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Résumé 

L’échinococcose alvéolaire (EA) est une zoonose parasitaire rare mais qui, si elle n’est 

pas traitée ou si elle est traitée trop tardivement, peut se révéler extrêmement grave et 

même fatale. La maladie est en relation non seulement directement avec la destruction 

hépatique qui accompagne le développement du métacestode, le stade larvaire 

d’Echinococcus multilocularis, mais aussi avec la réponse immunitaire 

granulomateuse très importante qui entoure le tissu parasitaire ; tous deux sont 

responsables de la fibrose et de la nécrose hépatiques et de la cholestase chronique qui 

peuvent conduire à l’insuffisance hépatique terminale. Les lésions, qui se composent à 

la fois du métacestode, manifesté sous la forme de multiples vésicules, et des cellules 

qui ont migré des organes et tissus lymphoïdes périphériques pour coloniser le foie 

autour du métacestode, se comportent comme une tumeur maligne à marche lente qui 

envahit progressivement le foie, puis les organes et tissus de voisinage, et peut enfin 

métastaser à distance dans d’autres organes. 

 En dépit du rôle connu de la réponse granulomateuse de l’hôte dans les complications 

de l’EA, et de son rôle invoqué à la base de l’imagerie fonctionnelle des lésions 

hépatiques (comme celle obtenue par la Tomographie par émission de Positons utilisant 

le Fluoro-deoxy-glucose comme traceur), on connait peu de choses sur la réponse 

immune locale et sur les facteurs immuno-régulateurs qui influencent la migration des 

cellules de l’immunité dans le foie, de même que sur ceux qui seraient susceptibles 

d’influencer les principales caractéristiques de l’homéostasie hépatique comme la 

régénération/prolifération, dégénérescence, et dysfonction des hépatocytes. On sait 

depuis longtemps que le foie est le site privilégié du développement de l’infection par 

E. multilocularis. La croissance du métacestode induit de nombreuses voies de la 

réponse immunitaire et les mécanismes immunitaires impliqués dans les interactions 

hôte-parasite ont fait l’objet de nombreuses études. L’implication des voies 

d’orientation cytokinique T helper (Th)1 et Th2, et de plusieurs autres cytokines prises 

individuellement, ont été largement étudiées au cours des deux dernières décennies, 

que ce soit chez les patients atteints d’EA ou les rongeurs expérimentaux. Cependant, 

ces études n’ont été réalisées qu’à partir de prélèvements faits dans le système 

immunitaire périphérique: rate, ganglions lymphatiques chez les rongeurs 

expérimentaux, et cellules mononucléées du sang circulant chez l’homme ou cellules 

péritonéales chez la souris. Par ailleurs, des observations cliniques, chez les patients, 

comme l’importance de l’hépatomégalie du foie ‘sain’, non atteint par les lésions et la 

tolérance du foie vis-à-vis des résections hépatiques majeures, ainsi que des 

observations expérimentales, comme la diffusion de la fibrose à des zones hépatiques 

distantes de l’invasion par le métacestode et la réaction granulomateuse, suggèrent que 
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le métacestode et la réponse immunitaire locale pourraient influencer le parenchyme 

hépatique lui-même, y compris à distance des zones hépatiques atteintes. Cet aspect n’a 

jamais été étudié spécifiquement et de façon approfondie et les mécanismes potentiels 

en sont totalement inconnus. En particulier, l’étude des mécanismes impliqués dans les 

modifications de l’homéostasie hépatique aux différents stades de l’infection, mais 

aussi une analyse détaillée des profils de cytokines et chimiokines présents dans 

l’infiltrat cellulaire périparasitaire hépatique, de la présence du transforming growth 

factor-β (TGF-β) et des autres acteurs de sa voie d’activation, et de l’implication 

possible du Fibrinogen-like protein-2 (FGL2), une molécule effectrice des lymphocytes 

T-régulateurs (CD25
+
CD4

+
 Tregs) récemment identifiée, n’ont jamais été entrepris 

avec l’objectif de cerner de façon globale l’interaction de ces différents facteurs tout au 

long du développement de l’infection par E. multilocularis.  

L’objectif de ce travail de thèse était donc d’explorer les acteurs-clés des échanges 

entre le métacestode et son hôte et les conséquences de leur mise en jeu sur le foie. 

Méthodes. Pour les études in vivo, des souris BALB/c femelles exemptes de 

pathogènes ont reçu une injection de métacestode d’E. multilocularis dans le lobe 

antérieur du foie, pour le modèle d’infection secondaire intra-hépatique, ou dans le 

péritoine, pour le modèle d’infection secondaire intra-péritonéale. A chaque temps 

d’autopsie dans le modèle intrahépatique, 10 souris infectées expérimentalement ont 

été étudiées dans le groupe ‘E. multilocularis’ et comparées à 5 souris du groupe 

‘témoin’ qui avaient reçu une injection intra-hépatique de sérum physiologique, selon 

le même protocole chirurgical. Les souris ont été autopsiées à 2, 8, 30, 60, 90, 180, 270 

et 360 jours après l’infection. Des échantillons de tissu hépatique prélevés à proximité 

et à distance des lésions parasitaires ou dans le lobe hépatique des souris témoins, ont 

été utilisés pour l’étude de la prolifération/croissance des hépatocytes, pour les analyses 

utilisant des puces à ADN, ou pour la détection des cytokines et chimiokines et des 

composants de la voie d’activation du TGF-β, à l’aide de techniques de Western-Blot, 

de qRT-PCR et d’immuno-histochimie. De plus, des échantillons de tissu prélevés à la 

périphérie des lésions, dans la zone de granulome, ont été étudiées avec les mêmes 

techniques pour la détection des cytokines et chimiokines et de leurs récepteurs. A 

chaque temps d’autopsie dans le modèle intra-péritonéal, six souris infectées par voie 

intra-péritonéale (souris Knock-Out fgl2
-/-

 versus souris de type sauvage) ont été 

étudiées dans le groupe ‘E. multilocularis’ et comparées à 6 souris témoins qui avaient 

reçu une injection intra-péritonéale de sérum physiologique, selon le même protocole. 

Les souris ont été autopsiées à 1 et 4 mois après l’infection. Les cellules spléniques et 

les cellules de l’exsudat péritonéal (PEC) ont été prélevées chez les souris infectées et 

les souris témoins et analysées pour détecter la réactivité lymphocytaire et la 

maturation des cellules dendritiques (DC). 
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Pour les études in vitro, 1) la co-culture des hépatocytes de rat avec le liquide 

vésiculaire d’E. multilocularis a été utilisée pour étudier TGF-β1 et les Smads de sa 

voie d’activation en Western-Blot ; 2) la co-culture de cellules spléniques primaires 

avec la concanavaline A (ConA) ou le liquide vésiculaire a été utilisée pour étudier la 

réactivité lymphocytaire T et la maturation des DC en cytométrie de flux ; 3) la 

co-culture de lymphocytes Tregs CD4
+
CD25

+
 et de lymphocytes T CD4

+
CD25

-
 a été 

utilisée pour étudier la fonction suppressive des Tregs en ELISA BrdU. 

Résultats: 1) Les résultats obtenus par les études de prolifération/arrêt de croissance 

des hépatocytes ont montré qu’après l’infection par E. multilocularis, l’expression des 

gènes de la Cycline B1 et celle de la Cycline D1 augmentaient jusqu’au jour 30, puis 

revenaient au niveau des témoins après le jour 60 ; celles des gènes de Gadd45b, de la 

Cycline A et le PCNA augmentaient tout au long de la période; ERK1/ 2 était activée 

en permanence. Pendant ce temps, l’expression génique de p53, p21 et Gadd45c, et 

l’activation de la caspase 3 augmentaient graduellement en fonction du temps. Au 

stade terminal de l’infection (jours 180 à 360), l’expression génique de p53, p21 et 

Gadd45c était significativement plus élevée que chez les souris témoins ; JNK et la 

caspase 3 étaient activées. L’analyse par la technique TUNEL a aussi montré 

l’apoptose des hépatocytes à ce stade. Il n’y avait pas de modification pour la Cycline 

E, l’ARN messager de p53 et l’expression de p38 quel que soit le stade d’infection.  

2) Les niveaux d’expression des ARN messagers dans les lésions parasitaires ont 

montré l’établissement très précoce (dès 2 jours après l’infection) d’une réponse 

immune mixte, Th1 et Th2, caractérisée par la présence concomitante d’IL-12α, IFN-γ 

et IL-4. Ensuite, le profil se complétait par l’apparition de cytokines tolérogènes, 

comme IL-5, IL-10 et TGF-β. IL-17 était exprimée de façon permanente dans le foie 

des souris infectées, essentiellement dans l’infiltrat périparasitaire ; ce fait été confirmé 

par l’augmentation des ARN messager d’IL-17A et d’IL-17B dès le stade très précoce, 

suivie d’une diminution de l’expression d’IL-17A. Les chimiokines de type Th1 et Th2 

étaient également présentes pendant tous les stades de l’infection, généralement bien 

corrélées à la présence des cytokines correspondantes.  

 3) Les études de l’expression de TGF-β1, de ses récepteurs, et des Smads de sa voie 

métabolique ont confirmé qu’elle était très importante dans l’infiltrat périparasitaire, 

mais ont aussi montré qu’elle était présente dans les hépatocytes, à proximité et à 

distance des lésions d’EA. La fibrose était significative dès 180 jours après l’infection 

dans l’infiltrat périparasitaire, et également dans le parenchyme hépatique, même à 

distance des lésions. Sur l’ensemble de l’évolution de l’infection, l’expression de 

TGF-β1 était corrélée avec le rapport CD4/CD8 des lymphocytes T du granulome, 

depuis longtemps décrit comme caractéristique de la gravité de l’AE. 

4) Les souris déficientes en FGL2 infectées par E. multilocularis avaient une charge 

parasitaire significativement moins élevée que les souris de type sauvage; cette 



 

 16 

protection contre l’infection était associée à une prolifération augmentée des 

lymphocytes T en réponse à l’incubation avec la ConA et avec le liquide parasitaire, à 

une polarisation relative Th1, et à un nombre augmenté de lymphocytes B producteurs 

d’anticorps. Le nombre relatif et l’état de maturation des DC étaient plus élevés chez les 

souris fgl2
-/-

;
 
 les marqueurs de co-stimulation CD80 and CD86 étaient aussi plus 

exprimés sur les DCs de ces souris, après stimulation par la ConA et le liquide 

vésiculaire. Des études complémentaires ont montré qu’IL-17A était impliquée dans la 

sécrétion de FGL2 dans ce modèle. 

Conclusion : Le métacestode d’E. multilocularis exerce une influence profonde sur 

l’homéostasie du foie. Nos résultats soutiennent le concept d’activation séquentielle 

des voies métaboliques qui favoriseraient d’abord la prolifération des cellules de 

l’immunité et des cellules du foie, et donc la fertilité du métacestode et sa tolérance par 

l’hôte, puis favoriseraient ensuite la destruction hépatique, l’apoptose des hépatocytes, 

la diminution de la synthèse protéique et le métabolisme des xénobiotiques, et de façon 

concomitante le déficit immunitaire, et donc la dissémination des protoscolex après que 

la fertilité du métacestode ait été acquise. Certains de nos résultats donnent une 

explication rationnelle aux observations cliniques, comme l’hépatomégalie du foie non 

atteint et la survie parfois surprenante des patients atteints d’EA après résections 

hépatiques majeures, ou la fibrose, la nécrose et la défaillance hépatique aux stades 

avancés de la maladie, chez l’homme et chez l’animal expérimental.  

Nos résultats suggèrent également que la réaction inflammatoire qui entoure le 

métacestode dans le foie contribue significativement à la sécrétion de cytokines et de 

chimiokines et aux mécanismes fonctionnels immunitaires de l’interaction 

hôte-parasite. En plus de donner une vue d’ensemble de l’évolution de la production 

des cytokines et chimiokines dans les lésions d’EA, ces résultats peuvent contribuer à 

identifier de nouvelles cibles pour une thérapeutique immunologique qui permettrait de 

pallier les conséquences pathologiques de l’infection par E. multilocularis et de 

complémenter l’action seulement parasitostatique des benzimidazoles. Nos résultats 

suggèrent qu’une régulation étroite de la production des divers isotypes d’IL-17, sous 

l’influence de TGF-β et de sa voie métabolique dépendant des Smads, également 

impliquée dans le développement de la fibrose hépatique, pourrait déterminer 

l’équilibre subtil entre tolérance vis-à-vis du parasite et protection de l’hôte. Le rôle du 

couple TGF-β/IL-17 pourrait être encore amplifié par l’effet exercé sur d’autres 

médiateurs de la tolérance comme le FGL2. 

En effet, les données apportées par notre travail sur FGL2 donnent un nouvel éclairage 

aux processus de tolérance dans l’infection par E. multilocularis. Elles démontrent que 

ce facteur non-cytokinique contribue au devenir de l’infection par E. multilocularis en 

intervenant dans la maturation des DC et en favorisant les fonctions des cellules Tregs ; 

elles dévoilent pour la première fois le rôle d’IL-17 dans la régulation de FGL2 ; et elles 
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suggèrent que FGL2 pourrait servir de cible pour le développement de nouveaux 

traitements pour les maladies infectieuses, y compris l’EA. 

Les études que nous avons développées dans notre travail de thèse n’ont pas permis de 

répondre à toutes les questions posées par les échanges complexes et réciproques entre 

la réponse immunitaire induite par le parasite et le foie de l’hôte. Elles représentent 

cependant une base de départ pour une meilleure compréhension des mécanismes 

moléculaires qui sous-tendent ces échanges localement, dans le foie, et apportent, au 

niveau de la biologie cellulaire, quelques explications mécanistiques à des faits 

d’observation clinique.  
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Summary in Chinese 
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Summary in English 

Background Alveolar echinococcosis (AE) is a rare, but - if remaining untreated or 

treated too late- severe and fatal zoonotic helminthic disease, predominantly caused 

not only by the direct hepatic damage which follows the continuous tumor-like 

proliferation of the larval stage (metacestode) of Echinococcus multilocularis 

(E.multilocularis), but also indirectly by the intense local granulomatous immune 

response which surrounds the parasitic tissue; both are responsible for chronic liver 

injury, liver fibrosis, necrosis, chronic cholestasis and finally hepatic failure.  

The lesions, composed both of the multiple vesicle-forming metacestode and of cells 

homing from lymphoid organs and permanently settling around the metacestode, 

behave like a slow-growing liver cancer, progressively invading the liver, then the 

neighboring tissues and also metastazing to other organs. Despite the alleged 

involvement of the granulomatous response in the functional imaging (e.g. through 

Fluoro-deoxy-glucose-Positron Emission Tomography) and in the complications of AE, 

very little is known on the local, hepatic, immune response and key immune-regulation 

factors to influence immune cell-homing to the liver as well as liver cell homeostasis: 

regeneration, degeneration and dysfunction.  

It has long been known that the liver is the key organ in E. multilocularis infection. E. 

multilocularis growth induces the activation of numerous pathways of the immune 

response and the immune mechanisms involved in the interaction between the parasite 

and its host have been extensively studied. The involvement of Th1/Th2 and individual 

cytokines has been rather extensively studied within the past 2 decades both in humans 

and in experimental rodents. However, nearly all studies have been performed on 

peripheral lymphoid organs (spleen, lymph nodes in experimental animals) or cells 

(peripheral mononuclear cells in humans, peritoneal cells in experimental animals). On 

the other hand, clinical observations, such as the magnitude of hepatomegaly in AE 

patients and/or the tolerance of the liver to major resections at surgery, or the diffusion 

of fibrosis to parts of the liver which are not involved in the parasitic and immune 

periparasitic processes in experimental animals, have suggested that direct influence 

could be exerted by the metacestode-induced immune response on the liver 

parenchyma. However, this has never been studied in depth and the potential 

mechanisms are unknown. Especially, the study of the mechanisms involved in 

changes in liver homeostasis at different infection stages, a detailed cytokine and 

chemokine profile analysis of the periparasitic infiltrate in the liver, the presence of 

transforming growth factor-β (TGF-β) and other components of TGF-β/Smad pathway 

in the liver, and novel CD4
+
CD25

+
 Treg effector molecule fibronogen-like protein2 

(FGL2) have, however, not yet been carried out in a comprehensive way all along the 

whole course of infection in E. multilocularis intermediate hosts. The aim of this thesis 

work was to explore the key actors (innate and proinflammation cytokines, Th-related 

cytokines and chemokines, major immune regulation cytokine TGF-β and CD4
+
CD25

+
 

Treg effector molecule FGL2) and the consequence in the liver (hepatocyte 

proliferation/growth arrest) in the crosstalk between E. multilocularis and its hosts.   
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Methods: For in vivo studies, pathogen-free female BALB/c mice were injected by E. 

multilocularis metacestodes both in the anterior liver lobe (intra-hepatic infection 

mouse model) and in the peritoneum (intra-peritoneal infection mouse model). For 

each autopsy time-point in the intra-hepatic infection mouse model, ten experimentally 

infected mice were used in E. multilocularis group and compared with five control 

mice, which received an intra-hepatic injection of 0.1 mL of saline in the anterior liver 

lobe using the same surgical procedure. Mice were killed at 2, 8, 30, 60, 90, 180, 270 

and 360 days, respectively.  

Liver tissue samples taken close to or distant from the parasitic lesions or from the 

sham-injected liver lobe in control mice were used for hepatocyte proliferation/growth 

arrest or DNA microarray or TGF-b/Smad signaling pathway detection by using 

Western Blot, qRT-PCR and immunohistochemistry. In addition, to study cytokine and 

chemokine expression in the liver, samples were taken at the periphery of the lesions, in 

the granulomatous area. For each autopsy time-point in the intra-peritoneal infection 

mouse model, six experimentally infected mice (fgl2
-/-

 Knock-Out mice versus wild 

type mice) were used in E. multilocularis group and compared with six control mice, 

which received an intra-peritoneal injection of 0.1 mL of saline using the same 

procedure. Mice were killed at 1 and 4 months, respectively. Spleen cells and peritoneal 

exudate cells (PEC) were taken from AE- fgl2
-/- 

and AE-WT mice (and non-infected 

mice as control) and used for T cell reactivity and Dendritic Cells (DC) maturation 

detection. 

For in vitro studies, 1) Co-culturing primary rat hepatocytes with E. multilocularis 

fluid was used to study TGF-β1, down-stream Smads activation by using Western Blot. 

2) Co-culturing primary spleen cells with ConA or E. multilocularis fluid was used for 

T cell reactivity and DC maturation detection by using flow cytometry. 3) Co-culturing 

CD4
+
CD25

+
 Tregs with CD4

+
CD25

-
 T cells was used for Treg suppression function 

assay by using BrdU ELISA. 

Results: 1) Results of hepatocyte proliferation/growth arrest studies showed that, after 

E. multilocularis infection, CyclinB1 and CyclinD1 gene expression increased up to 

day30 and then returned to control level after day60; Gadd45b, CyclinA and PCNA 

increased all over the period; ERK1/ 2 was permanently activated. Meanwhile, p53, 

p21 and Gadd45c gene expression, and caspase 3 activation, gradually increased in a 

time-dependent manner. In the late stage (day180–360), p53, p21 and Gadd45c gene 

expression were significantly higher in infected mice; JNK and caspase 3 were 

activated. TUNEL analysis showed apoptosis of hepatocytes. No significant change in 

CyclinE, p53 mRNA and p-p38 expression were observed at any time.  

2) mRNA expression levels in the hepatic parasitic lesions showed that a mixed 

Th1/Th2 immune response, characterized by the concomitant presence of IL-12á, 

IFN-γ and IL-4, was established very early in the development of E. multilocularis. 
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Subsequently, the profile extended to a combined tolerogenic profile associating IL-5, 

IL-10 and TGF-β. IL-17 was permanently expressed in the liver, mostly in the 

periparasitic infiltrate; this was confirmed by the increased mRNA expression of both 

IL-17A and IL-17F from a very early stage, with a subsequent decrease of IL-17A after 

this first initial rise. All measured chemokines were significantly expressed at a given 

stage of infection; their expression paralleled that of the corresponding Th1, Th2 or 

Th17 cytokines 

3) TGF-β1, its receptors, and down-stream Smads were markedly expressed in the 

periparasitic infiltrate and also in the hepatocytes, close to and distant from AE lesions. 

Fibrosis was significant at 180 days p.i. in the periparasitic infiltrate and was also 

present in the liver parenchyma, even distant from the lesions. Over the time course 

after infection TGF-β1 expression was correlated with CD4/CD8 T-cell ratio long 

described as a hallmark of AE severity. 

4) FGL2-deficient mice infected with E. multilocularis exhibited a significantly 

decreased parasite load, associated with increased T cell proliferation in response to 

ConA, impaired Treg numbers and function, relative Th1 polarization, and increased 

numbers of antibody-producing B cells, as compared to infected WT mice. Both 

relative number and maturation status of dendritic cells were higher in fgl2
-/- 

mice and 

CD80 and CD86 were more expressed in DCs following ConA and VF stimulation. 

Additional experiments confirmed that IL-17A contributes to FGL2 secretion in this 

model.  

Conclusions: E. multilocularis metacestode definitely exerts a deep influence on liver 

homeostasis. Our data support the concept of a sequential activation of metabolic 

pathways which (1) would first favor parasitic, liver and immune cell proliferation and 

survival, and thus promote metacestode fertility and tolerance by the host, and (2) 

would then favor liver damage/apoptosis, impairment in protein synthesis and 

xenobiotic metabolism, as well as promote immune deficiency, and thus contribute to 

the dissemination of the protoscoleces after metacestode fertility has been acquired. 

These findings give a rational explanation to the clinical observations of hepatomegaly 

and of unexpected survival of AE patients after major hepatic resections, and of 

fibrosis, necrosis and hepatic failure at an advanced stage and in both human patients 

and experimental animals.  

Our results also suggest that the surrounding inflammatory reaction in the liver 

contributes significantly to cytokine/chemokine secretion and functional 

immunological mechanisms within the host-parasite interactions. In addition to giving 

a comprehensive insight in the time course of cytokines and chemokines in E. 

multilocularis lesion, our results contribute to identify new targets for possible immune 

therapy to minimize E. multilocularis-related pathology and to complement the only 

parasitostatic effect of benzimidazoles in AE.  
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Our data suggest that TGF-β and downstream Smads signaling pathway are associated 

with fibrosis, while a TGF-β-related fine tuning of the various isotypes of IL-17 may 

determine the overall balance between tolerance towards the parasite and protection of 

the host. The fine tuning of IL-17 by TGF-β would then regulate other mediators of 

immune tolerance such as FGL2.  

Our data on the novel CD4
+
CD25

+
 Treg effector molecule FGL2 give new insight into 

the tolerance process in E. multilocularis infection. They demonstrate that this 

non-cytokine factor contributes to the outcome of E. multilocularis infection by 

interfering in the maturation of DCs and in promoting Treg cell functions; they give 

evidence for a role of IL-17 in FGL2 regulation, and suggest that targeting FGL2 could 

be used for the development of novel treatment approaches in infectious diseases.  

Our investigations have not answered all multiple questions raised by the complex and 

reciprocal interactions between the parasite-induced immune response and the host 

liver; however, they constitute an excellent starting point for an increased 

understanding of the molecular mechanisms underlying these interactions and give 

some mechanistic/cell biology-related explanations to clinical observations. 
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1. Introduction: Echinococcus multilocularis and Alveolar 

Echinococcosis 
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Echinococcus multilocularis (E.multilocularis ) is a cyclophyllid tape worm 

present in the intestine of carnivores such as dogs, wolves, foxes. Along with some 

other members of the Echinococcus genus (especially E. granulosus), its larval form 

(metacestode) produces the disease known as echinococcosis in certain terrestrial 

mammals, including wolves, foxes, jackals, coyotes, domestic dogs and humans. 

Unlike E. granulosus, which usually produces a single large-sized cyst, E. 

multilocularis produces many small cysts (also referred to as loculi, in Latin language, 

hence the name) that spread throughout the liver, then invades other organs of the 

infected animal. Ingestion of these cysts, usually by a canid eating an infected rodent, 

results in a heavy infestation of the canid’s gut by tapeworms. 

1.1 Life cycle 

The life cycle of E. multilocularis involves a primary or definitive host and a 

secondary or intermediate host, each harboring different life stages of the parasite. 

Foxes, domestic dogs and other canids are the definitive hosts for the adult stage of 

the parasite. The head of the tapeworm attaches to the intestinal mucosa by hooks and 

suckers. It then produces hundreds of microscopic eggs, which are dispersed through 

the feces (Vuitton et al. 2011). Wild rodents such as voles, mice, Ochotona spp. 

(‘pikas’) and small lagomorphs (on the Tibetan plateau, China) serve as the 

intermediate hosts. Eggs ingested by rodents develop in the liver, lungs and other 

organs to form multilocular cysts. Humans could also become an intermediate host by 

handling infected animals or ingesting contaminated food, vegetable, and water. The 

life cycle is completed after a fox or canine consumes a rodent infected with cysts. 

Larvae within the cyst develop into adult tapeworms in the intestinal tract of the 

definitive host (Vuitton, 2011; Zhang et al. 2011; Yang et al. 2012 . Except in rare 

cases where infected humans are eaten by canines, humans are a dead-end or 

incidental host (an intermediate host that does not allow transmission to the definitive 

host) for E. multilocularis. 
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1Figure1.1 Life cycle of Echinococcus multilocularis 

1. adult worms are present in intestine of definitive host 

2. eggs pass into feces, ingested by humans or intermediate host 

3. onchospheres penetrate the intestinal wall, are carried via blood vessels to lodge 

in organs 

4. echinococcosis vesicles (metacestode) develop in liver, lungs, brain, heart 

5. protoscoleces (‘hydatid sand’ in cystic echinococcosis) ingested by definitive hosts 

attach to the small intestine and develops into adult worms 

1.2 Epidemiology 

    The main endemic regions for human AE are Central Europe (southern Germany, 

Switzerland, western Austria, eastern France), Russia, Turkey, Japan (Hokkaido), 

China and North America (Alaska, northern Canada) (Kern et al. 2003; Vuitton et al. 

2003). 573 cases were registered in the French registry between 1982 and December 

2013, 200 cases (35%) from Franche comté Region, the region where Besançon 

University Hospital is located (Grenouillet et al. 2013; Said-Ali et al. 2013). AE is 

generally considered, compared to most of other infectious diseases, to be a “rare” 

disease. However, the disease has extended its range in Europe and USA in the last 

few decades (Kern et al. 2003; Vuitton et al. 2003, 2011). Between 1982 and 2000 a 

total of 559 cases were reported throughout Europe (Kern et al. 2003; Grenouillet et 

al. 2013). And the disease is spreading throughout the Midwestern United States, 

where it was previously rare or nonexistent (Torgerson et al. 2010). Besides, the 
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current estimates suggest an annual of 20000 new human cases worldwide with 91% 

of them occurring in the People's Republic of China (PRC) (Torgerson et al. 2010). 

New epidemiological trends are related to an unprecedented increase in the fox 

population in Europe, to the unexpected development of urban foxes in Japan and in 

Europe, and to changes in the environmental situation in many countries worldwide 

due to climatic or anthropic factors which might influence the host-predator 

relationship in the animal reservoir and/or the behavioral characteristics of the 

populations in the endemic areas (Torgerson et al. 2010). 

 

2Figure 1.2 Endemic areas of alveolar echinococcosis 

The incidence of human infection with E. multilocularis and AE is increasing in 

urban areas, as wild foxes (an important reservoir species of the sylvatic cycle) are 

migrating to urban and suburban areas and gaining closer contact with human 

populations (Vuitton et al. 2011). Also, restocking fox enclosures for fox hunting with 

infected animals spreads the disease. Children, health care workers and domestic 

animals are at risk of ingesting the cysts after coming into contact with the feces of 

infected wild foxes. Even with the improvement of health in developed/industrialized 

countries, the prevalence of alveolar echinococcosis (AE) did not decrease (Vuitton et 

al. 2011). On the contrary, incidence of AE has now also been registered in 

east-northern European countries, such as the Baltic States, and sporadic incidence 

was mentioned in other European countries (Vuitton et al. 2011). 

1.3 Alveolar echinococcosis in humans and its diagnosis and treatment 

The severity of AE in humans is related to a very long clinical latency and a 

progression in the liver comparable to a slow-growing cancer. The parasitic tissue is 

surrounded by an intense fibro- inflammatory reaction and both the biliary and 
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vascular walls may be involved in the parasitic process. Macroscopical examination 

indicates that the parasitic tissue has no clear limits with the adjacent liver 

parenchyma (Figure 1.3). At the periphery, the tissue is composed of numerous small 

irregular cavities corresponding to the parasitic vesicles, which is the active area of 

the parasitic mass. In the centre, the older part of the parasitic lesion is mainly made 

up of fibrous tissue that is sometimes calcified. Very often, particularly in huge AE 

lesions, necrosis develops in this central part due to poor vascularization of the lesion. 

This necrotic area favours superimposed bacterial infection leading to a clinical 

picture of liver abscess. 

           

3Figure 1.3 Macroscopical view of alveolar echinococcosis of the liver in a partial 

hepatectomy. The yellow parasitic mass (on the left) has no clear limits with the adjacent liver 

parenchyma (dark brown on the right). The periphery of this huge lesion is the ‘‘active’’ area, 

composed of fibro-inflammatory tissue and small parasitic vesicles (thin arrows). The center 

of the lesion is largely necrotic (thick arrow). 

  According to: Bresson-Hadni et al, Parasitology International, 2006 (55) S267 – S272 

Microscopically, E. multilocularis larvae grow as tumorlike buds that transform 

into multiple vesicles filled with fluid and, in 15% of cases, with protoscoleces. The 

parasitic vesicles are lined with a germinal layer and a laminated layer, which are 

immediately surrounded by an exuberant granulomatous response generated by the 

host's immune system. This reaction has two main consequences, fibrosis and 

necrosis. Both reactions protect the host against larval growth but may also be 

deleterious (Vuitton et al. 2011). 

The periparasitic granuloma is a major characteristic of AE pathology in humans, 

and pathological changes in AE are associated with an intense infiltration by immune 

cells, i.e. macrophages of various functional types (Vuitton & Gottstein, 2010), 

including the so-called “epithelioid cells” and “giant cells”, typical of granulomas and 

T lymphocytes (Bresson-Hadni et al. 1990). Experimental studies in infected mice 

and immunologic studies in humans have revealed the importance of cell-mediated 
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immunity in the control of larval growth. Immune responses, characterized by a 

helper T cell Th 1 profile of cytokine secretion, can kill the larvae, thus protecting the 

host. Conversely, the progressive forms of the disease are characterized by a Th 2 

profile consisting of increased interleukin (IL)–10, transforming growth factor 

(TGF)–β, and IL-5 secretion (Mejri et al. 2010; Vuitton & Gottstein, 2011). 

Directly or indirectly based on the immune response of the host, serological tests 

and imaging exams are commonly used to diagnose this disease (Kern, 2010). 

Currently, a range of imaging techniques can be used at the different stages of 

management of AE. For diagnosis, ultrasonography remains the first line examination. 

For a more accurate disease evaluation, aiming to guide the surgical strategy, 

computerized tomography (CT), Magnetic Resonance (MR) imaging, including 

cholangio-MR imaging are of importance, providing useful complementary 

information. More recently, Positive-Emission Tomography (PET) using [18F] 

fluoro-deoxyglucose (FDG) has been developed for the follow-up of inoperable AE 

patients under long-term benzimidazole therapy.  

1.3.1 Serological diagnosis 

Frequently used serological tests including antibody tests, ELISA, Western blot 

and indirect hemaglutination (IHA) are important not only for confirmation of AE 

cases, but also for epidemiological studies in endemic areas such as Germany (Jensen 

et al. 2001; Röming et al. 1999), France (Bresson-Hadni et al. 1994) and China 

(Bartholomot et al. 2002; Craig et al. 2000; Craig et al. 1992). The search for highly 

sensitive and specific antigens probably represents the greatest challenge in the 

immunodiagnosis of E. multilocularis infection. Thus, in the last three decades, a 

wide range of antigens from different developmental stages of the parasite have been 

assayed for their potential as candidate molecules for the sero-diagnosis of AE in 

humans. In particular, the use of partially purified and recombinant antigens has 

improved the sensitivities and specificities of the diagnostic tests considerably 

(Gottstein et al. 1983; Sako, 2002). Metacestode antigens used for diagnosis are as 

follows: 

The native Em2 antigen (also termed Em2a), revealed by in-vivo and in-vitro 

studies, is a structural component found only in the metacestode laminated layer, and 

not in freshly hatched oncospheres, protoscolex or adult stages (Gottstein et al. 1983; 

Deplazes et al. 1991). The glycosylated antigen Em2 (G11) has been found to be the 

major antigenic component of Em2 (Deplazes et al. 1991). It induces non-specific 

in-vitro T-lymphocyte proliferation in B-cell-deficient μMT mice, and low-avidity 
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IgG isotypes in vivo in C57BL ⁄ 6 mice (Dai et al. 2001). These findings seem to 

indicate that Em2 (G11) is a T-cell-independent antigen that could contribute to the 

tolerance towards proliferation of the parasite metacestode. Em492, an E. 

multilocularis metacestode component identified more recently by Walker et al. 

(Walker et al. 2004), shares with Em2 (G11) the galactose-a (1,4)- galactose epitope, 

suggesting that both antigens may be related immunologically. Em492, as well as 

Em2 (G11), is localized in the laminated layer of the metacestode, and seems also to 

be involved in the immunosuppressive events that occur at the host-parasite interface 

(Vuitton & Gottstein, 2010). With regard to metabolized proteins, an E. multi- 

locularis protoscolex-associated antigen of 62 kDa (Auer et al. 1988), two 70- and 90 

kDa- proteins (Korkmaz et al. 2004), and several recombinant E. 

multilocularis-proteins (such as antigen II/3 (Vogel et al. 1988) and its subfragments 

II/3-10 (Müller et al. 1989), EM10 (Frosch et al. 1991), and Em18 (Ito et al. 1995), 

have all been published and discussed in view of a potential biological role (Mejri et 

al. 2010). However, these antigens were mainly used to investigate respective 

immune responses with emphasis on immunodiagnosis of AE, and their biological 

functions have not been appropriately studied. Em2
plus

- ELISA and Em18-Western 

Blot are currently widely used to distinguish between AE and CE with very high 

specificity (Helbig et al. 1993; Ma et al. 1996). EmAP (alkaline phosphatase), an 

antigen which was shown to induce the production of antibodies associated with 

disease severity and resistance to treatment in AE patients, was also shown to induce 

only Th2-type cytokine secretion (Lawton et al. 1997; Sarciron et al. 1997). 

The14-3-3-gene of E. multilocularis appears to play a key role in basic cellular events 

related to cellular proliferation, including signal transduction, cell-cycle control, cell 

differentiation, and cell survival (Siles-Lucas et al. 1998; Siles-Lucas & Gottstein et 

al. 2003). The recently identified Em P29, was shown to induce non-specific in-vitro 

T-lymphocyte proliferation and a Th1 immune response, suggesting that it is 

protective against secondary E.multilocularis infection (Gottstein, personal 

communication; unpublished data). 

1.3.2 Ultrasonography and computerized tomography in AE 

Ultrasonography (US) and computerized tomography (CT) remain the basic 

morphological imaging techniques in AE. Colour and pulsed doppler coupled with 

US is very useful in studying the relationship between the parasitic lesion and vessels 

(Vuitton et al. 2004; Bresson-Hadni et al. 2005; Reuter et al. 2001). 

US is the current screening method of choice for diagnosis and regular follow-up 

imaging in AE. A typical US aspect is observed in 70% of the cases, when AE lesions 
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are generally large in size. The lesion is characterized by irregular limits and 

heterogeneous content with juxtaposition of hyperechogenic (fibrous tissue) and 

hypoechogenic (‘‘active’’ parasitic tissue) areas. Very often, the hyperechogenic 

fibrous tissue contains scattered calcifications, well identified by US, as 

hyperechogenic foci with characteristic dorsal shadowing. US can also provide 

information on biliary and vascular involvement: intra-hepatic bile duct dilatations 

can be easily disclosed, as well as infiltration of the inferior vena cava, hepatic or 

portal veins walls by the parasitic tissue (Bresson-Hadni et al. 2006). Recently, 

contrast-enhanced US has been evaluated in AE: results suggest that the typical 

enhancement at the periphery of the lesions may correspond to the periparasitic 

immune infiltrate/granuloma, due to its rich vascularization (Tao et al. 2011; Zeng et 

al. 2012).  

The second imaging technique is CT that is always performed after US 

examination to confirm the morphological aspects of AE. CT helps to specify the 

number, size and localization of the lesions in the liver. It is the best technique to 

detect the typical calcifications inside the lesion (Reuter et al. 2001). In the case of 

very calcified lesions, US examination is of limited use and CT is mandatory to 

delineate precisely the parasitic mass, particularly the posterior border. CT also shows 

the extent of regeneration/hypertrophy in the liver lobe, which was not invaded by the 

metacestode pseudo-tumor, and its part taken in the hepatomegaly often found in AE 

patients.  

 

 

1.3.3 Magnetic resonance (MR) imaging in AE 

    MR imaging may facilitate the diagnosis in uncertain cases with non-calcified 

lesions, by showing the small aggregated vesicles, thus the pathognomonic aspect of 

the disease: “honeycomb” or “bunch of grape” pictures, best see on T2 weighted 

images (Reuter et al. 2001; Claudon et al. 1990; Bartholomot et al. 1997; Kodama et 

al. 2003). MR imaging is the best technique to characterize the different components 

of the parasitic lesion and could become the reference radiological exam in case of a 

nodular homogeneous form detected by US, which seems to correspond to an early 

AE lesion, either primary or recurrent after surgery. Moreover, this technique is very 

useful in studying the extension of the parasitic tumor to adjacent structures, and, 

therefore, should be included in pre-operative evaluations, especially if a large 

resection or a liver transplantation is planned. The proximity of parasitic lesions to 
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blood vessels is sometimes better assessed with MR imaging than CT. It is 

particularly useful in the pre-operative evaluation to show inferior vena cava and 

hepatic vein invasion and the up- and downstream consequences. But MR imaging 

does not detect calcifications, considered as quite specific of AE lesions 

(Bresson-Hadni et al. 2006). 

1.3.4 Positron emission tomography in AE 

Conventional imaging techniques are unable to give information on parasite 

metabolic activity. Radio-labelled fluoro-deoxyglucose positron-emission tomography 

(FDG- PET) is a valuable technique in nuclear medicine for detecting tissue metabolic 

activity; it was initially proposed to assess parasite viability and seemed very 

promising to appreciate the efficacy of AE treatments (Reuter et al. 1999). 

Morpho-PET, which is a PET- scan combined with a CT-scan using image fusion, 

combines the advantages of both imaging exams. The results of the evaluation of 30 

patients in France, using morpho-PET, totally agreed with those of the previous 

German studies on PET: in unresectable patients, PET-CT can evaluate the 

morpho-functional aspects of the disease and assess the efficacy of BZM treatment 

(Bresson-Hadni et al. 2006) (Figure 1.4).  

 

4Figure1.4 FluoroDeoxyGlucose-Positron Emission Tomography (PET)/Computed 

Tomography (CT) imaging in alveolarechinococcosis of the liver (A, B) 

CT-scan image (A): Bi-focal AE in a young woman under albendazole (ABZ) therapy for 14 

years. PET image of the same lesions (B): Intense peri-lesional activity (‘‘hot-spots’’) around 

the huge left AE focus. The other AE lesion, located in the right lobe of the liver, became 

largely calcified during the follow-up and shows no peri-lesional enhancement, suggesting an 

efficacy of ABZ. 

According to Bresson-Hadni et al, Parasitology International, 2006 (55) S267 – S272 
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With the assumption that PET accurately reflected the viability of the parasite, 

albendazole treatment withdrawal, based on PET images, was evaluated, and results 

were rather disappointing, since recurrence were observed several months after 

withdrawal, despite negative PET images in these patients (Reuter et al. 1999, 2001,2 

004; Bresson-Hadni et al. 2006; Ehrhardt et al. 2007; Crouzet et al. 2010; 

Bresson-Hadni et al. 2011). Recently, one study showed that delayed 
18

F-FDG PET 

(images taken 3 hours after FDG injection) better differentiated between active and 

inactive liver lesions in AE patients (Caoduro et al. 2010); its value to serve as a basis 

for treatment withdrawal has still to be evaluated prospectively. However, all 

observations made from the clinical use of PET also raised the question of the cells 

actually responsible for FDG uptake, and thus PET images, in patients with AE, and it 

is currently widely accepted that PET images only reflect indirectly parasite viability. 

The accumulation of FDG may well reflect the metabolic activity of the immune 

cells; but the relationship between parasite viability and the nature, composition and 

activity of the periparasitic granulomatous infiltrate is far from being known, in 

humans as well as in the experimental models of AE. Such observations largely 

contributed to the initiation of my thesis project, in order to better understand the 

composition and dynamics of the periparasitic infiltrate, i.e. the profiles of 

cytokines/chemokines related to immune cell-homing to the parasitic lesions, the role 

of key cytokines and molecules on immune tolerance/protection, thus on parasite 

viability, and the mutual influence of the parasite and the liver. 

1.3.5 Treatment of AE 

If no specific therapy is initiated, in 94% of patients the disease is fatal within 

10–20 years following diagnosis (Jura et al. 1998). Radical surgery is the basis of 

treatment for early AE, but patients not suitable for surgery and those who have had 

surgical resection of parasite lesions must be treated with benzimidazoles 

(albendazole, mebendazole) for several years (McManus, 2012). Benzimidazoles only 

halt parasite proliferation; they do not kill the parasites; despite the improvements in 

the chemotherapy of echinococcosis with benzimidazole derivatives, complete 

elimination of the parasitic mass cannot be achieved in most of the infected patients. 

In patients without complete resection of the lesions, they should thus be given 

life-long although they may have deleterious side effects such as liver damage (Kern, 

2010; Vuitton & Bresson-Hadni, 2014). Several alternative drugs have been tested in 

vitro and in vivo against E. multilocularis metacestode (reviewed in Vuitton & 

Bresson-Hadni, 2014), but none has currently been tested in clinical trials. Results of 

observations in humans and experimental studies in animals also suggest that, in the 
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absence of fully effective anti-parasitic chemotherapy for AE, modulation of the 

host’s immune response could be envisaged to fight against the parasite (Vuitton & 

Gottstein, 2010); to achieve this goal, the mechanisms involved in the host-parasite 

interplay in the liver should be better elucidated. On the other hand, to evaluate the 

progression/regression of the disease in benzimidazole treated patients, and decide of 

a possible treatment withdrawal after some years, markers of progression/regression, 

both imaging (i.e. PET or other functional imaging techniques), and 

biochemical/immunological, markers (i.e. serology, other markers, such as FGL2, a 

novel molecule possibly related to E. multilocularis tolerance) need to be further 

explored. 

1.4 Experimental models to study E. multilocularis metacestode stage 

In vivo methods of studying experimental echinococcosis in laboratory rodents 

include oral inoculation of eggs from adult cestodes (Yamashita et al. 1963) and 

subcutaneous (Ali-Khan et al. 1980; Kassis et al. 1976; Yamashita et al. 1956), 

intraperitoneal (Yamashita et al. 1968a) and intrahepatic (Yamashita et al. 1963) 

secondary infection. The method of oral inoculation with eggs has advantages in that 

primary lesions mimic those of a natural infection (Rausch, 1954; Ohbayashi, 1960; 

Veit et al. 1995; Bauder et al. 1998) and are usually located in the liver (Ohbayashi et 

al. 1960). However, the technique is hazardous in that eggs from the adult worm are 

infective to humans (Yamashita et al. 1968b). Moreover, until the recent development 

of techniques to grow adult Echinococcus to maturity in laboratory rodents (Kamiya 

et al. 1990), it necessitated keeping the definitive host (usually a dog) and harvesting 

its feces for eggs.  

The secondary subcutaneous murine AE model is currently used for 

experimental treatment studies (Stettler et al. 2004). In this model, the parasite 

metacestodes are injected into the subcutaneous tissue of a mouse or a Mongolian jird 

(Meriones unguiculatus), where the parasites proliferate and develop tumor-like 

features such as progressive growth and invasion of neighboring tissues (Küster et al. 

2013).  

The secondary intra-hepatic murine AE mouse model (Liance et al. 1984) 

represents a combined model of infection (development of the E. multilocularis larva), 

immune response (granulomatous reaction leading to fibrosis) and tumor (occupying 

process in the liver with simultaneous induction of liver regeneration) (Vuitton et al. 

2003). An intra-hepatic infection model can be used for a parallel cellular and 

molecular study of the parasite and of the liver in which it is growing; it may allow a 
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simultaneous approach of the crosstalk between the granuloma and the liver and of its 

consequences on liver fibrosis. In addition, as the liver has special properties 

regarding immune tolerance (Jenne & Kubes, 2013), reproducing the most usual 

location of the parasite, may allow conclusions closer to the clinical situation. 

However, as it requires surgical operation, for practical and ethical reasons, this 

model is more difficult to develop than the usual intra-peritoneal infection. 

The secondary intra-peritoneal murine AE mouse model, i.e. injection of 

protoscoleces into the peritoneum, is the most widely used model of alveolar 

echinococcosis in rodents. It is an easy way for in vivo testing of anti-parasite drugs. 

For immunological research, this model allows the study of peritoneal macrophages 

and of mesenteric and/or para-aortic lymph nodes (Mejri et al. 2011). The 

intra-peritoneal infection model can give a comprehensive insight in the mechanisms 

of immune response with a therapeutic purpose. 

However, using the in vivo models, the only one available for decades, it was 

difficult to draw definite conclusions from studies about the factors modulating E. 

multilocularis metacestode differentiation, and investigations into gene expression 

and regulation were hampered by the close and complex host–parasite interactions 

that exists (Hemphill et al. 2002). Several in vitro metacestode culture models have 

thus been developed to study the basic parameters of parasite proliferation and 

differentiation, to investigate the interactive role of heterologous cells, to localize 

several E. multilocularis antigens, and to dissect the ultrastructure and composition of 

the acellular laminated layer (the structure that is predominantly involved in the 

physical interaction between the parasite and host immune and non-immune cells and 

tissues) (Brehm & Spiliotis, 2008; Spiliotis & Brehm, 2009). 

Spiliotis developed an in vitro system for the long-term cultivation of E. 

multilocularis larvae. In his system, the parasite was first grown in co-culture with 

Reuber cells (3-w), after which the parasite was cultured in the absence of host cells 

but in the presence of supernatant of these feeder cells. In the absence of feeder cells 

from the host, long-term survival of the parasite depended strictly on low oxygen 

conditions and the presence of reducing agents in the medium. Host serum supported 

survival of the parasite but the growth of metacestode vesicles and differentiation 

towards the protoscolex stage only occurred in the presence of culture medium that 

was preconditioned by hepatoma cells or several other immortal cell lines (Spiliotis et 

al. 2004). 

In terms of beneficial effects of host cells on parasite development, it has been 

suggested that Caco2 and/or hepatocyte feeder cells and/or cell lines produce growth 

factors for metacestode vesicles (Hemphill & Gottstein, 1995; Jura et al. 1996; 

Spiliotis et al. 2004). Host cells may also remove compounds from the culture 

medium which are toxic for the parasite.  
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For immunological studies, the availability of cultured E. multilocularis germinal 

cells, isolated or structured in vesicles, has allowed a more precise study of the 

sensitivity of parasite cells to initiators/modulators of the immune response, and open 

new avenues in the research on the host-parasite cross-talk. 

1.5 Host-parasite relationship and immune responses to the metacestode stage 

Host-parasite interactions in the E. multilocularis-intermediate host model depend 

on a subtle balance between cellular immunity, which is responsible for host's 

resistance towards the metacestode, the larval stage of the parasite, and tolerance 

induction and maintenance. The pathological features of alveolar echinococcosis are 

related both to parasitic growth and to host's immune response, leading to fibrosis and 

necrosis. The disease spectrum is clearly dependent on the genetic background of the 

host as well as on acquired disturbances of Th1-related immunity, as mentioned 

above. 

1.5.1 Susceptibility and Resistance to E. multilocularis 

In the experimental animals, E. multilocularis exhibits different growth rates and 

maturation characteristics in various species of hosts, that is, species of rodents or 

lagomorphs for E. multilocularis, but also of multiple other animal species such as 

swine and primates (Vuitton & Gottstein, 2010). Extensive studies in the differences 

in host immune responses suggest that differences in susceptibility/resistance, is 

putatively related to respective immune responses in different murine models (Liance 

et al. 1984, 1990; Bresson-Hadni et al. 1990; Guerret et al. 1998; Gottstein et al. 

1994). It was shown that impairment of cellular immunity (immune suppression) is 

followed by an increase in susceptibility to E. multilocularis in immunosuppressed 

mice (Baron & Tanner, 1976) and was further demonstrated in SCID mice (Playford 

et al. 1992) and in nude mice (Dai et al. 2004). A similar increase of susceptibility of 

experimental mice, associated with a decrease of delayed type hypersensitivity, was 

also observed in mice infected with E. multilocularis and treated with an 

immunosuppressive drug, cyclosporine, which interferes with IL-2 production in T- 

cells (Liance et al. 1992). Conversely, cellular immune response against parasitic 

antigens is stronger in infected resistant mice (Liance et al. 1990; Gottstein et al. 

1994), and resistance is increased by stimulation of the cellular immune response 

(Rau et al. 1975).  

In humans, increased susceptibility was evidenced by a rapid increase in size of 

lung metastases, the development of brain metastases, late re-invasion of the 

transplanted liver by parasitic cell remnants, and even early re-invasion of the 
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transplanted liver from a spleen metastasis in the transplanted patients (Bresson-Hadni 

et al. 1999; Koch et al. 2003); and by a rapid and irreversible growth of E. 

multilocularis larvae in the HIV-co-infected patients (Sailer et al. 1997; Zingg et al. 

2004). It was shown an inhibition of specific lymphocyte proliferative responses in 

transplanted patients with recurrence of the disease, whereas transplanted patients 

considered as cured exhibited a very high proliferative response over a long time 

period (Bresson-Hadni et al. 1998). The persistence of a high proliferative response 

was also observed in Alaska patients with lesions containing dead parasites, and 

patients with severe AE had a depressed proliferation rate (Gottstein et al. 1991).  

The genetic basis for either host resistance (no immunosuppression?) or 

susceptibility (immune suppression?) is clearer in humans than in the mouse model. 

Preliminary investigations showed that the frequency of certain HLA alleles 

(HLA-DR13) was increased in patients with a regressive course of disease after 

therapy compared to controls or patients with progressive alveolar echinococcosis 

(Gottstein & Bettens, 1994). A European study showed that HLA-DRB1*1 was 

associated with a reduced risk for disease development (Eiermann et al. 1998) and 

that there was a significant link between MHC polymorphism and clinical 

presentation of AE, such as association of HLA-DQB1*02 and disease severity, and 

the spontaneous and higher secretion of IL-10 in patients with a progressive AE and 

the HLA DR3
+
, DQ2

+
 haplotype (Godot et al. 2000). Clustering of cases in certain 

families, in communities otherwise exposed to similar risk factors, also points to 

immuno-genetic predisposition factors that may allow the larva to escape host 

immunity more easily (Vuitton et al. 2006). However, since inbred mice of the same 

H-2 haplotype differ significantly in their susceptibility to E. multilocularis there are 

obviously other, non-MHC-linked genes contributing to the disease susceptibility. 

1.5.2 Pathological observations in AE

The pattern of growth and development of AE is different from that observed in 

cystic echinococcosis, due to E. granulosus. Structurally, the lesions are more 

complex (multivesicular), with infiltrative rather than expansive growth. These 

multiple cysts do not lead to the formation of a limiting fibrous layer (adventitial layer) 

or a host-tissue barrier. In susceptible animal hosts, fibrosis is present but may be 

limited (Guerret et al. 1998). In resistant animal hosts and in humans an intense 

fibrosis reaction develops from the center to the periphery of the parasitic mass, with 

concomitant degeneration of the parasite vesicles. In this mass of fibrous tissue, the 

germinal and laminated membranes appear disorganized and distorted among focal 

calcifications, and embedded in acellular fibrosis and/or necrosis (Vuitton et al. 1986; 

Guerret et al. 1998). The normal pattern of multiple small cysts seen in the natural 
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intermediate hosts, which can be also be seen at the very beginning of E. 

multilocularis development in humans, is only observed at the periphery of the lesions 

when the development of the parasitic pseudo-tumor has lasted for several years. The 

germinal cells infiltrate surrounding tissues, forming small exogenous and 

endogenous vesicles enmeshed in the dense cellular connective tissue. Most of the 

periparasitic immune infiltrate is thus found at the periphery of the lesions (in those 

areas where enhancement of contrast is observed at CT or contrast-enhanced US, and 

where FDG uptake is observed at PET imaging). If the germinal cells (or vesicle 

debris including viable germinal cells) enter blood or lymphatic vessels, metastatic 

growth may occur in distant organs, most commonly in the lungs and brain 

(Bresson-Hadni et al. 2006).  

In humans, accidental intermediate hosts, the severity of AE results from both the 

continuous asexual proliferation of the metacestode and the intense inflammatory 

granulomatous infiltration around the parasite which causes pathological damages in 

the liver. Granuloma, extensive fibrosis, and necrosis are actually the characteristic 

pathological findings in E. multilocularis infection. The lesions, composed both of the 

multiple vesicle-forming metacestode and of cells homing from lymphoid organs and 

permanently settling around the metacestode, behave like a slow-growing liver cancer, 

progressively invading the liver. Fibrosis in AE is extremely active from the 

beginning of the infection. Irreversible acellular fibrosis composed of cross-linked 

collagens ensues and isolates the parasitic lesions from the host but also compresses 

and obstructs major vessels and bile ducts, destroys the liver parenchyma resulting in 

symptoms of biliary obstruction, portal hypertension and necrosis of the central 

portion of the cyst with abscess formation (Kern, 2010). Ascites, and esophageal, 

gastric and duodenal varices may develop at the terminal stages of the disease, 

because of portal hypertension due to vessel compression/obstruction, which may 

generate sometimes fatal clinical complications; irreversible liver failure is rare, 

usually due to secondary biliary cirrhosis (Kern, 2010). 

1.5.3 The periparasitic immune cell infiltrate in AE  

Pathological changes in AE are associated with an intense infiltration by immune 

cells, i.e. macrophages of various functional types, including the so-called “epithelioid 

cells” and “giant cells”, typical of granulomas and T lymphocytes (Manfras et al. 

2002). At the time of initial encounter with its murine host, the metacestode might 

modulate the immune response. The changes that it induces are dynamic and depend 

on the stage of development, for example, ranging from oncosphere, to early stage 

vesicles up to a fully maturated and fertile metacestode. Dendritic cells (DCs) and 
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macrophages (MØs) are among the first cells encountered by the parasite, which, by 

secreting and expressing certain molecules, has evolved mechanisms to suppress the 

major inflammatory and thus immunopathological pathway. Besides, CD4
+
 T 

lymphocytes are present from the early stage of parasite growth, and CD8
+ 

T 

lymphocytes were shown to home to the periparasitic infiltrate secondarily and to be 

associated with parasite tolerance and severity of the disease (Vuitton, 2003; Vuitton 

et al. 2006; Manfras et al. 2002; Manfras et al. 2004).  

Dendritic cells and macrophages (MØ) 

DCs, the most important antigen-presenting cells (APCs) in the initiation of a 

type 1 or type 2 immune response, depending on the nature of the antigen(s) (Foti et 

al. 2006), range among the first players in the elaboration of a specific immune 

response. In the frame of a Th1 immune orientation, it is largely accepted that DCs are 

activated mostly by bacterial or viral pathogens via Toll-like receptor (TLR) ligation 

to produce IL-12 and TNF-a, both pro-inflammatory cytokines inducing a Th1 

oriented response (Boonstra et al. 2003; Takeda et al. 2003). Th1-associated DC 

activation by microbial products evokes rapid phenotypic changes, including 

up-regulation of MHC class II, CD80, CD86 and CD40 (Reis e Sousa et al. 1999; 

Romagnoli et al. 2004). Thereafter, DCs have the ability to fully activate effector T 

cells. There is no mirror-image signature of cytokine and surface ligands that DCs 

express to stimulate Th2 differentiation. However, exposure of DCs to some 

helminthic antigens, including the products of filarial Acanthocheilonema viteae 

(ES-62), Schistosoma mansoni soluble egg antigen (SEA), and the 

schistosome-associated glycan lacto- N-ficopentaose III (LNFPIII), was found to 

pulse DCs to prime CD4+ T cells into Th2 type cells, and this occurred in the absence 

of increased MHC class II expression and co-stimulation molecule up-regulation 

(Whelan et al. 2000; MacDonald et al. 2001; Thomas et al. 2003). Ingold et al. (2000) 

have revealed the presence of high molecular mass glycans that form the major 

structural elements on the laminated layer of the metacestode of E. multilocularis. 

Whether exposure of DCs to these AE-glycans would pulse them to prime naïve CD4
+
 

T into Th2 differentiated cells needs to be addressed. 

    Macrophages from AE-infected mice (AE-MØ) as APCs exhibited a reduced 

ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific 

responder lymph node T cells when compared to normal MØ from non-infected mice 

(Mejri & Gottstein, 2006). This obstructed activity in antigen presentation of AE-MØ 

appeared to trigger an unresponsiveness of T cells, which in turn led to the 

suppression of their clonal expansion during the chronic phase of AE infection. In a 

similar context it was shown that high periparasitic NO production by peritoneal 
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exudate cells, mainly AE-MØs, also contributed to periparasitic immunosuppression 

(Dai &Gottstein, 1999; Andrade et al. 2004). Parasite- derived molecules also 

interfered with antigen presentation and cell activation, leading to a mixed 

Th1/Th2-type response at the later stage of infection. This correlated with the marked 

depression of the cell mediated immune response that had been observed in chronic 

AE (Devouge & Ali-Khan, 1983; Kizaki et al. 1991, 1993). 

T and other cells 

Cells of the innate immune system are not the only targets of these 

immunomodulatory parasite-derived molecules. Endothelial cells (in the skin, lungs, 

intestine and liver) can also be induced to express and secrete anti-inflammatory 

mediators, such as IL-10 and prostaglandins (Zaccone et al. 2008). In this way, the 

parasite not only reduces its likelihood of elimination but can also minimize local 

host-tissue damage, with coincidental and paradoxical benefits for the host. By 

inducing functional changes in DCs and MØs, the metacestode can achieve important 

shifts in T cell subsets. From those data accumulated in the last 2 decades it has been 

concluded that, in E. multilocularis metacestode infection, an initial acute 

inflammatory Th1 response was subverted gradually to a mixed Th1/Th2 response 

during the chronic phase of AE (Vuitton, 2006; Vuitton & Gottstein, 2010). 

In the past decade, the Th1–Th2 paradigm has been revisited continually and 

alternative T cell lineages have been proposed. CD4
+
 CD25

+
 Foxp3

+
 regulatory T 

(Treg) cells and Th17 cells are as two distinct subsets from Th1 and Th2 cells. They 

play important role in human AE, as mentioned in details in 1.5.4. 

Eosinophils 

    One of the striking features observed in experimental murine AE (and also in 

naturally acquired AE of humans) is the absence of any eosinophilia. The 

mobilization of eosinophils is known to be a crucial immunological event that plays 

an important role in the host defence against helminths (Yamaguchi et al. 1988), but 

its role remains controversial. In many examples of nematode infections, eosinophilia 

is a marked characteristic, and eosinophils directly cause profound damage to the 

worm tegument, such as in Strongyloides ratti and in T. spiralis, in which a marked 

reduction of fertility and longevity was observed (Machado et al. 2005). On the other 

hand, eosinophils had no detectable effects on the infection with Mesocestoides corti, 

Hymenolepis diminuta and Fasciola hepatica (Ovington & Behm, 1997). An 

extravasation of eosinophils causing eosinophilia in the peritoneal cavity has been 

demonstrated to be beneficial for the host by causing damage to the immigrant im- 

mature Fasciola hepatica, resulting in the erosion of the tegumental syncytium 
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(Burden et al. 1983). It was shown in experimental murine AE that metacestode 

antigens (VF and E/S) exhibit proteolytic activity on eotaxin in vitro (Mejri & 

Gottstein, 2009). Inhibition of eotaxin activity may suppress the mobilization of 

eosinophils into the peritoneal cavity of intraperitoneally AE- infected mice. In 

experimental murine AE, the detected eotaxin inactivation by VF and E/S products 

may contribute to explain the absence of eosinophils within the peritoneal cavity of 

AE-secondary infected mice. Absent eosinophils thus may be a part of a series of 

events that maintain a low level of inflammation displayed within the peritoneal 

cavity of experimentally infected mice. 

1.5.4 Cytokine profile of AE 

Th1/Th2 related Cytokines in AE 

Cytokine profiles, due to the secretion of characteristic cytokines by (mostly but 

not only) T “helper”(Th) cells give an insight into immune mechanisms involved in 

host-infectious organism relationship and in the types of immune responses that are 

developed after the early stage of antigen and “pattern” recognition (Vuitton & 

Gottstein, 2010). In most previous studies, secretion and expression of cytokines, 

chemokines, and related factors that govern immune cell-homing to E. multilocularis 

infection site were studied in the peripheral blood of human AE patients (Hubner et 

al. 2006; Kocherscheidt et al. 2008; Dreweck et al. 1999; Godot et al. 2000; Jenne et 

al. 1997; Harraga et al. 2003) and and on spleen and lymph node cells in the 

experimental model (Dai et al. 2004; Bresson-Hadni et al. 1990; Dai & 

Gottstein1999). In the immune-competent but susceptible host, E. multilocularis 

induces skewed Th2-responses, with high production of IL-4, IL-5 and IL-10 

(Dreweck et al. 1999). In chronic AE, Th2-cytokines are associated with increased 

susceptibility to disease, while Th1-cytokines induce a rather protective immunity 

which involves IFN-α (Godot et al. 2003) and IL-12 (Emery et al. 1998) as initiating 

cytokines, and IFN-γ (Liance, et al. 1999) and TNF-α (Shi et al. 2004; Amiot et al. 

1999) as effector cytokines. 

Th17 related Cytokines in AE 

Recently, the discovery of the IL-17 cytokine family has added a new dimension 

to the balance of inflammation and tolerance during parasite infections. The presence 

of IL-17 secreting CD4
+
 T (Th17) lymphocytes correlates with severe hepatic 

pathology in murine schistosomiasis (Rutitzky et al. 2005). A more recent study, 

published during the completion of our thesis, showed that different isotypes played 

different roles in E. multilocularis infection, e.g. IL-17A was rather protective, while 

IL-17F might contribute to both protection and pathogenesis, as reported in human 

AE patients (Lechner et al. 2012).  
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Cytokines leading to tolerance 

    CD4
+
 CD25

+
 Tregs expressing the fork head/winged helix transcription factor 

(Foxp3) inhibit IL-2 production (Hori et al. 2003; Ghiringhelli et al. 2005). It has 

been suggested to play important role in immune tolerance by a study in patients with 

AE (Hübner et al. 2006), and in the experimental AE mouse model (Mejri et al. 2010). 

It is widely accepted that Tregs regulate immune response during E. multilocularis 

infection through the regulatory cytokines IL-10 and TGF-β (Vuitton & Gottstein, 

2010). In a previous study, by using a microarray-based approach, researchers from 

our team observed that mRNA levels of the Fibrinogen-like protein 2 (FGL2), a Treg 

novel effector molecule, were significantly up-regulated in the liver of mice perorally 

infected with E.multilocularis eggs (Gottstein et al. 2011); this prompted us to study 

this factor as an additional actor of Treg-induced tolerance in AE.  

FGL2, a member of the fibrinogen-related superfamily of proteins known to be 

secreted by T cells, has recently been reported by a number of groups to be highly 

expressed by Tregs and has been proposed to have a role in Treg effector function 

(Levy et al. 2000). It has been shown that FGL2 could inhibit dendritic cell 

maturation and induce apoptosis of B cells through binding to low-affinity 

FcgammaRIIB receptor, and thus contribute to Treg activity (Liu et al. 2008). There is 

evidence that FGL2 exerts immunosuppressive effect on T cell proliferation. Thus it 

plays an important role both in innate and adaptive immunity, being expressed by 

activated CD4
+
and CD8

+
 T cells and reticulo-endothelial cells (macrophages and 

endothelial cells) (Ghanekar et al. 2004; Belyavsky et al. 1998; Fingerote et al. 1996; 

Liu et al. 2010; McGilvray et al. 1998; Ning et al. 1998). It has been implicated as a 

novel biomarker of cancer (Rabizadeh et al. 2012), and in the pathogenesis of 

inflammatory disorders such as allo- and xenograft rejection (Ghanekar et al. 2004; 

Mendicino et al. 2005; Ning et al. 2005; Wilczynski et al. 2006; Xie et al. 2011; 

Zhang et al. 2004), or cytokine-induced fetal loss (Clark et al. 2002). It was also 

shown to play a role in infectious diseases, such as viral hepatitis (Belyavsky et al. 

1998; McGilvray et al. 1998). To our knowledge, it has until now been neglected as a 

key-player in parasite-induced tolerance. As the therapeutic tools in AE are very 

limited so far, and immune modulation might represent an alternative option, Tregs 

and their effector molecule FGL2 could become attractive targets, putatively allowing 

a modulation of the patient's immune response to yield protective immune reactions 

that will result in a dying-out of the parasite metacestode; it could also represent an 

interesting marker of the tolerance status of AE patients, thus of the progression of the 

metacestode. 

As mentioned above, the main cytokines involved in immune tolerance are IL-10 

and TGF-β, have been largely studied in the past 3 decades. The metacestode actively 

achieves a tolerance status through the induction of regulatory cytokines IL-10 and 
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TGF-β (Mejri et al. 2009). Most of the studies in AE as well as in the experimental 

models have first focused onto IL-10. Spontaneous secretion of IL-10 by the PBMCs 

is the immunological hallmark of patients with progressing lesions of AE (Godot et al. 

1997). However, only very preliminary results showed the presence of TGF-β 

secreting cells in the periparasitic granuloma surrounding E. multilocularis vesicles in 

the liver of patients with AE (Zhang et al. 2008), and exploring TGF-β in its multiple 

functions in E.multilocularis infection is still an open field of research. 

TGF-β in AE 

TGF-β is a major regulator of the immune responses, inducing and maintaining 

T-regulatory cells, reducing cytotoxic effector immune response and balancing the 

tolerogenic and immunogenic forces at play in various physiological states and 

chronic diseases, such as fetus growth and survival during gestation (Ouellette et al. 

1997), cancer (Cufi et al. 2010), chronic inflammatory diseases (Feng et al. 2011), or 

chronic and allergic respiratory diseases (Jetten et al. 1986). In these conditions, this 

polypeptide also regulates a variety of cell events involved in tissue regeneration and 

fibrosis. Similarly, its role has been recognized both to induce and maintain immune 

tolerance towards parasites and to induce fibrosis in several examples of helminth 

infection (Harraga et al. 2003). However, opposite to the recognized role of IL-10 

(Harraga et al. 2003; Vuitton, 2003), little is known about TGF-β involvement in the 

pathophysiology of larval echinococcosis. Only preliminary studies are available in 

AE: TGF-β was shown to be expressed in most lymphocytes of the periparasitic 

infiltrate in liver biopsies from AE patients. It was suggested that TGF-β may play a 

role in maintaining host tolerance against E. multilocularis growth by preventing 

T-cell cytotoxicity against the parasite (Zhang et al. 2008). In cystic echinococcosis 

(CE), immunostaining of TGF-β has also been shown at the periphery of hydatid cysts 

in the liver of patients (Wu et al. 2004); and another study confirmed a progressive 

increase in the expression of mRNA of TGF-β in the liver of E. granulosus-infected 

BALB/c mice (Mondragon-de-la-Pena et al. 2002). There is abundant evidence that 

TGF-β1, besides its role in immune tolerance, is an extremely potent inducer of the 

synthesis of procollagen and other extra-cellular matrix (ECM) components (Bartram 

et al. 2004; Higashiyama et al. 2007), and has an essential role in the pathogenesis of 

liver fibrosis. The major signaling pathway for all TGF-β members is activated 

through ligand binding to a cell-surface receptor complex of type I and type II serine–

threonine kinases receptors; and a group of intracellular signaling intermediates 

known as Smads is then phosphorylated. Phosphorylated Smads translocate to the 

nucleus where they function as transcription factors, initiating target gene 

transcription (Banas et al. 2007). However, although it may be crucial in the 

host-parasite interactions, the relationship between the TGF-β/Smad pathway, and 

especially the expression of Smad7 which may play a regulatory role in the system, 
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and clinical and/or pathological features of AE in experimental models as well as in 

humans has never been addressed. 

1.5.5 Chemokine profile of AE 

In addition to cytokines, granulomas are associated with a variety of chemokines 

(Sadek et al. 1998; Qiu et al. 2001), which represent a family of molecules whose 

presumed function is to direct cellular movement. Chemokines are involved during 

innate recognition stages of immunity and may help direct Th1 and Th2 

cytokine-producing cells during the generation of adaptive immunity (Lu et al. 1998; 

Lo et al. 1999). In addition, chemokines may be inflammatory or homeostatic, and 

facilitate lymphocyte migration during inflammation and immune surveillance 

(Kroetz et al. 2011). Furthermore, there is also considerable in vitro evidence that 

immune-related cytokines further capitalize on these effector molecules by regulating 

their expression and secretion. Chemokine expression by a variety of cultured cell 

types has been demonstrated to display positive or negative regulatory responses to 

cytokine stimulation (Sherry et al. 1998; Teran et al. 1999; Gasperini et al. 1999; 

Pype et al. 1999; Lamkhioued et al. 2000; Fujisawa et al. 2000). 

Kocherscheidt et al. studied chemokine responses in AE patients at different 

states of infection (progressive, stable and cured AE) (Kocherscheidt et al. 2008). The 

production of CC and CXC chemokines which are associated with inflammation 

(MIP-1 alpha/CCL3, MIP-1 beta/ CCL4, RANTES/CCL5 and GRO-alpha/CXCL1) 

was constitutively larger in all groups of AE patients than in controls (Kocherscheidt 

et al. 2008). A disparate cellular responsiveness was observed in all groups of AE 

patients to viable E. multilocularis vesicles; cluster 1 (GRO-alpha/CXCL1, 

MCP-3/CCL7, MCP-4/CCL13, TARC/CCL17, LARC/CCL20) and cluster 2 

chemokines (PARC/CCL18, MDC/CCL22, MIG/CXCL9) were downregulated, while 

cluster 3 chemokines (MIP-1 alpha/CCL3, MIP-1 beta/CCL4, RANTES/CCL5) 

appeared up-regulated (Kocherscheidt et al. 2008). The fact that E. multilocularis 

metacestodes selectively suppressed cellular chemokine production in AE patients 

may constitute an immune escape mechanism, which reduces inflammatory host 

responses, prevents tissue destruction and organ damage, but may also facilitate 

parasite persistence (Mejri et al. 2009). However, little is known on the expression of 

chemokines in the liver, and on the dynamics of the expression of chemokines in the 

periparasitic infiltrate, perhaps because of the difficulties of such studies in humans. It 

was never studied in experimental animals either, although experimental models may 

allow us to better characterize the course of chemokine expression at the various 

stages of E. multilocularis development.   
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2. Working hypothesis, questions and objectives 

  



 

 47 

We hypothesized that E. multilocularis metacestode exerted a deep influence on 

liver homeostasis. On the other hand, we anticipated that functional imaging of AE in 

humans could be better interpreted if the factors governing immune cell homing 

around the metacestode were better known. And finally, both to define new markers 

of AE progression and to target immune modulation as a therapeutic tool in AE, we 

addressed the respective roles of TGF-β and TGF-β/Smad signalling pathway, and of 

the CD4
+
CD25

+
 Treg-effector molecule FGL2. We proposed a concept of immune 

cell activation at early infection stage and immune tolerance at late infection stage 

which would 1) first favor parasitic, liver and immune cell proliferation and survival, 

and thus promote metacestode fertility and tolerance by the host, and 2) would then 

favor liver damage/apoptosis, as well as promote immune deficiency, and thus 

contribute to the dissemination of the protoscolex after metacestode fertility has been 

acquired (Figure 2.1). 

 

 

5Figure2.1 Working hypothesis 

Interactions between the parasite and the host are multiple and complex, and 

until now, most of the studies have focused on the parasite and the immune cells of 

the host; only some studies considered how the parasite-induced immune response 

interfere with the liver parenchyma, especially for the induction of fibrosis (Grenard 

et al. 2001). We thus focused part of our studies on the liver parenchyma. In addition, 

most of previous studies dealt with systemic immune response, in the spleen, lymph 

nodes, or peripheral blood; our aim was thus to study the immune response locally, in 

the liver, whenever possible.  

The scientific questions and objectives of this thesis work were as follows:  

Question 1. Has E.multilocularis any influence on host’s liver homeostasis, and 
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especially on liver proliferation/apoptosis? The objectives are to explore the activation 

of proteins involved in proliferation and/or growth arrest/apoptosis metabolic 

pathways during the 3 stages of E. multilocularis infection; and to explore sequential 

activation of liver and immune cell proliferation and survival. 

Question 2.What is the dynamics of cytokine/chemokine expression in the 

periparasitic immune infiltrate and adjacent liver? The objectives are to give a 

comprehensive appraisal of the various factors and pathways involved in immune cell 

homing around the E. multilocularis metacestode, at the various successive stages of 

disease; and to study the parasite and the host immune response in their usual context, 

the liver, in the experimental mouse model of hepatic secondary infection. 

Question 3. How are TGF-β and TGF-β/Smad signaling involved in the 

interactions between E. multilocularis and its host? The objective is to explore the 

influence of TGF-β/Smad signaling pathways in liver fibrosis in AE and possible 

dysregulation promoting fibrosis and/or tolerance.  

Question 4. Is FGL2 involved in the cross-talk between E. multilocularis and its 

host and how does it regulate immune tolerance? The objectives are to study the role 

of FGL2 on T and B cell reactivity and maturation of dendritic cells (DC) at the 

different stages of E. multilocularis infection, i.e. early and late stages; to study how 

parasite-origin components exert an effect on immune response in condition of fgl2 

depletion due to E. multilocularis infection; and to explore how FGL2 is secreted due 

to E. multilocularis infection 
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3. Models and Methods used in the thesis work 
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3.1 In vivo and in vitro models used in this thesis work 

Primary infection (peroral) mouse model 

An established mouse model of primary alveolar echinococcosis was used as 

previously described (Siles-Lucas, 2003; Pater, 1998). Briefly, 8-weeks-old female 

C57BL6/J mice were infected (n = 10) at the age of 10 weeks by peroral inoculation 

with 100 mL sterile water containing 2 10
3
 eggs of E. multilocularis, using 

appropriate biosafety level 3 laboratory conditions (Swiss biosafety approval number 

A990006/3A). The infecting organisms (parasite eggs) were initially isolated from a 

naturally infected fox. Egg viability and infection potential were pre-evaluated upon 

explorative titrated infection experiments carried out in mice preliminarily to the 

present studies (Gauci, 2002). Mock-infected control animals (n=5) were perorally 

inoculated with 100 mL of sterile water. Animals were sacrificed with an overdose of 

pentobarbital (100 mg/kg, intraperitoneally) for the mock-infected control group (n = 

5) and for the group representing the chronic stage of primary AE (n = 10). 

Intra-hepatic infection mouse model 

Pathogen-free female BALB/c mice (8–10-week old) were housed in cages with a 

12-h light/dark cycle and provided with rodent chow and water. BALB/c mice were 

infected by E. multilocularis and tissue samples were collected and detected as 

previously described (Lin et al. 2010; Zhang et al. 2011). For each autopsy time-point, 

ten experimentally infected mice were used in E. multilocularis group (n=10) and 

compared with five control mice (n=5), which received an intra-hepatic injection of 

0.1 mL of saline in the anterior liver lobe using the same surgical procedure.  

Intraperitoneal infection mouse model 

The parasite used in this study was a cloned E. multilocularis (KF5) isolate 

maintained by serial passages (vegetative transfer) in C57BL/6 mice (Gottstein et al. 

1992). Metacestode tissue was obtained from infected mice by aseptic removal from 

the peritoneal cavity. After grinding the tissue through a sterile 50 μm sieve, 100 

freshly prepared acephalic vesicular cysts were suspended in 100 μL RPMI-1640 

(Gibco, Basel, Switzerland) and injected intraperitoneally. Each experimental group 

included 6 animals unless otherwise stated. Control mice (mock-infection) received 

100μL of RPMI-1640 only. 

3.2 Laboratory methods used in this thesis work 

Microarray data analyses and annotation of gene function  

    RNA extracts from both infected and control mice were selected for array 

hybridization after intra-hepatic infection. Total RNA was purified with NucleospinH 

RNA Clean-up Kit (Macherey-Nagel, Germany) and each purified RNA sample 

isolated from an individual sample was run on a single microarray. All microarray 

procedures were done according to a previously described procedure (Lin et al. 2011). 



 

 51 

Quantitative real-time RT-PCR 

qRT-PCR was run in a thermocycler (iQ5 Bio-Rad, Hercules, CA, USA) with 

the SYBR Green PCR premix (Qiagen, Hilden, Germany) following the 

manufacturer’s instructions. To normalize for gene expression, mRNA expression of 

the housekeeping gene β-actin was measured in parallel. Fluorescence was measured 

in every cycle, and a melting curve was analyzed after the PCR by increasing the 

temperature from 55 to 95 °C (0.5 °C increments). A defined single peak was 

obtained for all amplicons, confirming the specificity of the amplification. 

Immunohistochemistry analysis  

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded 

tissue. Briefly, 4 μm tissue sections were de-paraffinized in xylene and rehydrated in 

gradual dilutions of ethanol. Endogenous peroxidase was blocked with 3% hydrogen 

peroxide. Sections were pretreated by microwave heating for 15 min in antigen 

unmasking solution to increase staining, and were incubated with non-immune goat 

serum for 30 min to block non-specific background. Sections were then incubated 

overnight at 4  with the primary antibody and subsequently with horseradish 

peroxidase conjugated host-specific secondary antibodies, 3, 3’-diaminobenzidine 

was used as chromogen. Sections were counterstained with hematoxylin for 5 min, 

dehydrated, and covered with slips. For all samples, negative controls consisted of 

substitution of the isotype-matched primary antibody with PBS.  

Western Blot analysis 

Western Blot analysis of cell lysates was performed by SDS-PAGE using 

NuPAGE followed by transfer to nitrocellulose membrane. The appropriate antibodies 

and GAPDH were detected with Western Breeze Kit (Invitrogen, California, USA). 

The expression levels of respective proteins (in “relative units”) were quantified using 

Quantity One software. 

Flow cytometry 

After blocking non-specific binding of antibodies to the FcγIII and FcγII 

receptors with 1 μg of purified anti-CD16/CD32 for 20 min in the dark, the cells were 

stained with surface maker separately for 15 min with 1 μg of primary antibodies. For 

intracellular staining, after surface maker staining, the cells were first fixed for 

20mins at room temperature, and then stained with PE-labeled cytokine antibodies in 

Inside Perm for 15mins. The corresponding primary labeled isotype control antibodies 

were used for staining controls. Stained cells were analyzed in a flow cytometer 

(Becton Dickinson, Heidelberg, Germany) using the corresponding CELL QUEST 

software. 

Sandwich Enzyme-Linked Immunosorbent Assay 

After washing of pre-coated plates 3 times with Tris-Tween buffered saline, 

serum samples (50 μL) were added to each well, and after a 2-hour incubation at room 
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temperature and three washes with Tris-Tween buffered saline, the wells were 

incubated with mouse FGL2 detection antibody for 1 hour at room temperature. The 

plate was washed again for 3 times, and polyclonal anti-FGL2 binding was detected 

with a secondary horseradish peroxidase-conjugated anti-rabbit antibody. 

Tetramethlybenzidine was then added and absorbance was measured at 450 nm using 

an enzyme linked immunosorbent assay (ELISA) plate reader. 

Luminex assay for cytokine expression in the serum 

Cytokine levels in mouse serum samples were assessed undiluted using 

microsphere-based multiplex assays (MILLIPLEX® MAP Mouse 

Cytokine/Chemokine Multiplex Assays MPXMCYTO-70K, Merck Millipore, Zug, 

Switzerland) according to the manufacturer’s instructions. Serum concentrations of 

selected cytokines were measured. A minimum of 50 beads per analyte was measured 

on a Bioplex-200 platform (Bio-Rad, Hercules, CA, USA). Calibration was performed 

using BioPlex Manager software version 4.1.1 by linear regression analysis using the 

four lowest standards provided by the manufacturer. When measured cytokine 

concentrations were below the detection limit, a value corresponding to the detection 

limit of the assay was used for statistical analysis (Table 3.1 and Figure 3.6).  

6Table 3.1 Laboratory methods used in the thesis work 

Method Aim Reference 

Microarray analyses To screen the changed immune related genes  Wang, 2013 

 

qRT-PCR 

 

To further study the mRNA levels of target 

genes, i.e. key cell cycle genes, 

Th1/2/17/Treg related cytokines and 

chemokines, TGF-β and Smad genes  

 

Zhang, 2012, 

Wang, 2013 

 

Immunohistochemistry 

 

To locate and semi-quantify the target 

proteins in the cells, i.e. key cell cycle and 

apoptosis proteins, TGF-β and Smads, liver 

fibrosis makers  

 

Zhang, 2012, 

Wang, 2013 

Western Blot To semi-quantify the target protein in the 

cells, i.e. key cell cycle and apoptosis 

proteins, TGF-β and Smads  

Zhang, 2012, 

Wang, 2013 

 

Flow cytometry 

 

Cell counting, target protein detection and cell 

sorting, i.e. different cytokine expression in 

CD4
+
 T cells, maturation of DCs, 

CD4
+
CD25

+
 Treg isolation  

 

Wang 2014 
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ELISA To detect the serum level of FGL2 FGL2 paper 

 

Luminex 

 

To detect the serum levels of selected 

cytokines, i.e. IFN-γ, IL-4, IL-17A, IL-10, 

IL-1β, IL-6  

 

FGL2 paper 

 

Suppression assay 

To study the suppression function of Treg on 

effector T cell proliferation, i.e. CD4
+
CD25

+
 

Treg from WT mice and fgl2-/- mice 

co-cultured with effector T cells 

 

FGL2 paper 

 

3.3 Statistical analysis methods 

All the data were analyzed by SPSS 17.0. The results were presented as means ± 

SD. One-way ANOVA and Student’s t-test were used to compare the differences 

between groups, and Spearman’s rho was used to analyze the correlation coefficient. 

P<0.05 was considered to indicate statistical significance. 
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4. Has E.multilocularis any influence on host’s liver 

homeostasis, and especially on liver proliferation/apoptosis? 
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    To address this question, we employed the intra-hepatic AE mouse model and 

measured the levels of MAPKs activation, Cyclins, PCNA, Gadd45b, Gadd45c, p53 

and p21 expression from day 2 to 360 post-infection by western blot and qPCR and, 

using immunohistochemistry we studied the same components in relation to the 

pathological changes in the liver, both in the infection site and in the neighboring liver 

parenchyma where proteins and mRNAs were measured. 

Background and objectives:  

    AE is characterized by an infiltrative, destructive and tumor- like growth of the E. 

multilocularis metacestode, usually affecting the liver of natural intermediate hosts 

such as small rodents or the human liver. Clinical manifestations are results of both a 

slow but continuous asexual proliferation of the metacestode and an intense 

infiltration by macrophages, T lymphocytes, and fibroblasts/myofibroblasts around 

the parasite, eventually leading to fibrosis and necrosis. A striking clinical observation 

in AE patients is also the hepatomegaly observed in the liver lobe/segments that are 

not invaded by the parasite; such liver regeneration, which allows surgeons to perform 

extensive liver resections (Wen et al. 2011; Mantion & Vuitton, 2011), is partly 

explained by the portal vein obstruction; a direct influence of E. multilocularis and 

associated immune reaction has never been considered. Very little is known on the 

influence of helminth parasites which develop in the liver on the proliferation/growth 

arrest metabolic pathways in the hepatocytes of the infected liver over the various 

stages of infection. The aims of the present study were 1) to explore the influence of E. 

multilocularis metacestode on components of cell cycle regulation which characterize 

the host’s hepatic proliferation in the liver of mice infected with E. multilocularis; 2) 

to simultaneously explore the activation of inhibitory proteins involved in growth 

arrest/apoptosis metabolic pathways during the 3 stages of infection.  
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Main conclusions and remarks: 

 

1) Within the early (day 2–60) and middle (day60–180) stages, CyclinB1 and 

CyclinD1 gene expression increased up to day30 and then returned to control level 

after day60; Gadd45b, CyclinA and PCNA increased all over the period.  

2) ERK1/ 2 was permanently activated.  

3) Meanwhile, p53, p21 and Gadd45c gene expression, and caspase 3 activation, 

gradually increased in a time-dependent manner.  

4) In the late stage (day180–360), p53, p21 and Gadd45c gene expression were 

significantly higher in infected mice; JNK and caspase 3 were activated. TUNEL 

analysis showed apoptosis of hepatocytes.  

5) No significant change in Cyclin E, p53 mRNA and p-p38 expression were 

observed at any time. 
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5. What is the dynamics of cytokine/chemokine expression in 

the periparasitic immune infiltrate and adjacent liver? 
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To address this question, we employed the intra-hepatic AE mouse model and 

assessed the hepatic gene expression profiles of 18 selected cytokine and chemokine 

genes using qRT-PCR in the periparasitic immune reaction and the subsequent 

adjacent, not directly affected, liver tissue of mice from day 2 to day 360 post 

intra-hepatic injection of metacestode. DNA microarray analysis was also used to get 

a more complete picture of the transcriptional changes occurring in the liver 

surrounding the parasitic lesions. 

Background and objectives:   

    The periparasitic granuloma is a major characteristic of AE pathology in humans 

and in experimentally infected mice. Despite the alleged responsibility of the 

granulomatous response in the images obtained by functional imaging techniques (e.g. 

through Fluoro-deoxy-glucose-Positron Emission Tomography) and their well-known 

role in the complications of AE, a comprehensive picture of the cytokine/chemokine 

immune response occurring in situ, in the periparasitic granuloma, had never been 

evidenced experimentally. And although their crucial role in cell homing to the 

inflammatory reaction sites is well known in other infection models, chemokines and 

IL-17 had received little attention in E. multilocularis infection. Our aims were to 1) 

give a comprehensive appraisal of the various components, especially cytokines and 

chemokines, involved in immune cell homing around the E. multilocularis 

metacestode, at the various successive stages of disease, and 2) to study the parasite 

and the host immune response in their usual context, the liver, in the experimental 

mouse model of hepatic secondary infection. Eighteen key-cytokines and 

-chemokines were measured both in the lesion, including the periparasitic infiltrate, 

and in the surrounding liver, close to the lesions, using qRT-PCR. 
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Transcriptional profiles of cytokine/chemokine factors of immune cell-homing to 

the parasitic lesions: a comprehensive one-year course study in the liver of E. 

multilocularis-infected mice 

 

Running title: Cytokine/chemokine transcriptional profiles in AE 
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Abstract 

Pathogenesis of chronically developing alveolar echinococcosis (AE) is characterized 

by a continuous, granulomatous, periparasitic infiltration of immune cells surrounding 

the metacestode of Echinococcus multilocularis (E.multilocularis) in the affected liver. 

A detailed cytokine and chemokine profile analysis of the periparasitic infiltrate in the 

liver has, however, not yet been carried out in a comprehensive way all along the 

whole course of infection in E. multilocularis intermediate hosts. We thus assessed 

the hepatic gene expression profiles of 18 selected cytokine and chemokine genes 

using qRT-PCR in the periparasitic immune reaction and the subsequent adjacent, not 

directly affected, liver tissue of mice from day 2 to day 360 post intra-hepatic 

injection of metacestode. DNA microarray analysis was also used to get a more 

complete picture of the transcriptional changes occurring in the liver surrounding the 

parasitic lesions. Profiles of mRNA expression levels in the hepatic parasitic lesions 

showed that a mixed Th1/Th2 immune response, characterized by the concomitant 

presence of IL-12α, IFN-γ and IL-4, was established very early in the development of 

E. multilocularis. Subsequently, the profile extended to a combined tolerogenic 

profile associating IL-5, IL-10 and TGF-β. IL-17 was permanently expressed in the 

liver, mostly in the periparasitic infiltrate; this was confirmed by the increased mRNA 

expression of both IL-17A and IL-17F from a very early stage, with a subsequent 

decrease of IL-17A after this first initial rise. All measured chemokines were 

significantly expressed at a given stage of infection; their expression paralleled that of 

the corresponding Th1, Th2 or Th17 cytokines. In addition to giving a comprehensive 

insight in the time course of cytokines and chemokines in E. multilocularis lesion, this 

study contributes to identify new targets for possible immune therapy to minimize E. 

multilocularis-related pathology and to complement the only parasitostatic effect of 

benzimidazoles in AE.   

Key words: Cytokines; Chemokines; IL-17; E. multilocularis 
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Author summary 

Previous studies on peripheral lymphocytes showed that a specific time-dependent 

cytokine secretion evolved during the course of progressing AE in mice, with an 

initial Th1 profile, followed by a combined Th1-Th2 one. However, such a course had 

not yet been studied in the liver, in the periparasitic immune infiltrate surrounding the 

parasitic vesicles. Chemokines as well as IL-17 which are likely to be involved in the 

homing and persistence of inflammatory cells in the periparasitic area, had never been 

studied. Our data yield a dynamic and comprehensive picture of the immunological 

process characteristic of E. multilocularis infection. It shows that the combined 

cytokine profile associating IL-12α, IFN-γ but also the “starter-Th2 cytokine”, IL-4, is 

established very early in the periparasitic infiltrate, and that subsequent decrease in 

IL-12α and TNF-α is accompanied by tolerogenic profile, IL-10, IL-5 and TGF-β. For 

the first time, it shows the major involvement of different chemokines and of IL-17. 

These results represent the basis of knowledge on which complementary studies 

focused onto individual components of the immune response to E. multilocularis may 

be designed. They will also serve as a basis to design immune manipulations that 

could be used for the treatment of AE in patients. 
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Introduction 

Alveolar echinococcosis (AE) is a rare, but - if remaining untreated or treated too 

late- severe and fatal zoonotic helminthic disease, predominantly caused not only by 

the direct hepatic damage which follows the continuous tumor-like proliferation of the 

larval stage (metacestode) of Echinococcus multilocularis (E.multilocularis), but also 

indirectly by the intense local granulomatous immune response which surrounds the 

parasitic tissue [1]. Granuloma, extensive fibrosis, and necrosis are actually the 

characteristic pathological findings in E. multilocularis infection. The lesions, 

composed both of the multiple vesicle-forming metacestode and of cells homing from 

lymphoid organs and permanently settling around the metacestode, behave like a 

slow-growing liver cancer, progressively invading the liver, then the neighboring 

tissues and also metastazing to other organs [2]. Pathological changes in AE are 

associated with an intense infiltration by immune cells, i.e. macrophages of various 

functional types, including the so-called “epithelioid cells” and “giant cells”, typical 

of granulomas [3] and T lymphocytes. CD4
+
 T lymphocytes are present from the early 

stage of parasite growth and CD8
+ 

T lymphocytes are known to home to the 

periparasitic infiltrate secondarily and to be associated with parasite tolerance and 

severity of the disease [1,2,3,4]. Non-immune cells such as fibroblasts and 

myofibroblasts which are crucial for the development of fibrosis are also attracted by 

the host’s immune response around the parasite.   

It has been shown that E. multilocularis infection induced numerous pathways of 

the immune response; the involvement of individual cytokines has been rather 

extensively studied within the past 2 decades both in humans and in experimental 

rodents [1]. In the immune-competent but susceptible host, E. multilocularis induces 

skewed Th2-responses [5]. In chronic AE, Th2-dominated immunity is associated 

with increased susceptibility to disease, while Th1 cell activation induces a rather 

protective immunity which involves IFN-α [6] and IL-12 [7] as initiating cytokines, 

and IFN-γ [8] and TNF-α [9,10] as effector cytokines. During the course of E. 

multilocularis infection, as studied in mice, an initial acute stage Th1 response 

gradually switches to an increasingly dominating Th2 response; the thus mostly 

mixed Th1/Th2 profile of the chronic stage is associated with the expression of 

pro-inflammatory cytokines in the granuloma [11,12]. Th2 cytokines down-modulate 

the Th1 response which nevertheless decreasingly persists all along the infection until 

the late pre-mortem immune-suppressed stage of AE [11]. The metacestode actively 

achieves a tolerance status through the induction of regulatory cytokines, such as 

IL-10 and TGF- [11]. However, this bulk of information has mostly been obtained 

from studies on peripheral blood mononuclear cells (in humans), and on spleen and 
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lymph node cells in the experimental model [5,13,14]. In addition, nothing was 

known until very recently about role of IL-17 and Th17 cells [13,14] during E. 

multilocularis infection. Only two studies have given some insight into chemokine 

[15,16] and IL-17 [17] involvement in E. multilocularis infection, respectively; and 

this was done only in AE patients, and never in the infected liver tissue; the actual 

involvement of IL-17 and chemokines in the lesions is thus unknown. The time course 

of IL-17 expression is also unknown since human AE is usually discovered late, i.e. 

years after E. multilocularis infection of the patients, and findings in humans reflect 

only the late chronic stage of infection. Studies in the experimental mouse model are 

therefore necessary to dissect the various stages of E. multilocularis infection 

regarding the host’s immune response. 

In the present report, our objectives were to 1) give a comprehensive appraisal of 

the various components, especially cytokines and chemokines, involved in immune 

cell homing around the E. multilocularis metacestode, at the various successive stages 

of disease, i.e. early, middle and late stages as defined previously [18,19], and 2) to 

study the parasite and the host immune response in their usual context, the liver, in the 

experimental mouse model of hepatic secondary infection. Eighteen key-cytokines 

and -chemokines were measured both in the lesion, including the periparasitic 

infiltrate, and in the surrounding liver, close to the lesions, using qRT-PCR. To get a 

more complete picture of the influence of the parasite-induced host’s immune 

response on the host’s liver, a microarray technique was also used to study the 

surrounding liver tissue. 

Materials and methods 

Ethics Statement 

The animal study was performed in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals. The protocol was approved by the 

Animal Care and Use Committee and the Ethical Committee of First Affiliated 

Hospital of Xinjiang Medical University (20081205-2). All surgery was performed 

under sodium pentobarbital anesthesia, and every effort was made to minimize 

suffering. 

Mice and experimental design 

Pathogen-free female BALB/c mice (8–10-week old) purchased from the Animal 

Center of Xinjiang Medical University (accredited by the ALLLAC) were housed in 

cages with a 12-h light/dark cycle and provided with conventional rodent chow and 

water ad libitum. All animals received human care in compliance with the Medical 

Research Center’s guidelines, and animal procedures were approved by the Animal 

Care and Use Committee and the Ethical Committee of First Affiliated Hospital of 
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Xinjiang Medical University. Echinococcus multilocularis (E. multilocularis) 

metacestodes were obtained from intraperitoneal lesions maintained in Meriones 

unguiculatus, and 0.1 mL of pooled lesion suspension was injected into the anterior 

liver lobe of mice to be experimentally infected. For each autopsy time-point, eight 

experimentally infected mice were used in the E. multilocularis group (n=8) and 

compared with five control mice (n=5), which received an intra-hepatic injection of 

0.1 mL sterile saline solution into the anterior liver lobe using the same surgical 

procedure. Mice were killed at 2, 8, 30, 60, 90, 180, 270 and 360 days p.i., 

respectively.  

Tissue sampling of the parasitic lesion and surrounding granuloma, and of 

adjacent non-affected (periparasitic) liver tissue; and histological examination 

    In E. multilocularis infected mice, liver samples were taken both from (1) the 

parasitic lesion (including liver tissue directly adjacent by 1 mm to the 

macroscopically visible parasitic lesion, subsequently designated as “parasitic lesion 

tissue”) for qRT-PCR, histopathology and immunohistochemistry (Zhang, 2012); and 

from (2) the liver tissue relatively close to the lesion (subsequently designated as 

“periparasitic liver tissue”), i.e. starting 2 mm from the macroscopic changes due to 

the metacestode/granuloma lesion, thus avoiding gross contamination of liver tissue 

by parasitic E.multilocularis tissue/cells and correspondingly involved infiltrating 

host immune cells, for both qRT-PCR and microarray analyses. Tissue fragments 

were directly deep-frozen in liquid nitrogen. Control samples were taken from the 

same (anterior) liver lobe from non-infected control mice. 

RNA extraction and cDNA synthesis 

    ‘Lesion’ and ‘periparasitic liver’ tissue samples of each mouse were processed 

and analyzed separately. Approximately 50 mm
3
 –sized tissue samples from E. 

multilocularis infected mice or same size liver tissue samples from control mice were 

used to extract total RNA using TRIzol reagent (Invitrogen, Gaithersburg, MD, USA). 

The quality of RNA was confirmed by formaldehyde agarose gel electrophoresis, and 

the concentration of RNA was determined by reading the absorbance at 260/280nm.  

cDNA was synthesized from 1µg of RNA in the presence of ribonuclease inhibitor 

(Promega, Shanghai, China), dNTPs, Oligo(dT) 18 primers, and RevertAid™ 

M-Mulv reverse transcriptase in a total of 25 µL reaction mix. 

Quantitative real-time RT-PCR 

    qRT-PCR was run in a thermocycler (iQ5 Bio-Rad, Hercules, CA, USA) with 

the SYBR Green PCR premix (Qiagen, Hilden, Germany) following the 

manufacturer’s instructions. Thermocycling was performed in a final volume of 20 

µL containing 2 µL cDNA and 10 pM of each primer (Table 5.1). To normalize for 

gene expression, mRNA expression of the housekeeping gene β-actin was measured 

in parallel. For every sample, both the housekeeping and the target genes were 



 

 83 

amplified in triplicate using the following cycle scheme: after initial denaturation of 

the samples at 95 °C for 1 min, 40 cycles of 95 °C for 5 s and 60 °C (or other) for 30 s 

were performed. Fluorescence was measured in every cycle, and a melting curve was 

analyzed after the PCR by increasing the temperature from 55 to 95 °C (0.5 °C 

increments). A defined single peak was obtained for all amplicons, confirming the 

specificity of the amplification. 

8Table 5.1 Primers and cycling parameters of qRT-PCR 

Gene Gene bank  

accession 

Primer Sequences Annealing 

temperature 

Expected 

Size 

β-actin NM_007393 F:5'-AACTCCATCATGAAGTGTGA-3' 

R:5'-ACTCCTGCTTGCTGATCCAC-3' 

60.0 °C 248bp 

TNF-α NM_013693.2 F: 5'- TATGGCCCAGACCCTCACA-3' 

R: 5'-GGAGTAGACAAGGTACAACCCATC-3' 

60.0 °C 199bp 

IL-1β 

 

NM_008361.3 F: 5'-ATCTCGCAGCAGCACATC-3' 

R: 5'-CCAGCAGGTTATCATCATCATC-3' 

60.0°C 193bp 

IL-6 

 

NM_031168.1 F: 5'-TTCCATCCAGTTGCCTTCTTG-3' 

R: 5'-TCATTTCCACGATTTCCCAGAG-3' 

60.0 °C 176bp 

IFN-γ 

 

K00083.1 F: 5'-ACTCAAGTGGCATAGATGTGGAAG-3' 

R: 5'-GACGCTTATGTTGTTGCTGATGG-3' 

60.0°C 167bp 

CXCL9 

 

NM_008599.4 F: 5'-CTGGAGCAGTGTGGAGTTC-3' 

R: 5'-CCGTTCTTCAGTGTAGCAATG-3' 

60.0°C 167bp 

CXCL10 

 

NM_021274.1 F: 5'-TTCTGCCTCATCCTGCTG-3' 

R: 5'-AGACATCTCTGCTCATCATTC-3' 

60.0°C 200bp 

CXCL12 NM_021704.3 F: 5'-CAGAGCCAACGTCAAGCATC-3' 

R: 5'-CGTCTTATCCAAGTGGTTTATGGAA-3' 

60.0°C 152bp 

IL-4 

 

M25892.1 F: 5'-AGTTGTCATCCTGCTCTTC-3' 

R: 5'-GTGTTCTTCGTTGCTGTG-3' 

55.0°C 165bp 

IL-5 NM_010558.1 

 

F:5'-TGAGGCTTCCTGTCCCTACTCATAA-3' 

R:5'-TTGGAATAGCATTTCCACAGTACCC-3' 

60.0°C 119bp 

CCL8 

 

NM_021443.3 F: 5'-CTTTGCCTGCTGCTCATAG-3' 

R: 5'-GCACTGGATATTGTTGATTCTC-3' 

60.0°C 150bp 

CCL12 

 

NM_011331.2 F: 5'-GCTACCACCATCAGTCCTC-3' 

R: 5'-CTGGCTGCTTGTGATTCTC-3' 

60.0°C 135bp 

CCL17 NM_011332.3 F: 5'-TCAGTGGAGTGTTCCAGGGATG-3' 

F: 5'-GGCGTCTCCAAATGCCTCA-3' 

60.0°C 151bp 

IL-17A NM_010552.3 F: 5'-GTGTCTCTGATGCTGTTG-3' 

R: 5'-AACGGTTGAGGTAGTCTG-3' 

60.0°C 193bp 

IL-17F NM_145856.2 

 

F:5'-GTCGCCATTCAGCAAGAAAT-3' 

R: 5'-CAGCCAACTTTTAGGAGCATCT-3' 

60.0°C  

Foxp3 NM_054039.1 F: 5'-GAGAGGCAGAGGACACTCAATG-3' 

R: 5'-GCTCAGGTTGTGGCGGATG-3' 

60.0°C 108bp 

TGF-β 1 NM_011577 F:5'-GTGTGGAGCAACATGTGGAACTCTA-3' 

R: 5'-TTGGTTCAGCCACTGCCGTA-3' 
60.0°C 143bp 
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IL-10 NM_010548.2 F:5'-GCCAGAGCCACATGCTCCTA-3' 

R:5'-GATAAGGCTTGGCAACCCAAGTAA-3' 

60.0°C 145bp 

 

Microarray data analyses and annotation of gene function  

RNA extracts from 3 infected and 3 control mice were selected for array 

hybridization, corresponding to 30 days, 60 days, 90 days and 180 days after infection. 

Total RNA was purified with NucleospinH RNA Clean-up Kit (Macherey-Nagel, 

Germany) and each purified RNA sample isolated from an individual sample was run 

on a single microarray. All microarray procedures were done according to a 

previously described procedure [22].  

Immunohistochemical analyses  

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded 

tissue: 4μm tissue sections were de-paraffinized in xylene and rehydrated in gradual 

dilutions of ethanol. Endogenous peroxidase was blocked with 3% hydrogen 

peroxide. To increase staining, sections were pre-treated by microwave heating for 15 

min in antigen unmasking solution (pH 6.8, 0.1 M citrate buffer, Zhongshan Jinqiao 

Biology Corporation, Beijing). To block non-specific background, the sections were 

incubated with non-immune goat serum for 30 min. Sections were then incubated 

overnight at 4
o
C with the primary antibody diluted in pH 7.3 phosphate-buffered 

saline (PBS) (IL-17 1:100 (Santa Cruz Corporation, CA, USA). After 3 washes in 

PBS, the sections were subsequently incubated with horseradish peroxidase 

conjugated host-specific secondary antibodies and 3,3’-diaminobenzidine was used as 

chromogen. Sections were counterstained with hematoxylin for 5 min, dehydrated, 

and covered with slips. For all samples, negative controls consisted of substitution of 

the isotype-matched primary antibody with PBS.  

Expression of the data and statistical analysis 

Immunostaining for IL-17 was semi-quantified by calculating “expression 

scores” that consider both staining intensity and the percentage of cells stained at a 

specific range of intensities. A score of zero indicated the percentage of positive cells 

< 5%, 1+ = 5–25%, 2+ =25–50%, 3+ =50–75%, 4+ >75%. The staining intensity of 

each specimen was judged relative to the intensity of a control slide including an 

adjacent section stained with an irrelevant negative control antibody that was matched 

by species and isotype to the specimen. Staining of the section labelled with the 

negative reagent control was considered as background. A score of zero indicated no 

staining relative to background, 1 + = weak staining, 2 + = moderate staining, and 3 + 

=strong staining. According to standard pathology practices, staining intensity was 

reported at the highest level of intensity observed in all tissue elements, except the 

distinctive tissue element for which an expanded scoring scheme was reported. The 
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“expression scores” were calculated by multiplying the percentage of positive cells 

(0–4) and the staining intensity scores (0–3). For example: for a specimen with 30% 

of positive cells (3+), and a moderate staining intensity (2+), the “expression 

score”was3×2=6. Three pathologists read the sections and established the scores, and 

they were blinded to each other's results. Cells with a positive immunostaining were 

counted in five random visual fields of 0.95 square mm each, at initial magnification: 

x 20, for each sample.  

All the data were analysed by SPSS 17.0. mRNA expression of the various 

cytokines, chemokines, and other components of the immune response of E. 

multilocularis infected mice were compared to the results obtained on the liver 

samples taken from control mice in the sham-infected liver lobe at the same time 

point. The results were presented as means ± SD. One-way ANOVA and Student’s 

t-test were used to compare the differences between groups, and Spearman’s rho was 

used to analyse the correlation coefficients. P< 0.05 was considered to indicate 

statistical significance. 

Results 

Hepatic histopathology during E. multilocularis-infection 

From day 2 to day 360 post-infection (p.i.) with E. multilocularis, the hepatic 

parasitic lesions showed the various morphological patterns specific to the different 

stages of murine AE, as described in a previous study using the same experimental 

mice (data not shown) [18,19]. According to previous reports on the course of E. 

multilocularis secondary infection in experimental susceptible mice [18,19], the 3 

main stages were defined as follows: early stage, from infection to day 60; middle 

stage from day 60 to day 180; and late stage from day 180 to day 360. 

Innate immunity and pro-inflammatory cytokines 

In E. multilocularis ‘parasitic lesions’ (i.e. including adjacent infiltrates, as 

defined in the Materials and Methods section), qRT-PCR showed that IL-12α mRNA 

expression was 6.3-fold higher at as early as day 2 p.i. than in control mice (Figure 

5.1A). There was a significant difference between E. multilocularis-infected mice and 

control mice, at the early stage of infection, at time points of 2-, 8- and 30-day p.i. 

(P< 0.05). In the ‘periparasitic liver tissue’ (i.e. liver parenchyma close to the lesions, 

as defined in the Materials and Methods section), IL-12α mRNA expression was also 

higher than in control livers from day 8 to day 30 p.i.. There was a significant 

difference at 30-days p.i. (P< 0.05). Changes in IL-12α mRNA expression with time 

are shown in Figure 5.1A. 

In E. multilocularis lesions, qRT-PCR showed that TNF-α mRNA expression 
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was increased at the early stage of infection, especially at days 2 and 8 p.i.; it 

remained high at 30 days p.i. but decreased subsequently (Figure 5.1B). There was a 

significant difference between E. multilocularis infected mice and control mice, at the 

time points of 2-, 8- and 30-day p.i. (P< 0.05). In the periparasitic liver tissue, TNF-α 

mRNA expression did not change from day 2 to day 360 (Figure 5.1B). In the lesions, 

there was an increase in IL-1β mRNA expression all over the infection course, from 

day 2 to day 360 p.i., with a peak at 60 days p.i.. IL-1β mRNA expression was 

2.5-fold higher at day 2 and 7.6-fold higher at day 60 (Figure 5.1C), when compared 

to control mice. There was a significant difference between E. multilocularis infected 

mice and control mice, at the time points of 30-, 60-, 90-, 270- and 360-days p.i. (P< 

0.05). In the liver tissue, IL-1β mRNA expression increased later, from 2.9-fold at day 

30 to 4.7-fold at day 90 (Figure 5.1C), and was at its maximum at the middle stage of 

infection. There was a significant difference at the time points of 30-, 60- and 90-days 

p.i. (P< 0.05). In the lesions, IL-6 mRNA expression was markedly increased as early 

as 2 days; then it relatively decreased at day 30 p.i., then re-increased very 

significantly from day 90 p.i. (4.8-fold) (Figure 5.1D). There was a significant 

difference between E. multilocularis infected mice and control groups, at the time 

points of 2-, 60-, 90-, 180- and 360-days p.i. (P< 0.05). In the liver, IL-6 mRNA 

expression increased at the very early stage of infection, 1.8-fold at day 2 and1.9-fold 

at day 8 (Figure 5.1D); it returned back to normal at day 30, and re-increased from 

day 60 to day 90, then a high level was maintained until day 360.   
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9Figure 5.1 IL-12α and pro-inflammatory cytokine gene expressions in the liver of mice 

during E. multilocularis infection 

Course of IL-12α mRNA expression measured by q RT-PCR (A).Course of TNF-α mRNA 

expression measured by qRT-PCR (B).Course of IL-1β mRNA expression measured by q 

RT-PCR (C).Course of IL-6 mRNA expression measured by qRT-PCR (D). 

a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’ versus ‘Control’. *P< 0.05; 

**P< 0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and 

surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E. 

multilocularis lesion, but excluding macroscopically visible liver tissue alterations. 

AU: arbitrary units. 

 

 

Th1 cytokines and related chemokines 

Th1 cytokines  

In the lesions, an increase in IFN-γ mRNA expression was observed from day 2 

to day 360 p.i., with a peak at 30 days p.i.. Except for an apparent decrease at day 8, 

IFN-γ mRNA-expression was especially increased at the early stage of infection, from 

3.6-fold at day 2 to 4.8-fold at day 30 (Figure 5.2A). There was a significant 

difference between E. multilocularis infected mice and control mice, at the time 

points of 2-, 30-, and 60-day p.i., but also at the latest stage, 360- day p.i. (P< 0.05). 

In the liver, IFN-γ mRNA expression was increased from 2.4-fold at day 2 to 3.1-fold 
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at day 30 (Figure 5.2A), but became abrogated at the late stage of infection, from 0.5- 

fold at day 90 to 0.4 at day 360, compared to control mice. There was a significant 

difference at the time point of 30-day p.i. (P< 0.05). 

Th1-related chemokines 

Expression of CXCL9 mRNA was observed from day 2 to day 360 p.i.. In the 

lesions, CXCL9 mRNA expression was increased from day 90 to day 360, with a peak 

of 9.75-fold at day 180 (Figure 2B), compared to control mice. There was a 

significant difference between E. multilocularis-infected mice and control mice, at the 

time points of 2-, 8-, 90-, 180- and 270-days p.i., i.e. at the late stage of infection (P< 

0.05). In the liver, CXCL9 mRNA expression was increased by 1.72-fold at day 2 and 

2.78-fold at day 8 (Figure 2B); it was decreased by 0.30- fold at day 30 and by 

0.21-fold at day 60, then expression re-increased by 3.5- fold at day 90 compared to 

control mice. There was a significant difference at the time points of 8- and 90-day p.i. 

(P< 0.05). In the lesions of E. multilocularis-infected mice, CXCL10 mRNA 

expression was increased by 1.6-fold at day 2; then levels progressively increased to a 

peak (7.8-fold the levels in control mice) at day 90 p.i. (Figure 5.2C). There was a 

significant difference between E. multilocularis infected mice and control mice, at the 

time points of 30-, 60- and 90-days p.i. (P< 0.05), i.e. at the middle stage of infection. 

In the liver, CXCL10 mRNA expression was increased at day 60 (2.1-fold) and at day 

90 (2.2-fold) (Figure 5.2C), and was lower both at the early stage and the late stage of 

infection when compared to control mice. Expression of the mRNA of CXCL12, a 

chemotactic factor for lymphocytes, was observed from day 2 to day 360 p.i.. In the 

lesions, CXCL12 mRNA expression was markedly increased as early as day 2 

post-infection, when it reached a peak (11.6-fold); it remained elevated until day 60 

(Figure 5.2D). There was a significant difference between E. multilocularis infected 

mice and control groups, at the time points of 2-, 8- and 60-days p.i. (P< 0.05). In the 

liver, CXCL12 mRNA expression was increased early, from 1.1-fold at day 2 to 

2.1-fold at day 8 (Figure 5.2D), and was lower than that observed in control mice at 

the late stage, from day 90 to day 360. There was a significant difference at the time 

points of 8- and 270-days p.i. (P< 0.05). 
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10Figure 5.2 Th1-cytokine and related chemokine gene expressions in the liver of mice 

during E. multilocularis infection 

Course of IFN-γ mRNA expression measured by qRT-PCR (A). Course of CXCL9 mRNA 

expression measured by qRT-PCR (B). Course of CXCL10mRNA expression measured by 

qRT-PCR (C). Course of CXCL12 mRNA expression was measured by qRT-PCR (D). 

a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’ versus ‘Control’. *P<0.05; 

**P<0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and 

surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E. 

multilocularis lesion, but excluding macroscopically visible liver tissue alterations. 

AU: arbitrary units. 

 

 

Th2 cytokines and related chemokines 

Th2 cytokines  

In E. multilocularis lesions, IL-4 mRNA expression followed a biphasic curve: it 

was increased early (3.8-fold at day 2), and was significantly different from that 

observed in control mice at 2 and 8 days; but it relatively decreased at 30 p.i.; it then 

re-increased and was still elevated at the late stage [4.2-fold at day 360; significantly 

different from control mice (P< 0.05). (Figure 5.3A)]. In the liver, IL-4 mRNA 

expression was increased compared to control mice [4.8-fold at day 8 and 3.2-fold at 

day 60, significantly different from control mice (P< 0.05) (Figure 5.3A)]. In E. 

multilocularis lesions, IL-5 mRNA expression was present from the early stage 
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(2.3-fold at day 2); however (Figure 5.3B), there was a peak of 13.6-fold at day 90, 

and a significant difference between E. multilocularis infected mice and control mice, 

all over the middle and late stages of infection, at the time points of 60-, 90-, 180- and 

360-days p.i. (P< 0.05). In the liver, IL-5 mRNA expression was also markedly 

increased at the middle stage of infection: 3.5-fold at day 60 and 6.54-fold at day 90 

(Figure 5.3B). There was a significant difference at the time points of 60- and 90-days 

p.i. (P< 0.05). 

Th2-related chemokines 

In the lesions, mRNA expression of CCL8, chemotactic for and activator of 

various immune cell types, including mast cells, eosinophils and basophils, 

monocytes, T cells, and NK cells [22], was increased from day 2 to day 360 p.i., with 

a peak at day 90 (Figure 5.3C). There was a significant difference between E. 

multilocularis infected mice and control mice, at the very early and at the middle 

stage of infection, at the time points of 8- and 90-days p.i. (P< 0.05). In the liver, there 

was no difference in CCL8 mRNA expression from day 2 to day 360 (Figure 5.3C) 

between infected and control mice. In the lesions, mRNA expression of CCL12, 

another Th2-related chemokine, which attracts eosinophils, monocytes and 

lymphocytes [25], increased early, from 2.0-fold at day 2 to 6.6-fold at day 8 p.i. 

when it became significantly different from control mice (Figure 5.3D); levels were 

also elevated at day 90 p.i. (3.5-fold; also significantly different from control mice). 

In the liver, CCL12 mRNA expression did not change from day 2 to day 360 (Figure 

5.3D), compared to control mice. mRNA expression of CCL17, which induces T-cell 

chemotaxis and elicits its effects by interacting with the chemokine receptor CCR4, 

was observed in the lesions (1.7- fold increase at day 2 and 2.0-fold at day 180 p.i.), 

(Figure 5.3E). There was a significant difference between E. multilocularis infected 

mice and control groups, at the time points of 8-, 60- and 90-days p.i., when its 

expression peaked at 3.7 fold (P< 0.05). A slight decrease in CCL17 mRNA 

expression was observed at day 30 p.i., concomitant to the slight decrease also 

observed for the Th2-related cytokines IL-4 and IL-5. In the liver, CCL17 mRNA 

expression was higher than in control mice from day 2 to day 180 (Figure 5.3E). 

There was a significant difference at 90-days p.i. between infected and control mice 

(P< 0.05). 
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11Figure 5.3 Th2-cytokine and related chemokine gene expressions in the liver of mice 

during E. multilocularis infection 

Course of IL-4 mRNA expression measured by qRT-PCR (A). Course of IL-5 mRNA 

expression measured by qRT-PCR (B). Course of CCL8 mRNA expression measured by 

qRT-PCR (C).Course of CCL12 mRNA expression measured by qRT-PCR (D). Course of 

CCL17 mRNA expression was measured by qRT-PCR (E). 

a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic Liver tissue’ versus ‘Control’. *P<0.05; 

**P<0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and 

surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E. 

multilocularis lesion, but excluding macroscopically visible liver tissue alterations. 

AU: arbitrary units. 

 

Th17 cytokines  

IL-17 and its isotypes 

In the periparasitic infiltrate area, IL-17, disclosed by immunostaining (Figure 

4A), was observed in most lymphocytes and macrophages in the periparasitic 

infiltrate, as well as in fibroblasts, and endothelial cells in hepatic sinusoids, 

especially around the granulomas, and in infiltrating immune cells of portal spaces, 
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from day 8 to day 360 p.i.. IL-17 positive scores ranged from 0.13 to 4.80 and reached 

the peak point at day 90p.i. (Figure 5.4B). In the liver close to the parasite lesions, 

moderate IL-17 expression was observed; there was a significant difference between 

AE-infected and sham-injected mice at day-8, -30, -90, 270 and 360p.i.. 

In E. multilocularis lesions, IL-17A mRNA expression was increased at the very 

early stage of infection, by 6.9-fold at day 2 and by 9.6-fold at day 8 p.i. (Figure 5.4C), 

and decreased at the late stage, from day 180 to day 360 p.i.. There was a significant 

difference between E. multilocularis infected mice and control groups, at the time 

points of 2-, 8- and 90-days p.i. (P< 0.05). In the liver, IL-17A mRNA expression was 

also increased at the very early stage: 6.7-fold at day 8; at this time point, the 

difference was significant (Figure 5.4C) (P< 0.05). In the lesion, IL-17F mRNA 

expression was present all over the infection course, from day 2 to day 360 p.i. 

(Figure 5.4D), with a peak of 5.63-fold at day 8 compared to control mice. There was 

a significant difference between E. multilocularis infected and control mice, at the 

time points of 8- and 60-days p.i. (P< 0.05). At the late stage, despite an apparent 

increase, compared to control mice, the difference was not significant. In the liver, 

IL-17F mRNA expression did not change significantly from day 2 to day 360 (Figure 

5.4D). 
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12Figure 5.4 Th17-cytokine gene expression in the liver of mice during E. multilocularis 

infection 

Course of IL-17AmRNA expression measured by qRT-PCR (A). Course of IL-17F mRNA 

expression measured by qRT-PCR (B). IL-17 expression at day 90, in most of the infiltrating 

lymphocytes of areas with inflammatory granulomas, in the cytoplasm of hepatocytes, 

endothelial cells of the hepatic sinusoids and fibroblasts (arrow indicates the area also shown 

at high magnification) (C). Expression scores of IL-17 was calculated from quantitative 

analysis of the histo-immunostaining using both staining intensity and the percentage of cells 

stained at a specific range of intensities (see Materials and Methods section)(D). 

a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’versus ‘Control’. *P<0.05; 

**P<0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and 

surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E. 

multilocularis lesion, but excluding macroscopically visible liver tissue alterations. 

AU: arbitrary units. 

 

Treg-related nuclear transcriptional factor and cytokines  

Treg related nuclear transcriptional factor (Foxp3) 

In E. multilocularis lesions, Foxp3 mRNA expression was increased by 2.4-fold 

at day 2 and by 3.0-fold at day 8 p.i. (Figure 5.5A); it then decreased from day 30 to 
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day 60 p.i., and re-increased, from 1.9-fold at day 90 to 2.3-fold at day 360 p.i., with a 

peak of 3.1-fold at day 180, at the late stage of infection (Figure 5A), thus following a 

biphasic curve in the course of infection. There was a significant difference between E. 

multilocularis infected mice and control mice, at the time points of 2-, 8-, 180- and 

360-days p.i. (P< 0.05). In the liver, there was no significant change in Foxp3 mRNA 

expression (Figure 5.5A).  

Treg-related cytokines 

    In E. multilocularis lesions, TGF-β1 mRNA expression also followed a biphasic 

curve, with a decrease at days 30 and 60 p.i.; it was increased by 3.6-fold at day 2 and 

3.2-fold at day 270 p.i. (Figure 5.5B) with a peak of 5.7- fold at day 180 (Figure 5.5B). 

There was a significant difference between E. multilocularis infected mice and control 

mice, at the early and late stages of infection, at time points of 2-, 8-, 90-, 180-, 270- 

and 360-day p.i. (P< 0.05). In the liver, TGF-β1 mRNA expression was also increased 

from day 8 to day 360 p.i., with a peak at day 180 p.i.. Conversely to the expression of 

TGF-β1 mRNA in the lesions, in the liver, TGF-β1 mRNA was significantly elevated 

at the middle and late stages, at the time points of 90-, 180- and 270-days p.i. (P< 

0.05). In E. multilocularis lesions, IL-10 mRNA expression was also biphasic, with a 

significant increase at the early and late stages of infection, but not at its middle stage 

(Figure 5.5C). There was a significant difference between E. multilocularis infected 

mice and control mice, at the time point of 8-day, then at 180-, 270- and 360-days p.i. 

(P< 0.05). In the liver, IL-10 mRNA expression did not change from day 2 to day 360 

(Figure 5.5C) compared to control mice. 
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13Figure 5.5 Treg transcription factor and Treg-cytokine gene expression in the liver of mice 

during E. multilocularis infection 

Course of Foxp3 mRNA expression measured by q RT-PCR (A).Course of TGF-β1 mRNA 

expression measured by qRT-PCR (B).Course of IL-10 mRNA expression measured by 

qRT-PCR (C). 

a: ‘Parasitic lesion’ versus ‘Control’; b: ‘Periparasitic liver tissue’ versus ‘Control’. *P<0.05; 

**P<0.01. ‘Control’, non-infected mice; ‘Parasitic lesion’: E. multilocularis metacestode and 

surrounding immune infiltrate; ‘Periparasitic liver tissue: liver parenchyma close to the E. 

multilocularis lesion, but excluding macroscopically visible liver tissue alterations. 

AU: arbitrary units. 

 

 

Immune response and inflammation gene expression in the liver of E. 

multilocularis infected mice 

To further give a comprehensive picture of the immune response-related changes 

in the adjacent liver during E. multilocularis infection, and especially detect 

hyper-expression of the genes of cytokine/chemokine receptors, cDNA microarray 

technology was used. The individual genes associated with the gene ontology 

biological process “immune response”, and “pathogen response” assessed at different 

time periods of infection, i.e. 30, 60, 90, 180 days p.i., are presented in Table 1. We 

used Gene Ontology (GO; www.geneontology.org) analysis which clusters the genes 

associated with immune response/defense (n=59) into functional subgroups including 
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macrophages, APCs, chemokines and chemokine receptors, lymphocytes, B-cells and 

eosinophils.  

More precisely, at 30 days p.i., several biological processes relating to an active 

infection, as defined by GO cluster classification, were involved, including genes 

mostly associated with the response to external stimuli, response to wounding, 

immune response, response to stress, chemokine activity, defense response, 

MHC-related functions and inflammatory response. While several chemokine genes 

were found activated in the liver of AE mice by qRT-PCR, microarray analysis did not 

show any up-regulation of cytokine genes. Among genes of cytokine receptors, only 

those for IL-1 (IL-R1 like) and IL-7 (2.92 and 2.25 fold respectively) were 

up-regulated at day 30 (Table 1). Among genes encoding for chemokines, CCL5 

(RANTES), a Th17-related chemokine that up-regulates IL-12 and IFN-γ, and is 

involved in Th1 cell-migration [16], was up-regulated 2.35-fold at day 30. Th2-related 

CCL8, CCL12 and CCL17 were up-regulated 29.58-fold, 5.64-fold and 3.36-fold at 

day 30, respectively. Among genes related to macrophage function, MGL1 and MGL2 

(C-type macrophage galactose-type lectins) were up-regulated 2.56- and 4.64-fold 

respectively, compared to control mice. 

At 60 days p.i., genes involved in the response to stress, response to external 

stimulus and response to biotic stimuli were added. There were few changes in the 

immune response gene expression, except for MPA2L (macrophage activation 2-like), 

which was down-regulated 2.33-fold and C4b (Complement component 4B), which 

was up-regulated 3.09-fold, respectively. 

At 90 days p.i., among genes encoding for cytokine receptors, IL-13 Rα1 was 

up-regulated 2.39-fold (Table 1). Among the interferon-activated genes, Ifi202b, 

Ifi203 and Ifi204 were up-regulated 2.88-, 2.13-, and 2.47-fold, respectively. Among 

genes encoding for macrophage functions, MSR1 (macrophage type-I class-A 

scavenger receptors) and MPA2L (macrophage activation 2-like) were up-regulated 

2.11- and 3.99-fold, respectively, when compared to control mice.  

At 180 days p.i., hyper-expression of genes of the inflammatory response, 

response to stress, and response to external stimuli was maintained, and genes of 

antigen processing and presentation, complement activity and antigen processing via 

MHC class II were also hyper-expressed. Among genes of cytokine receptors, IL-17R 

was up-regulated 2.90-fold (Table 1). Among genes encoding for chemokines, 

CXCL9 was up-regulated 3.81-fold at day 180, and CXCL12 was down-regulated 

2.11-fold at day 180. 

14 

 

 

 



 

 97 

Table 5.2 Gene ontology category: immune response and inflammatory response. Genes with 

up- or down-regulated transcriptions in the liver of Echinococcus multilocularis 

(E.multilocularis)-infected BALB/c mice are shown in comparison with non-infected 

sham-injected control animals (fold increase/decrease) 

GeneBank 

accession number 

Gene 

Symbol 

Name 

 

30 days 60 days 90 days 180 days 

76074 5830443L2

4Rik 

RIKEN CDNA 5830443L24 gene * * 2.84 * 

11699 Ambp Alpha 1 microglobulin/bikunin 

(Ambp) 

-2.35 * * * 

56298 Arl6ip2 ADP-ribosylation factor-like 6 

interacting protein 2 

* * 2.05 * 

236573 BC057170 cDNA sequence BC057170 * * 3.41 * 

12260 C1qb Complement component 1, q 

subcomponent, beta polypeptide  

* * * 2.12 

12262 C1qc Complement component 1, q 

subcomponent, C chain 

* * * 3.58 

12279 C1qg Complement C1q subcomponent, C 

chainprecursor. 

* * * 2.18 

625018 C4b Complement component 4B (Childo 

blood group) 

 

* 

 

3.09 

 

* 

 

* 

230558 C8a Complement component 8, alpha 

polypeptide 

* * * 3.98 

20304 Cc15 Chemokine (C-C motif) ligand 5 2.35 * * * 

20307 Ccl8 chemokine (C-C motif) ligand 8  29.58  * * * 

20293 Ccl12 chemokine (C-C motif) ligand 12  5.64  * * * 

20295 Ccl17 chemokine (C-C motif) ligand 17  3.36 * * * 

93671 Cd163 CD163 antigen  * * * 2.56 

12500 Cd3d CD3 antigen, delta polypeptide 

(Cd3d) 

2.14 * * * 

23833 Cd52 CD52 antigen * * * 2.48 

12516 Cd7 CD7 antigen (Cd7) 2.19 * * * 

12525 Cd8a CD8 antigen, alpha chain (Cd8a) 4.41 * * * 

12526 Cd8b1 CD8 antigen, beta chain 1 3.13 * * * 

12628 Cfhr1 Complement factor H-related 1 * * 2.66 * 

18636 Cfp Complement factor properdin * * * 2.19 

17474 Clec4d C-type lectin domain family 4, 

member d (Clec4d) 

3.97 * * * 

56619 Clec4e C-type lectin domain family 4, 

member e (Clec4e) 

5.08 * * * 

17329 Cxcl9 Chemokine (C-X-C motif) ligand 9  * * * 2.81 

20315 Cxcl12 chemokine (C-X-C motif) ligand 12 * * * -2.21 

14131 Fcgr3 Fc receptor, IgG, low affinity III  * * * 2.73 

55932 Gbp3 Guanylate nucleotide binding * * 2.15 * 
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protein 3 

15139 Hc Hemolytic complement  * * * 2.03 

15439 Hp Haptoglobin * * * 2.75 

17082 I11r1 Interleukin 1 receptor-like 1 (Il1rl1), 

transcript variant 2 

2.92 * * * 

16197 I17r Interleukin 7 receptor (Il7r) 2.25 * * * 

16164 Il13ra1 interleukin 13 receptor, alpha 1 * * 2.39 * 

16172 Il17r interleukin 17 receptor D * * * 2.9 

26388 Ifi202b Interferon activated gene 202 * * 2.88 * 

15950 Ifi203 Interferon activated gene 203 * * 2.13 * 

15951 Ifi204 Interferon activated gene 204 * * 2.47 * 

16010 Igfbp4 Insulin-like growth factor 

bindingprotein 4  

 

* 

2.13  

* 

 

* 

16797 Lat Linker for activation of T cells (Lat) 2.12 * * * 

17395 Mmp9 Matrix metallopeptidase 9 (Mmp9) 2.74 * * * 

17312 Mgl1 macrophage galactose 

N-acetyl-galactosamine specific 

lectin 1  

2.56 * * * 

216864 Mgl2 macrophage galactose 

N-acetyl-galactosamine specific 

lectin 2 

4.64 * * * 

100702 Mpa2l macrophage activation 2 like * -2.33 3.99 * 

20288 Msr1 macrophage scavenger receptor 1 * 2.25 * * 

80891 Msr2 macrophage scavenger receptor 2 * * 2.11 * 

18405 Orm1 Orosomucoid 1  * * * 2.61 

18406 Orm2 Orosomucoid 2  * 2.67 * 8.94 

18514 Pbx1 Pre B-cell leukemia transcription 

factor 1 

* * 2.19 * 

233489 Picalm Phosphatidylinositol binding 

clathrin assembly protein 

* * 2.01 * 

27226 Pla2g7 Phospholipase A2, group VII 

(platelet-activating factor 

acetylhydrolase, plasma)  

* * * 2.57 

18761 Prkcq Protein kinase C, theta * * -3.22 * 

20208 Saa1 Serum amyloid A 1 * * * 11.63 

20210 Saa3 Serum amyloid A 3 * * * 9.69 

20211 Saa4 Serum amyloid A 4  * * * 2.32 

20714 Serpina3k Serine (or cysteine) peptidase 

inhibitor, clade A, member 3K 

(Serpina3k) 

-3.38 * * * 

20716 Serpina3n Serine (or cysteine) peptidase 

inhibitor, clade A, member 3N 

* * * 3.12 
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20750 Spp1 Secreted phosphoprotein 1 * * 3.54 * 

192187 Stab1 Stabilin 1  * * * 2.04 

21822 Tgtp T-cell specific GTPase * * * 2.79 

107568 Wwp1 WW domain containing E3 

ubiquitin protein ligase 1 

* * 2.37 * 

 

Correlations between mRNA levels of the various cytokines over the course of 

infection  

Spearman correlation coefficients indicated a significant positive correlation 

between TGF-β1 mRNA expression in E. multilocularis‘parasitic lesion’, and that of 

Foxp3 (r=0.719, P=0.045), IL-10 (r=0.761, P=0.028) and CXCL9 (r=0.946, P< 0.01), 

but a significant negative correlation with IFN-γ (r=-0.743, P=0.035) (Table 5.3); it 

also showed a significant positive correlation between Foxp3 expression in E. 

multilocularis ‘parasitic lesion’, as measured by qRT-PCR, and IL-10 (r=0.761, 

P=0.028) and TNF-α (r=0.742, P=0.035), but a significant negative correlation with 

IL-1β (r=-0.754, P=0.033) (Table 5.4). There was a significant positive correlation 

between IL-17A expression in E. multilocularis ‘parasitic lesion’, as measured by 

qRT-PCR, and CCL12 (r=0.833, P=0.011), CCL17 (r=0.733, P=0.039), IL-4 (r=0.710, 

P=0.049) and TNF-α (r=0.804, P=0.016) (Table 5.5); there was also a significant 

positive correlation between IL-17F mRNA expression in E. multilocularis ‘parasitic 

lesion’ and CCL12 (r=0.708, P=0.049) and CCL17 (r=0.749, P=0.032)(Table 4). 

TNF-α mRNA expression in E. multilocularis ‘parasitic lesion’ was also significantly 

correlated to IL-12α (r=0.888, P=0.033) (Table 5.6).  

15Table 5.3 Correlations between mRNA of TGF-β1 and Foxp3, IL-10, IFN-γ and CXCL9  

  Foxp3 IL-10 IFN-γ CXCL9 

TGF-β1 Spearman’s rho 0.719
*
 0.761

**
 -0.743

*
 0.946

**
 

Sig. 0.045 0.028 0.035 0.000 

N 8 8 8 8 

Note: * P< 0.05, ** P< 0.01. 

16Table 5.4 Correlations between mRNA of Foxp3 and TGF-β1, IL-10, IL-1β and TNF-α 

  TGF-β1 IL-10 IL-1β TNF-α 

Foxp3 Spearman’s rho 0.719
*
 0.761

**
 -0.754

*
 0.742

*
 

Sig. 0.045 0.028 0.033 0.035 

N 8 8 8 8 

Note: * P< 0.05, ** P< 0.01. 
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17Table 5.5 Correlations between mRNA of IL-17 and CCL12, CCL17, IL-4, and TNF-α  

  CCL12 CCL17 IL-4 TNF-α 

IL-17A Spearman’s rho 0.833
*
 0.733

*
 0.710

*
 0.804

*
 

Sig. 0.011 0.039 0.049 0.016 

N 8 8 8 8 

IL-17F Spearman’s rho 0.708
*
 0.749

*
 0.695 0.497 

 Sig. 0.049 0.032 0.056 0.210 

 N 8 8 8 8 

Note: * P< 0.05. 

18Table 5.6 Correlations between mRNA of TNF-α and IL-12α, as well as IL-17A  

  IL-12α IL-17A 

TNF-α Spearman’s rho 0.888
**

 0.804
*
 

Sig. 0.003 0.016 

N 8 8 

Note: * P< 0.05, ** P< 0.01. 

 

Discussion 

Despite the alleged causative involvement of the granulomatous response in the 

clinical development of AE and its role in functional imaging of the disease, since it is 

responsible for the Fluorodeoxyglucose (FDG) uptake in Positron Emission 

Tomography (PET) [20], a comprehensive picture of the cytokine/chemokine 

response that occurs in situ, i.e. in the periparasitic granuloma, had never been given. 

Chemokines and IL-17, which are crucial for immune cell homing, have so far 

received little attention in E. multilocularis infection. In the present longitudinal study 

of experimental E. multilocularis intra-hepatic infection model, we showed for the 

first time that 1) the mixed Th1/Th2/Treg response and the tri-phasic course of 

cytokines, suggested by previous studies on spleen cells from E. 

multilocularis-infected mice, was also documented in the periparasitic infiltrate, but 

nevertheless differed in some aspects, especially the marked and parallel expression 

of IL-12α and TNF-α but also IL-4 at a very early stage of the parasite/host 

interactions; 2) IL-17 was involved locally at the beginning of the immune response 

and remained so all along the course of infection, with a successive expression of 

different isotypes with possibly different roles; 3) a parallel course of cytokines and 

their related chemokines was highly in favor of their permanent role to maintain the 

homing of immune cells at close proximity of the parasitic vesicles; and 4) at least 

some of the components of the immune response were present in the surrounding liver 
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and were thus involved in a process which was long considered to be a localized 

“tumor-like” event (Figure 5.6 and 5.7). 

 

 

19Figure 5.6 Course of the changes in the gene expression of innate immunity and 

proinflammtory cytokins (a), Th1 related cytokines and chemokines (b), Th1 related 

cytokines and chemokines (c), Th17 related cytokines (d), Foxp3 and Treg related cytokines 

(e) during the process of E. multilocularis-infection in mice 
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20Figure 5.7 Schematic diagram summarizing the pathways of immune response involved in 

the host-parasite relationship in E. multilocularis infection 

 

In the present study, we found that IL-12α and TNF-α were developing in 

parallel during the different stages of E. multilocularis infection. After an initial 

increase, IL-12α and TNF-α expression decreased dramatically after the 30
th

 day of 

infection of mice. This fits well to previous findings, which had indicated a protective 

role against E. multilocularis by in vivo treatment with recombinant IL-12 in 

C57BL/6J mice [7], while mice KO for TNF-α [10], as well as patients with AE 

treated with a TNF-α inhibitor [20], had a faster and more severe course of disease. 

IL-1β and IL-6 were then showing up, presumably to sustain the inflammatory 

response, with a ‘mirror’ image of their respective increase all along infection. The 

initial peak of IL-6 as early as 2 days post-infection may be related to the early 

activation of the acute phase protein genes in the hepatocytes, disclosed by previous 

microarray studies [21,22]. Conversely, the absence of a significant increase of IL-6 

at day 270 probably explains why, despite increased levels of haptoglobin, α-1 acid 

glycoprotein, C3 and C4, and ceruloplasmin in patients with AE, no increase of 

C-reactive protein (CRP) levels, typically associated with IL-6 stimulation, is usually 

observed, except in cases complicated by bacterial infection. Secretion of the 

pro-inflammatory cytokines IL-1β and IL-18 by PBMC of AE patients had been 
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shown to be reduced in response to E. multilocularis metacestode vesicles, compared 

to controls [12]. In our study in mice, although IL-1β was highly expressed at the 

early and middle stage, it subsequently decreased at the late stage and was not 

significantly different from control mice at day 180 post-infection and later, a time 

point which may approximately represent the disease stage of most patients at 

diagnosis of AE. Such selective dynamics of pro-inflammatory cytokine release may 

both install and maintain the periparasitic immune infiltrate from the very early stage 

of infection on, and also limit its activation and thus participate in the tolerance 

process.  

In most previous studies, secretion and expression of cytokines, chemokines, and 

related factors that govern immune cell-homing to E. multilocularis infection site 

were studied in the peripheral blood of human AE patients [23], and in lymph node or 

spleen cells of experimentally infected mice [13,24,25]; in situ investigations 

focussing on the periparasitic infiltrate and the adjacent liver tissue are virtually 

lacking. Early expression of IFN-γ, as previously shown in studies on peripheral 

lymphocytes, was also confirmed in our longitudinal study of the periparasitic 

infiltrate; we hypothesize that it was very likely induced by the early expression of 

IL-12. The apparent decrease in IFN-γ at day 8 may be due either to a technical 

artefact or, more probably, to a temporary inhibition by IL-4, also markedly expressed 

at days 2 and 8 p.i.. Sustained IFN-γ expression together with the permanent 

expression of Th1 chemokines, and its negative correlation with TGF-β1 in the 

parasitic lesions all along the course of infection, although Th2 and T-reg cytokines 

are also permanently expressed, suggests that IFN-γ is very important for the 

persistence of the periparasitic infiltrate by permanent homing of immune cells and/or 

inhibition of their emigration. The decrease of IL-12 after the early stage of disease 

could be, at least partly, responsible for the lack of activation of CD8 T-cell or NK 

cell cytotoxicity despite the presence of IFN-γ [11,14,26].  

Several concordant observations showed that the PBMCs of AE patients as well 

as spleen or lymph node cells of experimentally infected mice exhibit a markedly and 

steadily increasingTh2-oriented response characterized by high levels of IL-4, IL-5 

andIL-10 expression [27]. The results from many studies have clearly identified 

IL-4/IL-5/IL-10 as important regulatory cytokines in parasitic infections, such as 

infection by Schistosoma mansoni in mice [28,29] and humans [30], Schistosoma 

haematobium[31], Trichuris muris [32], and Trichinella spiralis[33]. In E. granulosus 

infection, IL-4/IL-5/IL-10 had been found to be predominant in serum samples of 

infected individuals [34]; furthermore, in the peritoneal cells of experimental mice, 

i.e. at the site of E. granulosus establishment, IFN-γ was secreted first, at day 3, but as 
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early as day 5, a Th2-type response, including IL-4 and IL-13 was stimulated [35]. 

These results in CE suggest that a Th2-type response does not impair the 

establishment of E. granulosus metacestode, and does not prevent the development of 

the pericyst, a characteristic of CE pathology, which, conversely to AE, limits the 

progression of the metacestode [15]. In the parasitic lesions of E. 

multilocularis-infected mice, we observed a biphasic curve of IL-4 mRNA expression, 

with also a very early peak at 2-8 days. This early peak differed from what is usually 

reported in E. multilocularis infection upon investigation of peripheral lymphocytes 

stimulated by E. multilocularis antigens [5]. The early local expression of IL-4 

mRNA might be crucial to prime naive CD4
+
 T cells into differentiated Th2 type cells 

[35], and to prevent anti-parasite resistance, such as that occurring in most 

intermediate hosts, including humans. We hypothesize that early IL-4 mRNA 

expression is likely induced through the activation of innate immunity by specific 

metabolic components of the metacestode. Such an activation of IL-4 production has 

actually been described in vitro under the influence of Echinococcus components, 

both from E. multilocularis [23] and from E. granulosus [36]. In the present study, we 

also found a delayed increase of IL-5 and IL-10 in the middle/late stage of E. 

multilocularis infection. This delayed increase of IL-5 and IL-10 is matching previous 

observations made by others at the ‘late stage’ of infection, in human AE [37,38,39] 

and are in agreement with the data usually reported from the study of lymphocytes 

from experimentally infected mice [40]; this combined cytokine profile has been 

strongly linked to parasite evasion from the host immune response [27,41]. 

The discovery of the IL-17 cytokine family has added a new dimension to the 

balance of inflammation and tolerance during parasite infections. The presence of 

IL-17-secreting CD4
+
 T (Th17) lymphocytes correlates with severe hepatic pathology 

in murine schistosomiasis [42]. In our study, IL-17, as detected by a monoclonal 

antibody directed against the common epitopes of the protein, was present in cells of 

the periparasitic infiltrate all along the course of infection; however, as far as the 

expression of mRNA isotypes of the cytokines is concerned, both IL-17A and IL-17F 

were increased at the early stage of E. multilocularis infection, and then decreased at 

the late stage; they were both positively correlated with CCL12 and CCL17; however, 

IL-17A exhibited a positive correlation with TNF-α, and appeared lower than even in 

controls, at the late stage of infection, while IL-17F was also expressed at low levels, 

but still higher than controls. This may indicate that IL-17A was rather protective but 

quickly inhibited, while IL-17F was less suppressed with time and may contribute to 

both protection and pathogenesis, as reported in human AE patients[17].  
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Chemokines are involved in the homing and persistence of immune cells in 

inflammatory reactions, especially to infectious agents [43,44]; they also participate in 

innate recognition stages of immunity and may help direct Th1 and Th2 

cytokine-producing cells during the generation of adaptive immunity [18]. There is 

also considerable in vitro evidence that cytokines further capitalize on these 

molecules by regulating their expression and secretion and by using them to activate 

effector cells such as macrophages and fibroblasts [18]. Conversely, specific 

suppression of certain chemokine production and/or function by E. multilocularis 

metacestode in AE patients may constitute an additional immune escape mechanism 

[15]. We only measured the mRNA expression of ‘key’ chemokines, directly related 

to the main cytokine profiles, among the multiple components with chemokine 

activity. But all measured chemokines were significantly expressed at a given stage of 

infection. These results confirmed the importance of these compounds to maintain the 

granulomatous infiltrate at the proximity of the metacestode. The courseof 

Th1-related chemokines appeared “complementary”; CXCL 9 was more expressed 

when CXCL10 was less expressed, and vice versa, with a ‘mirror’ image, as 

previously described for IL-1 and IL-6.  This may indicate some balance to ensure 

lymphocyte homing and persistence in the lesions. Th2-related chemokines were also 

permanently expressed: expression of CCL12 and CCL17 followed the course of IL-4, 

and CCL 8 followed the course of IL-5. Such changes in chemokine release may 

prevent pathogenic inflammation at the late stage. In addition, the microarray 

technique revealed a hyper-expression of RANTES (CCL5), chemotactic for Th1 

cells, eosinophils, and basophils[11]. This finding suggests that this chemokine is also 

secreted by cells of the granuloma at the early stage (8-30 days) when IL-12, IFN-γ 

and IL-17 secretions are at their maximum. This should consequently also be explored 

more in detail in future studies.  

The involvement of the adjacent, not directly affected liver tissue in the immune 

process of E. multilocularis/host interaction has received little attention. Recent 

studies have provided evidence that the adjacent liver was fully involved in the 

relationship between the parasite and its host; these studies have mostly focused on 

the proliferation/apoptosis balance [18] and the involvement of the TGF-β/Smad 

system [19]. Our study confirms that other mediators of the immune reaction and their 

receptors appear principally expressed in the liver tissue, thus also in areas not 

directly affected by the parasite and the periparasitic granuloma. In the adjacent 

periparasitic liver tissue, the expression of the various cytokines/chemokines was 

selective: not all cytokines/chemokines were expressed in the surrounding liver; some 

seemed to be specific for the immune cells of the periparasitic infiltrate, e.g. TNF-α, 

IL-17F and CCL8, which were not expressed at all in the liver. The contribution of 

the surrounding liver tissue, however, was quite significant for other ones, e.g. IL-12, 
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IFN-γ, IL-4 and IL-17A, at the early stage of infection; CXCL9, IL-4, IL-5, CCL17, 

at the middle stage; and IL-10 and TGF-β at the late stage of infection. From our 

study, which was performed on liver samples without cell identification, it is difficult 

to know if such expression was restricted to cells of the immune response present in 

the sinusoids/portal spaces after their homing to the liver, or was also present in 

autochthonous liver cells such as Kupffer cells, stellate cells, or hepatocytes. Precise 

identification and respective location will require appropriate studies. Among 

cytokine receptors, only those for IL-1 (IL-R1 like), IL-7, IL-13 (IL-13 Rα1), and 

IL-17 (IL-17 R) were up-regulated. This indirectly suggests that the liver was affected 

by at least one pro-inflammatory cytokine (IL-1) and one growth factor (IL-7), and by 

two types of Th-cytokines (Th2 and Th17). However, absence of up-regulation of 

IL-6 and TGF-β receptors in hepatic cells is puzzling and has to be further confirmed 

using other techniques in the same model. 
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Main conclusions and remarks: 

 

Profiles of mRNA expression levels in the hepatic parasitic lesions showed that  

1) IL-12α and TNF-α were developing in parallel during the different stages of E. 

multilocularis infection. 

2) A mixed Th1/Th2 immune response, characterized by the concomitant presence of 

IL-12α, IFN-γ and IL-4, was established very early in the development of E. 

multilocularis.  

3) At middle/late stage of E. multilocularis infection, the profile extended to a 

combined tolerogenic profile associating IL-5, IL-10 and TGF-β.  

4) IL-17 was permanently expressed in the liver, mostly in the periparasitic infiltrate; 

both IL-17A and IL-17F were increased at the early stage of E. multilocularis 

infection, and then decreased at the late stage; they were both positively correlated 

with CCL12 and CCL17; however, IL-17A exhibited a positive correlation with 

TNF-α, and appeared lower than even in controls, at the late stage of infection, while 

IL-17F was also expressed at low levels, but still higher than controls. 

5) The course of Th1-related chemokines appeared “complementary”; CXCL 9 was 

more expressed when CXCL10 was less expressed, and vice versa, with a ‘mirror’ 

image. Th2-related chemokines were also permanently expressed: expression of 

CCL12 and CCL17 followed the course of IL-4, and CCL 8 followed the course of 

IL-5. 
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6. How are TGF-β and TGF-β/Smad signaling involved in 

the interactions between E. multilocularis and its host? 

  



 

 113 

To address this question, we measured the levels of TGF-β1, TGF-β receptors, 

and down-stream Smad2/3, Smad4 and Smad7 activation, as well as fibrosis marker 

α-SMA, Collagen I and III expression by using Western Blot, qRT-PCR and 

immunohistochemistry in an intra-hepatic mouse AE model from day 2 to 360 

post-infection (p.i.). 

Background and objectives:  

TGF-β serves as a global regulator of immunity by controlling the initiation, 

maintenance, and resolution of inflammatory responses. After a preliminary study by 

researchers from our team had shown that TGF-β was abundantly expressed in the 

periparasitic infiltrate in patients with AE, our study of the sequential expression of 

cytokines and related chemokines in the liver confirmed that, among the factors 

essential to maintain the tolerance state (Treg-related cytokines), TGF-β was actually 

expressed in the periparasitic infiltrate all along the course of infection. This 

expression followed a biphasic curve, with a decrease at the middle stage and a 

re-increase at the end stage of infection (Wang, 2014 a). On the other hand, we also 

showed that the parasite and/or the periparasitic immune response were also involved 

in metabolic changes in the adjacent, not directly affected, liver tissue, and we 

suggested that TGF-β might be one of the actors of such changes (Zhang, 2012). In 

addition, fibrosis is among the hallmarks of AE, and TGF-β is well known to play a 

role in fibrogenesis. TGF-β might thus be a major regulator of the immune response 

in AE, and could also be involved in liver homeostasis and liver fibrosis. However, 

very little was known on the presence and course of the other components of the 

TGF-β/Smad pathway in the liver, and on their possible influence on fibrosis, over the 

various stages of infection. The aims of this study were 1) to delineate the location of 

TGF-β and components of the TGF-β pathway in the periparasitic immune cells and 

in hepatocytes, close to and distant from the lesions in the liver; 2) to better 

understand the functioning of the TGF-β/Smad pathway, and its possible relationship 

with the development of liver fibrosis in the parasite’s hosts; 3) to further explore how 

TGF-β was secreted and regulated. 
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Main conclusions and remarks:  

 

1) TGF-β1 was expressed in most lymphocytes and macrophages of the periparasitic 

infiltrate as well as in the liver parenchyma, even distant from the parasitic lesion. 

2) CD4+ T cells represented the major population of T cells at the beginning of the 

infection and that this sub-population was progressively replaced by CD8+ T cells, and 

this change of CD4/CD8 ratios could contribute to maintain TGF-β1 secretion. 

3) TGF-β receptors were also expressed at the membrane of most cells in the 

periparasitic infiltrate and in the liver parenchyma from early to late stage post E. 

multilocularis infection. 

4) Various down-stream Smad components of the TGF-β pathway were marked 

increased at the middle stage of the chronic phase of the disease in E. multilocularis 

infected mice. 

5) Fibrosis was significant at 180 days p.i. in the periparasitic infiltrate and was also 

present in the liver parenchyma, even distant from the lesions.  
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7. Is FGL2 involved in the cross-talk between E. 

multilocularis and its host and how does it regulate immune 

tolerance? 
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To address this question, and study E. multilocularis growth in the absence of 

FGL2, we employed intra-peritoneally infected FGL2
-/-

 Knock-Out mice. As a key 

parameter for outcome, parasite load was measured by wet weight determination of 

the metacestode tumor-like tissue, and serum FGL2 levels were measured by 

sandwich ELISA. Spleen cells were firstly analyzed ex-vivo and secondly after being 

cultured with ConA stimulation for 48h or with E.multilocularis Vesicle Fluid (VF) 

antigenic stimulation for 96h. Spleen cells from non-infected WT mice were cultured 

with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For the 

Treg immune suppression assay, high purity of CD4
+
CD25

+
Tregs (N>99%) was 

incubated, together with CD4
+
 effector T cells and irradiated spleen cells as APCs, 

with ConA for 48h. Flow cytometry and real time RT-PCR were used to determine T 

cell subpopulations including Treg numbers and phenotypes, Th17-, Th1-, Th2-type 

immune responses, and maturation of dendritic cells and B cells. 

Background and objectives  

We previously showed that CD4
+
 CD25

+
 regulatory T (Treg) cells played a 

critical role in human echinococcosis by blunting immune responses to specific 

antigens, or by suppressing the secretion of proinflammatory cytokines, especially 

through interleukin (IL)-10 and transforming growth factor (TGF-β1). Moreover, 

increased CD4
+
 CD25

+
 Treg had also been observed in peritoneal cells in mice 

infected intraperitoneally (i.p.) with E. multilocularis, a finding that was concordant 

with other findings that E. multilocularis antigens promote T cell differentiation into 

Treg cells. Besides regulatory cytokines, among those factors which mediate immune 

regulation/tolerance by CD4
+ 

CD25
+
 Tregs, Fibrinogen-like protein 2 (FGL2) has 

recently been recognised. In a previous study, by using a microarray-based approach, 

researchers from our team observed that mRNA levels of FGL2 were significantly 

up-regulated in the liver of mice perorally infected with E.multilocularis eggs. The 

aims of this work were thus: 1) to study the role of FGL2 on T and B cell reactivity as 

well as on the maturation of dendritic cells (DC) at two different stages of E. 

multilocularis infection, i.e. early and late stages, by using an original model of flg2
-/-

 

mice 2) to study how components of parasite origin, i.e. metabolites, such as those 

present in the vesicle fluid (VF) in E. multilocularis infection exert an effect on 

immune response in flg2
-/-

 mice, 3) to explore how FGL2 is secreted during the course 

of E. multilocularis infection; and 4) to give a comprehensive picture of the various 

cell and molecular components involved in immune regulation in the peritoneal cells 

surrounding E. multilocularis metacestode (periparasitic infiltrate) and in the spleen. 

To achieve this goal, Th1/Th2-related and Treg/Th17 related cytokines, maturation of 
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dendritic cells (DC), B cell response, and Treg generation/functions were studied at 

the different stages of disease, in various experimental models which allowed or 

suppressed the influence of FGL2.   

 

  



 

 135 

The Novel CD4
+
CD25

+
 Regulatory T Cell Effector Molecule Fibrinogen-like 

Protein 2 Contributes to the Outcome of Murine Alveolar Echinococcosis 

 

Junhua Wang
1,2,3

, Cristina Huber
1
, Norbert Müller

1
, Dominique A Vuitton

4
, Oleg 

Blagosklonov
3
 , Denis Grandgirard

5
, Stephen L. Leib

5,6
, Xiaomei Lu

2
, Renyong Lin

2
, 

Hao Wen
2
, Bruno Gottstein

1 

 

1. Institute of Parasitology, University of Bern, Bern, Switzerland. 

2. State Key Lab Incubation Base of Xinjiang Major Diseases Research 

(2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated 

Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China. 

3. Department of Nuclear Medicine, University of Franche-Comté and Jean Minjoz 

University Hospital, Besançon, Franche-Comté, France. 

4.WHO-Collaborating Centre for the Prevention and Treatment of Human 

Echinococcosis, University of Franche-Comté and University Hospital, Besançon, 

Franche-Comté, France. 

5. Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, 

Friedbühlstrasse 52, 3010 Bern, Switzerland.  

6. Biology Division, Spiez Laboratory, Federal Office for Civil Protection FOCP, 

3700 Spiez, Switzerland.  

 

1. Correspondence to: Professor Bruno Gottstein, MD, PhD, Institute of 

Parasitology, University of Bern, Länggassstrasse 122, Bern 3012, Switzerland. 

E-mail: bruno.gottstein@vetsuisse.unibe.ch 

Tel : +41 31 631 24 18 

Fax: +41 31 631 26 22 

 

2. Correspondence to: Professor Professor Hao Wen and Professor Renyong Lin, 

PhD, State Key Lab Incubation Base of Xinjiang Major Diseases Research 

(2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated 

Hospital of Xinjiang Medical University, No.1 Liyushan Road, Urumqi 830054, 

China. 

E-mail: Dr.Wenhao@163.com; renyong_lin@sina.com 

Tel: +86 991 436 6448 

Fax: +86 991 436 2844 

 



 

 136 

Funding: This work was supported by the Swiss National Science Foundation 

(31003A_141039/1), NSFC Grant Projects (81260452, 81260252, U1303222), the 

European Commission French-Swiss InterReg IV program ‘IsotopEchino’ project, the 

Program for Changjiang Scholars and Innovative Research Team in Universities 

(IRT1181) and Xinjiang Key-Lab Projects (SKLIB-XJMDR-2012-Y1). The funders 

had no role in study design, data collection and analysis, decision to publish, or 

preparation of the manuscript. 

  



 

 137 

Abstract 

Background: The immunology of murine alveolar echinococcosis (AE) is 

characterized by the development of immune tolerance against the Echinococcus 

multilocularis (E.multilocularis) metacestode allowing the parasitic tumor-like tissue 

to continuously proliferate and metastasize. The velocity of proliferation is dependent 

on the nature of the periparasitic inflammatory and other immune-mediated processes. 

In a previous explorative study, fibrinogen-like protein 2 (FGL2) was found to be 

up-regulated in AE-infected versus non-infected control animals. So far, nothing is 

known on the contribution of this novel CD4
+ 

CD25
+
 regulatory T cell (Treg) effector 

molecule to the control of a helminth infection.Methods: fgl2
-/-

 mice were 

experimentally infected with E. multilocularis, and age-and-gender-matching wild 

type (WT) animals were used as controls. Mice were sacrificed at 1 and 4 month(s) 

post-infection (p.i.). As a key parameter for infection outcome, parasite load was 

measured by wet weight determination of the metacestode tumor-like tissue, and 

serum FGL2 levels were measured by sandwich enzyme-linked immunosorbent assay. 

Spleen cells were firstly analyzed ex-vivo and secondly after being cultured with 

ConA stimulation for 48h or with E. multilocularis Vesicle Fluid (VF) antigenic 

stimulation for 96h. Spleen cells from non-infected WT mice were cultured with 

rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For the Treg 

immune suppression assay, high purity of CD4
+ 

CD25
+ 

Tregs (N>99%) was achieved 

by first MACS and subsequently FACS. These purified cells were incubated, together 

with CD4
+
 effector T cells and irradiated spleen cells as APCs, with ConA for 48h. 

Flow cytometry and real time RT-PCR were used to determine T cell subpopulations 

including Treg numbers and phenotypes, Th17-, Th1-, Th2-type immune responses, 

and maturation of dendritic cells and B cells. Results: FGL2-deficient mice infected 

with E. multilocularis exhibited a significantly decreased parasite load, associated 

with increased T cell proliferation in response to ConA, impaired Treg numbers and 

function, relative Th1 polarization, and increased numbers of antibody-producing B 

cells, as compared to infected WT mice. Both relative number and maturation status 

of dendritic cells were higher in fgl2
-/- 

mice, and CD80 and CD86 were more 

expressed in DCs following ConA and VF stimulation. Additional experiments 

confirmed that IL-17A contributes to FGL2 secretion in this model.  

Conclusions: Our data demonstrate that FGL2, together with IL-17 and by promoting 

Treg cell activity, appears as a key-player in the orchestration of the outcome of E. 

multilocularis infection; this study gives evidence for a role of IL-17 in FGL2 

regulation, and suggests that targeting FGL2 could be used for the development of 

novel treatment approaches in infectious diseases. 
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Introduction 

Alveolar echinococcosis (AE) is one of the clinically most severe zoonotic 

helminthic disease, characterized by a chronic and progressive hepatic damage 

occurring during the continuous proliferation of the larval stage (metacestode) of 

Echinococcus multilocularis (E. multilocularis) [1], with a fatal outcome if remaining 

untreated. AE is thus a neglected “malignant” parasitic disease deserving clinically 

the same attention as cancer. If the currently limited prevention and medical treatment 

options remain unchanged, increasing numbers of AE patients (emergence is 

presently affecting mainly Europe and China) will not receive appropriate care with 

foreseeable consequences on human distress, cost and economic losses [2]. Humans, 

as accidental intermediate hosts in the life cycle of the parasite, suffer from severe 

conditions in the late stage of the disease not only because of the continuous 

space-occupying metacestode proliferation in the liver and subsequent metastasis 

formation predominantly in the lungs and the brain, but also mainly because of the 

intense inflammatory granulomatous periparasitic infiltration resulting in a marked 

periparasitic tissue reconstruction of the affected organs. The parasitic lesions 

together with the periparasitic tissue reactions behave like a slow-growing liver 

cancer, progressively invading the neighboring tissues and organs directly or via 

metastases [3]. Pathological changes in AE are associated with an intense periparasitic 

infiltration by macrophages of various functional types, including the so-called 

“epithelioid cells” and “giant cells”, typical of granulomas [2, 3] and by T 

lymphocytes. CD4
+
 T lymphocytes are present from the early stage of parasite growth 

and CD8
+ 

T lymphocytes are known to home to the periparasitic infiltrate secondarily 

and to be associated with parasite tolerance and severity of the disease [1,3,4,5]. 

It has been previously shown that E. multilocularis infection induces an immune 

response that can select numerous pathways; the involvement of individual cytokines 

has been rather extensively studied within the past 2 decades [1]. A rather 

Th2-dominated immunity associates with an increased susceptibility to disease, which 

leads to chronic AE, while Th1 cell activation induces protective immunity, which 

may lead to aborted forms of infection [1, 2]. During the conventional course of E. 

multilocularis infection in susceptible experimental hosts, an initial Th1 response 

gradually switches to a more dominating Th2 response during the chronic phase of 

AE; this mostly mixed Th1/Th2 profile is nevertheless associated with the expression 

of pro-inflammatory cytokines in the periparasitic granuloma and partially protective 

immunity through fibrosis and necrosis [6]. We previously showed that CD4
+
 CD25

+
 

regulatory T (Treg) cells played a critical role in human echinococcosis by blunting 

immune responses to specific antigens, or by suppressing the secretion of 
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proinflammatory cytokines, especially through interleukin (IL)-10 and transforming 

growth factor (TGF-β1) [7]. Moreover, increased CD4
+
 CD25

+
 Treg was also 

observed in peritoneal cells in mice infected intraperitoneally (i.p.) with E. 

multilocularis, a finding that was concordant with other findings that E. multilocularis 

antigens promote T cell differentiation into Treg cells (unpublished data). 

In a previous explorative study, by using a microarray-based approach, we 

observed that mRNA levels of the fibrinogen-like protein 2 (FGL2) were significantly 

up-regulated in the liver of mice perorally infected with E.multilocularis eggs [8]. 

Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen-related superfamily of 

proteins known to be secreted by T cells, has recently been reported by a number of 

groups to be highly expressed by Tregs and has been proposed to have a role in Treg 

effector function [9]. It has been shown that FGL2 could inhibit dendritic cell 

maturation and induce apoptosis of B cells through binding to low-affinity 

FcgammaRIIB receptor, and thus contribute to Treg activity [10]. There is evidence 

that FGL2 exerts immunosuppressive effect on T cell proliferation. Thus it plays an 

important role both in innate and adaptive immunity, being expressed by activated 

CD4
+
a nd CD8

+
 T cells and reticulo-endothelial cells (macrophages and endothelial 

cells) [11,12,13,14,15,16]. It has been implicated as a novel biomarker of cancer, and 

in the pathogenesis of inflammatory disorders such as allo- and xenograft rejection 

[11,17,18,19,20,21], or cytokine-induced fetal loss [22]. It was also shown to play a 

role in infectious diseases, such as viral hepatitis [11,14]. To our knowledge, it has 

until now been neglected as a key-player in parasite-induced tolerance. As the 

therapeutic tools in AE are very limited so far, and immune modulation might 

represent an alternative option, Tregs and their effector molecule FGL2 could become 

attractive targets, putatively allowing a modulation of the patient's immune response 

to yield protective immune reactions that will result in a dying-out of the parasite 

metacestode. 

The major aims of this work were thus: 1) to study the role of FGL2 on T and B 

cell reactivity as well as on the maturation of dendritic cells (DC) at two different 

stages of E. multilocularis infection, i.e. early and late stages, by using an original 

model of flg2
-/-

 knockout mice; 2) to study how parasite components, i.e. metabolites, 

such as those expressed in the vesicle fluid (VF) of the E. multilocularis metacestode, 

affect the immune response in flg2
-/-

 knockout mice, 3) to explore how FGL2 is 

secreted during the course of E. multilocularis infection; and 4) to give a 

comprehensive picture of the various cell and molecular components involved in 

immune regulation of the peritoneal cells that are in direct contact with E. 

multilocularis metacestode (periparasitic infiltrate), and in the spleen as a key immune 

organ. To achieve this goal, Th1/Th2-related and Treg/Th17 related cytokines, 

maturation of dendritic cells (DC), B cell response, and Treg generation/functions 
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were studied at the different stages of disease, in an experimental model with active or 

abrogated FGL2-expression.  

Results 

Significantly decreased parasite load in fgl2
-/- 

mice after E. multilocularis 

infection 

Parasite load, gross morphology and histology of tissues and organs were 

compared between E. multilocularis-infected fgl2
-/-

 (AE- fgl2
-/-

) and wild type (WT) 

infected mice (AE-WT). At the early stage (1mo p.i.), there was no significant 

difference yet in parasite load between AE-fgl2
-/-

 and AE-WT mice (0.45±0.53g vs 

0.66±0.83 g). However, at the late stage (4mo p.i.), the parasite load became 

significantly lower in AE-fgl2
-/-

 mice when compared to AE-WT mice (8.75±2.35 g 

vs 16.26±8.06) g (Figure 7.1). At the late stage of E. multilocularis infection, the 

parasite invaded the liver (a marker of pathogenicity) much less in AE-fgl2
-/-

 mice 

than in AE-WT mice (33.3% vs 94.4%). At the periphery of the lesion, numbers of 

fibroblasts and inflammatory cells were similar in AE-fgl2
-/- 

mice and AE-WT mice.  
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21Figure 7.1 Parasite load and serum FGL2 levels after E. multilocularis infection. 

(A) Parasite load in both E. multilocularis-infected wild type (WT) and E. 

multilocularis-infected fgl2
-/-

 (KO) mice assessed by using wet weighing at different stages of 

E. multilocularis infection. (B) Representative example of E. multilocularis infection from 

both AE-WT and AE-fgl2
-/- 

mice (KO) 4 month post infection (p.i.); arrows point at 

intraperitoneal metacestode tissue/lesions. (C) Serum FGL2 levels in AE-WT mice (Em) at 

different stages of E. multilocularis infection, as compared to non-infected control mice 

(Con). Data represent mean±SD of three independent experiments of five to six mice in each 

group. Comparison between groups was performed using a one-way ANOVA for statistical 

analysis. *P<0.05; **P<0.01. 

‘WT’, wild type mice; KO, fgl2
 
knock out mice; ‘Con’, Control, non-infected mice; ‘Em’, E. 

multilocularis infected mice (= AE-mice). 

 

 

Serum FGL2, TNF-α, and Th-related cytokine levels after E. multilocularis 

infection in fgl2
-/-

 and WT control mice 

Serum level of FGL2 was significantly higher in AE-WT mice both at the early 

and at the late stage of E. multilocularis infection when compared to non-infected WT 

controls (Figure 7.1), but there was no difference between 1 and 4 mo p.i.-levels. As 

expected, FGL2 was not detectable in any of the fgl2
-/-

 mice (AE-infected and 

non-infected controls) (data not shown). 



 

 142 

1mo after infection, TNF-α was significantly higher in AE-fgl2
-/-

 mice when 

compared to AE-WT mice (P= 0.037); IFN-γ and IL-17A were also higher at 1mo p.i. 

in AE-fgl2
-/-

 mice, but the difference between fgl2
-/-

 and WT mice was statistically not 

significant (Figure 7.2).  

 

22Figure 7.2 Proinflammtory and Th-related cytokine serum levels assessed in E. 

multilocularis-infected (AE) mice by Luminex technology. 

Data represent mean±SD of three independent experiments of five to six mice in each group. 

Comparison between groups was performed using a one-way ANOVA for statistical analysis. 

*P<0.05. 

‘WT’, AE-infected wild type mice; KO, AE-infected fgl2
 
knock out mice. 

 

Spearman correlation coefficients indicated a positive correlation between IL-4 

and FGL2 levels (r=0.363, P=0.023), as well as between IL-17A and FGL2 levels in 

the serum of AE-WT mice at 1mo and 4mo p.i. (Table 7.1). 

23Table 7.1 Correlations between serum level of FGL2 and IL-4, IL-17A  

  IL-4 IL-17A 

FGL2 Spearman’s rho 0.363
* 0.435

* 

Sig. 0.023 0.045 

N 21 21 

Note: * P< 0.05, ** P< 0.01. 

Relationship between FGL2 and Treg function 

Previous studies [23,24,25,26,27,28] have reported increased expression of 

fgl2-mRNA transcripts in Treg cells and proved a role for FGL2 as a putative Treg 

cell effector molecule. Thus this was not repeated anymore in this study. To 

determine whether FGL2 was important for the generation and maintenance of Treg 

cells in our murine AE-model, we analyzed both the expression of Treg cell markers 
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and of one of its related cytokines, IL-10, in peritoneal and spleen cells from 

AE-fgl2
-/-

 mice and AE-WT mice during E. multilocularis infection. Compared to 

non-infected mice, there was no change in the expression of CD4
+ 

CD25
+ 

Foxp3
+ 

both 

in peritoneal and in spleen cells from AE-fgl2
-/- 

mice, both at early and late stage of E. 

multilocularis infection. At 4mo p.i., expression of CD4
+ 

CD25
+ 

Foxp3
+
 in peritoneal 

as well as spleen cells from AE-WT mice was elevated, and was significantly higher 

than that observed in fgl2
-/-

 mice (P<0.05) (Figure 7.3). Expression of IL-10 in 

peritoneal and spleen cells from AE-fgl2
-/-

 mice at 1mo p.i. was unchanged when 

compared to non-infected fgl2
-/-

 mice, but was significantly lower than in AE-WT 

mice (P<0.05) (data not shown). 
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24Figure 7.3 Fork head box protein 3 (Foxp3) expression in CD4
+
CD25

+
 T cells after E. 

multilocularis infection, assessed by flow cytometry. 

(A) Foxp3 mean Fluorescence intensity (MFI) from AE-WT and AE-KO (fgl2
-/-

) mice, and 

non-infected mice as controls. (B) Gating strategy of the determination of Foxp3-expressing 

CD4
+
CD25

+
 T cells in both peritoneal exudate cells (PEC) and spleen cells (Spleen). A gate 

was positioned around lymphocytes, and cells within this gate were used for identifying 

CD4
+
CD25

+
T cells. Foxp3 histogram plots overlaid with the isotype control plot were used to 

determine the number of Fxop3
+
 cells. (C) Representative flow cytometry histogram plots of 

Foxp3
+
 T cells within CD4

+
CD25

+
T cells in freshly isolated peritoneal cells and spleen cells 

from both AE-WT and AE-KO (fgl2
-/-

) mice at different stages of E. multilocularis infection. 

(D) Expression of Foxp3
+
 T cells within CD4

+
CD25

+
T cells in freshly isolated peritoneal 

cells and spleen cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, normalized using non-infected 

controls, at different stages of E. multilocularis infection. Graphs show the mean±SD of 

relative numbers of Tregs in PECs and spleen cells of infected AE-WT and AE-KO (fgl2
-/-

)
 

mice. Data were collected from three independent experiments of five to six mice in each 

group. Comparison between groups was performed using a one-way ANOVA for statistical 

analysis. *P<0.05. 

‘WT’, wild type mice; KO, fgl2
 
knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’, 

spleen cells. 
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We then assessed the effect of targeted deletion of fgl2 on the ability of Treg 

cells to suppress the proliferation of normal CD4
+ 

CD25
-
T cells. Treg cells from fgl2

-/-
 

mice, either non-infected or E. multilocularis-infected, were less efficient in 

suppressing normal CD4
+
 T cell proliferation when compared with Treg cells from 

WT mice at all Treg-cells-to-effector-T-cells ratios. At all ratios investigated, 

actually, there was no inhibition of CD4
+
 T cell proliferation in cultures to which Treg 

cells from non-infected fgl2
-/-

 mice had been added. However, at ratios 1:1 and 1:2 of 

Treg cells to effector T cells, we observed partial inhibition of normal CD4
+
 T cell 

proliferation in cultures to which Treg cells from AE-fgl2
-/-

 mice had been added 

(Figure 7.4). 
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25Figure 7.4 Treg suppression assay using cells from both AE-WT and AE-KO (fgl2
-/-

)
 
mice 

after E. multilocularis infection. 

CD4
+
CD25

+ 
Tregs (suppressor cells) were isolated from spleen cells of both non-infected and 

infected WT mice and KO (fgl2
-/-

)
 
mice by using MACS and a following cell sorting by 

FACS. CD4
+
CD25

-
-T cells (responder) were isolated from spleen cells of non-infected WT 

mice by using MACS and a following cell sorting (FACS). CD4
+
CD25

+ 
Tregs (suppressor 

cells) and CD4
+
CD25

-
 T cells (responder cells) were co-cultured at different suppressor : 

responder ratios in the presence of syngeneic APCs and anti-CD3 antibody (0.5 μg/mL); 

suppression of proliferation was measured using BrdU ELISA. Data represent mean±SD of 

two independent experiments. A two-way ANOVA with a Bonferroni test for post hoc 

analysis were used to compare means. *P<0.05. 
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Functions of T and B cells from AE-fgl2
-/-

and AE-WT mice 

To further explore the effects of FGL2 on the immune response during E. 

multilocularis infection, we examined the numbers and percentage of T and B cells, 

as well as their function, after E. multilocularis infection, both in WT and fgl2
-/-

 mice. 

Although the percentages of CD4
+
 and CD8

+
 T cells within total lymphocytes, both in 

spleen cells and peritoneal cells, were not significantly different in AE-fgl2
-/-

 and 

AE-WT mice, CD4/CD8 ratio and percentage of B cells were significantly higher in 

AE-fgl2
-/- 

mice at 4mo p.i. as compared to AE-WT mice (Figures 7.4 and7. 5). 

Purified splenic CD4
+
 T cells from AE-fgl2

-/-
mice exhibited an increased proliferation 

in response to ConA, as compared to splenic CD4 T cells from AE-WT mice 

(P<0.01) (Figure 7.6). Compared to cells from AE-WT mice, T helper (Th) cells from 

AE-fgl2
-/-

 mice appeared oriented towards a Th1-response at early stage of infection; 

and at late stage of infection (4mo p.i.) towards a combined Th1/Th17-response, with 

a simultaneously lower Th2 response (Figure 7.6,7,8). Such polarization was 

confirmed at the mRNA level for IFN-γ and IL-4 by qRT-PCR in peritoneal cells but 

not in spleen cells (data not shown).  
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26Figure 7.5 B220 expression after E. multilocularis infection by using flow cytometry. 

(A) B220 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, 

and non-infected mice as controls. (B) Percentage of B220 within total lymphocytes in freshly 

isolated peritoneal and spleen cells from both AE-WT and AE-KO (fgl2
-/-

)
 
mice at different 

stages of E. multilocularis infection. (C) Representative flow cytometry histogram plots of 

B220 within total lymphocytes in freshly isolated peritoneal exudate cells and spleen cells 

from AE-WT and AE-KO (fgl2
-/-

)
 
mice, normalized using cells from non-infected controls, at 

different stages of E. multilocularis infection. Graphs show the mean±SD of relative numbers 

of B cells in PECs and spleens of AE-WT and AE-KO (fgl2
-/-

)
 
mice. Data were collected from 

three independent experiments of five to six mice in each group. Comparison between groups 

was performed using a one-way ANOVA for statistical analysis. *P<0.05. 

‘WT’, wild type mice; KO, fgl2
 
knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’, 

spleen cells. 
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27Figure 7.6 IFN-γ expression in CD4
+
 T cells after E. multilocularis infection by using flow 

cytometry. 

(A) IFN-γ mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, 

and non-infected mice as controls. (B) Representative flow cytometry histogram plots of 

IFN-γ
+
 T cells within CD4

+
 T cells in freshly isolated peritoneal and spleen cells from both 

AE-WT and AE-KO (fgl2
-/-

)
 
mice at different stages of E. multilocularis infection. (C) 

Expression of IFN-γ
+
 T cells within CD4

+
 T cells in freshly isolated peritoneal and spleen 

cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, normalized using cells from non-infected 

controls, at different stages of E. multilocularis infection. Graphs show the mean±SD of 

relative numbers of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2
-/-

)
 
mice. 

Data were collected from three independent experiments of five to six mice in each group. 

Comparison between groups was performed using a one-way ANOVA for statistical analysis. 

*P<0.05. 

‘WT’, wild type mice; KO, fgl2
 
knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’, 

spleen cells.  
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28Figure 7.7 IL-4 expression in CD4
+
 T cells after E. multilocularis infection by using flow 

cytometry. 

(A) IL-4 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, 

and non-infected mice as controls. (B) Representative flow cytometry histogram plots of 

IL-4
+
 T cells within CD4

+
 T cells in freshly isolated peritoneal and spleen cells from both 

AE-WT and AE-KO (fgl2
-/-

)
 
mice at different stages of E. multilocularis infection. (C) 

Expression of IL-4
+
 T cells within CD4

+
 T cells in freshly isolated peritoneal and spleen cells 

from AE-WT and AE-KO (fgl2
-/-

)
 
mice, normalized using cells from non-infected controls, at 

different stages of E. multilocularis infection. Graphs show the mean±SD of relative numbers 

of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2
-/-

)
 
mice. Data were 

collected from three independent experiments of five to six mice in each group. Comparison 

between groups was performed using a one-way ANOVA for statistical analysis. *P<0.05. 

‘WT’, wild type mice; ‘KO’, fgl2
 
knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’, 

spleen cells. 
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29Figure 7.8 IL-17A expression in CD4
+
 T cells after E. multilocularis infection by using 

flow cytometry. 

(A) IL-17A mean Fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2
-/-

)
 

mice, and non-infected mice as controls. (B) Representative flow cytometry histogram plots 

of IL-17A
 +

 T cells within CD4
+
 T cells in freshly isolated peritoneal and spleen cells from 

both AE-WT and AE-KO (fgl2
-/-

)
 
mice at different stages of E. multilocularis infection. (C) 

Expression of IL-17A
 +

 T cells within CD4
+
 T cells in freshly isolated peritoneal and spleen 

cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, normalized using cells from non-infected 

controls, at different stages of E. multilocularis infection. Graphs show the mean±SD of 

relative numbers of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2
-/-

)
 
mice. 

Data were collected from three independent experiments of five to six mice in each group. 

Comparison between groups was performed using a one-way ANOVA for statistical analysis. 

*P<0.05. 

‘WT’, wild type mice; ’KO’, fgl2
 
knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’, 

spleen cells.  
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Maturation of DCs from AE-fgl2
-/-

and AE-WT mice 

To study the role of FGL2 on different subsets of DCs, namely CD11b
+
 and 

CD11c
+
 DCs, we ex vivo assessed the maturation level both in peritoneal cells and in 

spleen cells from infected AE-fgl2
-/-

 and AE-WT mice, and in non-infected mice as 

controls. Among CD11b
+
 DCs, expression of maturation markers, i.e. CD80

+
 in the 

peritoneal cells and CD86
+
 in spleen cells, was higher at 4mo p.i. in AE-fgl2

-/-
 mice 

than in AE-WT mice (Figures 7.9 and 10). Among CD11c
+ 

DCs, expression of the 

maturation marker CD86, but not of CD80, was higher both in the peritoneal and 

spleen cells from AE-fgl2
-/-

 mice at 4mo p.i. (Figure 7.11). Taken together, these 

observations suggested that FGL2 may impair maturation of the 2 subpopulations of 

DCs at the late stage of E. multilocularis infection.  
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30Figure 7.9 CD80 expression in CD11b
+
DCs after E. multilocularis infection by using flow 

cytometry. 

(A) CD80 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, 

and non-infected mice as controls. (B) Representative flow cytometry histogram plots of 

CD80
+
cells within CD11b

+
DCs in freshly isolated peritoneal cells and spleen cells from both 

AE-WT and AE-KO (fgl2
-/-

)
 
mice at different stages of E. multilocularis infection. (C) 

Expression of CD80
 +

 cells within CD11b
+
 DCs in freshly isolated peritoneal and spleen cells 

AE-WT and AE-KO (fgl2
-/-

)
 
mice, normalized using cells from non-infected controls, at 

different stages of E. multilocularis infection. Graphs show the mean±SD of relative numbers 

of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2
-/-

)
 
mice. Data were 

collected from three independent experiments of five to six mice in each group. Comparison 

between groups was performed using a one-way ANOVA for statistical analysis. *P<0.05. 

‘WT’, wild type mice; KO, fgl2
 
knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’, 

spleen cells.  
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31Figure 7.10 CD86 expression in CD11b
+
 DCs after E. multilocularis infection by using 

flow cytometry. 

(A) CD86 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, 

and non-infected mice as controls. (B) Representative flow cytometry histogram plots of 

CD86
+
 cells within CD11b

+
 DCs in freshly isolated peritoneal and spleen cells from both 

AE-WT and AE-KO (fgl2
-/-

)
 
mice at different stages of E. multilocularis infection . (C) 

Expression of CD86
+
 cells within CD11b

+
 DCs in freshly isolated peritoneal cells and spleen 

cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, normalized using cells from non-infected 

controls, at different stages of E. multilocularis infection. Graphs show the mean±SD of 

relative numbers of Tregs in peritoneal and spleen cells of AE-WT and AE-KO (fgl2
-/-

)
 
mice. 

Data were collected from three independent experiments of five to six mice in each group. 

Comparison between groups was performed using a one-way ANOVA for statistical analysis. 

*P<0.05. 

‘WT’, wild type mice; KO, fgl2
 
knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’, 

spleen cells.  



 

 155 

 

32Figure 7.11 CD80 expression in CD11c
+
 DCs after E. multilocularis infection by using 

flow cytometry. 

(A) CD80 mean fluorescence intensity (MFI) in cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, 

and non-infected mice as controls. Representative flow cytometry histogram plots of CD80
+
 

cells within CD11c
+
 DCs in freshly isolated peritoneal and spleen cells from both AE-WT and 

AE-KO (fgl2
-/-

)
 
mice at different stages of E. multilocularis infection. (C) Expression of 

CD80
 +

 cells within CD11c
+
 DCs in freshly isolated peritoneal and spleen cells from AE-WT 

and AE-KO (fgl2
-/-

)
 
mice, normalized using cells from non-infected control, at different stages 

of E. multilocularis infection. Graphs show the mean±SD of relative numbers of Tregs in 

peritoneal and spleen cells of AE-WT and AE-KO (fgl2
-/-

)
 
mice. Data were collected from 

three independent experiments of five to six mice in each group. Comparison between groups 

was performed using a one-way ANOVA for statistical analysis. *P<0.05, ** P<0.01. 

‘WT’, wild type mice; KO, fgl2
 
knock out mice; ‘PEC’, peritoneal exudate cells; ‘Spleen’, 

spleen cells. 
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T cell functions and maturation of DCs in primary spleen cells from 

AE-fgl2
-/-

and AE-WT mice, after ConA stimulation 

Flow cytometric analyses showed that both expression of CD4
+ 

IFN-γ
+
 and CD4

+ 

IL-17A
+
 were significantly higher in spleen cells from AE-fgl2

-/-
 mice at 4mo p.i., 48h 

after exposure to ConA, compared to AE-WT mice. There was no difference in 

expression of IL-4 between spleen cells from AE-fgl2
-/-

 mice and AE-WT mice. CD4
+ 

IL-2
+
 expression was significantly up-regulated in spleen cells from AE-fgl2

-/-
 mice at 

4mo p.i. (Figure 7.12A).  

48h after exposure to ConA, surface expression of CD80 in CD11b
+
DCs from 

AE-fgl2
-/-

 mice at 4mo p.i. was significantly higher, than in CD11b
+
DCs from 

AE-WT mice. Both CD80 and CD86 expression in CD11c
+
DCs from AE-fgl2

-/-
 mice 

at 4mo p.i. was higher than in CD11c
+
 DCs from AE-WT mice (Figure 7.12B).  

 

33Figure 7.12 T cell reactivity and DC maturation in response to Concanavalin (Con) A 

stimulation after E. multilocularis infection. 

(A) Expression of T cell reactivity markers in freshly isolated spleen cells from AE-WT and 

AE-KO (fgl2
-/-

)
 
mice, co-cultured with ConA, normalized using cells non-infected controls, at 

different stages of E. multilocularis infection. (B) Expression of DC maturation markers in 

freshly isolated spleen cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, co-cultured with ConA, 

normalized using cells from non-infected controls, at different stages of E. multilocularis 

infection. Data were collected from three independent experiments of five to six mice in each 

group. Comparison between groups was performed using a one-way ANOVA for statistical 

analysis. *P<0.05, ** P<0.01. 
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T cell functions and maturation of DCs in primary spleen cells from 

AE-fgl2
-/-

and AE-WT mice, after exposure to E. multilocularis vesicle fluid (VF) 

Flow cytometric analyses showed that, 96h after exposure to VF, expression of 

IL-4 was significantly higher in spleen cells from AE-WT mice at 4mo p.i. than in 

cells from AE-WT mice. However, there was no difference in expression of either 

IFN-γ or IL-17A between cells from AE-fgl2
-/-

 mice and AE-WT mice. Expression of 

IL-2 was significantly up-regulated in cells AE-fgl2
-/-

 mice at 4mo p.i., 4 days after 

exposure to VF, as compared to cells from AE-WT mice (Figure 7.13A).  

Surface expression of CD80 both in CD11b
+ 

and CD11c
+
 DCs from AE-fgl2

-/-
 

mice at 4mo p.i. was significantly higher, 96h after exposure to VF, than in DCs from 

AE-WT mice. However, there was no difference in CD86 expression in both 

subpopulations of DCs from AE-fgl2
-/-

 mice after exposure to VF, compared to DCs 

from AE-WT mice (Figure 7.13B). 
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34Figure 7.13 T cell reactivity and DC maturation in response to Vesicle fluid (VF) 

stimulation after E. multilocularis infection. 

(A) Expression of T cell reactivity markers in freshly isolated spleen cells from AE-WT and 

AE-KO (fgl2
-/-

)
 
mice, co-cultured with VF, normalized with non-infected controls, at different 

stages of E. multilocularis infection. (B) Expression of DC maturation markers in freshly 

isolated spleen cells from AE-WT and AE-KO (fgl2
-/-

)
 
mice, co-cultured with VF, normalized 

using cells from non-infected controls, at different stages of E. multilocularis infection. Data 

were collected from three independent experiments of five to six mice in each group. 

Comparison between groups was performed using a one-way ANOVA for statistical analysis. 

*P<0.05, ** P<0.01. 

 

T cell functions, maturation of DCs, and co-stimulation in spleen cells from  

non-infected WT mice, after exposure to recombinant FGL2 and anti-FGL2 

monoclonal antibodies 

    To further assess the role of FGL2 in T cell functions and DC maturation in our 

mouse model, we cultured spleen cells from non-infected WT mice with/without 

recombinant FGL2 and anti-FGL2-MAbs. Flow cytometric analyses showed that the 

expression of both Foxp3 and IL-10 on CD4 T cells was increased in response to 

recombinant FGL2 in a dose-dependent manner (Figure 7.14). CD4
+ 

Foxp3
+
 

expression was decreased in the presence of anti-FGL2 in response to VF, which 

indicated that E. multilocularis metabolic components may exert immune-modulatory 

activity. Conversely, CD4
+ 

IL-17A
+
 expression was decreased in the presence of high 

concentration of recombinant FGL2 (5μg/mL), but increased in a non-specific manner 

in response to ConA; there was no influence of VF on IL-17A expression (Figure 

7.14). Like CD4
+ 

Foxp3
+
, CD4

+ 
IFN-γ

+
 expression was specifically increased in 

response to VF. For DCs, expression of CD86 on CD11c
+
 DCs was decreased in the 
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presence of recombinant FGL2, but increased in an antigen-specific manner in 

response to VF. However, expression of CD86 and MHCII on CD11b
+
 DCs showed 

the opposite. Expression of CD40 on CD11c
+
 DCs and CD80 on CD11b

+
 DCs was 

increased in the presence of anti-FGL2 (Figure 7.14). CD62L, a cell adhesion 

molecule which is highly expressed on naïve lymphocytes, but not expressed on 

effector memory T-lymphocytes [29], was found to be increased in the presence of 

recombinant FGL2 (1μg/mL), but decreased in the presence of anti-FGL2 on both 

CD4 T cells and total lymphocytes (Figure 7.14), which indicated that FGL2 may 

play an important role in down-regulating lymphocyte co-stimulation and effector cell 

production.  

 

35Figure 7.14 Recombinant FGL2 down-regulates T cell reactivity and DC maturation in 

vitro. 

 

    Different concentrations of recombinant FGL2 (0, 1, 5 μg/mL) and anti-FGL2 mAb (10 

μg/mL) were added to primary spleen cells which were isolated from non-infected WT mice. 

Expression of T cell reactivity and DC maturation markers were determined by flow 

cytometry. Data were collected from three independent experiments of five mice in each 

group. Comparison between groups was performed using a one-way ANOVA for statistical 

analysis. *P<0.05, ** P<0.01. 
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IL-17A contributes to FGL2 secretion in vitro 

    Spearman correlation coefficients indicated a positive correlation between serum 

IL-17A level and FGL2 expression (r=0.435, P=0.045) in the serum from WT mice 

1mo to 4mo p.i. in experimental mice under study (Table 7.1). To examine whether 

IL-17A contributes to FGL2 secretion, we employed “up and down experiments” as 

follows: spleen cells from non-infected WT mice were co-cultured either with 

recombinant IL-17A as an external stimulus, or with anti-IL-17A for blocking 

purpose, followed by a subsequent detection of FGL2 expression in the supernatant. 

Respective quantitative analyses by ELISA showed that recombinant IL-17A 

increased FGL2 secretion in a dose-dependent manner, while anti-IL-17A completely 

blocked FGL2 secretion (Figure 7.15).  

 

36Figure 7.15 Recombinant IL-17A contributes to FGL2 secretion in vitro. 

Different concentrations of recombinant FGL2 (0, 0.5, 1, 2 μg/mL) and anti-IL-17A mAbs (1 

μg/mL) were added to primary spleen cells isolated from non-infected WT mice. FGL2 

expression in the supernatant of cell cultures was determined by ELISA. Data were collected 

from three independent experiments of five mice in each group. Comparison between groups 

was performed using a one-way ANOVA for statistical analysis. *P<0.05, ** P<0.01. 

Discussion 

In larval E. multilocularis infection, immune tolerance and/or down-regulation of 

immunity is a marked characteristic increasingly observed towards the late stage of 

infection in both humans [30] and in experimentally infected mice [6]. In this context, 

preliminary findings have shown that Tregs play an important role in the orchestration 

that controls inflammatory/immune response in AE and finally allows long-term 

parasite survival, proliferation and maturation [7]. No assessment of the contribution 

of the Treg-linked effector molecule FGL2 had so far ever been studied in 

parasite-host tolerance processes. E. multilocularis infection appeared to be a good 

model to study its intervention and allowed us to show for the first time that, in E. 
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multilocularis infection 1) FGL2 contributes to the outcome of infection by the 

metacestode; 2) FGL2 partly contributes to Treg functions; 3) FGL2 can 

down-regulate the maturation of DCs, suppress Th1 and Th17 immune responses, and 

support Th2 and Treg immune responses, 4) FGL2 contribute to the induction of B 

cell death; and finally 5) IL-17A contributes to FGL2 secretion.  

One of the first and major aims of our experiments was to study the role of 

Treg-expressed FGL2 in the outcome of E. multilocularis infection. Using fgl2
-/-

 

infected mice, the respective findings were clear: infected AE-WT mice had 

significantly more parasite load at the late stage of infection, as compared to 

AE-fgl2
-/-

 mice. This was accompanied by increased serum FGL2 levels while, as 

expected, no serum FGL2 could be determined in fgl2
-/-

 mice; respective fgl2 mRNA 

expression levels in both peritoneal and spleen cells were also increased in AE-WT 

mice and there was a significant increase in Tregs. Taken together, these results 

support the hypothesis that Treg-expressed FGL2 contributes to the course and 

outcome of E. multilocularis infection. Such an effect of FGL2 has been shown in 

other models of infection, such as viral infection: antibodies directed against the C 

terminal domain of FGL2, which is known to account for its immunosuppressive 

activity, protected mice from the lethality of MHV-3 infection. Transfer of fgl2
+/+

 

Tregs to fgl2
-/-

 mice increased mortality to MHV-3 infection, further supporting a role 

for Treg-expressed FGL2 in the outcome of the infection [42]. However, 

FGL2-deficient and control mice exhibit similar degrees of T cell expansion, 

immunopathology, and/or pathogen burdens during protozoan (Toxoplasma gondii), 

bacterial (Yersinia enterocolitica, Listeria monocytogenes, and Mycobacterium 

tuberculosis), and viral (murine gamma-herpesvirus-68 and Sendai) infections [31]. 

How FGL2 influences or modulates the outcome of experimental AE can, so far, 

only be discussed speculatively. In E. multilocularis infection, as reported in previous 

studies [6,32,33], cellular immunity that includes a rather Th1-oriented cytokine 

secretion profile can provide some control over metacestode development and/or 

proliferation at the early/initial stage of infection, while a progressively Th2-oriented 

immune response, which becomes marked at the later stage of infection, yields a now 

much more rapid metacestode growth. The control of metacestode proliferation 

appears to be predominantly T cell-dependent, as revealed by the use of different 

immune-compromised mouse models [34,35,36], and by observations in human 

AE-patients with immune suppression-associated conditions [37,38,39,40]. It is 

therefore conceivable that the proliferating metacestode itself specifically activates 

and concurrently modulates the immune response to its own advantage. Tregs, which 

over-express a subset of regulatory cytokine genes including IL-10 and TGF-β, 

resulting in the relative suppression of Th1 responses and endorsement of Th2 

polarization, play a very important role in promoting immune tolerance in various 
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models of parasitic diseases [41]: they were up-regulated in our study; a previous 

study strongly suggested that they are also up-regulated in human AE-patients [42]; 

and, finally, elevated IL-10 as well as TGF-β synthesis/secretion has been repeatedly 

shown in experimental murine and human AE [43].  

Various molecular and cellular events have been proposed to explain the 

mechanism by which Tregs suppress immune responses. These include cell-to-cell 

contact-dependent suppression, cytotoxicity, and immunosuppressive cytokine 

secretion [44]. It is generally accepted that anti-inflammatory cytokines, such as IL-10 

and TGF-β, are important co-mediators of Treg activity in vivo [44]. However, the 

importance of these cytokines remains controversial, as several reports have 

demonstrated that antibodies against IL-10 and TGF-β fail to block Treg suppressive 

function. Also, Tregs from TGF-β–deficient mice have normal suppressive activity in 

vitro and can prevent development of autoimmune disease [44]. In addition, the 

ambiguous role of TGF-β, which is both a strong inducer of immune tolerance and an 

activator of the pro-inflammatory IL-17 cytokine system, remains puzzling [45,46]. 

Recently, it was reported that in BALB/cJ mice, Tregs demonstrate a constitutively 

high expression of FGL2 encoding mRNA, which even increased after MHV-3 

infection, and it was suggested by adoptive transfer of wild-type Tregs into resistant 

fgl2
-/-

 mice that FGL2 might be an important Treg effector molecule [47]. In a 

previous explorative study, we found that fgl2 gene expression was significantly 

increased in the periparasitic liver tissue of mice perorally infected with 

E.multilocularis eggs [8]. Our resulting working hypothesis was thus that FGL2, 

playing important roles in both innate and adaptive immunity, similar to other 

members of the fibrinogen-like family of proteins that include tenascin and 

angiopoietin, could be another key-actor in E. multilocularis-host interactions, 

unknown until now. We were postulating that, using the present murine AE-model, 

we could elucidate new modes of action promoting and maintaining immune 

tolerance [48] that favors metacestode survival. In this study, we could for the first 

time experimentally demonstrate that recombinant FGL2 suppresses T cell 

proliferation in response to Con A and to E. multilocularis antigenic metabolites 

present in the VF. FGL2 also inhibited maturation of dendritic cells (DCs), suppressed 

Th1 and Th17 immune responses, and polarized an allogeneic immune response 

towards a Th2-oriented cytokine profile, both in vivo and in vitro. Conversely, in 

fgl2
-/-

 mice, Th1 cytokine levels and activity of DCs, B- and T cells were all 

increased. FGL2 serum levels correlated with IL-4 expression in wild type mice 

before and after E.multilocularis infection, suggesting a close relationship between 

FGL2 and Th2-related immune response. The temporally increasing development of a 

Th2 immune response in wild type mice after E.multilocularis infection corroborated 

the generally known effect of FGL2 to promote a Th2 cytokine production, with a 
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concomitant inhibition of Th1- and Th17-oriented immunity. Furthermore, serum 

levels of IL-17A showed a positive correlation with FGL2 serum expression, 

suggesting for the first time that IL-17A could contribute to FGL2 secretion. This was 

confirmed in vitro, in that recombinant IL-17A promoted the production of FGL2 in 

spleen cells, while anti-IL-17A blocked respective FGL2 secretion.  

We also investigated the importance of FGL2 for the function of Tregs, by 

directly assessing the effect of recombinant FGL2 and of an anti-FGL2 MAb on Treg 

activity in vitro. Recombinant FGL2 promoted Treg function, while anti-FGL2 

completely abrogated Treg function, thus providing experimental support for our 

hypothesis. Further evidence for the role of FGL2 in Treg function was provided by 

the observation that fgl2-deficient mice had both decreased Treg numbers and 

impaired Treg function. The mechanism by which FGL2 mediates its 

immunosuppressive activity is currently under intense investigation. Recent data have 

indicated that FGL2 binds to the inhibitory FcγRIIB receptor (CD32) expressed 

primarily on APCs. This FGL2-FcγRIIB interaction was shown to induce B cell 

apoptosis and inhibit DC maturation [10]. In E. multilocularis infection, several cell 

types may express inhibitory FcγRIIB, such as macrophages (including the 

‘epithelioid cells’ that line the ‘immuno-modulating’ laminated layer), and also the 

numerous CD8
+
 T cells present in the periparasitic infiltrate; CD8

+
 T cells have 

actually been shown to express this receptor in a murine model of Trypanosoma cruzi 

[49]. Taken together, and combined with our recent data on the course of cytokine 

expression by the periparasitic immune infiltrate in E.multilocularis infection [50], 

our data suggest that, under the influence of E. multilocularis metabolites (a) IL-6, 

TNF-α, IFN-γ and IL-17 are released; (b) these, especially IFN-γ as demonstrated 

previously [31], but also IL-17A as we showed in this study, contribute to FGL2 

secretion by Tregs and other cells; and (c) once FGL2 is released, it can bind to 

FcγRIIB receptor, down-regulate the maturation of DCs, decrease co-stimulation of 

effector T cells, suppress Th1 and Th17 immune response, accelerate Th2 immune 

responses, induce apoptosis of B cells, and thus overall lead to an immune suppressed 

status that favors the continuous “tumor-like” progression of the parasitic metacestode 

tissue (Figure 16 ). Direct inhibition of macrophage and/or mast cell functions could 

also be induced by such a binding [51][50].  
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37Figure 7.16 Schematic diagram summarizing the hypothesized mechanism of FGL2-related 

regulation of immune response involved in the host-parasite relationship in murine E. 

multilocularis infection. 

 

Based on the present findings in experimental rodents, FGL2 may be proposed as 

a marker of progression of parasitic lesions, thus of the clinical status of AE patients 

with E. multilocularis infection. This is currently under investigation. We may also 

anticipate that FGL2 serum levels could be useful in predicting the course and 

outcome and/or parasite activity in human AE. Furthermore, our findings may provide 

a rationale for studying FGL2 as a target for immunomodulatory treatment option in 

patients with progressive AE. Our data demonstrate that FGL2, together with IL-17 

and by promoting Treg cell activity, appears as a key-player in the orchestration of the 

outcome of E. multilocularis infection; this study gives evidence for a role of IL-17 in 

FGL2 regulation, and suggest that targeting FGL2 could be used for (a) the 

assessment of a present clinical status of AE-patients, (b) for the monitoring of 

conventionally treated AE patients, and (c) for the speculative development of novel 

treatment approaches in infectious diseases, including AE. 
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Materials and Methods 

Ethics Statement 

The animal study was performed in strict accordance with the recommendations 

of the Swiss Guidelines for the Care and Use of Laboratory Animals. The protocol 

was approved by the Commission for Animal Experimentation of the Canton of Bern 

(approval no. BE_103/11). Every effort was made to minimize suffering. 

Experimental design, parasite sampling and histological examinations 

    Mice. fgl2
-/-

 mice were generated by the Multi Organ Transplant Program, 

University of Toronto, and the methodology for their production has been described 

elsewhere [52]. In brief, fgl2
-/-

 mice were obtained by transfecting 129Sv embryonic 

stem cells with the knockout construct (also derived from 129Sv). These stem cells 

were then injected into C57BL/6 blastocysts and the resulting chimeras were 

backcrossed for 10 generations into a C57BL/6 background [52]. Female fgl2
-/-

 mice 

and respective WT animals, aged between 8-10 weeks, were used for intraperitoneal 

infection with E. multilocularis as previously described [37,38], and age and gender 

matched littermates were used for mock-infected control groups. From experimentally 

infected mice, all macroscopically visible parasite tissues were carefully collected 

upon necropsy as previously described [35,53]. 

Parasite and experimental infection. The parasite used in this study was a cloned 

E. multilocularis (KF5) isolate maintained by serial passages (vegetative transfer) in 

C57BL/6 mice [53]. In order to prepare the infection material for mice, metacestode 

tissue was obtained from previously infected mice by aseptic removal from the 

peritoneal cavity. After grinding the tissue through a sterile 50 μm sieve, 

approximatively 100 freshly prepared acephalic vesicular cysts were suspended in 100 

μL RPMI-1640 (Gibco, Basel,Switzerland) and injected intraperitoneally. Each 

experimental group included 6 animals unless otherwise stated. Control mice 

(mock-infection) received 100μL of RPMI-1640 only. 

Tissue mass and quantification. Mice were sacrificed by CO2 euthanasia at 1mo 

(corresponding to an early stage of chronic infection) and 4mo(corresponding to a 

middle/late stage of disease) post-infection. Blood was collected by cardiac puncture, 

and serum samples were stored at -80°C. Parasite tissues were dissected and, if 

present, fat and connective tissues were removed carefully for subsequent 

wet-weighing of the parasite mass. 

Cell preparations and Treg isolation. Peritoneal exudate cells (PEC) and splenic 

cells from naïve (control) and E. multilocularis infected (AE) fgl2
-/-

 and WT mice 

were collected by peritoneal rinsing, or grinding separately with 5 mL RPMI-1640. 

Cells were subsequently washed twice with HBSS and resuspended in RPMI-1640 
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(Gibco) for cell staining or cell culture separately. Macrophages were removed from 

each group of mice after incubation of PEC or spleen cell suspension in 5 mL 

RPMI-1640+20% FCS in a Petridish for 2 h at 37 °C, in an atmosphere containing 5% 

CO2 as follows: non-adherent cells were separated from macrophage-enriched 

adherent cells and were positively selected by MACS (magnetic cell separation) using 

the mouse CD4
+
 CD25

+
 T cell Isolation Kit (Miltenyi Biotec, Germany) according to 

the manufacturer's instructions. Highly (N99%) enriched iTreg cells were obtained by 

additional cell sorting after the MACS procedure, and finally washed and resuspended 

in complete RPMI-1640. 

Tissue fixation and sectioning. Parasite samples were fixed in 4% 

paraformaldehyde in neutral buffered formalin for a minimum of 24 h, embedded in 

paraffin, and cut into 4μm serial sections. Paraffin-embedded parasite samples of 

experimental mice were HE and PAS-stained for pathological observations. 

Con A or Vesicle fluid (VF) stimulation 

Spleen cells were plated at a concentration of 2 ×10
5
 cells/well in 200 μL of 

RPMI-1640 complete medium (Gibico, Basel, Switzerland) and stimulated with 2 

μg/mL Con A (Sigma-Aldrich, Basel, Switzerland) for 48h, or 10μg/mL VF for 96h at 

37 °C and 5% CO2. The same cell reactions performed without ConA and VF were 

used as negative controls.  

rFGL2 and anti-FGL2 stimulation 

Spleen cells were plated at a concentration of 2 ×10
5
 cells/well in 200 μL of 

RPMI-1640 complete medium (Gibico, Basel, Switzerland) and stimulated with 

1μg/mL and 5μg/mL rFGL2 or 1μg/mL anti-FGL2 (Sigma-Aldrich, Basel, 

Switzerland) for 48h at 37 °C and 5% CO2. The same cell reactions performed 

without rFGL2 or anti-FGL2 were considered as negative controls. 

rIL-17A and anti-IL-17A stimulation 

Spleen cells were plated at a concentration of 2 ×10
5
 cells/well in 200 μL of 

RPMI-1640 complete medium (Gibico, Basel, Switzerland) and stimulated with 0.5, 

1, 2 and 4μg/mL rIL-17A or 1μg/mL anti-IL-17A (Sigma-Aldrich, Basel, 

Switzerland) for 48h at 37 °C and 5% CO2. The same cell reactions performed 

without rIL-17A or anti-IL-17A were considered as negative controls. 

Cell proliferation assay 

Cell proliferation was assayed using the colorimetric BrdU cell proliferation 

ELISA kit (Calbiochem, Merck chemicals, Switzerland). Around either 48h after 

ConA stimulation or 96h after VF stimulation after seeding of the cells, BrdU was 

added to a final concentration of 1 μM. After incubation for a further 16 h, BrdU 

incorporation was measured using a spectrophotometric plate reader at 450-540 nm 

and at 450-595 nm for a repeated reading. 
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Flow cytometry 

Aliquots of 10
5
 cells/100 μL of staining buffer per well were incubated each with 

1 μg of purified anti-CD16/CD32 for 20 min in the dark in order to block non-specific 

binding of antibodies to the FcγIII and FcγII receptors. Subsequently these cells were 

stained with surface marker separately for 15 min with 1 μg of primary antibodies: 

FITC-labeled anti-CD4, anti-CD80, anti-CD86; PE-labeled anti-CD8, anti-CD11b, 

anti-CD11c, anti-B220, and PECy 5.5-labeled anti-CD4, FITC-labeled anti-CD25. All 

antibodies were from BD Pharmingen (Heidelberg, Germany). For intracellular 

staining, PEC or splenocytess were first incubated with Inside Fix for 20mins at room 

temperature, then stained with PE-labeled anti-IFN-r, anti-IL-4, anti-IL-17A, 

anti-IL-2, anti-IL-10 and anti-Foxp3 (BD Pharmingen, Palo. Alto, CA, USA) in Inside 

Perm for 15min. The corresponding primary labeled isotype control antibodies were 

used for staining controls. Cells resuspended in 300 μL of buffer (0.15 M NaCl, 1 mM 

NaH2PO4 H2O, 10 mM Na2HPO4 2H2O and 3 mM NaN3) were analyzed in a flow 

cytometer (Becton Dickinson, Heidelberg, Germany) using the corresponding CELL 

QUEST software. 

RNA extraction and cDNA synthesis 

Approximately 5×10
6
 of cells were prepared from non-infected and from 

E.multilocularis- infected -fgl2-/- (AE- fgl2
-/-

) or E. multilocularis- infected WT 

(AE-WT) mice; these cells were used for cytoplasmic RNA extraction. RNA yield 

and purification were performed using the RNeasy mini kit (Qiagen, Switzerland) 

according to the standard protocol suitable for freshly harvested cells. After removing 

contaminated DNA from the isolated RNA using DNaseI (Fermentas, Vilnius, 

Lithuania), the RNA samples were used for cDNA synthesis using the Omniscript® 

Reverse Transcription kit (Qiagen, Hilden, Germany). Briefly, 0.5 μg/μL of random 

Primer (Promega, Dübendorf, Switzerland) and 2μg of total RNA were used in a final 

volume of 20μL of reaction mixture and incubated at 37 °C overnight. cDNA was 

incubated at 95 °C for 3 min and frozen at -80 °C until use for qRT-PCR. 

Quantitative real-time RT- PCR analysis  

Quantitative real time RT-PCR (qRT-PCR) was run in a thermocycler (Qiagen, 

Hilden, Germany) with the SYBR Green PCR premix (Qiagen, Hilden, Germany) 

following the manufacturer’s instructions. Thermocycling was performed in a final 

volume of 10 μL containing 2 µL cDNA and 10 pM of each primer (Table 1). To 

normalize for gene expression, mRNA expression of the housekeeping gene β-actin 

was measured. For every sample, both the housekeeping and the target genes were 

amplified in triplicate using the following cycle scheme: after initial denaturation of 

the samples at 95 °C for 15 min, 40 cycles of 95 °C for 15 s and 55 °C (or other) for 

30 s were performed. Fluorescence was measured in every cycle, and a melting curve 

was analyzed after the PCR by increasing the temperature from 55 to 95 °C (0.5 °C 
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increments). A defined single peak was obtained for all amplicons, confirming the 

specificity of the amplification.  

Suppression assay 

In vitro suppression assays were carried out with cultures of 2×10
4
 CD4

+
CD25

+
 

T cells from WT mice as responder cells, together with 8 × 10
4
 irradiated spleen cells 

as APC and titrated numbers of CD4
+ 

CD25
+ 

Treg cells from either E.multilocularis- 

infected AE-fgl2
-/-

 or AE-WT mice as suppressor cells, compared with non-infected 

controls. Cultures were stimulated with Con A (1 μg/ml) for 48 h and BrdU was 

added for the last 16 h to measure proliferation of effector T cells. For antibody 

blockade studies, titrated concentrations of an MAb to FGL2 (no. H00010875-M01 

monoclonal IgG2a Ab; Abnova, Luzern, Switzerland) were added to the cell cultures 

of CD4
+
 effector T cells and CD4

+ 
CD25

+ 
Treg cells sorted from WT mice, at a 1:4 

suppressor:responder cell ratio in the presence of APCs and ConA. 

Sandwich Enzyme-Linked Immunosorbent Assay for FGL2 

After washing of pre-coated plates 3 times with Tris-Tween buffered saline, 

serum samples (50 μL) were added to each well, and after a 2-hour incubation at room 

temperature and three washes with Tris-Tween buffered saline, the wells were 

incubated with mouse monoclonal FGL2 detection antibody for 1 hour at room 

temperature. The plates were washed again for 3 times, and polyclonal anti-FGL2 

binding was detected with a secondary horseradish peroxidase-conjugated anti-rabbit 

antibody. Tetramethlybenzidine was then added and absorbance was measured at 450 

nm using a Tecan Sunrise® plate reader. 

Luminex for cytokine expression in the serum 

Cytokine levels in mouse serum samples were assessed undiluted using 

microsphere-based multiplex assays (MILLIPLEX® MAP Mouse 

Cytokine/Chemokine Multiplex Assays MPXMCYTO-70K, Merck Millipore, Zug, 

Switzerland) that were performed according to the manufacturer’s instructions. Serum 

concentrations of the following cytokines were measured: IL-1β, IL-4, IL-10, IL-17A, 

IFN-γ and TNF-α. A minimum of 50 beads per analyte was measured on a 

Bioplex-200 platform (Bio-Rad, Hercules, CA, USA). Calibration was performed 

using BioPlex Manager software version 4.1.1 by linear regression analysis using the 

four lowest standards provided by the manufacturer. When measured cytokine 

concentrations were below the detection limit, a value corresponding to the detection 

limit of the assay was used for statistical analysis.   

Statistical analyses 

All the data were analyzed by SPSS 17.0. The results were presented as means ± 

SD. One-way ANOVA and Student’s t-test were used to compare the differences 

between groups, and Spearman’s rho was used to analyze the correlation coefficient. 

P<0.05 was considered to indicate statistical significance. 
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Main conclusions and remarks: 

1) FGL2 contributes to the outcome of infection by the metacestode.  

2) FGL2 partly contributes to Treg functions.  

3) FGL2 can down-regulate the maturation of DCs, suppress Th1 and Th17 immune 

responses, and support Th2 and Treg immune responses.  

4) FGL2 contributes to the induction of B cell death.  

5) IL-17A contributes to FGL2 secretion.   
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8. General discussion 
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8.1 Does Echinococcus multilocularis influence the surrounding liver 

parenchyma?  

8.1.1 Influence on hepatocyte proliferation and anti-apoptosis, growth arrest and 

apoptosis  

Changes in the metabolic pathways involved in the regulation of hepatic cell 

proliferation and growth arrest, and especially in the MAPKs system, have been 

extensively studied in infectious/ inflammatory conditions, especially of viral origin 

(Alexia et al. 2004; Wu et al. 2008; Ko et al. 2010). Before the initiation of our work, 

very little was known of the influence of helminth parasites which develop in the liver 

on the proliferation/growth arrest of the hepatocytes in the infected liver. Until 

recently, no study had ever specifically addressed the issue of liver 

proliferation/regeneration and growth arrest/apoptosis after E. multilocularis infection. 

In this longitudinal study using the murine experimental model of intra-hepatic 

secondary E. multilocularis infection, we could show that, opposite to those involved 

in cell proliferation and anti-apoptosis which were activated in the first half of the 

infection course, metabolic pathways involved in growth arrest and apoptosis were 

significantly activated in the liver of the infected mice in the second half of the 

infection course. It was shown that activation of the metabolic pathways which 

govern growth arrest and apoptosis also paralleled the previously described decrease 

of lymphocyte proliferation and of cytokine production observed at the late stage of 

experimental infection (Emery et al. 1996, 1997; Gottstein et al. 1994). 

Hepatocytes suffering sublethal injury have the capacity to activate an 

internally-triggered cell regeneration mechanism and our previous studies of our team 

as well as this one have brought evidence that, as it also occurs during viral infection 

or toxic injury (Viebahn et al. 2008), this regeneration mechanism was also operating 

in E. multilocularis infection (Lin et al. 2011; Jin et al. 2002). It was especially 

prominent at the first stages of infection, as was shown in our experimental mice until 

day180 after infection. Liver regeneration is controlled by a wide array of signaling 

factors and plays a key role in recovery after acute and chronic liver injury. Hepatic 

cell proliferation is essential to enhance or restore hepatic function (Taub et al. 2004; 

Fausto et al. 2006). Although hepatocyte proliferation is often mediated by the 

injury/regeneration response, however, in other circumstances it is part of an adaptive 

response to stress stimuli which do not lead to cell death (a process called ‘direct 

hyperplasia’). This proliferative response is regulated by cell cycle regulated proteins 

(Svegliati-Baroni et al. 2003). In AE, influence of the parasite on hepatocyte 

proliferation (and/or anti-apoptosis) is supported by the up-regulation of Cyclins A, 
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B1, D1 and Gadd45b. Until day180, i.e. in the early and middle stages of infection, 

gene expression level of CyclinA was increased in a time-dependent manner, while 

gene expression levels of Cyclin B1 and CyclinD1 were increased up to day30 and 

then returned to the control level after day60. On the other hand, no significant change 

in the expression of Cyclin E was observed at any time during the period of 

observation. Up-regulation of PCNA, Cyclin D1, A and B1 is related to the regulation 

of the G1/S and G2/M phases (Masaki et al. 2003; Neuwirt et al. 2009), which were 

previously reported to increase biphasically after partial hepatectomy and other 

parasitic infection (Spiewak et al. 1997; Bouzahzah et al. 2006). The ‘‘late stage’’ of 

infection, i.e. after day180 after infection, has rarely been studied in the murine model 

of secondary (or primary) E. multilocularis infection. In the most susceptible mice, 

impairment of vital functions due to E. multilocularis progression and metastases is 

fast and occurs between day180 and 270, which makes studies difficult to interpret. In 

addition, most of the studies addressed immunological mechanisms of immune 

tolerance; since they were just failing at that late stage (Emery et al. 1996, 1997; 

Gottstein et al. 1994), it was thus considered of less interest for that purpose. As the 

experimental mice we are working with, albeit quite susceptible to E. multilocularis, 

have a prolonged survival until day360, and because we observed activation of both 

proliferation and apoptosis pathways at day180, we decided to measure the expression 

and/or activation of the components of these pathways until day360. We were thus 

able to show the mirror image of growth arrest/apoptosis versus 

proliferation/anti-apoptosis during the natural course of metacestode progression in 

the liver. These results might suggest that the proliferative capability of hepatocytes 

was exhausted during continuously lasting hepatic damage, due to direct toxicity of 

parasitic components and/or cytotoxic attacks by the immune system. This exhaustion 

might also be due to the profound malnutrition (wasting disease/cachexia) observed in 

E. multilocularis-infected mice in the advanced stage of the disease, and the altered 

ability of liver cells to synthesize proteins, as suggested by the changes in the 

expression of many genes found at this stage using microarray analysis we recently 

performed (Lin et al. 2011). However, during the early and middle stage of infection, 

despite the presence of the metacestode and its growth, very little necrosis is observed 

on the liver pathological sections in the experimental model; we could confirm such 

observations (Liance et al. 1984). Necrosis of the liver lesion is not observed in all 

patients with AE: it has only been observed in more advanced/severe cases, and was 

associated with susceptibility markers and/or with expression of TNF-α by the 

periparasitic macrophages (Bresson-Hadni et al. 1994). On the other hand, the 

immune tolerance generated by the presence of E. multilocularis metacestode in the 

liver is associated with a poor development of NK cytotoxicity and an inhibition of 

T-lymphocyte-dependent cytotoxicity, despite the high proliferation potential of T- 
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lymphocytes, the presence of numerous CD8 T-lymphocytes in the liver within the 

parasitic lesion, and the expression of the appropriate ligands, such as MICA/B 

(Bresson-Hadni et al. 1989, 1991; Nicod et al. 1994). Such an inhibition is possibly 

due to the combined influence of IL-10 and TGF-β production, as discussed below 

(Bresson-Hadni et al. 1990; Vuitton et al. 1989; Zhang et al. 2008).  

8.1.2 Influence on the development of liver fibrosis 

Fibrosis is a hallmark of AE, leading to a complete disappearance of the liver 

parenchyma in the periparasitic area, and to fibrosis in portal spaces. Fibrosis protects 

the host against the parasitic growth, but at the same time it distorts the liver 

parenchyma, contributes to bile duct and vessel obstruction and can lead to secondary 

biliary cirrhosis (Ricard-Blum et al. 1996; Vuitton et al. 1986). The irreversible 

acellular keloid scar-like fibrosis observed in AE is the ultimate result of cytotoxic 

and fibrogenetic events related to the immune response of the host which are taking 

place initially in the granulomatous area surrounding the young parasite larvae 

(Vuitton et al. 2003). Previous observations in experimental models of AE have 

suggested that progression of fibrosis in AE involves an early deposition of type III 

collagen pro-peptide and type III collagen at the periphery of the granulomas, and a 

subsequent remodeling of fibrosis with bundles of type I collagen in the periparasitic 

central area (Vuitton et al. 1986; Guerret et al. 1998). Stellate cell–derived 

myofibroblasts have been observed in AE liver, both in humans (Vuitton et al. 1986) 

and in the experimental mouse model (Guerret et al. 1998). It was noted that in some 

regions of the liver where the parenchyma was totally replaced with dead parasitic 

lesions and fibrosis, HSC were the only cellular remnants present (Vuitton et al. 

1986). We confirmed that á-SMA, a specific cell marker for MFB, as well as type I 

and III collagens, were highly expressed in tissues surrounding AE lesions; the 

expression of collagen I increased steadily through the course of the infection, 

whereas collagen III rapidly reached its maximum level of expression at day 8; this 

sequence of events, which is usual in fibrotic processes (collagen III being produced 

quickly by fibroblasts before collagen I is synthesized) was already noticed in the first 

studies on AE fibrosis in the experimental model; in humans, as well as in mice at 

later stages, location of collagen III in areas of recent larval development supported 

this sequence (Vuitton et al. 1986; Guerret et al. 1998). 
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8.2 Factors of the influence of E. multilocularis components on the host liver 

8.2.1 Innate immunity- and pro-inflammatory cytokines 

The role of pro-inflammatory cytokines, and especially tumor necrosis factor 

(TNF-α), in the protection of the host against E. multilocularis has been demonstrated, 

and it is likely that they act at least in part through the development of fibrosis (Amiot 

et al. 1999). TNF-α
-/- 

mice showed faster growth and invasion of the metacestode, but 

also disrupted and late fibrosis, compared to the WT mice in which fibrosis appeared 

early and was well organized (the usual concentric bundles around the parasite 

vesicles) (Amiot et al. 1999). Indeed, dead parasites were cordoned by granulomas 

containing numerous macrophages and lymphocytes leading to focal liver fibrosis at 

an early stage of infection. In contrast, most of LT-α TNF-α
-/-

 mice harboured 

metacestodes interspersed with leucocytes, realising purulent abscesses with 

secondary extensive irregular fibrosis at a late stage of infection (Amiot et al. 1999). 

In human livers with hepatic AE, the mRNAs of pro-inflammatory cytokines, 

interleukin (IL)-1β, IL-6, and TNF-α have been found in macrophages located at the 

periphery of granulomas, in those areas which were shown to be at the initiation of 

fibrogenesis (Bresson-Hadni et al. 1994). IL-12, which inhibits the development of 

the parasitic vesicles after E. multilocularis infection, was also shown to induce a fast 

development of peri-vesicle fibrosis (Emery et al. 1996). Pretreatment of mice with 

IL-12 is extremely efficient in preventing the development of lesions and leads to 

abortive parasitic vesicles surrounded by fully efficient periparasitic immune cell 

infiltration and fibrosis (Emery et al. 1996). In the present study, we found that 

IL-12α and TNF-α were developing in parallel during the different stages of E. 

multilocularis infection. After an initial increase, IL-12α and TNF-α expression 

decreased dramatically after the 30
th

 day of infection of mice. This fits well to 

previous findings, which had indicated a protective role against E. multilocularis by in 

vivo treatment with recombinant IL-12 in C57BL/6J mice (Emery et al. 1998). An 

important role of these cytokines of innate immunity in the early expression of IFN-γ 

is likely. Our observations also fit with the outcome of E. multilocularis infection in 

mice KO for TNF-α (Amiot et al. 1999); as mentioned above, such mice revealed to 

be extremely susceptible to the development of AE lesions. Observations in patients 

with AE treated with a TNF-α inhibitor (Weiner et al. 2011), have also shown that 

they had a faster and more severe course of disease, and radiological images in these 

patients strongly evoked liver abscesses (i.e. cell-rich lesions) rather than typical AE 

lesions (usually characterized by the US and CT imaging features of dense fibrosis) 

(Weiner et al. 2011). In the mouse model, IL-1β and IL-6 were then showing up, 

presumably to sustain the inflammatory response, with a ‘mirror’ image of their 
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respective increase all along infection. The initial peak of IL-6 as early as 2 days 

post-infection may be related to the early activation of the acute phase protein genes 

in the hepatocytes, disclosed by previous microarray studies (Gottstein et al. 2011; 

Lin et al. 2011). Conversely, the absence of a significant increase of IL-6 at day 270 

probably explains why, despite increased levels of haptoglobin, α-1 acid glycoprotein, 

C3 and C4, and ceruloplasmin in patients with AE, no increase of C-reactive protein 

(CRP) levels, typically associated with IL-6 stimulation, is usually observed, except in 

cases complicated by bacterial infection (Vuitton, 2009). Secretion of the 

pro-inflammatory cytokines IL-1β and IL-18 by PBMC of AE patients had been 

shown to be reduced in response to E. multilocularis metacestode vesicles, compared 

to controls (Eger et al. 2003). In our study in mice, although IL-1β was highly 

expressed at the early and middle stage, it subsequently decreased at the late stage and 

was not significantly different from control mice at day 180 post-infection and later, a 

time point which may approximately represent the disease stage of most patients at 

diagnosis of AE. Such selective dynamics of pro-inflammatory cytokine release may 

both install and maintain the periparasitic immune infiltrate from the very early stage 

of infection on, and also limit its activation and thus participate in the tolerance 

process. Such a profile would characterize the “susceptible” status of an intermediate 

host. It may be anticipated from our results and other observations in the mouse 

models (especially those made after host’s treatment with recombinant IL-12) that a 

very early and sustained expression of all cytokines of innate immunity, and 

especially IL-12, TNF-α and very likely IFN-α (Godot et al, 2003), could prevent a 

sustained expression of IL-4 as well as regulatory cytokines, and reinforce Th1 

pathways, and would thus characterize a “resistant” profile of intermediate hosts (i.e. 

most of the human beings contaminated by E. multilocularis eggs). A significant 

modulation of cytokine secretion, with a significant decrease in IL-13 and increase in 

IFN-γ by peritoneal macrophages and spleen cells, was observed in mice treated with 

IFN-α from the very beginning of infection (Godot et al. 2003). This cytokine 

modulation was actually associated with protection against metacestode growth.  

8.2.2 T helper (Th)-related cytokines and chemokines 

   In the periparasitic granuloma. In most previous studies, secretion and 

expression of cytokines, chemokines, and related factors that govern immune 

cell-homing to E. multilocularis infection site were studied in the peripheral blood of 

human AE patients (Aumuller et al. 2004), and in lymph node or spleen cells of 

experimentally infected mice (Dai et al. 2004; Bresson-Hadni et al. 1990; Dai & 

Gottstein, 1999). Attempts at enhancing Th1-related immune responses have resulted 

in increased resistance to E. multilocularis infection in experimental mice. Treatment 
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with IFN-γ either before or after experimental infection has been shown to be only 

partially effective in reducing larval growth, although it was able to moderately 

increase the periparasitic fibrotic process (Liance et al. 1998). Isolated attempts of 

treatment with IFN-γ in patients at a late stage of AE were no more successful than 

those performed in experimental mice and they could not modify host’s cytokine 

profile significantly (Jenne et al. 1998). Early expression of IFN-γ, as previously 

shown in studies on peripheral lymphocytes, was also confirmed in our longitudinal 

study of the periparasitic infiltrate; we hypothesize that it was very likely induced by 

the early expression of IL-12. The apparent decrease in IFN-γ at day 8 may be due 

either to a technical artefact or, more probably, to a temporary inhibition by IL-4, also 

markedly expressed at days 2 and 8 p.i.. Sustained IFN-γ expression together with the 

permanent expression of Th1 chemokines, and its negative correlation with TGF-β1 

in the parasitic lesions all along the course of infection, although Th2 and Treg 

cytokines are also permanently expressed, suggests that IFN-γ is very important for 

the persistence of the periparasitic infiltrate by permanent homing of immune cells 

and/or inhibition of their emigration (Vuitton et al. 1989; Mejri et al. 2006, 2011).  

    In the experimental model of secondary infection in mice, the levels of Th1 

cytokines as well as pro-inflammatory cytokines was initially elevated, and then 

progressively decreased while Th2 cytokines and IL-10 increased (Emery et al. 1996). 

However, little was known on the involvement of Th17, IL-17 secreting T cells, and 

of IL-21, -22 and -23 in the development of immune cell infiltration around the 

parasitic vesicles and their relationship with immuno-regulatory cells in 

echinococcosis. The recruitment and presence of all potential actors of Th17-driven 

immune reaction in the lesions highly suggests that the IL-23/IL-21/IL-22/IL-17 

pathway is actually operating in echinococcosis. In our study, IL-17, as detected by a 

monoclonal antibody directed against the common epitopes of the protein, was 

present in cells of the periparasitic infiltrate all along the course of infection; however, 

as far as the expression of mRNA isotypes of the cytokines is concerned, both IL-17A 

and IL-17F were increased at the early stage of E. multilocularis infection, and then 

decreased at the late stage; they were both positively correlated with CCL12 and 

CCL17; however, IL-17A exhibited a positive correlation with TNF-α, and appeared 

lower than even in controls, at the late stage of infection, while IL-17F was also 

expressed at low levels, but still higher than controls. This may indicate that IL-17A 

was rather protective but quickly inhibited, while IL-17F was less suppressed with 

time and may contribute to both protection and pathogenesis, as reported in human 

AE patients (Lechner et al. 2012).  

In the distant liver. The involvement of the adjacent, not directly affected liver tissue 

in the immune process of E. multilocularis/host interaction has received little 

attention. Recent studies have provided evidence that the adjacent liver was fully 
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involved in the relationship between the parasite and its host. Our study confirms that 

certain mediators of the immune reaction and their receptors may also be expressed in 

the liver tissue, thus also in areas not directly affected by the parasite and the 

periparasitic granuloma. In the adjacent liver tissue, the expression of the various 

cytokines/chemokines was selective: not all cytokines/chemokines were expressed in 

the surrounding liver; some seemed to be specific for the immune cells of the 

periparasitic infiltrate, e.g. TNF-α, IL-17F and CCL8, which were not expressed at all 

in the liver. The contribution of the surrounding liver tissue, however, was quite 

significant for other ones, e.g. IL-12, IFN-γ, IL-4 and IL-17A, at the early stage of 

infection; CXCL9, IL-4, IL-5, CCL17, at the middle stage; and IL-10 and TGF-β at 

the late stage of infection. TGF-β receptors were also expressed in the liver 

parenchyma from early to late stage post E. multilocularis infection, suggested that 

the markedly elevated levels of TGF-β1 present in E. multilocularis-infected liver, 

were functional to regulate the activities of immune cells as well as hepatocytes and 

cells involved in fibrosis. From our study, which was performed on liver samples 

without cell identification, it is difficult to know if such expression was restricted to 

cells of the immune response present in the sinusoids/portal spaces after their homing 

to the liver, or was also present in autochthonous liver cells such as Kupffer cells, 

stellate cells, or hepatocytes. Precise identification and respective location will require 

appropriate further studies.  

8.2.3 T regulatory cytokines  

    Most of the studies in AE as well as in the experimental models have first 

focused onto IL-10. The anti-inflammatory properties of IL-10 are well known, 

especially through the inhibition of macrophage activation and cytotoxic functions 

(Emery et al. 1996). 

    Spontaneous secretion of IL-10 by the PBMCs is the immunological hallmark of 

patients with progressing lesions of AE (Godot et al. 1997). Conversely, IL-10 is 

significantly lower in patients with abortive lesions (Godot et al. 2000). IL-10 is 

measurable in the serum of the patients with AE at higher concentrations than in 

control subjects (Wellinghausen et al. 1999). A variety of cell types are involved in 

the secretion of IL-10 by resting and stimulated PBMC in patients with AE, especially 

CD4 and CD8 T-cells, but also non-T non-B cells (Godot et al. 1997) “Suppressor” 

CD8 T-cells, induced by parasite products, were reported to be involved in tolerance 

to E. multilocularis (Kizaki et al. 1991,1993). However, the relationship between the 

capacity of these cells to secrete IL-10 and their “suppressor” activity is unknown. A 

preliminary report has confirmed that locally, in the periparasitic granuloma, T-cells 

secreted IL-10 and the data suggest that IL-10 production is highest closer to the 
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parasitic vesicles (Harraga et al. 2003). We could also confirm the expression of 

IL-10 in the periparasitic granuloma, in an experimental model and studied all along 

the course of infection. After experimental infection with E. multilocularis, IL-10 

secretion by spleen cells is slightly delayed and is part of the cytokine profile 

observed in the second phase of E. multilocularis growth (Emery et al. 1996). Similar 

changes were also observed when measuring IL-10 levels in the serum of infected 

mice: they remained low before 80 days post-infection and then increased sharply at 

100 days post-infection when they reached a peak (Wei et al. 2004). 

    The presence of TGF-β secreting cells in the periparasitic granuloma 

surrounding E. multilocularis vesicles in the liver of patients with AE has been 

recognised only very recently (Zhang et al. 2008) and exploring TGF-β in its multiple 

functions in E. multilocularis infection was still an open field of research at the 

initiation of our work. In the liver, chronic injury causes continuous hepatocyte 

destruction and TGF-b1 stimulates quiescent HSCs into activated myofibroblast-like 

cells, which produce extracellular matrix to retrieve lost space made by destruction of 

hepatic parenchymal tissue. TGF-b is a cytokine that alters many functions in nearly 

all higher eukaryotic cells (Derynck & Zhang, 2003; Gordon & Blobe, 2008). The 

nature of the TGF-b action depends on many parameters, including type and state of 

differentiation of the cell targets, growth conditions, and presence of other growth 

factors. TGF-b controls extracellular matrix production, regulation of myogenesis, 

immune response, angiogenesis, and embryogenesis. Hepatic stellate cells are the 

primary cell type responsible for matrix deposition in liver fibrosis, undergoing a 

process of transdifferentiation into fibrogenic myofibroblasts. These cells, which 

undergo a similar transdifferentiation process when cultured in vitro, are a major 

target of the profibrogenic agent transforming growth factor-β (TGF-β) (Liu et al. 

2003). The multifunctional feature of TGF-b suggests that it may be an important 

target of viruses to influence host cell fate in favor of virus replication and 

proliferation.  

The positive correlation we found between their expression and expression of 

TGF-β1, both in the experimental model and in human livers, is an indirect argument 

for a significant role of this cytokine in AE fibrosis. The major peak of TGF-β1 at the 

middle stage of infection in experimental animals, and its expression in AE patients 

who are diagnosed at a similar stage, suggest that although lower levels may initiate 

immune tolerance as early as the early stage, the cytokine becomes prominent later, 

when both maintenance of the tolerance state and development of fibrosis are at stake.  

The Smad family of proteins mediates signaling from the TGF-β R to the nucleus. 

In the current study, there was an increased expression of TGF-β R, Smad3 mRNA, 

and especially of Smad4 which is a central mediator in TGF-β superfamily signaling 
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(Heldin et al. 1997). Our study showed that expression of Smad4 was higher in areas 

surrounding lesions than in distant liver in the patients with AE. Smad7, which is 

induced by TGF-β itself, is responsible for the fine-tuning of TGF-β signals (Itoh et al. 

2007). It prevents the phosphorylation of Smad proteins, associates with ubiquitin 

ligases involved in TGF-β R-degradation, and acts as a transcriptional repressor 

inhibiting Smad-dependent promoter activation (Schmierer et al. 2007). In 

physiological situations, its increase decreases the phosphorylation of Smad2/3, and 

thus decreases TGF-β functions. In chronic hepatic injury, the expression of Smad7 is 

paradoxically decreased (Del Pilar Alatorre-Carranza et al. 2009); as a result, TGF-β 

signal transduction cannot be effectively inhibited, and TGF-β functions are enhanced. 

An aberrant expression of Smad7 may thus disrupt the balanced activity of TGF-β 

under pathophysiological conditions. The low expression of Smad7 in the areas 

surrounding the lesions and its negative correlation with a-SMA and Collagen III 

highly suggest that in AE too the normal feed-back loop might not work properly, and 

that fibrosis might be permanently activated through that mechanism. As TGF-β is 

likely to be crucial to maintain the immune tolerance state and Treg 

generation/function essential to the parasite, E. multilocularis could be responsible for 

the paradoxical decrease of Smad7 in the periparasitic granuloma and nearby liver; 

this might be one of the mechanisms for the early induction of immune tolerance and 

for the progression from chronic hepatic injury to hepatic fibrosis during E. 

multilocularis infection. 

E. multilocularis metacestode is sensitive to TGF-β signaling (Brehm, 2010; 

Vuitton & Gottstein, 2010; Zavala-Gongora et al., 2008) and the metacestode 

ERK-like kinase, EmMPK1, phosphorylates EmSmadD, a metacestode analogue of 

the Co-Smads of the TGF-beta signaling cascade (Brehm, 2010). Our preliminary 

investigations of TGF-β in the host liver confirm the pivotal role that this cytokine 

might play in the proliferation process but also in the development of liver fibrosis, 

while ensuring parasite tolerance by the host. It will be of great interest to determine 

the mechanism used by E.multilocularis to trigger TGF-b signaling, whether that is 

the pathway that leads to G1 arrest, the pathway that initiates extracellular matrix 

deposition, or both. Ascertaining these problems are not just of academic interest, for 

an E.multilocularis-specified activation of the TGF-b pathway might underlie 

responses such as immunosuppression (Dai et al., 2003; Emery et al., 1996; Gottstein 

et al., 2006) and abnormal extracellular matrix deposition (Bresson-Hadni et al., 

1998; Grenard et al., 2001; Guerret et al., 1998), each of them a dominant feature in 

human and animal intermediate hosts. 



 

 185 

8.2.4 Cytokine and chemokine receptors 

    Expression of any stimulating/inhibiting factor is necessary but not sufficient to 

give evidence of their role/influence on cells. Giving evidence for the expression of 

the appropriate receptors is also important, albeit rarely done. Among cytokine 

receptors, only those for IL-1 (IL-R1 like), IL-7, IL-13 (IL-13 Rα1) and IL-17 (IL-17 

R) were up-regulated when we studied them by using microarray; those for TGF-β 

(TGF-β RI and RII) were also up-regulated when studied by both qRT-PCR and 

immunohistochemisty. This indirectly suggests that the liver was affected by at least 

one pro-inflammatory cytokine (IL-1) and one growth factor (IL-7), by two types of 

Th-cytokines (Th2 and Th17), and by TGF-β. Such up-regulation of several cytokine 

and chemokine genes, in both models of AE, in the liver itself and not only within the 

periparasitic granuloma, confirms that the surrounding liver is fully involved in a 

process which was long considered to be a localized “tumor-like” event. However, 

absence of expression of the IL-6 receptor on hepatocytes is somehow puzzling, since 

IL-6 is directly related to the stimulation of acute phase protein synthesis by the 

hepatocytes, and using the microarray technique, genes for such proteins were among 

those most hyper-expressed in the liver. Additional studies using qRT-PCR should 

help us determine if this was or not due to technical or bio-informatics issues.  

8.2.5. Direct influence by E. multilocularis metacestode components? 

    Metacestode surface molecules as well as excretory/secretory (E/S) metabolic 

products are considered to function as important key players to influence host immune 

response (Gottstein & Hemphill, 2008). The E. multilocularis metacestode actively 

secretes or expresses molecules that putatively have potent effects on the immune 

system of the murine host, including DCs and other immunologically relevant 

populations such as macrophages (M Ø), lymphocytes and other (inflammatory) cells 

that play a significant role in the putative control of (or respective failure to control) 

metacestode proliferation, and thus triggering of disease development. Carbohydrate 

components of the laminated layer, such as Em2 (G11) and Em492, as well as other 

parasite metabolites yield immunomodulatory effects that allow the parasite to survive 

in the host. The IgG response to the Em2 (G11)-antigen takes place independently of 

alpha-beta
+ 

CD4
+
 T cells, and in the absence of interactions between CD40 and CD40 

ligand (Dai et al. 2001). Such parasite molecules also interfere with antigen 

presentation and cell activation, leading to a mixed Th1/Th2-type response, not only 

at the late stage of infection, as was anticipated in the past, but from the very 

beginning of infection as we could show in our studies. Furthermore, Em492 (Walker 
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et al. 2004) as a purified parasite metabolite suppresses ConA and antigen-stimulated 

spleen cell proliferation. 

    Interesting insights into immunomodulation by the parasite were obtained with 

regard to human AE. E. multilocularis antigens (metacestode culture supernatant) 

depressed the release of the proinflammatory cytokine IL-12 by PBMC in response to 

lipopolysaccharide (LPS). This was accompanied by an increased number of 

CD4
+
CD25

+
 cells and a reduced release of the Th2 type chemokine CCL17 (thymus 

and activation regulated chemokine, TARC), suggesting an anti-inflammatory 

response to the metacestode in human AE patients (Hübner et al. 2006). Instead, the 

production of IFN-γ and the expression of CD28 on CD4
+
 T cells were increased in 

PBMC from AE patients when compared to controls. This was accompanied by a 

higher release of the Th2-type chemokine CCL22 (macrophage derived chemokine, 

MDC) supporting that E. multilocularis also generates proinflammatory immune 

responses. These results indicate that E. multilocularis antigens modulated both, 

regulatory and inflammatory, Th1 and Th2 cytokines and chemokines. In a previous 

study by our team, a significant influence of E. multilocularis metacestode on the 

activation of MAPKs signalling pathways was found in the liver cells both in vivo in 

infected patients and in vitro in cultured rat hepatocytes (Lin et al. 2009). In 

preliminary in vitro studies (unpublished data) we observed a secretion of TGF-β1 

and an activation of the TGF-β pathway in rat hepatocyte cultures incubated with 

vesicle fluid of parasitic origin, in the absence of inflammatory cells, thus of immune 

cell-related cytokines. A recent study has also provided evidence for the induction of 

apoptosis in host DC through E/S-products of early infectious stages of E. 

multilocularis (Nono et al. 2012). The parasite might thus influence signaling 

mechanisms of host cells through the secretion of various molecules which might bind 

to host cell surface receptors or to the temporary storage of host-derived molecules in 

the vesicle fluid. Such interactions could contribute to immunomodulatory activities 

of E. multilocularis, to pathological consequences on the host’s tissues, and/or be 

involved in mechanisms of organotropism (Zhang et al. 2008). These observations 

suggest that parasitic components, and not only factors from host origin, are actually 

acting on the host.  

    It has also been shown, conversely, that the metacestode development in the 

murine liver is triggered by cell signaling originating from the intermediate host 

(Brehm et al. 2006). The phosphorylation of EmMPK1, a parasitic orthologue of the 

extracellular signal-regulated kinase (ERK) MAPK, is specifically induced in in vitro 

cultured E. multilocularis metacestode vesicles, in response to exogenous host serum, 

hepatic cells and/or human epidermal growth factor (EGF). The fact the intrahepatic 
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metacestode expresses signaling systems with significant homologies to those of the 

host raises the interesting question whether cross-communication between cytokines 

and corresponding receptors of host and parasite can occur during an infection, i.e. 

whether the parasite may also influence signaling mechanisms of host cells through 

the secretion of various molecules that might bind to host cell surface receptors. Such 

interactions could contribute to immunomodulatory activities of E. multilocularis or 

be involved in mechanisms of organotropism and/or in host tissue destruction or 

regeneration during parasitic development. This reinforces the hypothesis of a 

‘‘cross-talk’’ between the parasitic larva and its host. The larval development of E. 

multilocularis might be triggered by cell signaling originating from the intermediate 

host (Spiliotis et al. 2006; Gelmedin et al. 2008 ), E. multilocularis metacestode being 

able to ‘‘sense’’ host factors, which may result in an activation of the parasite 

metabolic pathway cascades (Brehm et al. 2006).  

8.3 FGL2 : a new and key-actor of the tolerance against E. multilocularis ? 

Various molecular and cellular events have been proposed to explain the 

mechanism by which Tregs suppress immune responses. These include cell-to-cell 

contact-dependent suppression, cytotoxicity, and immunosuppressive cytokine 

secretion (Miyara et al. 2007). It is generally considered that anti-inflammatory 

cytokines, such as IL-10 and TGF-β, are important co-mediators of Treg activity in 

vivo (Miyara et al. 2007). However, the importance of these cytokines remains 

controversial, as several reports have demonstrated that antibodies against IL-10 and 

TGF-β fail to block Treg suppressive function. Also, Tregs from TGF-β–deficient 

mice have normal suppressive activity in vitro and can prevent development of 

autoimmune disease (Miyara et al. 2007). In addition, the ambiguous role of TGF-β, 

which is both a strong inducer of immune tolerance and an activator of the 

pro-inflammatory IL-17 cytokine system, remains puzzling (McGeachy et al. 2007; 

Michel et al. 2013). 

Recently, it was reported that Tregs had increased expression of FGL2 encoding 

mRNA, and it was suggested that FGL2 might be an important Treg effector molecule 

(Shalev et al. 2009). In a previous explorative study, fgl2 gene expression was found 

significantly increased in the periparasitic liver tissue of mice perorally infected with 

E.multilocularis eggs (Gottstein et al. 2011). Our resulting working hypothesis was 

thus that FGL2, with important roles in both innate and adaptive immunity, similar to 

other members of the fibrinogen-like family of proteins which include tenascin and 

angiopoietin, could be another key-actor in E. multilocularis-host interactions, 

unknown until now. In this study, we demonstrated experimentally that recombinant 

FGL2 suppressed T cell proliferation in response to Con A and to E. multilocularis 
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components present in the VF. FGL2 also inhibited maturation of dendritic cells 

(DCs), suppressed Th1 and Th17 immune responses, and polarized an allogeneic 

immune response toward a Th2-oriented cytokine profile, both in vivo and in vitro. 

Conversely, in fgl2
-/-

 mice, Th1 cytokine levels and activity of DCs, B- and T cells 

were all increased. FGL2 serum levels correlated with IL-4 expression in wild type 

mice before and after E.multilocularis infection, suggesting a close relationship 

between FGL2 and Th2-related immune response. The development of a Th2 immune 

response in wild type mice after E.multilocularis infection fitted with the 

demonstrated effect of FGL2 to promote Th2 cytokine production with a subsequent 

inhibition of Th1 and Th17 immunity. Furthermore, serum levels of IL-17A showed a 

positive correlation with FGL2 serum expression, suggesting for the first time that 

IL-17A could contribute to FGL2 secretion. This was confirmed in vitro, in that 

recombinant IL-17A promoted the production of FGL2 in spleen cells, while 

anti-IL-17A blocked respective FGL2 secretion. 

The mechanism by which FGL2 mediates its immunosuppressive activity is 

currently under intense investigation. Recent data have demonstrated that FGL2 binds 

to the inhibitory FcγRIIB receptor (CD32) expressed primarily on APCs. This 

FGL2-FcγRIIB interaction was shown to induce B cell apoptosis and inhibit DC 

maturation (Liu et al. 2008). In E. multilocularis infection, several cell types may 

express the inhibitory FcγRIIB, such as macrophages (including the ‘epithelioid cells’ 

that line the ‘immuno-modulating’ laminated layer), and also the numerous CD8 T 

cells present in the periparasitic infiltrate; CD8 T cells have actually been shown to 

express this receptor in a murine model of Trypanosoma cruzi (Henriques-Pons et al. 

2005). Combined with the course of cytokine expression by the periparasitic immune 

infiltrate in E.multilocularis infection, our data suggest that, under the influence of E. 

multilocularis components (a) IL-6, TNF-α, IFN-γ and IL-17 are released; (b) these, 

especially IFN-γ as demonstrated previously (Hancock et al. 2004), but also IL-17A 

as we showed in this study, contribute to FGL2 secretion by Tregs and other cells;(c) 

once FGL2 is released, it can bind to FcγRIIB receptor, down-regulate the maturation 

of DCs, decrease co-stimulation of effector T cells, suppress Th1 and Th17 immune 

response, accelerate Th2 immune responses, induce apoptosis of B cells, and thus 

overall lead to an immune suppressed status that favours the continuous “tumour-like” 

progression of the parasitic metacestode tissue. Direct inhibition of macrophage 

and/or mast cell functions could also be induced by such a binding (Malbec et al. 

2002).  
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8.4 Conclusion and perspectives    

Taken together, the results obtained from our various experimental models and 

designs confirmed that E. multilocularis metacestode definitely exerts a deep 

influence on liver homeostasis through the immune response/immune tolerance. Our 

data support the concept, which was part of our working hypothesis, of a sequential 

activation of metabolic pathways which would first favor parasitic, liver and immune 

cell proliferation and survival, and thus promote metacestode fertility and tolerance by 

the host; and would then favor liver damage/apoptosis, impairment in protein 

synthesis and xenobiotic metabolism, as well as immune deficiency, and thus 

contribute to the dissemination of the protoscoleces after metacestode fertility has 

been acquired. The periparasitic infiltration by inflammatory cells is a key-player in 

cytokine/chemokine secretion and functional activities within the host-parasite 

interactions. However, the surrounding liver is also involved in the cross-talk between 

the parasite and its host. TGF-β and FGL2 and their fine turning by the various 

isotypes of IL-17 could determine the overall balance between tolerance towards the 

parasite and protection of the host and thus contribute to the outcome of E. 

multilocularis infection. Our study confirm stage-related homing and functions of 

immune cells around the metacestode which may explain the observed relationship 

between metacestode viability and uptake of tracers such as FDG by the periparasitic 

infiltrate. The next step of our work is thus more focused on applications for patients 

with AE. To further study the relationship between FDG-PET imaging and the course 

of the periparasitic granuloma, and between the metabolic activity of the granuloma 

and the viability of the metacestode, we are developing the use of micro-PET in 

infected mice, as well as pre-clinical models including various imaging techniques 

and immunological follow-up in rats and pigs. In addition, as preliminary results 

highly suggest that FGL2 could be a serum marker of progression in the patients with 

AE, our aim is now to check if there is any correlation between FGL2 serum levels 

and the metabolic activity of the periparasitic cells, i.e. with their FDG uptake at PET 

imaging in the patients with AE. Such studies and the results obtained in this thesis 

may also contribute to identify new targets for possible immune therapy to minimize 

E. multilocularis-related pathology and to complement the ‘parasitostatic-only’ effect 

of benzimidazoles in AE. 
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