
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In AE paticnts, lower Smad7 mRNA levels close to the lesions,
as mecasurcd by real-time RT-PCR, further confirmed the reverse
gradient from the lesions to the periphery observed at the protein
level (Fig. 6D).

Correlation with fibrosis markers. There was a significant
negative correlation between Smad7 and Collagen 1 expression
scores in experimental mice under study (r=—0.853, P<0.001)
(Table 2). There was also a significant negative correlation
between Smad7 and o-SMA and Collagen 111 expression scores
r=—0.569, P=0.004 r=-0463, P=0023 respectively)
(Table 3) in the liver of the 16 AE patients under study.

Discussion

Despite the major potential role attributed to TGF-f in the
tolerance and the fibrosis processes in AE, only one study until
now reported that TGEF-f was expressed in the periparasitic
infilrate in liver biopsies from a patient with AE [14]: however,
quantificd expression of TGF-f protein and mRNA was never

PLOS ONE | www.plosone.org

studied. and neither the presence of TGF-f receptors nor that of
components of the TGF-ff metabolic pathway were ever looked for
in . multilocnlaris-infected livers. In the present study, both in
humans and in the longitudinal study of experimental £
multilocularis infection model, we confirmed that TGF-f and
members of its pathway were actually present in E. multifocularis-
infected livers (Fig. 11). We could show the expression of TGF-ff in
most lymphocytes and macrophages of the periparasitic infiltrate
as well as in the liver parenchyma, even distant from the parasitic
lesion. Phenotypic study of cells within the periparasitic granuloma
also confirmed that CD4™ T cells represented  the major
population of 'I' cells at the beginning of the infection and that
this sub-population was progressively replaced by CD8™ I cells
19]., and this change of CD4/CD8 ratios could contribute to
maintain TGF-f1 secretion. TGF-f§ receptors were also expressed
at the membrane of most cells in the periparasitic infiltrate and in
the liver parenchyma from carly to late stage post . multilocularis
infection. Expression of the receptors suggested that the markedly
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doi:10.1371/journal.pone.0055379.g009

clevated levels of TGF-B1 present in £ multiboeularis-infected liver,
were functional to regulate the activities of immune cells as well as
hepatoeytes and cells involved in fibrosis. This was confirmed by
the changes also observed in various Smad components of the
TGF-f pathway, with usually a marked increase since the middle
stage of the chronic phase of the discase in £, multifocularis infected
mice, which suggested an activation of the Smad cascade and thus
an activation of the signal transduction of TGF-fil. Expression of
the receptors and of Smads and phosphorylation of Smad 2/3 in
the liver of human patients with hepatic AE, with various types of
gracient in the liver depending on the cascade component,
confirmed the significant activation of the system at the middle/
late stage of k. multilocularis infection.

Fibrosis is a hallmark of AE, leading to a complete disappear-
ance of the liver parenchyma in the periparasitic arca, and to
fibrosis in portal spaces. Fibrosis protects the host against the
parasitic growth, but at the same time it distorts the liver

parenchyma, contributes to bile duct and vessel obstruction and

PLOS ONE | www.plosone.org

can lead to secondary biliary cirrhosis [5.7]. The irreversible
accllular keloid scar-like fibrosis observed in AE is the ultimate
result of cytotoxic and fibrogenetic events related to the immune
response of the host which are taking place initially in the
granulomatous arca surrounding the young parasite larvae |13].
Previous observations in experimental models of AE  have
suggested that progression of fibrosis in AE involves an carly
deposition of type 111 collagen pro-peptide and type 11 collagen at
the periphery of the granulomas, and a subsequent remodeling of
fibrosis with bundles of type 1 collagen in the periparasitic central
arca [4|. Stellate cell-derived myolibroblasts have been observed
in AE liver, both in humans [7] and in the experimental mouse
maodel [4]. It was noted that in some regions of the liver where the
parenchyma was totally replaced with dead parasitic lesions and
fibrosis, HSC: were the only cellular remnants present |7]. We
confirmed that 2-SMA, a specific cell marker for MFB, as well as
type 1 and 11 collagens, were highly expressed in  tissues
surrounding AE lesions; the expression of collagen 1 increased
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expression observed by immune-staining in the liver from E. multilocularis infected mice compared to control mice, calculated as the percent of
positive cells to the total number of counted cells (see Materials and Methods section). B: Relative amount of Smad7 calculated from semi-
quantitative analysis of the Western blot using densitometry. C: Representative example of the course of Smad7 protein measured by Western Blot in
experimental mice. D: Course of Smad7 mRNA expression measured by real time RT-PCR in experimental mice. a: ‘close’ versus ‘control’; b: ‘close’
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doi:10.1371/journal.pone.0055379.g010

steadily through the course of the infection, whereas collagen 111
rapidly reached its maximum level of expression at day 8: this
sequence of events, which is usual in fibrotic processes (collagen 111
being produced quickly by fibroblasts before collagen 1 i
synthesized) was already noticed in the first studies on AE fibrosis
in the experimental model; in humans, as well as in mice at later
stages, location of collagen 111 in of recent larval
development supported this sequence [4.7].

The positive correlation we found between their expression and
expression of TGF-B1, both in the experimental model and in

S

arcas

human livers, is an indirect argument for a significant role of this
cytokine in AE fibrosis. The major peak of TGF-fi1 at the middle
stage of infection in experimental animals, and its expression in AE
patients who are diagnosed at a similar stage, suggest that although
lower levels may initiate immune tolerance as carly as the carly

stage, the eytokine becomes prominent later, when both mainte-
nance of the tolerance state and development of fibrosis are at
stake (Fig. 11). Several cytokines involved i fibrosis
development [27.28]. The role of pro-inflammatory cytokines,

arc

PLOS ONE | www.plosone.org

and especially tumor necrosis factor (TNF-2), in the protection of
the host against £, multiloeularis has been demonstrated, and it is
likely that they act at least in part through the development of
fibrosis [29]. In human livers with hepatic AE, the mRNAs of pro-
inflammatory cytokines, interleukin (1L)-1f, 1L-6, and TNF-x have
been found in macrophages located at the periphery of granulo-
mas, in those areas which were shown to be at the initiation of
fibrogenesis [30]. 1L-12, which inhibits the development of the
parasitic vesicles after E. multilocularis infection, was also shown to
induce a fast development of peri-vesicle fibrosis [31]. However,
TGF-f is probably the most decisive eytokine and HSCs the most
significant cells involved in liver fibrosis [32]; and the involvement
of TGF-f and HSCs in the development of the fibrosis in other
liver parasitic discases, such as schistosomiasis, has been well
documented [33,34]. During the development of chronic liver
injury, including inflammation. fibrosis and regeneration, TGF-f1
plays a prominent role in stimulating liver fibrogenesis by MFBs
derived from HSCs. TGF-f1 can be secreted by Kupfler cells,
biliary cells, infiltrated inflammatory cells, and the HSC them-
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selves; it inhibits hepatocyte proliferation, induces hepatocyte
apoptosis, and activates HSC to differentiate into M¥FBs and
secrete ECM components, including collagens, acting via both
paracrine and autocrine pathways: TGF-f1 also inhibits ECM
degradation and enhances accumulation of ECM in the liver [35].
Our results highly suggest that TGF-f and its signaling pathway
are in the position to play this major role regarding fibrosis in AE,

The Smad family of proteins mediates signaling from the TGE-
f R to the nucleus. In the current study, there was an increased
expression of TGF-f R, Smad3 mRNA, and especially of Smad4
which is a central mediator in "TGF-f superfamily signaling [20].

A few discrepancies between RNA expression and the amount of

protein regarding TGF-f R and Smads may be explain by post-
transcriptional events, and deserve further studics, since such
events could be caused by parasite components. On the other
hand, information given by immunostaining and Western Blot
analysis is different, albeit complementary, since the type and
microenvironment of the producing cells may compensate

otherwise lower amounts of the protein. Our study showed that
expression of Smadd was higher in areas surrounding lesions than
in distant liver in the patients with AE. Smad7, which is induced
by TGF-f itself, is responsible for the fine-tuning of TGF-f signals
[36]. It prevents the phosphorylation of Smad proteins, associates
with ubiquitin ligases involved in TGF-f# R-degradation, and acts
as a transcriptional repressor inhibiting Smad-dependent promot-
er activation [37]. In physiological situations, its increase decreases
the phosphorylation of Smad2/3, and thus decreases TGF-f§
functions. In chronic hepatic injury, the expression of Smad7 is
paradoxically decreased [38]: as a result, TGF-f8 signal transduc-
tion cannot be effectively inhibited, and TGF-f functions are
enhanced. An aberrant expression of Smad7 may thus disrupt the
balanced activity of TGF- under pathophysiological conditions.
The low expression of Smad7 in the areas surrounding the lesions
and its negative correlation with 2-SMA and Collagen 111 highly
suggest that in AE too the normal feed-back loop might not work
properly, and that fibrosis might be permancently activated through

PLOS ONE | www.plosone.org

Table 4. Primers and cycling parameters of real time RT-PCR detection of TGF-f1 signaling pathway (mouse).
Genbank Annealing
Gene Accession Primer Sequences Temp d Size
TGF-f31 NM_011577 F:5'-GTGTGGAGCAACATGTGGAACTCTA-3' R:5 - TTGGTTCAGCCACTGCCGTA-3' 521 C 143 bp
TGF-f3 RI NM_009370.2 F: 5" TGCAATCAGGACCACTGCAATAA-3' R: 5'-GTGCAATGCAGACGAAGCAGA-3' 60.0'C 133 bp
TGF-3 RII NM_009371.2 F: 5"-AAATTCCCAGCTTCTGGCTCAAC-3' R: 5'-TGTGCTGTGAGACGGGCTTC-3" 60.0 C 100 bp.
Smad2 NM_010754 F: 5'-AACCCGAATGTGCACCATAAGAA-3' R: 5'-GCGAGTCTTTGATGGGTTTACGA-3' 60.0'C 198 bp
Smad3 NM_016769 F: 5"-GTCAACAAGTGGTGGCGTGTG-3' R: 5'-GCAGCAAAGGCTTCTGGGATAA-3"  60.0 C 150 bp
Smad4 NM_008540 F: 5" TGACGCCCTAACCATTTCCAG 3’ R: 5'-CTGCTAAGAGCAAGGCAGCAAA-3  60.0°C 136 bp
Smad?7 NM_001042660  F: 5"-AGAGGCTGTGTTGCTGTGAATC-3' R: 5'-CCATTGGGTATCTGGAGTAAGGA-3' 60.0 C 126 bp.
p-actin NM_007393 F: 5'-AACTCCATCATGAAGTGTGA-3' R: 5'-ACTCCTGCTTGCTGATCCAC-3' 56.0 C 248 bp
doi:10.1371/journal.pone.0055379.t004
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that mechanism. As TGF-f is likely to be crucial to maintain the
immune tolerance state and 'I-reg generation/ function essential to
the parasite, K. multilocularis could be  responsible for the
paracloxical decrcase of Smad7 in the periparasitic granuloma
and nearby liver: this might be one of the mechanisms for the carly
induction of immune tolerance and for the progression from
chronic hepatic injury to hepatic fibrosis during £. mudtilocularis
infection. All results obtained in the mouse model however do not
fully support an essential role for the inhibitory Smad7 feed-back
loop: Smad7 was indeed high in the middle stage of £, multilocularis
infection, and Smad7 expression negatively correlated globally
with expression of collagen 1 and 111 in infected mice, but this
clevation did not scem to markedly decrease pSmad2/3, and
Smad4 expression; the light decrease of these components at day
90, could be an indication of its partial intervention: other
mechanisms of regulation of the TGF-f pathway at that crucial
stage of the disease, to maintain a high level of activity of the
pathway are thus likely. In fact, TGF-§ also induces other non-
SMAD signaling pathways, which include activation of several
MKKs (MAP kinase Kinase) and MEKs (MAPK/ERK Kinase)
pathways (including JNK/SPAK, p38. and ERK1/2) through
upstream mediators RhoA, Ras, TAK (TGF-BActivated Kinase),
TABI (TAKI Binding Protein); and the proteins XIAP (Xenopus
Inhibitor of Apoptosis), HPKI1 (Haematopoictic Progenitor

Kinase-1) are also involved in this link [39]. Thus, TGF-f itsell

or its receptors, more than down-stream Smads, represent an
attractive target for the development of therapeutics that
simultancously attack the pathogen and its micro-cnvironment,
the pleiotropic nature of TGF-f signaling, its role in tissue
homeostasis and its dual role in pathogenesis present unique
challenges that must be considered in pre-clinical and clinical drug
development programs.

In preliminary @ witro studies (data not shown) we observed a
seceretion of TGE- f1 and an activation of the TGF-f8 pathway in
rat hepatoeyte cultures incubated with vesicle fluid of parasitic
origin, in the absence of inflammatory cells, thus of immune cell-
related eytokines. This is an intriguing finding which reinforces the
hypothesis of a “cross-talk”™ between the parasitic larva and its
host, already provided by a number of observations which
suggested that the larval development of £ mudtilocularis is triggered
by cell signaling originating from the intermediate host [40.41]
and that £, multilocularis metacestode was thus able to “sense™ host
factors, which may result in an activation of the parasite metabolic
pathway cascades [42]. Conversely, the parasite might also
influence signaling mechanisms of host cells through the secretion
of various molecules which might bind to host cell surface

PLOS ONE | www.plosone.org

Table 5. Primers and cycling parameters of real time RT-PCR detection of TGF-fi1 signaling pathway (Human).
Genbank Annealing
Gene Accession Primer Sequences Temp d Size
TGF'-1 A23751.1 F:5'-ACACCAACTATTGCTTCAG-3' R:5'-TGTCCAGGCTCCAAATG-3" $S7°C 159 bp
TGF-f3 RI NM_001130916 F: 5'-AATTCCTCGAGATAGGCCGT-3" R: 5'-TGCGGTTGTGGCAGATATAG-3' 60.0 C 244 bp
TGF-J3 RIl NM_003242.5 F: 5" -AACAACATCAACCACAACACAG-3' R: 5"-CCGTCTTCCGCTCCTCAG-3" 56.2 C 250 bp
Smad2 NM_005901.4 F: 5'-GTCTCTTGATGGTCGTCTC-3' R: 5'-GGCGGAAGTTCTGTTAGG-3" 533C 249 bp
Smad3 NM_001145104.1  F: 5'-GTGCTCCATCTCCTACTAC-3' R: 5'-CCTCTTCCGATGTGTCTC-3" 565 C 183 bp
Smad4 BC002379.2 F: 5'-CAGGACAGCAGCAGAATG-3" R: 5'-CAATACTCAGGAGCAGGATG-3" 556 C 232 bp
Smad? NM_001190823.1  F: 5"-TTTGTGTATTTATITCITTCTCIC-3" R: 5'-CACTCTCGTCTTCTCCTC 3" 545C 194 bp
[-actin NM_002046.3 F: 5'-GCACCGTCAAGGCTGAGAAC-3' R: 5'-TGGTGAAGACGCCAGTGGA-3' 508 C 138 bp
doi:10.1371/journal.pone.0055379.t005

receptors or to the temporary storage of host-derived molecules in
the vesicle fluid. Such interactions could contribute to immuno-
modulatory activities of K. multilocularis, to pathological conse-
quences on the host’s tissues, and/or be involved in mechanisms of
organotropism [14]. In our previous study, a significant influence
of K. multilocularis metacestode on the activation of MAPKs
signalling pathways was found in the liver cells both in vivo in
infected patients and in vitro in cultured rat hepatoeytes [43]. A
recent study has also provided evidence for the induction of
apoptosis in host DC through Eeckinococeus E/S-products of carly
infectious stages of £ multilocularis [44]. These observations suggest
that parasitic components, and not only factors from host origin,
are actually acting on the host [44]. Further studies are, however,
necessary to determine the parasite and/or host components
actually involved in the activation of the TGF-f/Smad pathway.

Materials and Methods

Ethics Statement

The clinical investigation has been conducted according to the
principles expressed in the Declaration of Helsinki. For rescarch
involving human participants, informed written consent has been
obtained from the patients, as part of a research project approved
by the Ethical Committee of First Affiliated Hospital of Xinjiang
Medical University (20080812-5). The animal study was per-
formed in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals. The protocol
was approved by the Animal Care and Use Committee and the
Ethical Committee of First Affiliated Hospital of Xinjiang Medical
University (20081205-2). All surgery was performed under sodium
pentobarbital anesthesia, and every effort was made to minimize
suflering.

Experimental Design, Tissue Sampling and Histological
Examination

Experimental animals. One hundred and twenty pathogen-
free female BALB/¢ mice (8-10-week old) were housed in cages
with a 12-h light/dark cycle and provided with rodent chow and
water. BALB/c mice were infected by £ multilocularis and tissue
samples were collected and  detected as previously described
126 45]. For cach autopsy time-point, ten experimentally infected
mice were used in £ mudtilocularis group (n=10) and compared
with five control mice (n=5), which received an intra-hepatic
injection of 0.1 mL of saline in the anterior liver lobe using the
same surgical procedure. Mice were killed at 2, 8, 30, 60, 90, 180,
270 and 360 days, respectively. Tissue samples from £ mudti-
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locdaris lesions were taken and processed for histopathological
examination and immunostaining. In addition, liver tissue samples
were taken 1) close to the parasitic lesions, i.e. 1-2 mm from the
macroscopic changes due to the metacestode/granuloma lesion,
thus avoiding liver contamination with infiltrating immune cells
and parasitic tissue, and 2) distant from the parasitic lesion, in
another lobe of the liver, in £, multilocularis infected mice; in control
mice, samples were taken in the injected lobe and in a non-injected
lobe of the liver.

Patients. In humans, the diagnosis of £. multilocularis infection
(AE) was based on positive serology with ELISA using crude £.
multilocularis antigen, Antigen B, Em2 and Em18 (Xinjiang Bei Si
Ming, Urumqji, China) and characteristic liver lesions observed on
ultrasound- and CT' scans. All diagnoses were confirmed by
histological examination of the lesions [35]; tissue samples taken
for diagnosis were also used for immunostaining. In addition, to
measure proteins in the liver using Western Blot and mRNA using
real time RT-PCR, paired liver specimens (0.5 cm3 cach) were
obtained at surgery by an experienced surgeon from 16 patients
with AE at the First Affiliated Hospital of Xinjiang Medical
University, Urumgqi, China. From cach patient, one specimen was
taken close to the parasitic lesions (0.5 cm from the macroscopic
changes due to the metacestode/granuloma lesion), and one was
taken in the liver distant from the lesions (the non-discased lobe of
the liver whenever possible, or at least at 10 cm from the lesion),
according to a previously described procedure [35].

Processing of tissue samples. Liver samples were scparated
into two parts and either deep-frozen in liquid nitrogen for RNA
isolation or formalin-fixed for histopathological examination. For
histological and immunohistochemical studies, the liver samples
were fixed in 4% paraformaldehyde in neutral buffered formalin
for a minimum of 24 h, embedded in paraffin, and cut into 4 pm
serial sections. Paraffin-embedded liver tissue samples of experi-
mental mice and AE patients were stained by Hematoxylin and
Eosin (H&E) and Masson’s trichrome for pathological observa-
tions.

Immunohistochemistry Analysis

Immunohistochemistry was performed on formalin-fixed, par-
affin-embedded tissue. Briefly, 4 pm tissue sections were de-
paraffinized in xylene and rchydrated in gradual dilutions of
cthanol. Endogenous peroxidase was blocked with 3% hydrogen
peroxide. To increase staining, sections were pretreated by
microwave heating for 15 min in antigen unmasking solution
(pH 6.8, 0.1 M citrate buffer, Zhongshan Jingiao Biology Corpo-
ration, Beijing). To block non-specific background, the sections
were incubated with non-immune goat serum for 30 min. Sections
were then incubated overnight at 4°C with the primary antibody
diluted in pH 7.3 phosphate-buffered saline (PBS) (2-SMA 1:200,
Collagen 1 (COL 1) 1:200, Collagen 3 (COL3) 1:200, CD4 1:100,
CD8 1:100, TGF-f1 1:100, TGF-f receptor I (IGF-$ RI) 1:200,
TGF-f receptor 11 (FGF-f RII) 1:200, pSmad2/3 1:200, Smad4
1:200, and Smad7 1:100) (Santa Cruz Corporation, CA, USA).
After 3 washes in PBS, the sections were subsequently incubated
with horseradish peroxidase conjugated host-specific secondary
antibodies and 3, 3'-diaminobenzidine was used as chromogen.
Sections were counterstained with  hematoxylin  for 5 min,
dehydrated, and covered with slips. For all samples, negative
controls consisted of substitution of the isotype-matched primary
antibody with PBS.

Western Blot Analysis
Western Blot analysis of cell lysates was performed by SDS-
PAGE using NuPAGE (Invitrogen, California, USA) followed by

PLOS ONE | www.plosone.org

TGF-$ Signaling in Alveolar Echinococcosis

transfer to nitrocellulose membrane (Invitrogen, California, USA).
Ponceau S (Sigma, Missouri, USA) staining was used to ensure
equal protein loading and electrophoretic transfer. Using the
appropriate antibodies, TGF-$1, TGF-f# R1, and RIL pSmad2/3,
Smad4 and Smad7 (Cell Signaling Technology, Massachusetts,
USA) and GAPDH (Santa Cruz Biotechnology, California, USA)
were detected with WesternBreeze Kit (Invitrogen, California,
USA). The expression levels of respective proteins (in “relative
units”) in the liver of control mice and E. mudtilocularis infected
mice, as well as in the liver of AE patients, were quantified using
Quantity One software (Bio-Rad, Hercules, USA).

Quantitative Real-time RT- PCR Analysis

After removing contaminated DNA from the isolated RNA
using DNasel (Fermentas, Vilnius, Lithuania), 1 pg of total RNA
was reverse transcribed into ¢cDNA in 20 mL reaction mixtures
containing 200 U of Moloney murine leukemia virus reverse
transcriptase (MMLV, Promega, Madison, USA); 100 ng per
reaction of oligo (d'T') primers: and 0.5 mM each of dAN'TPs, dATP,
dCTP, dGTP, and dTTP. The reaction mixture was then
incubated at 42°C for 1 hour and at 95°C for 5 min to deactivate
the reverse transcriptase.

The real time RT-PCR was run in a thermocycler iQ5 Bio-
Rad, Hercules, CA, USA) with the SYBR Green PCR premix
(TaKaRa, Dalian, China) following the manufacturer’s instruc-
tions. Thermoeycling was performed in a final volume of 20 pL
containing 2 uL. ¢cDNA and 10 pM of each primer (Table 4 and
5). To normalize for gene expression, mRNA expression of the
housckeeping gene GAPDH was measured. For every sample,
both the housckeeping and the target genes were amplified in
triplicate using the following cycle scheme: after initial denatur-
ation of the samples at 95°C for 1 min, 40 cycles of 95°C for 5 s
and 60°C (or other) for 30 s were performed. Fluorescence was
measured in every cycle, and a melting curve was analyzed after
the PCR by increasing the temperature from 55 to 95°C (0.5°C
increments). A defined single peak was obtained for all amplicons,
confirming the specificity of the amplification.

Expression of the Data and Statistical Analysis
Immunostaining of x-SMA, Collagen I, Collagen 111, CD4 and
CD8 was semi-quantified by calculating “expression scores™ that
consider both staining intensity and the percentage of cells stained
at a specific range of intensities. A score of zero indicated the
percentage of positive cells <5%, 1+=5-25%, 2+=25-50%,
34+=50-75%, 4+>75%. The staining intensity of cach specimen
was judged relative to the intensity of a control slide including an
adjacent section stained with an irrelevant negative control
antibody that was matched by species and isotype to the specimen.
Staining of the section labeled with the negative reagent control
was considered as background. A score of zero indicated no
staining relative to background, 1+ = weak staining, 24+ = moderate
staining, and 3+ = strong staining. According to standard pathol-
ogy practice, staining intensity was reported at the highest level of
intensity observed in all tissue clements, except the distinctive
tissue clement for which an expanded scoring scheme was
reported. The “expression scores”™ were calculated by multiplying
the percent of positive cells (0-4) and the staining intensity scores
(0-3). For example: for a specimen with 30% of positive cells (3+),
and a moderate staining intensity (2+), the “expression score”™ was
3x2=6. Three pathologists read the sections and established the
scores, and they were blinded to cach other results. Immuno-
staining of TGF-$1/Smads was quantified by calculating “positive
cells”. Cells with a positive immunostaining were counted in five
random visual ficlds of 095 square mm ecach, at initial
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magnification: x20, for each sample, and the result was expressed

as

the percent of positive cells to the total number of cells counted.
All the data were analyzed by SPSS 17.0. The results were

presented as means = SD. One-way ANOVA and Student’s f-test
were used to compare the differences between groups, and
Spearman’s rho was used to analyze the correlation coefficient.
P<0.05 was considered to indicate statistical significance.
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Main conclusions and remarks:

1) TGF-B1 was expressed in most lymphocytes and macrophages of the periparasitic
infiltrate as well as in the liver parenchyma, even distant from the parasitic lesion.

2) CD4" T cells represented the major population of T cells at the beginning of the
infection and that this sub-population was progressively replaced by CD8" T cells, and
this change of CD4/CDS ratios could contribute to maintain TGF-B1 secretion.

3) TGF-B receptors were also expressed at the membrane of most cells in the
periparasitic infiltrate and in the liver parenchyma from early to late stage post E.
multilocularis infection.

4) Various down-stream Smad components of the TGF- pathway were marked
increased at the middle stage of the chronic phase of the disease in E. multilocularis
infected mice.

5) Fibrosis was significant at 180 days p.i. in the periparasitic infiltrate and was also
present in the liver parenchyma, even distant from the lesions.
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7. Is FGL2 involved in the cross-talk between E.
multilocularis and its host and how does it regulate immune

tolerance?
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To address this question, and study E. multilocularis growth in the absence of
FGL2, we employed intra-peritoneally infected FGL2"~ Knock-Out mice. As a key
parameter for outcome, parasite load was measured by wet weight determination of
the metacestode tumor-like tissue, and serum FGL2 levels were measured by
sandwich ELISA. Spleen cells were firstly analyzed ex-vivo and secondly after being
cultured with ConA stimulation for 48h or with E.multilocularis Vesicle Fluid (VF)
antigenic stimulation for 96h. Spleen cells from non-infected WT mice were cultured
with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For the
Treg immune suppression assay, high purity of CD4 CD25 Tregs (N>99%) was
incubated, together with CD4" effector T cells and irradiated spleen cells as APCs,
with ConA for 48h. Flow cytometry and real time RT-PCR were used to determine T
cell subpopulations including Treg numbers and phenotypes, Th17-, Thl-, Th2-type

immune responses, and maturation of dendritic cells and B cells.

Background and objectives:

We previously showed that CD4" CD25" regulatory T (Treg) cells played a
critical role in human echinococcosis by blunting immune responses to specific
antigens, or by suppressing the secretion of proinflammatory cytokines, especially
through interleukin (IL)-10 and transforming growth factor (TGF-B1). Moreover,
increased CD4" CD25" Treg had also been observed in peritoneal cells in mice
infected intraperitoneally (i.p.) with E. multilocularis, a finding that was concordant
with other findings that E. multilocularis antigens promote T cell differentiation into
Treg cells. Besides regulatory cytokines, among those factors which mediate immune
regulation/tolerance by CD4" CD25" Tregs, Fibrinogen-like protein 2 (FGL2) has
recently been recognised. In a previous study, by using a microarray-based approach,
researchers from our team observed that mRNA levels of FGL2 were significantly
up-regulated in the liver of mice perorally infected with E.multilocularis eggs. The
aims of this work were thus: 1) to study the role of FGL2 on T and B cell reactivity as
well as on the maturation of dendritic cells (DC) at two different stages of E.
multilocularis infection, i.e. early and late stages, by using an original model of flg2”"
mice 2) to study how components of parasite origin, i.e. metabolites, such as those
present in the vesicle fluid (VF) in E. multilocularis infection exert an effect on
immune response in ﬂg2'/' mice, 3) to explore how FGL2 is secreted during the course
of E. multilocularis infection; and 4) to give a comprehensive picture of the various
cell and molecular components involved in immune regulation in the peritoneal cells
surrounding E. multilocularis metacestode (periparasitic infiltrate) and in the spleen.
To achieve this goal, Th1/Th2-related and Treg/Th17 related cytokines, maturation of
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dendritic cells (DC), B cell response, and Treg generation/functions were studied at
the different stages of disease, in various experimental models which allowed or

suppressed the influence of FGL2.
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Abstract

Background: The immunology of murine alveolar echinococcosis (AE) is
characterized by the development of immune tolerance against the Echinococcus
multilocularis (E.multilocularis) metacestode allowing the parasitic tumor-like tissue
to continuously proliferate and metastasize. The velocity of proliferation is dependent
on the nature of the periparasitic inflammatory and other immune-mediated processes.
In a previous explorative study, fibrinogen-like protein 2 (FGL2) was found to be
up-regulated in AE-infected versus non-infected control animals. So far, nothing is
known on the contribution of this novel CD4" CD25" regulatory T cell (Treg) effector
molecule to the control of a helminth infection.Methods: fgl2”" mice were
experimentally infected with E. multilocularis, and age-and-gender-matching wild
type (WT) animals were used as controls. Mice were sacrificed at 1 and 4 month(s)
post-infection (p.1.). As a key parameter for infection outcome, parasite load was
measured by wet weight determination of the metacestode tumor-like tissue, and
serum FGL2 levels were measured by sandwich enzyme-linked immunosorbent assay.
Spleen cells were firstly analyzed ex-vivo and secondly after being cultured with
ConA stimulation for 48h or with E. multilocularis Vesicle Fluid (VF) antigenic
stimulation for 96h. Spleen cells from non-infected WT mice were cultured with
rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For the Treg
immune suppression assay, high purity of CD4" CD25" Tregs (N>99%) was achieved
by first MACS and subsequently FACS. These purified cells were incubated, together
with CD4" effector T cells and irradiated spleen cells as APCs, with ConA for 48h.
Flow cytometry and real time RT-PCR were used to determine T cell subpopulations
including Treg numbers and phenotypes, Th17-, Th1-, Th2-type immune responses,
and maturation of dendritic cells and B cells. Results: FGL2-deficient mice infected
with E. multilocularis exhibited a significantly decreased parasite load, associated
with increased T cell proliferation in response to ConA, impaired Treg numbers and
function, relative Th1 polarization, and increased numbers of antibody-producing B
cells, as compared to infected WT mice. Both relative number and maturation status
of dendritic cells were higher in fgl2” mice, and CD80 and CD86 were more
expressed in DCs following ConA and VF stimulation. Additional experiments
confirmed that IL-17A contributes to FGL2 secretion in this model.

Conclusions: Our data demonstrate that FGL2, together with IL-17 and by promoting
Treg cell activity, appears as a key-player in the orchestration of the outcome of .
multilocularis infection; this study gives evidence for a role of IL-17 in FGL2
regulation, and suggests that targeting FGL2 could be used for the development of

novel treatment approaches in infectious diseases.
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Introduction

Alveolar echinococcosis (AE) is one of the clinically most severe zoonotic
helminthic disease, characterized by a chronic and progressive hepatic damage
occurring during the continuous proliferation of the larval stage (metacestode) of
Echinococcus multilocularis (E. multilocularis) [1], with a fatal outcome if remaining
untreated. AE is thus a neglected “malignant” parasitic disease deserving clinically
the same attention as cancer. If the currently limited prevention and medical treatment
options remain unchanged, increasing numbers of AE patients (emergence is
presently affecting mainly Europe and China) will not receive appropriate care with
foreseeable consequences on human distress, cost and economic losses [2]. Humans,
as accidental intermediate hosts in the life cycle of the parasite, suffer from severe
conditions in the late stage of the disease not only because of the continuous
space-occupying metacestode proliferation in the liver and subsequent metastasis
formation predominantly in the lungs and the brain, but also mainly because of the
intense inflammatory granulomatous periparasitic infiltration resulting in a marked
periparasitic tissue reconstruction of the affected organs. The parasitic lesions
together with the periparasitic tissue reactions behave like a slow-growing liver
cancer, progressively invading the neighboring tissues and organs directly or via
metastases [3]. Pathological changes in AE are associated with an intense periparasitic
infiltration by macrophages of various functional types, including the so-called
“epithelioid cells” and “giant cells”, typical of granulomas [2, 3] and by T
lymphocytes. CD4" T lymphocytes are present from the early stage of parasite growth
and CD8" T lymphocytes are known to home to the periparasitic infiltrate secondarily
and to be associated with parasite tolerance and severity of the disease [1,3,4,5].

It has been previously shown that E. multilocularis infection induces an immune
response that can select numerous pathways; the involvement of individual cytokines
has been rather extensively studied within the past 2 decades [1]. A rather
Th2-dominated immunity associates with an increased susceptibility to disease, which
leads to chronic AE, while Th1 cell activation induces protective immunity, which
may lead to aborted forms of infection [1, 2]. During the conventional course of E.
multilocularis infection in susceptible experimental hosts, an initial Th1 response
gradually switches to a more dominating Th2 response during the chronic phase of
AE; this mostly mixed Th1/Th2 profile is nevertheless associated with the expression
of pro-inflammatory cytokines in the periparasitic granuloma and partially protective
immunity through fibrosis and necrosis [6]. We previously showed that CD4" CD25"
regulatory T (Treg) cells played a critical role in human echinococcosis by blunting

immune responses to specific antigens, or by suppressing the secretion of
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proinflammatory cytokines, especially through interleukin (IL)-10 and transforming
growth factor (TGF-B1) [7]. Moreover, increased CD4" CD25" Treg was also
observed in peritoneal cells in mice infected intraperitoneally (i.p.) with E.
multilocularis, a finding that was concordant with other findings that E. multilocularis
antigens promote T cell differentiation into Treg cells (unpublished data).

In a previous explorative study, by using a microarray-based approach, we
observed that mRNA levels of the fibrinogen-like protein 2 (FGL2) were significantly
up-regulated in the liver of mice perorally infected with E.multilocularis eggs [8].
Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen-related superfamily of
proteins known to be secreted by T cells, has recently been reported by a number of
groups to be highly expressed by Tregs and has been proposed to have a role in Treg
effector function [9]. It has been shown that FGL2 could inhibit dendritic cell
maturation and induce apoptosis of B cells through binding to low-affinity
FcgammaRIIB receptor, and thus contribute to Treg activity [10]. There is evidence
that FGL2 exerts immunosuppressive effect on T cell proliferation. Thus it plays an
important role both in innate and adaptive immunity, being expressed by activated
CD4"and CD8" T cells and reticulo-endothelial cells (macrophages and endothelial
cells) [11,12,13,14,15,16]. It has been implicated as a novel biomarker of cancer, and
in the pathogenesis of inflammatory disorders such as allo- and xenograft rejection
[11,17,18,19,20,21], or cytokine-induced fetal loss [22]. It was also shown to play a
role in infectious diseases, such as viral hepatitis [11,14]. To our knowledge, it has
until now been neglected as a key-player in parasite-induced tolerance. As the
therapeutic tools in AE are very limited so far, and immune modulation might
represent an alternative option, Tregs and their effector molecule FGL2 could become
attractive targets, putatively allowing a modulation of the patient's immune response
to yield protective immune reactions that will result in a dying-out of the parasite
metacestode.

The major aims of this work were thus: 1) to study the role of FGL2 on T and B
cell reactivity as well as on the maturation of dendritic cells (DC) at two different
stages of E. multilocularis infection, i.e. early and late stages, by using an original
model of ﬂg2'/ " knockout mice; 2) to study how parasite components, i.e. metabolites,
such as those expressed in the vesicle fluid (VF) of the E. multilocularis metacestode,
affect the immune response in flg2” knockout mice, 3) to explore how FGL2 is
secreted during the course of E. multilocularis infection; and 4) to give a
comprehensive picture of the various cell and molecular components involved in
immune regulation of the peritoneal cells that are in direct contact with F.
multilocularis metacestode (periparasitic infiltrate), and in the spleen as a key immune
organ. To achieve this goal, Th1/Th2-related and Treg/Th17 related cytokines,

maturation of dendritic cells (DC), B cell response, and Treg generation/functions
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were studied at the different stages of disease, in an experimental model with active or
abrogated FGL2-expression.

Results

Significantly decreased parasite load in fgl2”" mice after E. multilocularis
infection

Parasite load, gross morphology and histology of tissues and organs were
compared between E. multilocularis-infected fgl2”~ (AE- fgl2”) and wild type (WT)
infected mice (AE-WT). At the early stage (1mo p.i.), there was no significant
difference yet in parasite load between AE-fgl2'/' and AE-WT mice (0.45+0.53g vs
0.66+0.83 g). However, at the late stage (4mo p.i.), the parasite load became
significantly lower in AE-fgl2”" mice when compared to AE-WT mice (8.75£2.35 g
vs 16.26+8.060) g (Figure 7.1). At the late stage of E. multilocularis infection, the
parasite invaded the liver (a marker of pathogenicity) much less in AE-fng'/ " mice
than in AE-WT mice (33.3% vs 94.4%). At the periphery of the lesion, numbers of

fibroblasts and inflammatory cells were similar in AE-fgl2”” mice and AE-WT mice.
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Figure 7.1 Parasite load and serum FGL2 levels after E. multilocularis infection.
(A) Parasite load in both E. multilocularis-infected wild type (WT) and E.
multilocularis-infected fgl2”" (KO) mice assessed by using wet weighing at different stages of
E. multilocularis infection. (B) Representative example of E. multilocularis infection from
both AE-WT and AE-fgl2" mice (KO) 4 month post infection (p.i.); arrows point at
intraperitoneal metacestode tissue/lesions. (C) Serum FGL2 levels in AE-WT mice (Em) at
different stages of E. multilocularis infection, as compared to non-infected control mice
(Con). Data represent mean+SD of three independent experiments of five to six mice in each
group. Comparison between groups was performed using a one-way ANOVA for statistical
analysis. *P<0.05; **P<0.01.
‘WT’, wild type mice; KO, fgl2 knock out mice; ‘Con’, Control, non-infected mice; ‘Em’, E.

multilocularis infected mice (= AE-mice).

Serum FGL2, TNF-a, and Th-related cytokine levels after E. multilocularis

7 and WT control mice

infection in fgl2
Serum level of FGL2 was significantly higher in AE-WT mice both at the early
and at the late stage of E. multilocularis infection when compared to non-infected WT
controls (Figure 7.1), but there was no difference between 1 and 4 mo p.i.-levels. As
expected, FGL2 was not detectable in any of the fg12'/ “mice (AE-infected and

non-infected controls) (data not shown).
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1mo after infection, TNF-a was significantly higher in AE-fgl2”" mice when
compared to AE-WT mice (P=0.037); IFN-y and IL-17A were also higher at 1mo p.1.
in AE-fng'/ " mice, but the difference between fgl2'/' and WT mice was statistically not
significant (Figure 7.2).
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Figure 7.2 Proinflammtory and Th-related cytokine serum levels assessed in E.
multilocularis-infected (AE) mice by Luminex technology.
Data represent mean+SD of three independent experiments of five to six mice in each group.
Comparison between groups was performed using a one-way ANOVA for statistical analysis.
*P<0.05.
‘WT’, AE-infected wild type mice; KO, AE-infected fgl2 knock out mice.

Spearman correlation coefficients indicated a positive correlation between 1L.-4
and FGL2 levels (r=0.363, P=0.023), as well as between IL-17A and FGL2 levels in
the serum of AE-WT mice at 1mo and 4mo p.i. (Table 7.1).

Table 7.1 Correlations between serum level of FGL2 and IL-4, IL-17A

IL-4 IL-17A
FGL2 Spearman’s rho 0.363° 0.435°
Sig. 0.023 0.045
N 21 21

Note: * P< 0.05, ** P<0.01.

Relationship between FGL2 and Treg function

Previous studies [23,24,25,26,27,28] have reported increased expression of
fgl2-mRNA transcripts in Treg cells and proved a role for FGL2 as a putative Treg
cell effector molecule. Thus this was not repeated anymore in this study. To
determine whether FGL2 was important for the generation and maintenance of Treg

cells in our murine AE-model, we analyzed both the expression of Treg cell markers
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and of one of its related cytokines, IL-10, in peritoneal and spleen cells from
AE-fgl2'/ “mice and AE-WT mice during E. multilocularis infection. Compared to
non-infected mice, there was no change in the expression of CD4" CD25" Foxp3" both
in peritoneal and in spleen cells from AE—fng'/' mice, both at early and late stage of E.
multilocularis infection. At 4mo p.i., expression of CD4" CD25" Foxp3" in peritoneal
as well as spleen cells from AE-WT mice was elevated, and was significantly higher
than that observed in fgl2”~ mice (P<0.05) (Figure 7.3). Expression of IL-10 in
peritoneal and spleen cells from AE-fng'/ “mice at Imo p.i. was unchanged when
compared to non-infected fgl2'/ “mice, but was significantly lower than in AE-WT
mice (P<0.05) (data not shown).
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Figure 7.3 Fork head box protein 3 (Foxp3) expression in CD4"'CD25" T cells after E.
multilocularis infection, assessed by flow cytometry.
(A) Foxp3 mean Fluorescence intensity (MFI) from AE-WT and AE-KO (fgl2”") mice, and
non-infected mice as controls. (B) Gating strategy of the determination of Foxp3-expressing
CD4'CD25" T cells in both peritoneal exudate cells (PEC) and spleen cells (Spleen). A gate
was positioned around lymphocytes, and cells within this gate were used for identifying
CD4°CD25°T cells. Foxp3 histogram plots overlaid with the isotype control plot were used to
determine the number of Fxop3" cells. (C) Representative flow cytometry histogram plots of
Foxp3" T cells within CD4'CD25T cells in freshly isolated peritoneal cells and spleen cells
from both AE-WT and AE-KO (fgl2”") mice at different stages of E. multilocularis infection.
(D) Expression of Foxp3" T cells within CD4"CD25"T cells in freshly isolated peritoneal
cells and spleen cells from AE-WT and AE-KO (fgl2”) mice, normalized using non-infected
controls, at different stages of E. multilocularis infection. Graphs show the meantSD of
relative numbers of Tregs in PECs and spleen cells of infected AE-WT and AE-KO (fgl2™)
mice. Data were collected from three independent experiments of five to six mice in each
group. Comparison between groups was performed using a one-way ANOVA for statistical
analysis. *P<0.05.
‘WT’, wild type mice; KO, fgl2 knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’,

spleen cells.
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We then assessed the effect of targeted deletion of g2 on the ability of Treg
cells to suppress the proliferation of normal CD4" CD25T cells. Treg cells from fng'/ i
mice, either non-infected or E. multilocularis-infected, were less efficient in
suppressing normal CD4" T cell proliferation when compared with Treg cells from
WT mice at all Treg-cells-to-effector-T-cells ratios. At all ratios investigated,
actually, there was no inhibition of CD4" T cell proliferation in cultures to which Treg
cells from non-infected fgl2”~ mice had been added. However, at ratios 1:1 and 1:2 of
Treg cells to effector T cells, we observed partial inhibition of normal CD4" T cell
proliferation in cultures to which Treg cells from AE-fgl2”" mice had been added
(Figure 7.4).
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Figure 7.4 Treg suppression assay using cells from both AE-WT and AE-KO (fgl2”") mice
after E. multilocularis infection.
CD4°CD25" Tregs (suppressor cells) were isolated from spleen cells of both non-infected and
infected WT mice and KO (fgl2”) mice by using MACS and a following cell sorting by
FACS. CD4'CD25-T cells (responder) were isolated from spleen cells of non-infected WT
mice by using MACS and a following cell sorting (FACS). CD4"CD25" Tregs (suppressor
cells) and CD4"CD25" T cells (responder cells) were co-cultured at different suppressor :
responder ratios in the presence of syngeneic APCs and anti-CD3 antibody (0.5 pg/mL);
suppression of proliferation was measured using BrdU ELISA. Data represent mean+SD of
two independent experiments. A two-way ANOVA with a Bonferroni test for post hoc

analysis were used to compare means. *P<0.05.

146



Functions of T and B cells from AE-fng'/ “and AE-WT mice

To further explore the effects of FGL2 on the immune response during E.
multilocularis infection, we examined the numbers and percentage of T and B cells,
as well as their function, after E. multilocularis infection, both in WT and fgl2'/' mice.
Although the percentages of CD4" and CD8" T cells within total lymphocytes, both in
spleen cells and peritoneal cells, were not significantly different in AE-fgl2”~ and
AE-WT mice, CD4/CD8 ratio and percentage of B cells were significantly higher in
AE-fgl2'/ “mice at 4mo p.i. as compared to AE-WT mice (Figures 7.4 and7. 5).
Purified splenic CD4" T cells from AE-fgl2” mice exhibited an increased proliferation
in response to ConA, as compared to splenic CD4 T cells from AE-WT mice
(P<0.01) (Figure 7.6). Compared to cells from AE-WT mice, T helper (Th) cells from
AE-fgl2'/ “mice appeared oriented towards a Thl-response at early stage of infection;
and at late stage of infection (4mo p.i.) towards a combined Th1/Th17-response, with
a simultaneously lower Th2 response (Figure 7.6,7,8). Such polarization was
confirmed at the mRNA level for IFN-y and IL-4 by qRT-PCR in peritoneal cells but
not in spleen cells (data not shown).
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Figure 7.5 B220 expression after E. multilocularis infection by using flow cytometry.

(A) B220 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2”") mice,

and non-infected mice as controls. (B) Percentage of B220 within total lymphocytes in freshly

isolated peritoneal and spleen cells from both AE-WT and AE-KO (fgl2”") mice at different

stages of £. multilocularis infection. (C) Representative flow cytometry histogram plots of

B220 within total lymphocytes in freshly isolated peritoneal exudate cells and spleen cells

from AE-WT and AE-KO (fgl2"") mice, normalized using cells from non-infected controls, at

different stages of E. multilocularis infection. Graphs show the mean+SD of relative numbers

of B cells in PECs and spleens of AE-WT and AE-KO (fgl2”") mice. Data were collected from

three independent experiments of five to six mice in each group. Comparison between groups

was performed using a one-way ANOVA for statistical analysis. *P<0.05.

‘WT’, wild type mice; KO, fgl2 knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’,

spleen cells.
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Figure 7.6 IFN-y expression in CD4" T cells after E. multilocularis infection by using flow
cytometry.
(A) IFN-y mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2”") mice,
and non-infected mice as controls. (B) Representative flow cytometry histogram plots of
IFN-y" T cells within CD4" T cells in freshly isolated peritoneal and spleen cells from both
AE-WT and AE-KO (fgl2”") mice at different stages of E. multilocularis infection. (C)
Expression of IFN-y" T cells within CD4" T cells in freshly isolated peritoneal and spleen
cells from AE-WT and AE-KO (fgl2”") mice, normalized using cells from non-infected
controls, at different stages of E. multilocularis infection. Graphs show the mean=SD of
relative numbers of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2”") mice.
Data were collected from three independent experiments of five to six mice in each group.
Comparison between groups was performed using a one-way ANOVA for statistical analysis.
*P<0.05.
‘WT’, wild type mice; KO, fgl2 knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’,

spleen cells.
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Figure 7.7 IL-4 expression in CD4" T cells after E. multilocularis infection by using flow

cytometry.

(A) IL-4 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2”") mice,

and non-infected mice as controls. (B) Representative flow cytometry histogram plots of

IL-4" T cells within CD4" T cells in freshly isolated peritoneal and spleen cells from both
AE-WT and AE-KO (fgl2”") mice at different stages of E. multilocularis infection. (C)

Expression of IL-4" T cells within CD4" T cells in freshly isolated peritoneal and spleen cells

from AE-WT and AE-KO (fgl2"") mice, normalized using cells from non-infected controls, at

different stages of E. multilocularis infection. Graphs show the mean+SD of relative numbers

of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2”") mice. Data were

collected from three independent experiments of five to six mice in each group. Comparison

between groups was performed using a one-way ANOVA for statistical analysis. *P<0.05.

‘WT’, wild type mice; ‘KO’, fgl2 knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’,

spleen cells.
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Figure 7.8 IL-17A expression in CD4" T cells after E. multilocularis infection by using
flow cytometry.
(A) IL-17A mean Fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2™"")
mice, and non-infected mice as controls. (B) Representative flow cytometry histogram plots
of IL-17A " T cells within CD4" T cells in freshly isolated peritoneal and spleen cells from
both AE-WT and AE-KO (fgl2”") mice at different stages of E. multilocularis infection. (C)
Expression of IL-17A " T cells within CD4" T cells in freshly isolated peritoneal and spleen
cells from AE-WT and AE-KO (fgl2”") mice, normalized using cells from non-infected
controls, at different stages of E. multilocularis infection. Graphs show the mean+=SD of
relative numbers of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2”") mice.
Data were collected from three independent experiments of five to six mice in each group.
Comparison between groups was performed using a one-way ANOVA for statistical analysis.
*P<0.05.
‘WT’, wild type mice; ’KO’, fgl2 knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’,

spleen cells.
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Maturation of DCs from AE-fng’/ “and AE-WT mice

To study the role of FGL2 on different subsets of DCs, namely CD11b" and
CDl11c" DCs, we ex vivo assessed the maturation level both in peritoneal cells and in
spleen cells from infected AE-fgl2” and AE-WT mice, and in non-infected mice as
controls. Among CD11b" DCs, expression of maturation markers, i.e. CD80" in the
peritoneal cells and CD86" in spleen cells, was higher at 4mo p.i. in AE-fgl2”" mice
than in AE-WT mice (Figures 7.9 and 10). Among CD11c" DCs, expression of the
maturation marker CD86, but not of CD80, was higher both in the peritoneal and
spleen cells from AE-fng'/ “mice at 4mo p.i. (Figure 7.11). Taken together, these
observations suggested that FGL2 may impair maturation of the 2 subpopulations of

DCs at the late stage of E. multilocularis infection.
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Figure 7.9 CD80 expression in CD11b"DCs after E. multilocularis infection by using flow
cytometry.
(A) CD80 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2”") mice,
and non-infected mice as controls. (B) Representative flow cytometry histogram plots of
CD80cells within CD11b DCs in freshly isolated peritoneal cells and spleen cells from both
AE-WT and AE-KO (fgl2”") mice at different stages of E. multilocularis infection. (C)
Expression of CD80 " cells within CD11b" DCs in freshly isolated peritoneal and spleen cells
AE-WT and AE-KO (fgl2”") mice, normalized using cells from non-infected controls, at
different stages of E. multilocularis infection. Graphs show the mean+SD of relative numbers
of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2”") mice. Data were
collected from three independent experiments of five to six mice in each group. Comparison
between groups was performed using a one-way ANOVA for statistical analysis. *P<0.05.
‘WT’, wild type mice; KO, fgl2 knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’,

spleen cells.
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Figure 7.10 CD86 expression in CD11b" DCs after E. multilocularis infection by using
flow cytometry.
(A) CD86 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2”") mice,
and non-infected mice as controls. (B) Representative flow cytometry histogram plots of
CD86" cells within CD11b" DCs in freshly isolated peritoneal and spleen cells from both
AE-WT and AE-KO (fgl2”") mice at different stages of E. multilocularis infection . (C)
Expression of CD86" cells within CD11b" DCs in freshly isolated peritoneal cells and spleen
cells from AE-WT and AE-KO (fgl2”") mice, normalized using cells from non-infected
controls, at different stages of E. multilocularis infection. Graphs show the mean+=SD of
relative numbers of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2”") mice.
Data were collected from three independent experiments of five to six mice in each group.
Comparison between groups was performed using a one-way ANOVA for statistical analysis.
*P<0.05.
‘WT’, wild type mice; KO, fgl2 knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’,

spleen cells.
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Figure 7.11 CD80 expression in CD11c" DCs after E. multilocularis infection by using
flow cytometry.
(A) CD80 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2”") mice,
and non-infected mice as controls. Representative flow cytometry histogram plots of CD80"
cells within CD11c¢" DCs in freshly isolated peritoneal and spleen cells from both AE-WT and
AE-KO (fgl2"") mice at different stages of E. multilocularis infection. (C) Expression of
CD80 " cells within CD11¢” DCs in freshly isolated peritoneal and spleen cells from AE-WT
and AE-KO (fgl2”") mice, normalized using cells from non-infected control, at different stages
of E. multilocularis infection. Graphs show the mean+SD of relative numbers of Tregs in
peritoneal and spleen cells of AE-WT and AE-KO (fgl2”) mice. Data were collected from
three independent experiments of five to six mice in each group. Comparison between groups
was performed using a one-way ANOVA for statistical analysis. *P<0.05, ** P<0.01.
‘WT’, wild type mice; KO, fgl2 knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’,

spleen cells.
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T cell functions and maturation of DCs in primary spleen cells from
AE-fgl2”"and AE-WT mice, after ConA stimulation

Flow cytometric analyses showed that both expression of CD4" IFN-y" and CD4"
IL-17A" were significantly higher in spleen cells from AE—fng'/' mice at 4mo p.i., 48h
after exposure to ConA, compared to AE-WT mice. There was no difference in
expression of IL-4 between spleen cells from AE-fng'/ “mice and AE-WT mice. CD4"
IL-2" expression was significantly up-regulated in spleen cells from AE-fgl2”" mice at
4mo p.i. (Figure 7.12A).

48h after exposure to ConA, surface expression of CD80 in CD11b'DCs from
AE-fgl2”" mice at 4mo p.i. was significantly higher, than in CD11b"DCs from
AE-WT mice. Both CD80 and CD86 expression in CD11¢"DCs from AE-fgl2” mice
at 4mo p.i. was higher than in CD11¢” DCs from AE-WT mice (Figure 7.12B).
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Figure 7.12 T cell reactivity and DC maturation in response to Concanavalin (Con) A
stimulation after E. multilocularis infection.
(A) Expression of T cell reactivity markers in freshly isolated spleen cells from AE-WT and
AE-KO (fgl2”") mice, co-cultured with ConA, normalized using cells non-infected controls, at
different stages of E. multilocularis infection. (B) Expression of DC maturation markers in
freshly isolated spleen cells from AE-WT and AE-KO (fgl2”) mice, co-cultured with ConA,
normalized using cells from non-infected controls, at different stages of E. multilocularis
infection. Data were collected from three independent experiments of five to six mice in each
group. Comparison between groups was performed using a one-way ANOVA for statistical

analysis. *P<0.05, ** P<0.01.
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T cell functions and maturation of DCs in primary spleen cells from
AE—fng'/ “and AE-WT mice, after exposure to E. multilocularis vesicle fluid (VF)

Flow cytometric analyses showed that, 96h after exposure to VF, expression of
IL-4 was significantly higher in spleen cells from AE-WT mice at 4mo p.i. than in
cells from AE-WT mice. However, there was no difference in expression of either
IFN-y or IL-17A between cells from AE-fgl2”” mice and AE-WT mice. Expression of
IL-2 was significantly up-regulated in cells AE-fgl2”" mice at 4mo p.i., 4 days after
exposure to VF, as compared to cells from AE-WT mice (Figure 7.13A).

Surface expression of CD80 both in CD11b" and CD11¢" DCs from AE-fgl2'/ )
mice at 4mo p.i. was significantly higher, 96h after exposure to VF, than in DCs from
AE-WT mice. However, there was no difference in CD86 expression in both
subpopulations of DCs from AE-fng'/' mice after exposure to VF, compared to DCs
from AE-WT mice (Figure 7.13B).
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Figure 7.13 T cell reactivity and DC maturation in response to Vesicle fluid (VF)
stimulation after E. multilocularis infection.
(A) Expression of T cell reactivity markers in freshly isolated spleen cells from AE-WT and
AE-KO (fgl2"") mice, co-cultured with VF, normalized with non-infected controls, at different
stages of E. multilocularis infection. (B) Expression of DC maturation markers in freshly
isolated spleen cells from AE-WT and AE-KO (fgl2”) mice, co-cultured with VF, normalized
using cells from non-infected controls, at different stages of E. multilocularis infection. Data
were collected from three independent experiments of five to six mice in each group.
Comparison between groups was performed using a one-way ANOVA for statistical analysis.

*P<0.05, ** P<0.01.

T cell functions, maturation of DCs, and co-stimulation in spleen cells from
non-infected WT mice, after exposure to recombinant FGL2 and anti-FGL2
monoclonal antibodies

To further assess the role of FGL2 in T cell functions and DC maturation in our
mouse model, we cultured spleen cells from non-infected WT mice with/without
recombinant FGL2 and anti-FGL2-MAbs. Flow cytometric analyses showed that the
expression of both Foxp3 and IL-10 on CD4 T cells was increased in response to
recombinant FGL2 in a dose-dependent manner (Figure 7.14). CD4 " Foxp3"
expression was decreased in the presence of anti-FGL2 in response to VF, which
indicated that E. multilocularis metabolic components may exert immune-modulatory
activity. Conversely, CD4 " IL-17A" expression was decreased in the presence of high
concentration of recombinant FGL2 (5ug/mL), but increased in a non-specific manner
in response to ConA; there was no influence of VF on IL-17A expression (Figure
7.14). Like CD4" Foxp3", CD4" IFN-y" expression was specifically increased in
response to VF. For DCs, expression of CD86 on CD11¢" DCs was decreased in the
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presence of recombinant FGL2, but increased in an antigen-specific manner in
response to VF. However, expression of CD86 and MHCII on CD11b" DCs showed
the opposite. Expression of CD40 on CD11c¢” DCs and CD80 on CD11b" DCs was
increased in the presence of anti-FGL2 (Figure 7.14). CD62L, a cell adhesion
molecule which is highly expressed on naive lymphocytes, but not expressed on
effector memory T-lymphocytes [29], was found to be increased in the presence of
recombinant FGL2 (1pg/mL), but decreased in the presence of anti-FGL2 on both
CDA4 T cells and total lymphocytes (Figure 7.14), which indicated that FGL2 may

play an important role in down-regulating lymphocyte co-stimulation and effector cell

production.
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Figure 7.14 Recombinant FGL2 down-regulates T cell reactivity and DC maturation in

vitro.

Different concentrations of recombinant FGL2 (0, 1, 5 ug/mL) and anti-FGL2 mAb (10
pg/mL) were added to primary spleen cells which were isolated from non-infected WT mice.
Expression of T cell reactivity and DC maturation markers were determined by flow
cytometry. Data were collected from three independent experiments of five mice in each
group. Comparison between groups was performed using a one-way ANOVA for statistical
analysis. *P<0.05, ** P<0.01.
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IL-17A contributes to FGL2 secretion in vitro

Spearman correlation coefficients indicated a positive correlation between serum
IL-17A level and FGL2 expression (r=0.435, P=0.045) in the serum from WT mice
Imo to 4mo p.i. in experimental mice under study (Table 7.1). To examine whether
IL-17A contributes to FGL2 secretion, we employed “up and down experiments” as
follows: spleen cells from non-infected WT mice were co-cultured either with
recombinant IL-17A as an external stimulus, or with anti-IL-17A for blocking
purpose, followed by a subsequent detection of FGL2 expression in the supernatant.
Respective quantitative analyses by ELISA showed that recombinant IL-17A
increased FGL2 secretion in a dose-dependent manner, while anti-IL-17A completely
blocked FGL2 secretion (Figure 7.15).
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Figure 7.15 Recombinant IL-17A contributes to FGL2 secretion in vitro.
Different concentrations of recombinant FGL2 (0, 0.5, 1, 2 ug/mL) and anti-IL-17A mAbs (1
ug/mL) were added to primary spleen cells isolated from non-infected WT mice. FGL2
expression in the supernatant of cell cultures was determined by ELISA. Data were collected
from three independent experiments of five mice in each group. Comparison between groups

was performed using a one-way ANOVA for statistical analysis. *P<0.05, ** P<0.01.

Discussion

In larval E. multilocularis infection, immune tolerance and/or down-regulation of
immunity is a marked characteristic increasingly observed towards the late stage of
infection in both humans [30] and in experimentally infected mice [6]. In this context,
preliminary findings have shown that Tregs play an important role in the orchestration
that controls inflammatory/immune response in AE and finally allows long-term
parasite survival, proliferation and maturation [7]. No assessment of the contribution
of the Treg-linked effector molecule FGL2 had so far ever been studied in
parasite-host tolerance processes. E. multilocularis infection appeared to be a good

model to study its intervention and allowed us to show for the first time that, in E.
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multilocularis infection 1) FGL2 contributes to the outcome of infection by the
metacestode; 2) FGL2 partly contributes to Treg functions; 3) FGL2 can
down-regulate the maturation of DCs, suppress Th1 and Th17 immune responses, and
support Th2 and Treg immune responses, 4) FGL2 contribute to the induction of B
cell death; and finally 5) IL-17A contributes to FGL2 secretion.

One of the first and major aims of our experiments was to study the role of
Treg-expressed FGL2 in the outcome of E. multilocularis infection. Using fgl2”"
infected mice, the respective findings were clear: infected AE-WT mice had
significantly more parasite load at the late stage of infection, as compared to
AE-fgl2”" mice. This was accompanied by increased serum FGL2 levels while, as
expected, no serum FGL2 could be determined in fgl2”" mice; respective fgl2 mRNA
expression levels in both peritoneal and spleen cells were also increased in AE-WT
mice and there was a significant increase in Tregs. Taken together, these results
support the hypothesis that Treg-expressed FGL2 contributes to the course and
outcome of E. multilocularis infection. Such an effect of FGL2 has been shown in
other models of infection, such as viral infection: antibodies directed against the C
terminal domain of FGL2, which is known to account for its immunosuppressive
activity, protected mice from the lethality of MHV-3 infection. Transfer of fgl2™*
Tregs to fgl2'/ " mice increased mortality to MHV-3 infection, further supporting a role
for Treg-expressed FGL2 in the outcome of the infection [42]. However,
FGL2-deficient and control mice exhibit similar degrees of T cell expansion,
immunopathology, and/or pathogen burdens during protozoan (7oxoplasma gondii),
bacterial (Yersinia enterocolitica, Listeria monocytogenes, and Mycobacterium
tuberculosis), and viral (murine gamma-herpesvirus-68 and Sendai) infections [31].

How FGL2 influences or modulates the outcome of experimental AE can, so far,
only be discussed speculatively. In E. multilocularis infection, as reported in previous
studies [6,32,33], cellular immunity that includes a rather Thl-oriented cytokine
secretion profile can provide some control over metacestode development and/or
proliferation at the early/initial stage of infection, while a progressively Th2-oriented
immune response, which becomes marked at the later stage of infection, yields a now
much more rapid metacestode growth. The control of metacestode proliferation
appears to be predominantly T cell-dependent, as revealed by the use of different
immune-compromised mouse models [34,35,36], and by observations in human
AE-patients with immune suppression-associated conditions [37,38,39,40]. It is
therefore conceivable that the proliferating metacestode itself specifically activates
and concurrently modulates the immune response to its own advantage. Tregs, which
over-express a subset of regulatory cytokine genes including IL-10 and TGF-p,
resulting in the relative suppression of Th1 responses and endorsement of Th2

polarization, play a very important role in promoting immune tolerance in various
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models of parasitic diseases [41]: they were up-regulated in our study; a previous
study strongly suggested that they are also up-regulated in human AE-patients [42];
and, finally, elevated IL-10 as well as TGF-f synthesis/secretion has been repeatedly
shown in experimental murine and human AE [43].

Various molecular and cellular events have been proposed to explain the
mechanism by which Tregs suppress immune responses. These include cell-to-cell
contact-dependent suppression, cytotoxicity, and immunosuppressive cytokine
secretion [44]. It is generally accepted that anti-inflammatory cytokines, such as IL-10
and TGF-B, are important co-mediators of Treg activity in vivo [44]. However, the
importance of these cytokines remains controversial, as several reports have
demonstrated that antibodies against IL-10 and TGF- fail to block Treg suppressive
function. Also, Tregs from TGF-B—deficient mice have normal suppressive activity in
vitro and can prevent development of autoimmune disease [44]. In addition, the
ambiguous role of TGF-f, which is both a strong inducer of immune tolerance and an
activator of the pro-inflammatory IL-17 cytokine system, remains puzzling [45,46].
Recently, it was reported that in BALB/cJ mice, Tregs demonstrate a constitutively
high expression of FGL2 encoding mRNA, which even increased after MHV-3
infection, and it was suggested by adoptive transfer of wild-type Tregs into resistant
fng'/' mice that FGL2 might be an important Treg effector molecule [47]. In a
previous explorative study, we found that fg/2 gene expression was significantly
increased in the periparasitic liver tissue of mice perorally infected with
E.multilocularis eggs [8]. Our resulting working hypothesis was thus that FGL2,
playing important roles in both innate and adaptive immunity, similar to other
members of the fibrinogen-like family of proteins that include tenascin and
angiopoietin, could be another key-actor in E. multilocularis-host interactions,
unknown until now. We were postulating that, using the present murine AE-model,
we could elucidate new modes of action promoting and maintaining immune
tolerance [48] that favors metacestode survival. In this study, we could for the first
time experimentally demonstrate that recombinant FGL2 suppresses T cell
proliferation in response to Con A and to E. multilocularis antigenic metabolites
present in the VF. FGL2 also inhibited maturation of dendritic cells (DCs), suppressed
Thl and Th17 immune responses, and polarized an allogeneic immune response
towards a Th2-oriented cytokine profile, both in vivo and in vitro. Conversely, in
fgl2”" mice, Thl cytokine levels and activity of DCs, B- and T cells were all
increased. FGL2 serum levels correlated with IL-4 expression in wild type mice
before and after E.multilocularis infection, suggesting a close relationship between
FGL2 and Th2-related immune response. The temporally increasing development of a
Th2 immune response in wild type mice after E.multilocularis infection corroborated

the generally known effect of FGL2 to promote a Th2 cytokine production, with a

162



concomitant inhibition of Th1- and Th17-oriented immunity. Furthermore, serum
levels of IL-17A showed a positive correlation with FGL2 serum expression,
suggesting for the first time that [L-17A could contribute to FGL2 secretion. This was
confirmed in vitro, in that recombinant IL-17A promoted the production of FGL2 in
spleen cells, while anti-IL-17A blocked respective FGL2 secretion.

We also investigated the importance of FGL2 for the function of Tregs, by
directly assessing the effect of recombinant FGL2 and of an anti-FGL2 MAb on Treg
activity in vitro. Recombinant FGL2 promoted Treg function, while anti-FGL2
completely abrogated Treg function, thus providing experimental support for our
hypothesis. Further evidence for the role of FGL2 in Treg function was provided by
the observation that fgl2-deficient mice had both decreased Treg numbers and
impaired Treg function. The mechanism by which FGL2 mediates its
immunosuppressive activity is currently under intense investigation. Recent data have
indicated that FGL2 binds to the inhibitory FcyRIIB receptor (CD32) expressed
primarily on APCs. This FGL2-FcyRIIB interaction was shown to induce B cell
apoptosis and inhibit DC maturation [10]. In E. multilocularis infection, several cell
types may express inhibitory FcyRIIB, such as macrophages (including the
‘epithelioid cells’ that line the ‘immuno-modulating’ laminated layer), and also the
numerous CD8" T cells present in the periparasitic infiltrate; CD8" T cells have
actually been shown to express this receptor in a murine model of Trypanosoma cruzi
[49]. Taken together, and combined with our recent data on the course of cytokine
expression by the periparasitic immune infiltrate in E.multilocularis infection [50],
our data suggest that, under the influence of E. multilocularis metabolites (a) IL-6,
TNF-a, [IFN-y and IL-17 are released; (b) these, especially IFN-y as demonstrated
previously [31], but also IL-17A as we showed in this study, contribute to FGL2
secretion by Tregs and other cells; and (c) once FGL2 is released, it can bind to
FcyRIIB receptor, down-regulate the maturation of DCs, decrease co-stimulation of
effector T cells, suppress Th1 and Th17 immune response, accelerate Th2 immune
responses, induce apoptosis of B cells, and thus overall lead to an immune suppressed
status that favors the continuous “tumor-like” progression of the parasitic metacestode
tissue (Figure 16 ). Direct inhibition of macrophage and/or mast cell functions could
also be induced by such a binding [51][50].
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Figure 7.16 Schematic diagram summarizing the hypothesized mechanism of FGL2-related
regulation of immune response involved in the host-parasite relationship in murine E.

multilocularis infection.

Based on the present findings in experimental rodents, FGL2 may be proposed as
a marker of progression of parasitic lesions, thus of the clinical status of AE patients
with E. multilocularis infection. This is currently under investigation. We may also
anticipate that FGL2 serum levels could be useful in predicting the course and
outcome and/or parasite activity in human AE. Furthermore, our findings may provide
a rationale for studying FGL2 as a target for immunomodulatory treatment option in
patients with progressive AE. Our data demonstrate that FGL2, together with IL-17
and by promoting Treg cell activity, appears as a key-player in the orchestration of the
outcome of E. multilocularis infection; this study gives evidence for a role of IL-17 in
FGL2 regulation, and suggest that targeting FGL2 could be used for (a) the
assessment of a present clinical status of AE-patients, (b) for the monitoring of
conventionally treated AE patients, and (c) for the speculative development of novel

treatment approaches in infectious diseases, including AE.
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Materials and Methods

Ethics Statement

The animal study was performed in strict accordance with the recommendations
of the Swiss Guidelines for the Care and Use of Laboratory Animals. The protocol
was approved by the Commission for Animal Experimentation of the Canton of Bern
(approval no. BE 103/11). Every effort was made to minimize suffering.
Experimental design, parasite sampling and histological examinations

Mice. fgI2”" mice were generated by the Multi Organ Transplant Program,
University of Toronto, and the methodology for their production has been described
elsewhere [52]. In brief, fgl2'/ “mice were obtained by transfecting 129Sv embryonic
stem cells with the knockout construct (also derived from 129Sv). These stem cells
were then injected into C57BL/6 blastocysts and the resulting chimeras were
backcrossed for 10 generations into a C57BL/6 background [52]. Female fng'/ " mice
and respective WT animals, aged between 8-10 weeks, were used for intraperitoneal
infection with E. multilocularis as previously described [37,38], and age and gender
matched littermates were used for mock-infected control groups. From experimentally
infected mice, all macroscopically visible parasite tissues were carefully collected

upon necropsy as previously described [35,53].

Parasite and experimental infection. The parasite used in this study was a cloned
E. multilocularis (KF5) isolate maintained by serial passages (vegetative transfer) in
C57BL/6 mice [53]. In order to prepare the infection material for mice, metacestode
tissue was obtained from previously infected mice by aseptic removal from the
peritoneal cavity. After grinding the tissue through a sterile 50 um sieve,
approximatively 100 freshly prepared acephalic vesicular cysts were suspended in 100
uL RPMI-1640 (Gibco, Basel,Switzerland) and injected intraperitoneally. Each
experimental group included 6 animals unless otherwise stated. Control mice
(mock-infection) received 100uL of RPMI-1640 only.

Tissue mass and quantification. Mice were sacrificed by CO, euthanasia at Imo
(corresponding to an early stage of chronic infection) and 4mo(corresponding to a
middle/late stage of disease) post-infection. Blood was collected by cardiac puncture,
and serum samples were stored at -80°C. Parasite tissues were dissected and, if
present, fat and connective tissues were removed carefully for subsequent
wet-weighing of the parasite mass.

Cell preparations and Treg isolation. Peritoneal exudate cells (PEC) and splenic
cells from naive (control) and E. multilocularis infected (AE) fgl2”" and WT mice
were collected by peritoneal rinsing, or grinding separately with 5 mL RPMI-1640.
Cells were subsequently washed twice with HBSS and resuspended in RPMI-1640
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(Gibco) for cell staining or cell culture separately. Macrophages were removed from
each group of mice after incubation of PEC or spleen cell suspension in 5 mL
RPMI-1640+20% FCS in a Petridish for 2 h at 37 °C, in an atmosphere containing 5%
CO; as follows: non-adherent cells were separated from macrophage-enriched
adherent cells and were positively selected by MACS (magnetic cell separation) using
the mouse CD4" CD25" T cell Isolation Kit (Miltenyi Biotec, Germany) according to
the manufacturer's instructions. Highly (N99%) enriched iTreg cells were obtained by
additional cell sorting after the MACS procedure, and finally washed and resuspended
in complete RPMI-1640.

Tissue fixation and sectioning. Parasite samples were fixed in 4%
paraformaldehyde in neutral buffered formalin for a minimum of 24 h, embedded in
paraffin, and cut into 4um serial sections. Paraffin-embedded parasite samples of
experimental mice were HE and PAS-stained for pathological observations.

Con A or Vesicle fluid (VF) stimulation

Spleen cells were plated at a concentration of 2 x10° cells/well in 200 pL of
RPMI-1640 complete medium (Gibico, Basel, Switzerland) and stimulated with 2
pg/mL Con A (Sigma-Aldrich, Basel, Switzerland) for 48h, or 10pug/mL VF for 96h at
37 °C and 5% CO,. The same cell reactions performed without ConA and VF were
used as negative controls.
rFGL2 and anti-FGL2 stimulation

Spleen cells were plated at a concentration of 2 x10° cells/well in 200 pL of
RPMI-1640 complete medium (Gibico, Basel, Switzerland) and stimulated with
Ing/mL and Sug/mL rFGL2 or 1pug/mL anti-FGL2 (Sigma-Aldrich, Basel,
Switzerland) for 48h at 37 °C and 5% CO,. The same cell reactions performed
without rFGL2 or anti-FGL2 were considered as negative controls.
rIL-17A and anti-IL-17A stimulation

Spleen cells were plated at a concentration of 2 x10° cells/well in 200 pL of
RPMI-1640 complete medium (Gibico, Basel, Switzerland) and stimulated with 0.5,
1, 2 and 4pg/mL rIL-17A or 1pg/mL anti-IL-17A (Sigma-Aldrich, Basel,
Switzerland) for 48h at 37 °C and 5% CO,. The same cell reactions performed
without rIL-17A or anti-IL-17A were considered as negative controls.

Cell proliferation assay

Cell proliferation was assayed using the colorimetric BrdU cell proliferation
ELISA kit (Calbiochem, Merck chemicals, Switzerland). Around either 48h after
ConA stimulation or 96h after VF stimulation after seeding of the cells, BrdU was
added to a final concentration of 1 uM. After incubation for a further 16 h, BrdU
incorporation was measured using a spectrophotometric plate reader at 450-540 nm

and at 450-595 nm for a repeated reading.
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Flow cytometry

Aliquots of 10° cells/100 pL of staining buffer per well were incubated each with
1 pg of purified anti-CD16/CD32 for 20 min in the dark in order to block non-specific
binding of antibodies to the FcylIl and Fcyll receptors. Subsequently these cells were
stained with surface marker separately for 15 min with 1 pg of primary antibodies:
FITC-labeled anti-CD4, anti-CD80, anti-CD86; PE-labeled anti-CDS, anti-CD11b,
anti-CD11c, anti-B220, and PECy 5.5-labeled anti-CD4, FITC-labeled anti-CD25. All
antibodies were from BD Pharmingen (Heidelberg, Germany). For intracellular
staining, PEC or splenocytess were first incubated with Inside Fix for 20mins at room
temperature, then stained with PE-labeled anti-IFN-r, anti-IL-4, anti-IL-17A,
anti-IL-2, anti-IL-10 and anti-Foxp3 (BD Pharmingen, Palo. Alto, CA, USA) in Inside
Perm for 15min. The corresponding primary labeled isotype control antibodies were
used for staining controls. Cells resuspended in 300 pL of buffer (0.15 M NaCl, 1 mM
NaH,PO4 H,0, 10 mM Na,HPO,4 2H,0 and 3 mM NaN3) were analyzed in a flow
cytometer (Becton Dickinson, Heidelberg, Germany) using the corresponding CELL
QUEST software.
RNA extraction and cDNA synthesis

Approximately 5x10° of cells were prepared from non-infected and from
E.multilocularis- infected -fgl2-/- (AE- £g127) or E. multilocularis- infected WT
(AE-WT) mice; these cells were used for cytoplasmic RNA extraction. RNA yield
and purification were performed using the RNeasy mini kit (Qiagen, Switzerland)
according to the standard protocol suitable for freshly harvested cells. After removing
contaminated DNA from the isolated RNA using DNasel (Fermentas, Vilnius,
Lithuania), the RNA samples were used for cDNA synthesis using the Omniscript®
Reverse Transcription kit (Qiagen, Hilden, Germany). Briefly, 0.5 pg/uL of random
Primer (Promega, Diibendorf, Switzerland) and 2pg of total RNA were used in a final
volume of 20uL of reaction mixture and incubated at 37 °C overnight. cDNA was
incubated at 95 °C for 3 min and frozen at -80 °C until use for qRT-PCR.
Quantitative real-time RT- PCR analysis

Quantitative real time RT-PCR (qRT-PCR) was run in a thermocycler (Qiagen,
Hilden, Germany) with the SYBR Green PCR premix (Qiagen, Hilden, Germany)
following the manufacturer’s instructions. Thermocycling was performed in a final
volume of 10 pL containing 2 L ¢cDNA and 10 pM of each primer (Table 1). To
normalize for gene expression, mRNA expression of the housekeeping gene B-actin
was measured. For every sample, both the housekeeping and the target genes were
amplified in triplicate using the following cycle scheme: after initial denaturation of
the samples at 95 °C for 15 min, 40 cycles of 95 °C for 15 s and 55 °C (or other) for
30 s were performed. Fluorescence was measured in every cycle, and a melting curve

was analyzed after the PCR by increasing the temperature from 55 to 95 °C (0.5 °C
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increments). A defined single peak was obtained for all amplicons, confirming the
specificity of the amplification.
Suppression assay

In vitro suppression assays were carried out with cultures of 2x10* CD4"CD25"
T cells from WT mice as responder cells, together with 8 x 10* irradiated spleen cells
as APC and titrated numbers of CD4" CD25" Treg cells from either E.multilocularis-
infected AE-fgl2”" or AE-WT mice as suppressor cells, compared with non-infected
controls. Cultures were stimulated with Con A (1 ug/ml) for 48 h and BrdU was
added for the last 16 h to measure proliferation of effector T cells. For antibody
blockade studies, titrated concentrations of an MAb to FGL2 (no. H00010875-M01
monoclonal IgG2a Ab; Abnova, Luzern, Switzerland) were added to the cell cultures
of CD4" effector T cells and CD4" CD25" Treg cells sorted from WT mice, at a 1:4
suppressor:responder cell ratio in the presence of APCs and ConA.
Sandwich Enzyme-Linked Immunosorbent Assay for FGL2

After washing of pre-coated plates 3 times with Tris-Tween buffered saline,
serum samples (50 puL) were added to each well, and after a 2-hour incubation at room
temperature and three washes with Tris-Tween buffered saline, the wells were
incubated with mouse monoclonal FGL2 detection antibody for 1 hour at room
temperature. The plates were washed again for 3 times, and polyclonal anti-FGL2
binding was detected with a secondary horseradish peroxidase-conjugated anti-rabbit
antibody. Tetramethlybenzidine was then added and absorbance was measured at 450
nm using a Tecan Sunrise® plate reader.
Luminex for cytokine expression in the serum

Cytokine levels in mouse serum samples were assessed undiluted using
microsphere-based multiplex assays (MILLIPLEX® MAP Mouse
Cytokine/Chemokine Multiplex Assays MPXMCYTO-70K, Merck Millipore, Zug,
Switzerland) that were performed according to the manufacturer’s instructions. Serum
concentrations of the following cytokines were measured: IL-1f, IL-4, IL-10, IL-17A,
IFN-y and TNF-a. A minimum of 50 beads per analyte was measured on a
Bioplex-200 platform (Bio-Rad, Hercules, CA, USA). Calibration was performed
using BioPlex Manager software version 4.1.1 by linear regression analysis using the
four lowest standards provided by the manufacturer. When measured cytokine
concentrations were below the detection limit, a value corresponding to the detection
limit of the assay was used for statistical analysis.
Statistical analyses

All the data were analyzed by SPSS 17.0. The results were presented as means =+
SD. One-way ANOVA and Student’s #-test were used to compare the differences
between groups, and Spearman’s rho was used to analyze the correlation coefficient.

P<0.05 was considered to indicate statistical significance.
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Main conclusions and remarks:

1) FGL2 contributes to the outcome of infection by the metacestode.

2) FGL2 partly contributes to Treg functions.

3) FGL2 can down-regulate the maturation of DCs, suppress Thl and Th17 immune
responses, and support Th2 and Treg immune responses.

4) FGL2 contributes to the induction of B cell death.

5) IL-17A contributes to FGL2 secretion.
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8. General discussion
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8.1 Does Echinococcus multilocularis influence the surrounding liver

parenchyma?

8.1.1 Influence on hepatocyte proliferation and anti-apoptosis, growth arrest and

apoptosis

Changes in the metabolic pathways involved in the regulation of hepatic cell
proliferation and growth arrest, and especially in the MAPKSs system, have been
extensively studied in infectious/ inflammatory conditions, especially of viral origin
(Alexia et al. 2004; Wu et al. 2008; Ko et al. 2010). Before the initiation of our work,
very little was known of the influence of helminth parasites which develop in the liver
on the proliferation/growth arrest of the hepatocytes in the infected liver. Until
recently, no study had ever specifically addressed the issue of liver
proliferation/regeneration and growth arrest/apoptosis after E. multilocularis infection.
In this longitudinal study using the murine experimental model of intra-hepatic
secondary E. multilocularis infection, we could show that, opposite to those involved
in cell proliferation and anti-apoptosis which were activated in the first half of the
infection course, metabolic pathways involved in growth arrest and apoptosis were
significantly activated in the liver of the infected mice in the second half of the
infection course. It was shown that activation of the metabolic pathways which
govern growth arrest and apoptosis also paralleled the previously described decrease
of lymphocyte proliferation and of cytokine production observed at the late stage of
experimental infection (Emery et al. 1996, 1997; Gottstein et al. 1994).

Hepatocytes suffering sublethal injury have the capacity to activate an
internally-triggered cell regeneration mechanism and our previous studies of our team
as well as this one have brought evidence that, as it also occurs during viral infection
or toxic injury (Viebahn et al. 2008), this regeneration mechanism was also operating
in E. multilocularis infection (Lin ef al. 2011; Jin et al. 2002). It was especially
prominent at the first stages of infection, as was shown in our experimental mice until
day180 after infection. Liver regeneration is controlled by a wide array of signaling
factors and plays a key role in recovery after acute and chronic liver injury. Hepatic
cell proliferation is essential to enhance or restore hepatic function (Taub et al. 2004;
Fausto ef al. 2006). Although hepatocyte proliferation is often mediated by the
injury/regeneration response, however, in other circumstances it is part of an adaptive
response to stress stimuli which do not lead to cell death (a process called ‘direct
hyperplasia’). This proliferative response is regulated by cell cycle regulated proteins
(Svegliati-Baroni ef al. 2003). In AE, influence of the parasite on hepatocyte
proliferation (and/or anti-apoptosis) is supported by the up-regulation of Cyclins A,
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B1, D1 and Gadd45b. Until day180, i.e. in the early and middle stages of infection,
gene expression level of CyclinA was increased in a time-dependent manner, while
gene expression levels of Cyclin B1 and CyclinD1 were increased up to day30 and
then returned to the control level after day60. On the other hand, no significant change
in the expression of Cyclin E was observed at any time during the period of
observation. Up-regulation of PCNA, Cyclin D1, A and B1 is related to the regulation
of the G1/S and G2/M phases (Masaki et al. 2003; Neuwirt et al. 2009), which were
previously reported to increase biphasically after partial hepatectomy and other
parasitic infection (Spiewak et al. 1997; Bouzahzah et al. 2006). The ‘‘late stage’’ of
infection, i.e. after day180 after infection, has rarely been studied in the murine model
of secondary (or primary) E. multilocularis infection. In the most susceptible mice,
impairment of vital functions due to E. multilocularis progression and metastases is
fast and occurs between day180 and 270, which makes studies difficult to interpret. In
addition, most of the studies addressed immunological mechanisms of immune
tolerance; since they were just failing at that late stage (Emery et al. 1996, 1997;
Gottstein et al. 1994), it was thus considered of less interest for that purpose. As the
experimental mice we are working with, albeit quite susceptible to E. multilocularis,
have a prolonged survival until day360, and because we observed activation of both
proliferation and apoptosis pathways at day180, we decided to measure the expression
and/or activation of the components of these pathways until day360. We were thus
able to show the mirror image of growth arrest/apoptosis versus
proliferation/anti-apoptosis during the natural course of metacestode progression in
the liver. These results might suggest that the proliferative capability of hepatocytes
was exhausted during continuously lasting hepatic damage, due to direct toxicity of
parasitic components and/or cytotoxic attacks by the immune system. This exhaustion
might also be due to the profound malnutrition (wasting disease/cachexia) observed in
E. multilocularis-infected mice in the advanced stage of the disease, and the altered
ability of liver cells to synthesize proteins, as suggested by the changes in the
expression of many genes found at this stage using microarray analysis we recently
performed (Lin ez al. 2011). However, during the early and middle stage of infection,
despite the presence of the metacestode and its growth, very little necrosis is observed
on the liver pathological sections in the experimental model; we could confirm such
observations (Liance et al. 1984). Necrosis of the liver lesion is not observed in all
patients with AE: it has only been observed in more advanced/severe cases, and was
associated with susceptibility markers and/or with expression of TNF-a by the
periparasitic macrophages (Bresson-Hadni et al. 1994). On the other hand, the
immune tolerance generated by the presence of E. multilocularis metacestode in the
liver is associated with a poor development of NK cytotoxicity and an inhibition of

T-lymphocyte-dependent cytotoxicity, despite the high proliferation potential of T-
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lymphocytes, the presence of numerous CD8 T-lymphocytes in the liver within the
parasitic lesion, and the expression of the appropriate ligands, such as MICA/B
(Bresson-Hadni et al. 1989, 1991; Nicod et al. 1994). Such an inhibition is possibly
due to the combined influence of IL-10 and TGF- production, as discussed below
(Bresson-Hadni ef al. 1990; Vuitton et al. 1989; Zhang et al. 2008).

8.1.2 Influence on the development of liver fibrosis

Fibrosis is a hallmark of AE, leading to a complete disappearance of the liver
parenchyma in the periparasitic area, and to fibrosis in portal spaces. Fibrosis protects
the host against the parasitic growth, but at the same time it distorts the liver
parenchyma, contributes to bile duct and vessel obstruction and can lead to secondary
biliary cirrhosis (Ricard-Blum ef al. 1996; Vuitton ef al. 1986). The irreversible
acellular keloid scar-like fibrosis observed in AE is the ultimate result of cytotoxic
and fibrogenetic events related to the immune response of the host which are taking
place initially in the granulomatous area surrounding the young parasite larvae
(Vuitton et al. 2003). Previous observations in experimental models of AE have
suggested that progression of fibrosis in AE involves an early deposition of type III
collagen pro-peptide and type III collagen at the periphery of the granulomas, and a
subsequent remodeling of fibrosis with bundles of type I collagen in the periparasitic
central area (Vuitton et al. 1986; Guerret ef al. 1998). Stellate cell-derived
myofibroblasts have been observed in AE liver, both in humans (Vuitton ef al. 1986)
and in the experimental mouse model (Guerret ef al. 1998). It was noted that in some
regions of the liver where the parenchyma was totally replaced with dead parasitic
lesions and fibrosis, HSC were the only cellular remnants present (Vuitton et al.
1986). We confirmed that &-SMA, a specific cell marker for MFB, as well as type |
and III collagens, were highly expressed in tissues surrounding AE lesions; the
expression of collagen I increased steadily through the course of the infection,
whereas collagen III rapidly reached its maximum level of expression at day 8; this
sequence of events, which is usual in fibrotic processes (collagen III being produced
quickly by fibroblasts before collagen I is synthesized) was already noticed in the first
studies on AE fibrosis in the experimental model; in humans, as well as in mice at
later stages, location of collagen III in areas of recent larval development supported
this sequence (Vuitton ef al. 1986; Guerret et al. 1998).
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8.2 Factors of the influence of E. multilocularis components on the host liver
8.2.1 Innate immunity- and pro-inflammatory cytokines

The role of pro-inflammatory cytokines, and especially tumor necrosis factor
(TNF-a), in the protection of the host against E. multilocularis has been demonstrated,
and it is likely that they act at least in part through the development of fibrosis (Amiot
et al. 1999). TNF -0 mice showed faster growth and invasion of the metacestode, but
also disrupted and late fibrosis, compared to the WT mice in which fibrosis appeared
early and was well organized (the usual concentric bundles around the parasite
vesicles) (Amiot et al. 1999). Indeed, dead parasites were cordoned by granulomas
containing numerous macrophages and lymphocytes leading to focal liver fibrosis at
an early stage of infection. In contrast, most of LT-a TNF-o”" mice harboured
metacestodes interspersed with leucocytes, realising purulent abscesses with
secondary extensive irregular fibrosis at a late stage of infection (Amiot et al. 1999).
In human livers with hepatic AE, the mRNAs of pro-inflammatory cytokines,
interleukin (IL)-1p, IL-6, and TNF-a have been found in macrophages located at the
periphery of granulomas, in those areas which were shown to be at the initiation of
fibrogenesis (Bresson-Hadni ef al. 1994). IL-12, which inhibits the development of
the parasitic vesicles after E. multilocularis infection, was also shown to induce a fast
development of peri-vesicle fibrosis (Emery ef al. 1996). Pretreatment of mice with
IL-12 is extremely efficient in preventing the development of lesions and leads to
abortive parasitic vesicles surrounded by fully efficient periparasitic immune cell
infiltration and fibrosis (Emery ef al. 1996). In the present study, we found that
IL-120 and TNF-a were developing in parallel during the different stages of E.
multilocularis infection. After an initial increase, IL-120 and TNF-o expression
decreased dramatically after the 30™ day of infection of mice. This fits well to
previous findings, which had indicated a protective role against E. multilocularis by in
vivo treatment with recombinant IL-12 in C57BL/6J mice (Emery ef al. 1998). An
important role of these cytokines of innate immunity in the early expression of IFN-y
is likely. Our observations also fit with the outcome of E. multilocularis infection in
mice KO for TNF-a (Amiot ef al. 1999); as mentioned above, such mice revealed to
be extremely susceptible to the development of AE lesions. Observations in patients
with AE treated with a TNF-a inhibitor (Weiner et al. 2011), have also shown that
they had a faster and more severe course of disease, and radiological images in these
patients strongly evoked liver abscesses (i.e. cell-rich lesions) rather than typical AE
lesions (usually characterized by the US and CT imaging features of dense fibrosis)
(Weiner ef al. 2011). In the mouse model, IL-1p and IL-6 were then showing up,

presumably to sustain the inflammatory response, with a ‘mirror’ image of their
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respective increase all along infection. The initial peak of IL-6 as early as 2 days
post-infection may be related to the early activation of the acute phase protein genes
in the hepatocytes, disclosed by previous microarray studies (Gottstein ef al. 2011;
Lin et al. 2011). Conversely, the absence of a significant increase of IL-6 at day 270
probably explains why, despite increased levels of haptoglobin, a-1 acid glycoprotein,
C3 and C4, and ceruloplasmin in patients with AE, no increase of C-reactive protein
(CRP) levels, typically associated with IL-6 stimulation, is usually observed, except in
cases complicated by bacterial infection (Vuitton, 2009). Secretion of the
pro-inflammatory cytokines IL-1P and IL-18 by PBMC of AE patients had been
shown to be reduced in response to E. multilocularis metacestode vesicles, compared
to controls (Eger ef al. 2003). In our study in mice, although IL-1f was highly
expressed at the early and middle stage, it subsequently decreased at the late stage and
was not significantly different from control mice at day 180 post-infection and later, a
time point which may approximately represent the disease stage of most patients at
diagnosis of AE. Such selective dynamics of pro-inflammatory cytokine release may
both install and maintain the periparasitic immune infiltrate from the very early stage
of infection on, and also limit its activation and thus participate in the tolerance
process. Such a profile would characterize the “susceptible” status of an intermediate
host. It may be anticipated from our results and other observations in the mouse
models (especially those made after host’s treatment with recombinant IL-12) that a
very early and sustained expression of all cytokines of innate immunity, and
especially IL-12, TNF-a and very likely IFN-a (Godot ef al, 2003), could prevent a
sustained expression of IL-4 as well as regulatory cytokines, and reinforce Thl
pathways, and would thus characterize a “resistant” profile of intermediate hosts (i.e.
most of the human beings contaminated by E. multilocularis eggs). A significant
modulation of cytokine secretion, with a significant decrease in IL-13 and increase in
IFN-y by peritoneal macrophages and spleen cells, was observed in mice treated with
IFN-a from the very beginning of infection (Godot et al. 2003). This cytokine

modulation was actually associated with protection against metacestode growth.

8.2.2 T helper (Th)-related cytokines and chemokines

In the periparasitic granuloma. In most previous studies, secretion and
expression of cytokines, chemokines, and related factors that govern immune
cell-homing to E. multilocularis infection site were studied in the peripheral blood of
human AE patients (Aumuller ez al. 2004), and in lymph node or spleen cells of
experimentally infected mice (Dai et al. 2004; Bresson-Hadni ef al. 1990; Dai &
Gottstein, 1999). Attempts at enhancing Thl-related immune responses have resulted
in increased resistance to E. multilocularis infection in experimental mice. Treatment
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with IFN-y either before or after experimental infection has been shown to be only
partially effective in reducing larval growth, although it was able to moderately
increase the periparasitic fibrotic process (Liance et al. 1998). Isolated attempts of
treatment with IFN-y in patients at a late stage of AE were no more successful than
those performed in experimental mice and they could not modify host’s cytokine
profile significantly (Jenne et al. 1998). Early expression of IFN-y, as previously
shown in studies on peripheral lymphocytes, was also confirmed in our longitudinal
study of the periparasitic infiltrate; we hypothesize that it was very likely induced by
the early expression of IL-12. The apparent decrease in IFN-y at day 8 may be due
either to a technical artefact or, more probably, to a temporary inhibition by IL-4, also
markedly expressed at days 2 and 8 p.i.. Sustained IFN-y expression together with the
permanent expression of Th1 chemokines, and its negative correlation with TGF-f1
in the parasitic lesions all along the course of infection, although Th2 and Treg
cytokines are also permanently expressed, suggests that [IFN-y is very important for
the persistence of the periparasitic infiltrate by permanent homing of immune cells
and/or inhibition of their emigration (Vuitton et al. 1989; Mejri et al. 2006, 2011).

In the experimental model of secondary infection in mice, the levels of Th1
cytokines as well as pro-inflammatory cytokines was initially elevated, and then
progressively decreased while Th2 cytokines and IL-10 increased (Emery et al. 1996).
However, little was known on the involvement of Th17, IL-17 secreting T cells, and
of IL-21, -22 and -23 in the development of immune cell infiltration around the
parasitic vesicles and their relationship with immuno-regulatory cells in
echinococcosis. The recruitment and presence of all potential actors of Th17-driven
immune reaction in the lesions highly suggests that the IL-23/IL-21/IL-22/IL-17
pathway is actually operating in echinococcosis. In our study, IL-17, as detected by a
monoclonal antibody directed against the common epitopes of the protein, was
present in cells of the periparasitic infiltrate all along the course of infection; however,
as far as the expression of mRNA isotypes of the cytokines is concerned, both IL-17A
and IL-17F were increased at the early stage of E. multilocularis infection, and then
decreased at the late stage; they were both positively correlated with CCL12 and
CCL17; however, IL-17A exhibited a positive correlation with TNF-a, and appeared
lower than even in controls, at the late stage of infection, while IL-17F was also
expressed at low levels, but still higher than controls. This may indicate that IL-17A
was rather protective but quickly inhibited, while IL-17F was less suppressed with
time and may contribute to both protection and pathogenesis, as reported in human
AE patients (Lechner et al. 2012).

In the distant liver. The involvement of the adjacent, not directly affected liver tissue
in the immune process of E. multilocularis/host interaction has received little

attention. Recent studies have provided evidence that the adjacent liver was fully
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involved in the relationship between the parasite and its host. Our study confirms that
certain mediators of the immune reaction and their receptors may also be expressed in
the liver tissue, thus also in areas not directly affected by the parasite and the
periparasitic granuloma. In the adjacent liver tissue, the expression of the various
cytokines/chemokines was selective: not all cytokines/chemokines were expressed in
the surrounding liver; some seemed to be specific for the immune cells of the
periparasitic infiltrate, e.g. TNF-a, IL-17F and CCL8, which were not expressed at all
in the liver. The contribution of the surrounding liver tissue, however, was quite
significant for other ones, e.g. IL-12, IFN-y, IL-4 and IL-17A, at the early stage of
infection; CXCL9, IL-4, IL-5, CCL17, at the middle stage; and IL-10 and TGF-J at
the late stage of infection. TGF-f receptors were also expressed in the liver
parenchyma from early to late stage post E. multilocularis infection, suggested that
the markedly elevated levels of TGF-B1 present in E. multilocularis-infected liver,
were functional to regulate the activities of immune cells as well as hepatocytes and
cells involved in fibrosis. From our study, which was performed on liver samples
without cell identification, it is difficult to know if such expression was restricted to
cells of the immune response present in the sinusoids/portal spaces after their homing
to the liver, or was also present in autochthonous liver cells such as Kupffer cells,
stellate cells, or hepatocytes. Precise identification and respective location will require

appropriate further studies.

8.2.3 T regulatory cytokines

Most of the studies in AE as well as in the experimental models have first
focused onto IL-10. The anti-inflammatory properties of IL-10 are well known,
especially through the inhibition of macrophage activation and cytotoxic functions
(Emery et al. 1996).

Spontaneous secretion of IL-10 by the PBMCs is the immunological hallmark of
patients with progressing lesions of AE (Godot ef al. 1997). Conversely, IL-10 is
significantly lower in patients with abortive lesions (Godot et al. 2000). IL-10 is
measurable in the serum of the patients with AE at higher concentrations than in
control subjects (Wellinghausen et al. 1999). A variety of cell types are involved in
the secretion of IL-10 by resting and stimulated PBMC in patients with AE, especially
CD4 and CD8 T-cells, but also non-T non-B cells (Godot ef al. 1997) “Suppressor”
CDS8 T-cells, induced by parasite products, were reported to be involved in tolerance
to E. multilocularis (Kizaki et al. 1991,1993). However, the relationship between the
capacity of these cells to secrete IL-10 and their “suppressor’ activity is unknown. A
preliminary report has confirmed that locally, in the periparasitic granuloma, T-cells
secreted IL-10 and the data suggest that IL-10 production is highest closer to the
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parasitic vesicles (Harraga et al. 2003). We could also confirm the expression of
IL-10 in the periparasitic granuloma, in an experimental model and studied all along
the course of infection. After experimental infection with E. multilocularis, 1L-10
secretion by spleen cells is slightly delayed and is part of the cytokine profile
observed in the second phase of E. multilocularis growth (Emery et al. 1996). Similar
changes were also observed when measuring IL-10 levels in the serum of infected
mice: they remained low before 80 days post-infection and then increased sharply at
100 days post-infection when they reached a peak (Wei et al. 2004).

The presence of TGF-f secreting cells in the periparasitic granuloma
surrounding E. multilocularis vesicles in the liver of patients with AE has been
recognised only very recently (Zhang et al. 2008) and exploring TGF-f in its multiple
functions in E. multilocularis infection was still an open field of research at the
initiation of our work. In the liver, chronic injury causes continuous hepatocyte
destruction and TGF-B1 stimulates quiescent HSCs into activated myofibroblast-like
cells, which produce extracellular matrix to retrieve lost space made by destruction of
hepatic parenchymal tissue. TGF-f3 is a cytokine that alters many functions in nearly
all higher eukaryotic cells (Derynck & Zhang, 2003; Gordon & Blobe, 2008). The
nature of the TGF-f3 action depends on many parameters, including type and state of
differentiation of the cell targets, growth conditions, and presence of other growth
factors. TGF-f3 controls extracellular matrix production, regulation of myogenesis,
immune response, angiogenesis, and embryogenesis. Hepatic stellate cells are the
primary cell type responsible for matrix deposition in liver fibrosis, undergoing a
process of transdifferentiation into fibrogenic myofibroblasts. These cells, which
undergo a similar transdifferentiation process when cultured in vitro, are a major
target of the profibrogenic agent transforming growth factor-f (TGF-B) (Liu ef al.
2003). The multifunctional feature of TGF-3 suggests that it may be an important
target of viruses to influence host cell fate in favor of virus replication and

proliferation.

The positive correlation we found between their expression and expression of
TGF-B1, both in the experimental model and in human livers, is an indirect argument
for a significant role of this cytokine in AE fibrosis. The major peak of TGF-B1 at the
middle stage of infection in experimental animals, and its expression in AE patients
who are diagnosed at a similar stage, suggest that although lower levels may initiate
immune tolerance as early as the early stage, the cytokine becomes prominent later,
when both maintenance of the tolerance state and development of fibrosis are at stake.

The Smad family of proteins mediates signaling from the TGF-f R to the nucleus.
In the current study, there was an increased expression of TGF- R, Smad3 mRNA,

and especially of Smad4 which is a central mediator in TGF-f3 superfamily signaling
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(Heldin ef al. 1997). Our study showed that expression of Smad4 was higher in areas
surrounding lesions than in distant liver in the patients with AE. Smad7, which is
induced by TGF-p itself, is responsible for the fine-tuning of TGF-f signals (Itoh et al.
2007). It prevents the phosphorylation of Smad proteins, associates with ubiquitin
ligases involved in TGF-B R-degradation, and acts as a transcriptional repressor
inhibiting Smad-dependent promoter activation (Schmierer et al. 2007). In
physiological situations, its increase decreases the phosphorylation of Smad2/3, and
thus decreases TGF-P functions. In chronic hepatic injury, the expression of Smad?7 is
paradoxically decreased (Del Pilar Alatorre-Carranza et al. 2009); as a result, TGF-f3
signal transduction cannot be effectively inhibited, and TGF- functions are enhanced.
An aberrant expression of Smad7 may thus disrupt the balanced activity of TGF-f
under pathophysiological conditions. The low expression of Smad7 in the areas
surrounding the lesions and its negative correlation with a-SMA and Collagen III
highly suggest that in AE too the normal feed-back loop might not work properly, and
that fibrosis might be permanently activated through that mechanism. As TGF-f is
likely to be crucial to maintain the immune tolerance state and Treg
generation/function essential to the parasite, E. multilocularis could be responsible for
the paradoxical decrease of Smad7 in the periparasitic granuloma and nearby liver;
this might be one of the mechanisms for the early induction of immune tolerance and
for the progression from chronic hepatic injury to hepatic fibrosis during E.
multilocularis infection.

E. multilocularis metacestode is sensitive to TGF-f signaling (Brehm, 2010;
Vuitton & Gottstein, 2010; Zavala-Gongora ef al., 2008) and the metacestode
ERK-like kinase, EmMPK1, phosphorylates EmSmadD, a metacestode analogue of
the Co-Smads of the TGF-beta signaling cascade (Brehm, 2010). Our preliminary
investigations of TGF-f in the host liver confirm the pivotal role that this cytokine
might play in the proliferation process but also in the development of liver fibrosis,
while ensuring parasite tolerance by the host. It will be of great interest to determine
the mechanism used by E.multilocularis to trigger TGF- signaling, whether that is
the pathway that leads to G1 arrest, the pathway that initiates extracellular matrix
deposition, or both. Ascertaining these problems are not just of academic interest, for
an E.multilocularis-specified activation of the TGF-f3 pathway might underlie
responses such as immunosuppression (Dai ef al., 2003; Emery et al., 1996; Gottstein
et al., 2006) and abnormal extracellular matrix deposition (Bresson-Hadni et al.,

1998; Grenard et al., 2001; Guerret et al., 1998), each of them a dominant feature in

human and animal intermediate hosts.
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8.2.4 Cytokine and chemokine receptors

Expression of any stimulating/inhibiting factor is necessary but not sufficient to
give evidence of their role/influence on cells. Giving evidence for the expression of
the appropriate receptors is also important, albeit rarely done. Among cytokine
receptors, only those for IL-1 (IL-R1 like), IL-7, IL-13 (IL-13 Ral) and IL-17 (IL-17
R) were up-regulated when we studied them by using microarray; those for TGF-3
(TGF-B RI and RII) were also up-regulated when studied by both qRT-PCR and
immunohistochemisty. This indirectly suggests that the liver was affected by at least
one pro-inflammatory cytokine (IL-1) and one growth factor (IL-7), by two types of
Th-cytokines (Th2 and Th17), and by TGF-B. Such up-regulation of several cytokine
and chemokine genes, in both models of AE, in the liver itself and not only within the
periparasitic granuloma, confirms that the surrounding liver is fully involved in a
process which was long considered to be a localized “tumor-like” event. However,
absence of expression of the IL-6 receptor on hepatocytes is somehow puzzling, since
IL-6 is directly related to the stimulation of acute phase protein synthesis by the
hepatocytes, and using the microarray technique, genes for such proteins were among
those most hyper-expressed in the liver. Additional studies using qRT-PCR should

help us determine if this was or not due to technical or bio-informatics issues.
8.2.5. Direct influence by E. multilocularis metacestode components?

Metacestode surface molecules as well as excretory/secretory (E/S) metabolic
products are considered to function as important key players to influence host immune
response (Gottstein & Hemphill, 2008). The E. multilocularis metacestode actively
secretes or expresses molecules that putatively have potent effects on the immune
system of the murine host, including DCs and other immunologically relevant
populations such as macrophages (M ©), lymphocytes and other (inflammatory) cells
that play a significant role in the putative control of (or respective failure to control)
metacestode proliferation, and thus triggering of disease development. Carbohydrate
components of the laminated layer, such as Em2 (G11) and Em492, as well as other
parasite metabolites yield immunomodulatory effects that allow the parasite to survive
in the host. The IgG response to the Em2 (G11)-antigen takes place independently of
alpha-beta” CD4" T cells, and in the absence of interactions between CD40 and CD40
ligand (Dai et al. 2001). Such parasite molecules also interfere with antigen
presentation and cell activation, leading to a mixed Th1/Th2-type response, not only
at the late stage of infection, as was anticipated in the past, but from the very

beginning of infection as we could show in our studies. Furthermore, Em492 (Walker
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et al. 2004) as a purified parasite metabolite suppresses ConA and antigen-stimulated
spleen cell proliferation.

Interesting insights into immunomodulation by the parasite were obtained with
regard to human AE. E. multilocularis antigens (metacestode culture supernatant)
depressed the release of the proinflammatory cytokine IL-12 by PBMC in response to
lipopolysaccharide (LPS). This was accompanied by an increased number of
CD4'CD25" cells and a reduced release of the Th2 type chemokine CCL17 (thymus
and activation regulated chemokine, TARC), suggesting an anti-inflammatory
response to the metacestode in human AE patients (Hiibner et al. 2006). Instead, the
production of IFN-y and the expression of CD28 on CD4" T cells were increased in
PBMC from AE patients when compared to controls. This was accompanied by a
higher release of the Th2-type chemokine CCL22 (macrophage derived chemokine,
MDC) supporting that E. multilocularis also generates proinflammatory immune
responses. These results indicate that E. multilocularis antigens modulated both,
regulatory and inflammatory, Th1 and Th2 cytokines and chemokines. In a previous
study by our team, a significant influence of E. multilocularis metacestode on the
activation of MAPKSs signalling pathways was found in the liver cells both in vivo in
infected patients and in vitro in cultured rat hepatocytes (Lin ef al. 2009). In
preliminary in vitro studies (unpublished data) we observed a secretion of TGF-$1
and an activation of the TGF-} pathway in rat hepatocyte cultures incubated with
vesicle fluid of parasitic origin, in the absence of inflammatory cells, thus of immune
cell-related cytokines. A recent study has also provided evidence for the induction of
apoptosis in host DC through E/S-products of early infectious stages of E.
multilocularis (Nono et al. 2012). The parasite might thus influence signaling
mechanisms of host cells through the secretion of various molecules which might bind
to host cell surface receptors or to the temporary storage of host-derived molecules in
the vesicle fluid. Such interactions could contribute to immunomodulatory activities
of E. multilocularis, to pathological consequences on the host’s tissues, and/or be
involved in mechanisms of organotropism (Zhang et al. 2008). These observations
suggest that parasitic components, and not only factors from host origin, are actually
acting on the host.

It has also been shown, conversely, that the metacestode development in the
murine liver is triggered by cell signaling originating from the intermediate host
(Brehm et al. 2006). The phosphorylation of EmMMPK1, a parasitic orthologue of the
extracellular signal-regulated kinase (ERK) MAPK, is specifically induced in in vitro
cultured E. multilocularis metacestode vesicles, in response to exogenous host serum,

hepatic cells and/or human epidermal growth factor (EGF). The fact the intrahepatic
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metacestode expresses signaling systems with significant homologies to those of the
host raises the interesting question whether cross-communication between cytokines
and corresponding receptors of host and parasite can occur during an infection, i.e.
whether the parasite may also influence signaling mechanisms of host cells through
the secretion of various molecules that might bind to host cell surface receptors. Such
interactions could contribute to immunomodulatory activities of E. multilocularis or
be involved in mechanisms of organotropism and/or in host tissue destruction or
regeneration during parasitic development. This reinforces the hypothesis of a
“‘cross-talk’’ between the parasitic larva and its host. The larval development of E.
multilocularis might be triggered by cell signaling originating from the intermediate
host (Spiliotis et al. 2006; Gelmedin et al. 2008 ), E. multilocularis metacestode being
able to ‘‘sense’” host factors, which may result in an activation of the parasite

metabolic pathway cascades (Brehm et al. 2006).

8.3 FGL2 : a new and key-actor of the tolerance against E. multilocularis ?

Various molecular and cellular events have been proposed to explain the
mechanism by which Tregs suppress immune responses. These include cell-to-cell
contact-dependent suppression, cytotoxicity, and immunosuppressive cytokine
secretion (Miyara et al. 2007). It is generally considered that anti-inflammatory
cytokines, such as IL-10 and TGF-f, are important co-mediators of Treg activity in
vivo (Miyara et al. 2007). However, the importance of these cytokines remains
controversial, as several reports have demonstrated that antibodies against IL-10 and
TGF-B fail to block Treg suppressive function. Also, Tregs from TGF-pf—deficient
mice have normal suppressive activity in vitro and can prevent development of
autoimmune disease (Miyara et al. 2007). In addition, the ambiguous role of TGF-f3,
which is both a strong inducer of immune tolerance and an activator of the
pro-inflammatory IL-17 cytokine system, remains puzzling (McGeachy et al. 2007;
Michel et al. 2013).

Recently, it was reported that Tregs had increased expression of FGL2 encoding
mRNA, and it was suggested that FGL2 might be an important Treg effector molecule
(Shalev et al. 2009). In a previous explorative study, fg/2 gene expression was found
significantly increased in the periparasitic liver tissue of mice perorally infected with
E.multilocularis eggs (Gottstein et al. 2011). Our resulting working hypothesis was
thus that FGL2, with important roles in both innate and adaptive immunity, similar to
other members of the fibrinogen-like family of proteins which include tenascin and
angiopoietin, could be another key-actor in E. multilocularis-host interactions,
unknown until now. In this study, we demonstrated experimentally that recombinant

FGL2 suppressed T cell proliferation in response to Con A and to E. multilocularis
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components present in the VF. FGL2 also inhibited maturation of dendritic cells
(DCs), suppressed Th1 and Th17 immune responses, and polarized an allogeneic
immune response toward a Th2-oriented cytokine profile, both in vivo and in vitro.
Conversely, in fgl2”" mice, Th1 cytokine levels and activity of DCs, B- and T cells
were all increased. FGL2 serum levels correlated with IL-4 expression in wild type
mice before and after E.multilocularis infection, suggesting a close relationship
between FGL2 and Th2-related immune response. The development of a Th2 immune
response in wild type mice after E.multilocularis infection fitted with the
demonstrated effect of FGL2 to promote Th2 cytokine production with a subsequent
inhibition of Th1 and Th17 immunity. Furthermore, serum levels of IL-17A showed a
positive correlation with FGL2 serum expression, suggesting for the first time that
IL-17A could contribute to FGL2 secretion. This was confirmed in vitro, in that
recombinant IL-17A promoted the production of FGL2 in spleen cells, while
anti-IL-17A blocked respective FGL2 secretion.

The mechanism by which FGL2 mediates its immunosuppressive activity is
currently under intense investigation. Recent data have demonstrated that FGL2 binds
to the inhibitory FcyRIIB receptor (CD32) expressed primarily on APCs. This
FGL2-FcyRIIB interaction was shown to induce B cell apoptosis and inhibit DC
maturation (Liu ef al. 2008). In E. multilocularis infection, several cell types may
express the inhibitory FcyRIIB, such as macrophages (including the ‘epithelioid cells’
that line the ‘immuno-modulating” laminated layer), and also the numerous CD8 T
cells present in the periparasitic infiltrate; CD8 T cells have actually been shown to
express this receptor in a murine model of Trypanosoma cruzi (Henriques-Pons et al.
2005). Combined with the course of cytokine expression by the periparasitic immune
infiltrate in E.multilocularis infection, our data suggest that, under the influence of E.
multilocularis components (a) IL-6, TNF-a, [FN-y and IL-17 are released; (b) these,
especially IFN-y as demonstrated previously (Hancock et al. 2004), but also IL-17A
as we showed in this study, contribute to FGL2 secretion by Tregs and other cells;(c)
once FGL2 is released, it can bind to FcyRIIB receptor, down-regulate the maturation
of DCs, decrease co-stimulation of effector T cells, suppress Th1 and Th17 immune
response, accelerate Th2 immune responses, induce apoptosis of B cells, and thus
overall lead to an immune suppressed status that favours the continuous “tumour-like”
progression of the parasitic metacestode tissue. Direct inhibition of macrophage
and/or mast cell functions could also be induced by such a binding (Malbec et al.
2002).
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8.4 Conclusion and perspectives

Taken together, the results obtained from our various experimental models and
designs confirmed that E. multilocularis metacestode definitely exerts a deep
influence on liver homeostasis through the immune response/immune tolerance. Our
data support the concept, which was part of our working hypothesis, of a sequential
activation of metabolic pathways which would first favor parasitic, liver and immune
cell proliferation and survival, and thus promote metacestode fertility and tolerance by
the host; and would then favor liver damage/apoptosis, impairment in protein
synthesis and xenobiotic metabolism, as well as immune deficiency, and thus
contribute to the dissemination of the protoscoleces after metacestode fertility has
been acquired. The periparasitic infiltration by inflammatory cells is a key-player in
cytokine/chemokine secretion and functional activities within the host-parasite
interactions. However, the surrounding liver is also involved in the cross-talk between
the parasite and its host. TGF-f3 and FGL2 and their fine turning by the various
isotypes of IL-17 could determine the overall balance between tolerance towards the
parasite and protection of the host and thus contribute to the outcome of E.
multilocularis infection. Our study confirm stage-related homing and functions of
immune cells around the metacestode which may explain the observed relationship
between metacestode viability and uptake of tracers such as FDG by the periparasitic
infiltrate. The next step of our work is thus more focused on applications for patients
with AE. To further study the relationship between FDG-PET imaging and the course
of the periparasitic granuloma, and between the metabolic activity of the granuloma
and the viability of the metacestode, we are developing the use of micro-PET in
infected mice, as well as pre-clinical models including various imaging techniques
and immunological follow-up in rats and pigs. In addition, as preliminary results
highly suggest that FGL2 could be a serum marker of progression in the patients with
AE, our aim is now to check if there is any correlation between FGL2 serum levels
and the metabolic activity of the periparasitic cells, i.e. with their FDG uptake at PET
imaging in the patients with AE. Such studies and the results obtained in this thesis
may also contribute to identify new targets for possible immune therapy to minimize
E. multilocularis-related pathology and to complement the ‘parasitostatic-only’ effect

of benzimidazoles in AE.
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