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Abstract: This paper presents a visual measurement method able to sense 1D rigid body
displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic
resolution is obtained thanks to a structured pattern placed on the target. The pattern is
made of twin periodic grids with slightly different periods. The periodic frames are suited
for Fourier-like phase calculations—leading to high resolution—while the period difference
allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper
presents the measurement principle as well as the processing algorithms (source files are
provided as supplementary materials). The theoretical and experimental performances are
also discussed. The processing time is around 3 µs for a line of 780 pixels, which means
that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ
repeatability of 5 nm is experimentally demonstrated which has to be compared with the
168 µm measurement range.
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1. Introduction

Numerous scientific fields such as micromechatronics and instrumentation for micro-, nano- and
bio-technologies require a high accuracy in the tracking of objects as well as in the manipulation of
actuators and stages. For such position and displacement control purposes at the microscopic scale,
vision-based approaches are often found to be the best suited methods. The resolution of the camera
combined with the imaging magnification is then an important performance limitation parameter with
a general consequence: the higher the accuracy, the lower the range. Numerous sub-pixel motion
detection algorithms have been proposed to relax this kind of trade-off. A common practice is the phase
correlation method. To achieve the translation estimation at sub-pixel level, some researchers use peak
interpolation methods in the spatial domain [1,2]. Another approach is to oversample images, but this
method increases the computing load dramatically. Authors like Douglas [3] and Gao et al. [4] use a
direct measurement in the frequency domain and, through combination with statistical methods, obtain
respectively 3-σ precisions around 5 nm and 3 nm.

High accuracy can also be obtained through phase computations by means of Fourier-like processing
applied to a periodic grid. Despite phase-to-displacement conversion providing high measurement
resolution, a main drawback comes from the 2kπ phase uncertainty due to the definition domain of
the inverse tangent function, as observed for instance in Yamahata’s case [5]. The measurement range of
these methods is basically limited to a single period of the pattern. A common solution to avoid this phase
ambiguity consists in using a pseudo-periodic pattern that embeds some kind of binary code [6–9]. The
visual position detection works then over larger measurement ranges. However, from a computational
point of view, these methods are time-consuming and often incompatible with real-time applications.

Another way to overcome the 2kπ phase ambiguity consists in using two slightly different reference
periods [10,11]. The phase mismatch observed between the two independent phase computations allows
the removal of the phase ambiguity and the measurement range is thus extended by a factor from 5×
to 50× at least, determined by the actual period difference and limited by the detection signal-to-noise
ratio. This principle has been applied to different measurement purposes [12–14].

This paper presents the implementation of this principle for the visual measurement of 1D rigid body
displacements with very high resolutions, large ranges and high processing rates. The method is based
on a pattern made of twin periodic grids that allows for phase calculations while the period difference is
used to extent the measurement range.

The next section introduces the measurement principle in detail. Section 3 presents the processing
algorithms (source files are provided as supplementary materials). Afterwards, we discuss the theoretical
capabilities of the method as well as the experimental results obtained.
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2. Principle: Displacement Measurement from Twin Stripe sets with Slightly Different Periods

The phase-to-displacement relationship is widely known. If an object O is shifted in a space X from
an initial position Oi(x) to a final position Of (x), the displacement can be written mathematically as a
convolution product:

Of (x) = Oi(x) ∗ δ(x−∆) (1)

where ∗ stands for the convolution product, δ(x) for the Dirac impulse distribution and ∆ for the
displacement value. After Fourier transformation we obtain a simple product in the frequency domain:

Ôf (ν) = Ôi(ν) · ej2πν∆ (2)

where Ôi and Ôf are the Fourier transforms of Oi(x) and Of (x) respectively, ν and x are reciprocal
variables and j the complex number j2 = −1. Equation (2) shows that in the frequency domain,
the object displacement induces only a phase shift equal to 2πν∆, a direct consequence of the
Fourier transform.

Thanks to this linear relationship, the object displacement is encoded in the phase of the Fourier
transform and different approaches have been proposed for the measurement of displacements through
this phase term. They differ mainly in the number of considered spectral components. If the whole
Fourier spectrum is considered, an unambiguous value of ∆ can theoretically be retrieved. However,
the right combination of phase constants 2kνπ has to be found and this task may require iterative
algorithms [15] or calibrated actuators as in its application to surface profilometry [16]. Such an extended
phase processing is time-consuming and not suited for real time applications. Faster approaches consider
only one or a few spectral components. In this case the displacements retrieved may be subject to
phase ambiguities that limit the actual unambiguous measurement range as described below. However
there are numerous applications in which this limitation is not critical; provided that the unambiguous
measurement range can be matched with practical requirements.

2.1. Ambiguous Displacement Measurement from a Single Periodic Pattern

In computer vision, the target displacements are retrieved through the processing of images captured
by a static camera observing the moving object. The simplest way to apply phase computation to this task
consists in associating some kind of periodic pattern to the target and thus to get periodically structured
images for processing. This is illustrated in Figure 1a in which the stripe set corresponds to the target
image recorded in its initial position. Figure 1b shows the image recorded after a target displacement
in the direction perpendicular to the stripes. The target displacement appears clearly through the stripe
position and, as explained in Equation (2), it induces a phase shift ∆Φ between the two stripe sets as
represented in Figure 1c. The target displacement can then be determined by:

∆ =
∆Φ · P

2π
+ k P (3)

where P is the stripe period and k is an unknown integer standing for an entire number of stripe periods
(We notice in Equation (3) that the vision system magnification does not need to be known since the
actual period P of the target stripes serves as a dimensional reference, provided that the period is
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known or measured with sufficient accuracy.). Indeed due to the stripe periodicity, the displacement
value is obtained modulo P since different positions distant from an entire number of periods produce
indistinguishable images. This ambiguity is due to the definition domain ]−π, π] of the inverse tangent
function. It restricts the unambiguous measurement range to a single stripe period. The measurement
range and measurement resolution are thus dependent on each other and the number of resolved positions
is equal to K = 2π/δΦ, where δΦ is the resolution of the phase determination. The only adjustment
parameter is P that affects range and resolution in inverse proportions and thus does not affect the
range-to-resolution ratio. The latter can only be improved through the phase computation performances.
In practice, image digitizing, electronic noise and environmental disturbances form irreducible noise
sources. As explained below, the use of a second stripe period is an alternative way to extend the
measurement range without decreasing the resolution.

Figure 1. Correspondence between lateral position and phase of a sinusoidal
pattern. (a) stripe set before displacement; (b) after displacement; (c) wrapped phase for
both positions.

2.2. Removal of Phase Ambiguities from Slightly Different Periods

The use of a second stripe set with a slightly different period provides complementary and independent
phase data that can be used for the removal of phase ambiguities. The principle is illustrated in
Figure 2. Figure 2a shows the pattern image with two stripe sets with different periods. As illustrated in
Figure 2b, the resulting phases present different combinations from one stripe to the next one. We only
obtain perfect data reproduction at pixel R; i.e., when the stripes have the same position with respect to
each other as at the left side of the image. Thanks to the progressive mismatch between the two stripe
sets, phase ambiguities can be removed and the unambiguous range switches from a single period to a
new value Λ given by:

Λ =
P1 · P2

| P1 − P2 |
(4)
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where P1 and P2 are the stripe set periods (The phase coincidence between the two stripe sets does
not necessarily correspond to an intensity maximum but may occur at any location depending on the
combination of periods. For instance, with periods of P1 = 6 and P2 = 10, the equivalent period is
Λ = 15 whereas the perfect reproduction of the stripe sets is only obtained at 30.).

Figure 2. Extended unambiguous range by means of two stripe sets with different periods.
(a) twin stripe sets; (b) phase of both stripe sets; (c) phase difference between stripe sets;
(d) unwrapped phase difference. Position ’R’ corresponds to phase coincidence, it marks the
new ambiguity range obtained.

From a computational point of view, the phase relative to the synthetic period Λ is simply given by
the subtraction between the two elementary phases (Figure 2c) after phase unwrapping as represented
in Figure 2d. The conversion from phase to displacement is still given by Equation (3) in which P is
replaced by Λ. In fact, because of the phase subtraction, noise is magnified in the same proportion as
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the unambiguous range and a supplementary step is necessary to improve the range-to-resolution ratio.
This step consists in using synthetic data to determine the correct 2kπ constant to apply to the phase shift
observed for either stripe set. Equation (3) thus becomes:

∆ =
∆Φ1 · P1

2π
+ k1 P1 + kx Λ (5)

in which ∆Φ1 is the phase shift for the chosen stripe set, k1 the number of periods derived from the
synthetic phase and kx an unknown number of periods Λ that represents the new ambiguity range. The
range-to-resolution improvement resulting from this twin period method is equal to Λ/P1.

Theoretically, Λ can be chosen as large as we want (Equation (4)) through the choice of P1 and P2.
We notice however that large values of Λ are obtained with small period differences. In such cases the
effects of noise are significantly enlarged and, at some level, the determination of k1 (Equation (5)) fails
and errors are introduced. In practice, the measurement range enlargement has to be matched with the
signal-to-noise ratio and with the phase resolution δΦ achieved, thus optimizing the trade-off between
measurement range and robustness.

In Figure 2b the phase of both stripe sets are represented as a function of the pixel index from a
single pattern image. This does not correspond exactly to the case of displacement measurement in
which an image sequence has to be processed to retrieve a single phase value per frame. In fact in
Figure 2b, the phase combinations observed between pixels 1 to R describe all possible phase values
that can be associated with any image pixel; for instance that at the center of the image. This is indeed
the information representative of the target position or displacement. The aim of the signal processing is
thus to determine accurately the phase at the central image pixel for the spatial frequency of each stripe
set. In this task, the whole image width is involved in a Fourier-like phase computation as described in
Section 3.

3. Processing Algorithms and Software Implementation

In the following, we present an implementation for 1D lateral displacement measurement in a
micro-mechatronic context as well as the performances obtained. This principle and the software
provided can however be applied to different purposes, especially at other dimensional scales.

We assume that a two-stripe pattern is attached to the target of interest in order to measure its
displacement. Figure 3 gives an example of image to be processed as recorded experimentally using
a 20× microscope lens. It is composed of a series of ruling grids where the 8 µm and 8.4 µm grids are
distributed alternatively.

The determination of the phase associated with each image of this kind and representative of the
target position at the recording instant of time assumes three successive steps described in the following
subsections: extraction of intensity distributions from each stripe set; determination of the period in pixel
of each stripe set; computation of the phase of the central pixel for both stripe sets

3.1. Determination of Image Lines associated with each Stripe Set

This preprocessing task aims to determine the image lines to be used for the phase computation for
each stripe set. Since our aim is to measure only 1D displacements, the hardware is set in such a way that



Sensors 2014, 14 5062

the stripes are perpendicular to the displacement and the camera lines are parallel to the stripes. With
this setting, stripes move only in the horizontal direction of the recorded images and this task has to be
performed only once. Since the used pattern is repetitive, there are several possibilities and for instance
the stripes sets between the red lines can be chosen (cf. Figure 3). At this point, we can either use a single
line for processing, for example located at the middle of the stripe set, or to average data by summing
a few lines in order to increase the signal-to-noise ratio. Finally, for each recorded image, two intensity
distributions I1(l) and I2(l) (l pixel index) are extracted and associated with stripe sets of period P1 and
P2 respectively.

Figure 3. Experimentally recorded image of the twin stripe set pattern on the target.

3.2. Determination of the Spatial Frequency of each Stripe Set

This second step aims to determine the spatial frequency of each stripe set in the recorded images.
This task has also to be performed only once since the imaging magnification is not affected by 1D
lateral target displacements. Furthermore Equation (3) which allows the data conversion from phase to
displacement requires that the working frequency remains the same allover the moving sequence. This
task is performed by means of Discrete Fourier Transform (DFT) with a Gaussian apodization function
(see Equation (9) in the next section). The DFT is defined by:

Î(s) =
N−1∑
l=0

I(l).e−j2πls/N (6)

where I(l) is the windowed intensity vector, l and s are reciprocal variables and N is the number of
image pixels per line. Figure 4 presents an example of intensity distribution and of the magnitude of
its DFT. We determine the stripe frequency by firstly locating the position m of the maximum DFT
magnitude within a spectral interval [a, b]. This interval aims to remove background intensity and high
frequency noise.

m = arg max
s∈[a,b]

|Î(s)| (7)
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Figure 4. Example of intensity vector (a) of a real pattern and its Fourier transform (b).

Since the log of a Gaussian produces a parabola, we use a quadratic interpolation on the points around
m in order to get a better localization of the maximum, such as:

m∗ = m− 1

2
· (|Î(m)| − |Î(m+ 1)|)− (|Î(m)| − |Î(m− 1)|)

(|Î(m)| − |Î(m+ 1)|) + (|Î(m)| − |Î(m− 1)|)
(8)

The stripe period P in the pattern image is then given by P = N
m∗ . This processing is applied twice;

i.e., once for each stripe set and thus periods P1 and P2 are obtained.

3.3. Computation of the Phase of the Central Pixel for both Stripe Sets

Once the preprocessing described above is done, the aim of the phase computation is to determine the
phase associated with both stripe sets as fast as possible. Then instead of performing a complete DFT
we compute only the two phase terms of interest. For that purpose we use a complex analysis function
Z1(l) defined by a Gaussian envelop and a periodic signal at the period of the stripe set (cf. Figure 5)
(Theoretical accounts on the spectral effects of a so-called apodization window can be found in [17]):

Z1(l) = exp

(
−
(
l −N/2
N/4.5

)2
)
· exp

(
−2jπ(l −N/2)

P1

)
(9)

We notice that the analysis functions have also to be defined only once. The expected phase Φ1 is then
given by the argument of the sum Σ1 over all pixels of the product of this windowed analysis function
Z1(l) by the intensity distribution I1(l):

Σ1 =
N−1∑
l=0

I1(l) · Z1(l) (10)

and
Φ1 = tan−1

(
Im(Σ1)/Re(Σ1)

)
(11)
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Figure 5. Analysis function used for phase computation.
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The phase Φ2 related to the second stripe set is computed in the same way by applying this procedure
with P2 instead of P1 and I2(l) instead of I1(l). We then obtain the synthetic phase Φ related to the
current image by: Φ = Φ1−Φ2 which has to be unwrapped in the interval ]−π, π] by adding±2π where
necessary (cf. Figure 2).

3.4. Combination of Coarse and Accurate Data Leading to High Range-to-Resolution Ratio

For the current image, after the computation of phases Φ1 ,Φ2 and Φ, a coarse displacement ∆ is
given by Equation (3). To improve this coarse value and get a highly accurate displacement evaluation,
the constants k1 of Equation (5) have to be determined from:

∆ = Λ · Φ

2π
(12)

and
∆ = P1 ·

Φ1

2π
+ k1P1 (13)

We get

k̂1 =
Λ

P1

· Φ

2π
− Φ1

2π
(14)

From a theoretical point of view, Equations (12) and (13) are equivalent. From an experimental
point of view however, Equation (12) is more noisy than Equation (13). Because of that the value of k̂1

returned by Equation (14) is not exactly an entire number as it should be but only close to an integer. In
practice the gain in resolution provided by considering the stripe set of period P1 (or P2) instead of that
of the synthetic period Λ is obtained by rounding (k1 = round(k̂1) where round(x) returns the integer
the closest to x) k̂1 to the closest integer k1. The high-resolution displacement measurement is finally
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provided by inserting the computed value of k1 in Equation (5) with kx = 0. This procedure leads to the
final displacement value with a range-to-resolution ratio RRR of:

RRR =
Λ

P1

· 2π

δΦ
(15)

4. Method Capabilities and Numerical Limitations

Without considerations for the material used, the ultimate capabilities of the method would be
determined by the physics phenomena involved and, in our case, would imply quantum statistics of the
light source of illumination and of photon conversion on the image sensor. Such fundamental sources of
noise are responsible for extremely low error levels as expected for instance in gravitation wave detection
interferometers. In the case of applications based on scientific grade instrumentation as aimed here, the
ultimate performances are determined by material and environmental specifications. The most influential
error sources in such visual experiments are thus due to digitizing and to the signal-to-noise ratio of
the detected images. Environmental disturbances are also detrimental to high resolution displacement
measurements and may be found to be the most restrictive parameter. They remain however independent
of the intrinsic method capabilities and thus form extrinsic error sources.

Figure 6. Illustration of the quantization principle applied to a perfect square grid; case of
8 bits sensor, with pixels encoded between 0 and 255.
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Figure 7. Simulated position reconstruction as a function of numeric noise (green), signal
quantization (blue) and presence of noise (red); period of 51.123 pixels, computation step of
10−6 pixel.
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Our method capabilities were evaluated through computations aimed to reconstruct the position of
sets of computer generated images with chosen and perfectly known grid positions. Perfect square grids
were used in the image design and light diffraction effects were not considered. This point is not crucial
since a low pass filtering due to light diffraction would not affect the first harmonic of the square grid
spectrum that is actually used in image processing (cf. Section 2). The square grids were digitized using
area sampling with a fill factor equal to one emulating a perfect CCD sensor (see Figure 6).

Differences observed between the reconstructed positions and the ones used for image generation
provide the actual method detection errors. Figure 7 presents the results of such computations for three
different series of 1,000 images designed with an arbitrary period of 51.123 pixels and a elementary
shift of 10−6 pixel between consecutive images. The green curve corresponds to the most favorable
case involving only the computing noise. We can see that the expected linear displacement is perfectly
reconstructed and in fact, the 10−6 pixel step is already too large to make the numeric noise effects
visible. The blue curve corresponds to an image digitizing over 8 bit depth and we can see that the highest
consecutive steps are of about 0.4× 10−3 pixel (i.e., close to 1/28). The standard deviation of digitizing
errors is of 10−4 pixel at this digitizing depth. The red curve was obtained without digitalization
but by adding a gaussian noise to the generated grid with a standard deviation equal to 1% of the
square amplitude. The resulting errors present a different distribution but approximately with the same
peak-to-peak amplitude. The error standard deviation due to gaussian noise is equal to 9.6× 10−5 pixel.
These simulation results determine the best resolutions that can be expected experimentally with these
parameters that correspond to typical specifications of usual image sensors.

Figure 8 explores in more details the effects of the digitizing depth and of the grid period value
chosen for image generation. We observe a linear dependence of the error level with the grid period.
One more bit of digitizing leads to a twofold decreasing in the resolution achieved. The non-linearities
observed versus the period value are due to numeric effects depending on the ratio between the image



Sensors 2014, 14 5067

pixel number N and the grid period. The best resolution is achieved when this ratio corresponds to an
integer number—as indicated by the red vertical lines - which corresponds to the best representation of
an infinite periodic signal as considered in continuous Fourier transforms.

Figure 8. Ultimate resolution in pixels as a function of grid period and quantization depth
(At each period, maximum error observed on 103 positions shifted by 10−6 pixel).
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Figure 9. Ultimate resolution in picometers as a function of grid period and quantization
depth (At each period, maximum error observed on 103 positions shifted by 10−6 pixel, with
a grid of period 8 µm).
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If the period increase is due to an increase of the vision system magnification; i.e., if the grid period
remains the same; then after error conversion from pixels to actual distance, the resolution becomes
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independent of the period value as represented in Figure 9. In practice, magnification has to be matched
with the actual period value to remain compatible with light diffraction limitations.

These numerical evaluations of the method capabilities can be used to match the setup design with the
expected system performances. For instance, if sufficient free space has to be kept between the lens and
the target, a larger grid period can be chosen to be suited with a low magnification objective and a large
working distance. The resolution loss due to period increase can then be compensated by the use of a
higher grade camera with improved signal-to-noise ratio and digitizing depth. Such an elementary period
increase may also be chosen to enlarge the unambiguous measurement range as defined by Equation (4)
as well as the range-to-resolution ratio.

5. Experimental Results and Performances

Figure 10 presents a view of the experimental setup used. The grid patterns are realized by means of
photolithography and clean room processes onto a transparent piece of glass. The periods of the realized
stripe sets are respectively of 8 µm and 8.4 µm leading to a 168 µm unambiguous measurement range
(or equivalent wavelength). The specimen obtained is back-illuminated by a white light emitting diode
(Luxeon Star:0906LXHLND98) and imaged onto the camera sensor (Allied Vision Technology Guppy
F-046, 780× 582 pixels, cell size 8.3 µm, 8 bits quantization) through a 20× microscope lens (Edmund
Optics Din 20×, N.A. 0.4). The grid pattern is mounted onto a servo-controlled piezoelectric linear stage
(Physics Instruments P-753.1CD), allowing calibrated 1D displacements (repeatability 1 nm, linearity
0.03%). The internal capacitive sensor of the linear stage provides an independent position measurement
used as a reference to evaluate the visual measurement performances (resolution 0.05 nm).

Figure 10. Experimental setup used for method demonstration.

5.1. Quasi-Static Experiments

Figure 11a presents the experimental reconstruction of linear displacements as applied step by step
to the grid pattern by means of the linear stage. A low acquisition rate of 1 fps is used because we
target the static behavior of the system. The figure allows the comparison of the noise level attached
respectively with the coarse and accurate displacement computations. The green curve is obtained
through Equation (3) with P = Λ = 168µm (Λ is the equivalent period defining the unambiguous
measurement range). The blue curve is obtained from Equation (5) that is based on the small-sized
period P1 after compensation for 2π phase jumps. The gain in resolution can be evaluated in Figure 11b
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that presents the deviation from a straight line. The standard deviation is reduced by about 20 times by
switching from the equivalent period to the elementary one. On such a sub-micrometer excursion, the
noise level quantified by the standard deviation is only 1.666 nm; leading to an estimated 3-σ precision
of 5 nm. It could be compared to the 55 pm found as the optimal resolution of the method in these
conditions, in Section 4. This gap is the result of environmental disturbances (thermal and mechanical):
a 5 nm noise is normal for a macro-setup used in non-controlled atmosphere.

Figure 11. Measurement of linear displacement of the pattern. 780× 580 pixels image.
(a) Reconstructed positions; (b) Deviation from a straight line.

5.2. Dynamic (Real-Time) Experiments

Finally the experimental setup was used to characterize the free oscillations of a compliant shuttle as
shown in Figure 12. The moving part is attached to the static structure by means of two parallel and
horizontal beams. Forces applied following the Z direction; i.e., perpendicularly to the beams, result
in 1D displacements of the shuttle. Such a device allows force-to-displacement transduction with a
proportion ratio that is a function of the beam stiffness. A grid pattern was fixed onto the shuttle and
observed by means of the vision system. The camera was replaced by a fast Firewire camera (Allied
Vision Technology Pike F-032B). The exposure time was reduced to 18 µs and a region of interest of
320× 26 pixels was selected in the image in order to increase the acquisition rate. A frame grabbing of
1389.5 fps was achieved with these parameters and a common computer (Intel Core2 Quad CPU Q9550
2.83 GHz, running under Windows 7). The C++ software developed (Provided as supplementary data
to this paper.) was able to process the image flow in real time as demonstrated in Figure 13. The latter
presents the reconstructed free oscillations of the shuttle after the manual application of a starting pulse.
Despite the peak-to-peak vibration amplitude being larger than 40 µm; i.e., 5 times the elementary grid
pattern period, the continuity of the shuttle displacement is perfectly reconstructed thanks to the slightly
different periods of the twin grids. The 1389.5 fps sampling rate allows for a high quality description of
the 19.7 ms period of the shuttle vibration as observed in the zoom of Figure 13b. These performances
give an idea of the method capabilities for real time processing. In this demonstration experiment, the
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limiting parameter is given by the image acquisition rate. Applied repeatedly to a single image kept in
memory, the processing rate reaches 325× 103 Hz on this machine.

Figure 12. Shuttle used as target in real-time experiments.

Figure 13. Reconstructed shuttle displacements in response to a starting pulse.
(a) Exponentially decreasing vibration amplitude; (b) Zoom on the first cycles.

6. Software Package Description

In order to permit the reproducibility of results and the development of new applications, we provide
the source code of the presented algorithms within a library called VERNIER along with the paper.
The library is distributed under the GNU General Public License in the hope that it will be useful. The
package can be downloaded from the website of MDPI (http://www.mdpi.com/) and from the website of
the VERNIER project (http://www.femto-st.fr/vernier/).

While developing VERNIER, our goal was to allow a portable (independent from the hardware), fast,
and reliable code. We also wanted to provide a package that is suitable for real-time implementation
and that allows to obtain good performances with both simulations and real experiments from the same
code. Therefore, we chose the C++ language for the implementation. VERNIER is built upon the
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cross-platform OpenCV library that provides a large compatibility with many image processing
applications. OpenCV (http://opencv.org/) is a widely-used library of programming functions mainly
aimed at real-time computer vision. VERNIER also uses FFTW routines to compute the discrete Fourier
transforms. FFTW (http://www.fftw.org/) is one of the fastest libraries for computing the discrete Fourier
transform in one or more dimensions [18].

VERNIER is written following C++ Coding Standards with the aim to be easily understandable and
reusable. Describing the full implementation of the library is not the purpose of this article. For more
information, a complete documentation is provided with the package.

7. Conclusions

The visual measurement of 1D displacements with a large range-to-resolution ratio as well as a
high frequency rate suited for real time applications is presented and demonstrated in this paper. The
subpixelic performances derive from phase computations applied to the images of periodic grids whereas
the large unambiguous range is obtained thanks to twin stripe sets with slightly different periods. A 3-σ
precision of 5 nm is demonstrated which has to be compared with the 168 µm measurement range.
The image processing used is described in details and the source code is provided as supplementary
materials to this paper. It involves neither Fourier transformation nor data fitting that are known to
be time consuming. The demonstrated live processing rate is of 1,390 fps but the intrinsic method
capabilities correspond to much higher rates once the limitations due to the image acquisition rate and
to the operating system of the central processing unit are avoided.

The performance level can be adapted to the requirements of the final application in different ways.
Firstly the method can be applied to the nanometer, the micrometer or the millimeter ranges (or
even larger) by matching the actual values of the grid periods and of the vision system magnification
accordingly. These conversion parameters from the object space domain to the image domain remains
indeed ignored by the image processing routines that consider images only. Secondly as presented in
the principle and numerical performance sections, the method resolution and unambiguous measurement
range can be chosen almost independently from each other through the suitable choice of the grid period
difference and of the camera signal-to-noise ratio and digitizing depth; provided that environmental
disturbances remain sufficiently low. Thirdly, the vision system magnification does not have to be
calibrated since the knowledge of the grid periods provides a size reference that is sufficient to convert
pixels into actual distances in the reconstructed displacements.

These specifications make the method very attractive for a wide range of applications especially in
robotics and automation. At present time a single direction is addressed and this point is one of the few
limitations of the method. The extension of the proposed principle to measurements versus multi-degrees
of freedom can however be envisaged for instance by using stereovison and/or multiple grid patterns. In
this prospect, the capabilities of grid processing to comply with defocus is of particular interest [19].



Sensors 2014, 14 5072

Acknowledgements

This work was supported by the Smart Blocks project (ANR-251-2011-BS03-005) and by the Labex
ACTION project (ANR-11-LABX-01-01). Authors acknowledge the French RENATECH network
through its FEMTO-ST technological facility MIMENTO.

Author Contributions

This paper is a joint work and all the authors have contributed.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Moddemeijer, R. On the determination of the position of extrema of sampled correlators. IEEE
Trans. Signal Process. 1991, 39, 216–219.

2. Bailey, D.; Gilman, A. Bias of Higher Order Predictive Interpolation for Sub-Pixel Registration. In
Proceedings of the 2007 6th International Conference on Information, Communications and Signal
Processing, Singapore, Singapore, 10–13 December 2007; pp. 1–5.

3. Douglas, S. Frequency-domain subpixel position estimation algorithm for overlay measurement.
Proc. SPIE 1993, 1926, 402–411.

4. Gao, J.; Picciotto, C.; Wu, W.; Tong, W. From nanoscale displacement sensing and estimation
to nanoscale alignment. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2006, 24,
3094–3100.

5. Yamahata, C.; Sarajlic, E.; Krijnen, G.; Gijs, M. Subnanometer translation of
microelectromechanical systems measured by discrete Fourier analysis of CCD images.
Microelectromechan. Syst. J. 2010, 19, 1273–1275.

6. Masa, P.; Franzi, E.; Urban, C. Nanometric resolution absolute position encoders. CSEM Sci. Tech.
Rep. 2008, 1–3.

7. Boyton, D. Position Encoder Using Statistically Biased Pseudorandom Sequence. US Patent
Application 10/399, 470, 2003.

8. Galeano-Zea, J.; Sandoz, P.; Gaiffe, E.; Prétet, J.; Mougin, C. Pseudo-periodic encryption
of extended 2-D surfaces for high accurate recovery of any random zone by vision. Int. J.
Optomechatron. 2010, 4, 65–82.

9. Sandoz, P.; Zeggari, R.; Froehly, L.; Prétet, J.; Mougin, C. Position referencing in optical
microscopy thanks to sample holders with out-of-focus encoded patterns. J. Microsc. 2007,
225, 293–303.

10. Creath, K. Step height measurement using two-wavelength phase-shifting interferometry. Appl.
Opt. 1987, 26, 2810–2816.



Sensors 2014, 14 5073

11. Born, M.; Wolf, E.; Bhatia, A. Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light, 7th (expanded) ed.; Cambridge University Press: Cambridge,
UK, 1999; pp. 193–199.

12. Saldner, H.O.; Huntley, J.M. Profilometry using temporal phase unwrapping and a spatial light
modulator-based fringe projector. Opt. Eng. 1997, 36, 610–615.

13. Hao, Y.; Zhao, Y.; Li, D. Multifrequency grating projection profilometry based on the nonlinear
excess fraction method. Appl. Opt. 1999, 38, 4106–4110.

14. Zea, J.G.; Sandoz, P.; Laurent, G.J.; Lemos, L.L.; Clevy, C. Twin-scale vernier micro-pattern
for visual measurement of 1-D in-plane absolute displacements with increased range-to-resolution
ratio. Int. J. Optomechatron. 2013, 7, 222–234.

15. Sandoz, P.; Carry, E.; Friedt, J.M.; Trolard, B.; Reyes, J.G. Frequency domain characterization
of the vibrations of a tuning fork by vision and digital image processing. Am. J. Phys. 2009,
77, 20–26.

16. De Groot, P.; Deck, L. Surface profiling by analysis of white-light interferograms in the spatial
frequency domain. J. Mod. Opt. 1995, 42, 389–401.

17. Goodman, J.W. Introduction to Fourier Optics; McGraw-Hill: New York, NY, USA, 2005.
18. Frigo, M.; Johnson, S.G. The design and implementation of FFTW3. Proc. IEEE 2005, 93,

216–231.
19. Zea, J.A.G.; Sandoz, P. Pseudo-periodic patterns for subpixel accuracy visual control: Principle,

pattern designs, and performances. Proc. SPIE 2009, 7389, doi:10.1117/12.827485.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Principle: Displacement Measurement from Twin Stripe sets with Slightly Different Periods
	Ambiguous Displacement Measurement from a Single Periodic Pattern
	Removal of Phase Ambiguities from Slightly Different Periods

	Processing Algorithms and Software Implementation
	Determination of Image Lines associated with each Stripe Set
	Determination of the Spatial Frequency of each Stripe Set
	Computation of the Phase of the Central Pixel for both Stripe Sets
	Combination of Coarse and Accurate Data Leading to High Range-to-Resolution Ratio

	Method Capabilities and Numerical Limitations
	Experimental Results and Performances
	Quasi-Static Experiments
	Dynamic (Real-Time) Experiments

	Software Package Description
	Conclusions
	Author Contributions

